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Abstract

This article applies regime-switching models to assess the effects of dif-
ferent regimes of volatility in asset pricing. Different variance-covariance
matrices for different regimes of volatility are introduced in the Capital As-
set Pricing Model. They are scaled with respect to a conditional variance-
covariance matrix that simply follows a GARCH process. The probabilities
that U.S. financial markets were in a low, medium, or high regime of volatil-
ity from March 1958 to December 1995 are computed.



Capital Asset Pricing Model and Changes in Volatility
By André Oliveira Santos

Executive Summary

In the financial literature asset volatility is important since many of the asset pricing models
require expected returns to be inversely proportional to the variance as in the case of the
Capital Asset Pricing Model (CAPM) or prices of a derivative asset to be dependent on the
variance of the underlying asset as in the case of options and futures. One approach to
compute volatility is the Autoregressive Conditional Heteroskedasticity (ARCH) class of
models. These models usually set the current variance-covariance matrix of asset returns equal
to a projection on matrices of past squared error terms and on past variance-covariance
matrices in a multivariate setting. This specification is suited to capture “the tendency for
volatility clustering, i.e., for large (small) price changes to be followed by other large (small)
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price changes, but of unpredictable si .

Episodes of large and sudden shifts in volatility are rare. Examples are the Great Depression in
the 1930s, the oil shock in the 1970s and the stock market crash of 1987. ARCH models are
able to capture the sudden shifts in volatility but with lags due to the relevance of past
information on projecting current volatility. The contribution of this paper is to extend ARCH
models to capture the sudden changes in volatility with the use of regime switching models.

Regime-switching models allow the estimation of the probability that a certain observation
comes from different probability distributions. A successful application has been, for instance,
the evaluation of business cycles. Hamilton (1988) proposed a fourth order centered
Autoregressive Moving Average (ARMA) process for changes in the U.S. GDP with a
constant switching between negative and positive values. In periods of expansion, changes in
GDP come from a probability distribution with a positive mean while, in periods of
contraction, changes in GDP come from a probability distribution with a negative mean.

In the regime switching literature, volatility of stock returns, short term interest rates and
spreads between long and short-term interest rates have been documented as being
dramatically affected by the Federal Reserve Bank's change of monetary policy at the
beginning of the 1980s. Researchers like Cai (1994), Hamilton and Susmel(1994), Gray
(1996), Dueker (1996), and Hamilton and Lin (1996) incorporated these volatility changes by
allowing some parameters in ARCH models to switch between regimes.

If financial markets are subject to sudden shifts in volatility and if asset pricing models are
valid for all regimes of volatility, then economic agents price assets differently in different
periods of volatility. Particularly, economic agents face different probability distributions for
different states of volatility. To infer the existence of different regimes of volatility and the
consequent effect on asset pricing, a regime-switching econometric model is proposed and
implemented in this paper.

The Conditional Capital Asset Pricing Model (CAPM) with regime switches in volatility
proposed in the paper is an extension of the work by Cai (1994), Hamilton and Susmel(1994),

ISee Bollerslev, Chou and Kroner (1992), p. 8.



Gray (1996), Dueker (1996), and Hamilton and Lin (1996). The variance-covariance matrix of
asset returns is different for different states of volatility. In addition, the dynamics of volatility
is also conditioned on past information, capturing the volatility clustering effect so often
documented in the ARCH literature.

The combination of the ARCH and regime switching approaches in a multivariate setting
introduces flexibility in the dynamics of volatility but at the cost of a large number of
parameters which must be estimated. To decrease the number of parameters in the estimation,
two simplifications are adopted in the paper. The first is to set all the off-diagonal elements in
the parameter matrices of the BEKK representation for the dynamics equal to zero for all
states. The second simplification is to choose one state and scale all of the parameter matrices
for the other states with respect to that first state.

The changes in the scale of the variance-covariance matrices or in the regime of volatility are
driven by a state variable that evolves according to a Markov process. Even though financial
markets share simultaneous periods of high and low volatility, the degree of the response of
the U.S. bond or stock markets to changes in volatility may be different. Different scaling
factors for each market, driven by the same state variable, are allowed in the text.

If three regimes of volatility (low, medium, and high) are allowed, the estimates for the
transition probabilities that drive the changes in volatility from state 1 at time t to state 1 at
time t+1 and from state 2 at time t to state 2 at time t+1 are very high for U.S. financial
markets during the period March, 1958 to December, 1995. However, the estimate of the
probability of going from state 3 at time t to state 3 at time t+1 in the text is around 57.5%,
which implies a probability of 42.5% for going from state 3 to state 2. This caused a reversion
from the state of high volatility to the medium regime in U.S. financial markets.

The estimates for the scaling parameters within a three-regime framework implies that the
conditional variance in state 2 is 25.2 times greater than the one in state 1 for bonds and 1.9
times higher for stocks. In state 3, the conditional variance in state 3 is 165.9 times greater
than the one in state 1 for bonds and 7.5 times greater for stocks. These numbers suggest
that bonds are much less volatile than stocks.

Once the estimates for the parameters in the model are obtained, the conditionally expected
excess returns at time t based on a certain state of volatility and on past excess returns are
computed. Since economic agents do not know exactly the current state of volatility, they
infer the probability of being in certain state and weight the conditionally expected excess
returns on that state by their respective probability, resulting in conditionally expected excess
returns not based on any state but only on past excess returns.

From the filter used in the estimation, smoothed probabilities for the regimes 1, 2 and 3 were
also obtained. Smoothed probabilities represent “*the smoothed inference about the regime the



process was in at date t based on data obtained through some later date T."> The smoothed
probabilities for the U.S. financial markets show that volatility stays in regime 2 during most
of the period from March 1958 to December 1995. Periods of low volatility are the ones
comprehended between December 1962 and August 1965, between November 1971 and
November 1972, and between February 1977 and September 1977. Periods of high volatility
include the sharp changes in market rates from June 1958 to July 1958, the oil shock and the
Bankhaus Herstatt and Franklin National crises from September 1974 to October 1974, the
changes in monetary policy by the Federal Reserve from October 1979 to April 1980, and the
stock market crash in October 1987. Thus, periods of high volatility are brief, suggesting the
existence of a mean reversion in volatility.

?Hamilton (1994), p. 694.
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Abstract

This article applies regime-switching models to assess the effects of dif-
ferent regimes of volatility in asset pricing. Different variance-covariance
matrices for different regimes of volatility are introduced in the Capital As-
set Pricing Model. They are scaled with respect to a conditional variance-
covariance matrix that simply follows a GARCH process. The probabilities
that U.S. financial markets were in a low, medium, or high regime of volatil-
ity from March 1958 to December 1995 are computed.

1. Introduction

In the Finance literature, the estimation of asset volatility is important because
many of the asset pricing models require expected returns to be inversely propor-
tional to the variance - as in the case of the Capital Asset Pricing Model (CAPM)
- or prices of a derivative asset to be dependent on the variance of the underlying
asset - as in the case of options and futures. One approach to compute volatil-
ity is the Autoregressive Conditional Heteroskedasticity (ARCH) class of models,
which projects the current variances of asset returns on past squared error terms
and on past variances and covariances. ARCH specification is suited to capture
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”the tendency for volatility clustering, i.e., for large (small) price changes to be
followed by other large (small) price changes, but of unpredictable sign”*.

Recently, financial markets around the world saw periods of small price changes
interrupted by some sparks of large price changes. Yet such episodes of large and
sudden price shifts are still more rare but include the Great Depression in the
1930s, the oil shocks in the 1970s and the stock market crash of 1987 among
others. ARCH models are able to capture the sudden shifts in volatility but with
some lags due to the relevance of past information on projecting current volatility.
The contribution of this paper is to extend ARCH models to capture the sudden
changes in volatility with the use of regime switching models.

Regime-switching models allow the estimation of the probability that a certain
observation comes from different probability distributions. A successful applica-
tion has been, for instance, the evaluation of business cycles. Hamilton [1988)
proposed a fourth order centered Autoregressive Moving Average (ARMA) process
for changes in the U.S. GDP with a constant switching between negative and pos-
itive values. In periods of expansion, changes in the GDP come from a probability
distribution with a positive mean while, in periods of contraction, changes in GDP
come from a probability distribution with a negative mean.

If financial markets are subject to sudden shifts in volatility and if asset pric-
ing models are valid for all regimes of volatility, then economic agents price assets
differently in different periods of volatility. Economic agents face different prob-
ability distributions for different states of volatility. To infer the existence of
different regimes of volatility and the consequent effect on asset pricing, a model
that combines both the ARCH and the regime switching methodologies is pro-
posed and implemented in the paper.

The paper is organized as follows: subsection 2.1 briefly reviews the generalized
autoregressive conditional heteroskedasticity in the mean (GARCH-M) literature
in multivariate tests of the CAPM. The next subsection summarizes models in the
regime-switching literature that allow the conditional variance-covariance matrix
to change within regimes. In section 3, I propose a model that includes both
volatility clustering and regime switches, but that is slightly different from those
of the previous sections. Section 4 uses U.S. data and applies the methodology of
the previous section to the CAPM . Finally, I briefly review the most important
results in the article and suggest some directions for future research.

!See Bollerslev, Chou and Kroner (1992), p. 8.



2. GARCH/ARCH-M and Regime-Switching Models

2.1. GARCH/ARCH-M in Asset Pricing Models

Before proceeding with the application of regime-switching models to the analysis
of different regimes of volatility, I will briefly review the literature on conditional
tests of the CAPM in a multivariate setting.

From the mean-variance analysis, the conditionally expected excess return on
any asset is linearly proportional to its covariance with the market return:

Eg-l (Ri_,t - Rotl) = 6CO’Ut— 1 (Ri,ta Rvn,t) (2' 1)

where § is the market price of risk (assumed to be constant in the whole article),
E;_; is the expectation operator based on information available at time t-1, R, is
the gross return on a risky asset, Rg; is the risk-free interest rate, and R,,; is the
gross return on the market portfolio. The market return is a weighted average of
all returns on assets available in the economy:

N
Ry =) witRiy (2.2)
=1

where w; ¢ are the asset shares in the market portfolio.

Substitution of the previous definition of the market return in the asset pric-
ing equation (2.1) above yields an expression where expected excess returns are
proportional to a linear combination of variances and covariances of asset returns,
with the weights given by the asset shares in the market portfolio. In matrix
notation, this is equivalent to:

Et_l(Rg hd Rotl) = Jﬂtwt_l (2.3)

where R; is an (Nx1) vector of gross returns on risky assets, 1 is an (Nx1) vector
of ones, €, is an (NxN) conditional variance-covariance matrix of excess returns,
and w;_y is a (Nx1) vector of asset shares.

Under rational expectations, current excess returns are equal to conditionally
expected excess returns plus an error term:

R — Ryl = Et..l(Rt - Rot]-) + &¢ (2.4)
where ¢, is an (Nx1) vector of error terms defined as:

£, = R, — B 1(Ry) (2.5)
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with a N(0,H,) distribution given the information set available to investors at time
t-1.
Substitution of the equilibrium asset pricing equation (2.3) in expression (2.4)
yields:
Rg - Rotl = 6Qtwt_1 + & (26)

or, for the ease of notation?®:
Ty = 6Qtwt_1 + &¢ (261)

where r.=R;-Rg:1 is the vector of excess returns.

Although the mean-variance analysis has a linear relationship between condi-
tionally expected excess returns and their conditional variances and covariances
as in expression (2.3), it does not predict how variances and covariances evolve
through time. The Constrained Asset Share Estimation (CASE) Method of Engel,
Frankel, Froot, and Rodrigues (1993) constrains the variance-covariance matrix
of excess returns to be equal to the variance-covariance matrix of the error terms:

Qe = Ey-1(ecey) = He (2.7)

In much of the empirical work in a multivariate setting, the latter matrix H,
is set as a linear function of a matrix of constants, of lagged squared error terms
Et—1y--+y Et—p, and of lagged variance-covariance matrices H;_1,..., H;—4; that is, H,
follows a GARCH(p,q) process. Since the variance-covariance matrix H, must be
positive-definite, the conditions of the GARCH process that guarantee it are: (i)
a positive definite matrix of constants and (ii) positive semi-definite matrices of
coeflicients that multiply the lagged squared error terms g;—1,..., £&—p and the past
variances and covariances H;_j,..., Hy g%,

Among the many representations listed in Ding and Engle (1994), one that
has attracted special interest is the BEKK representation:

H, = CC+ All_Eg_]_E’t_lAl + ...+ A;et_ps;_pAp
+B\H, 1By + ...+ BLH, ,B, (2.8)

where C is an (NxN) inferior triangular matrix of constants and Ay, ..., A,, By, ...,
B, are (NxN) matrices of coefficients. Its weak conditions for positive definiteness

2Equation(2.6) may be interpreted as the inverse of a demand equation where shares are a
function of excess returns plus error terms. The CAPM restricts the way in which shares depend
on their returns.

3See Attanasio (1991).



and its capacity to include other representations? have made it one of the most
used in a multivariate setting. Examples of recent applied work that test either a
“closed economy” or an international version of the CAPM with a BEKK repre-
sentation include Fornari (1995), Chan, Karolyi, and Stulz (1992), Engel (1994),
De Santis and Gerard (1996), and De Santis and Gerard (1997).

Since the current conditional variance-covariance matrix H; is a projection on
the squared vectors of past error terms &;_1,...,6&,— 4 and on the variance-covariance
matrices Hy_1,..., H;_p, GARCH/ARCH models are able to capture “the tendency
for volatility clustering, i.e., for large (small) price changes to be followed by other
large (small) price changes, but of unpredictable sign.”® This is an important
feature of many macroeconomic and financial time series. However, if one thinks
of periods of volatility clustering as being interrupted by sudden shifts in the level
of volatility, then the simple GARCH/ARCH framework is not flexible enough to
capture the sudden change in regimes.

2.2. Regime Switching Models and Changes in Volatility

In the regime switching literature researchers have particularly focused attention
on the behavior of excess returns on stocks, of short term interest rates, and
of spreads between long and short-term interest rates. The variances of these
variables seem to have been dramatically affected when the Federal Reserve Bank
changed its monetary policy procedures at the beginning of the 1980s.

To allow some flexibility in capturing this change in regime, some researchers
have proposed GARCH/ARCH models that have some parameters switching be-
tween regimes. For instance, Hamilton and Susmel (1994) introduced a scal-
ing regime-switching ARCH model with returns on stocks following an AR(1)
process®:

Bi=a+¢Ri 1+

where R, is a vector of asset returns, ¢ is an (NxN) matrix of coefficients, and ¢,
is an (Nx1) vector of error terms.
The latter vector of error terms &; was set equal to the product

er = +/Gnts (2.9)

4See Engle and Kroner (1995).

5See Bollerslev, Chou and Kroner (1992), p. 8.

§ Although the articles reviewed in this section refer to a univariate setting, I adapt the models
to a multivariate setting in order to keep consistency of notation.



where v, is an (Nx1) vector of error terms with a N(0,H;) distribution and where
gs, is a scaling factor. The latter scaling factor g,, is indexed by an unobservable
state variable s;, which assumes values from one to K and evolves according to
a Markov process with a (KxK) transition probability matrix. This means that,
when the state variable s, is equal to one, the scaling factor g,, assumes a value
equal to one; when s, is different from one, g,, assumes other positive real numbers.
With such a scaling variable g,,, changes in volatility from one state to another
occur through changes in the scale of the process &;.
In Hamilton and Susmel (1994), the vector of error terms u; was the usual ocne
described by the product :
U = Mt’vt (210)
where the term v, is an (Nx1) vector of error terms with a N(0,I) distribution and

where the (NxN) matrix M; stands for the Cholesky decomposition of the matrix
H,. The latter evolves according to an ARCH(p) process:

H, = C'C+ Au1t_1Ar + ... + Aug_pity Ay (2.11)

where use of the BEKK representation is made here.
The matrix H, is made dependent on regimes by a substitution of the vector
of error terms u, in expression (2.11) by its definition in expression (2.9):

Hyspsynseqg = C'C + Aj(et-18_1/Gse 1) A1+ o + A(€0—pEL_p/ G5 o) Ap  (2.12)

With this substitution, the conditional variance-covariance matrix of the error
terms £; can be written as:

Ei(ewetlst, st-1, .0, St—p) = 95.[C'C + Aj(€t-164-1/9s.-1) A1
+..o 4+ Ap(Et—pEt—p/Gsi ) Asl (2.13)

The error term g; is g,, tirnes larger than the error terms u,. This definition
introduces a dependence of the conditional variance-covariance matrix E,_; (e,
€¢lse—1,..-,St—p) On present and past states.

Cai (1994) also included regime switches in volatility in a ARCH(p) process.
His model has an autoregressive process with a variance-covariance matrix Hy,,
equal to:

Hys, = C'Cs, + Ajera8y 1 A1+ oo + Arer_pE; Ap (2.14)
where the vector of error terms £; is also defined as in expression (2.10) and
thus has a N(0,Hy,,) distribution. In the latter ARCH(p) process, the matrix of
constants C’C changes according to an unobservable state variable s,.

6



Note that the researchers above dealt only with ARCH processes. On one
hand, ARCH processes with changes in regime are simple and do not cause any
problems in estimation, whereas GARCH processes are extremely cumbersome.
The reason is that the current conditional variance-covariance matrix H; depends
not only on the history of the latest p states (as in Hamilton and Susmel (1994)),
but on the whole history of states. For instance, after substitution of the matrix
H;_4,,_, in a GARCH (1,1) process:

Hy,,_, = C'C + Aj(et-18; 1195,y ) A1 + B1H: 1)s,_,B1 (2.15)

I obtain the current conditional variance-covariance matrix as a function of the
past states s;_; and s; 5. Further substitutions in the conditional variance-
covariance matrices H; 35, 5, Hy—3)5,_4 ---, introduce successive terms containing
the scaling factor gs, ., Ze,_4s---) Esp- Evaluation of the log-likelihood function at
each point in time is performed with increasing difficulty due to the increasing
number of possible histories of states.

Indeed, if coefficients in the mean equation assume different values according
to current and past states of volatility, a similar recursion to the one in the ARCH-
M of Engle, Lilien and Robins (1987) occurs through the error terms ;. A simple
ARCH-M(1) in tests of the CAPM illustrates this point. Assume for the moment
that the pricing equation (2.6.1) can be rewritten as:

T¢ = 8gs, Hywe—1 + €45, (2.18)

when there exist regime shifts in volatility. If the pre-sample vector of error terms
€p is set equal to zero, then the variance-covariance matrix H; at time 1 is equal
to C’C. Thus, the vector of error terms at time 1 can be calculated as £;3)5,= 13-
8gs, C’Cwyp. Yet, at time 2 the variance-covariance matrix Hy, is:

Hys, = C'C + Aj€1)6,E7)s, A1 (2.17)
In this case, the vector of error terms £, at time 2 is:
€2|s2,89 = T2 — 6gazH2|51 (218)

which depends on the state variable s; at times 1 and 2. Further substitution
increases the dependence of error terms and of the conditional variance-covariance
matrix on past states.

To overcome the recursions above and allow the use of GARCH with regime
switches, Gray (1996) suggested the following procedure. Instead of past error

7



terms and variance-covariance matrices conditioned on past states, a GARCH(p,q)
process would employ unconditioned (with respect to past states) vectors of error
terms €¢_1,..., £&—p and variance-covariance matrices Hy q,..., Hi—q. The current
variance-covariance matrix Hyj,, would still depend on the current regime through
the matrix of constants C’C and the matrices of coefficients multiplying the past
squared error terms and the past variance-covariances matrices. For instance, for
a GARCH(1,1) process, Gray (1996) suggested defining the variance-covariance
matrix Hy,, as:

Ht|5t = O;tcgz + Al]_\stst-—lsg_lAl]eg + B’l]sth—lB].ISg (219)

Clearly, the unconditioned vector &;_; and matrix H;_; in the variance-covariance
matrix Hy,, break the dependence of the latter matrix on previous states s;_i,
St—2y sar .

Dueker (1997) proposed a slightly different procedure. For a GARCH(1,1)
process, the variance-covariance matrix Hys,,,_, depends on both current and
lagged values of the state variable s;. The current state variable s, drives the
constant matrix C while the lagged variable s;_; drives the coefficient matrices A,
and Bs:

Ht'st,st—-l = C;.;Cﬂe + A’1|3,_15t—152_114-1]s¢_1 + Blllst_, Ht—lB].]St—l (220)

The unconditional vector of error terms €; in Gray (1996) is similar to the one
in Dueker (1997), but the variance-covariance matrix in both papers are computed
slightly differently. The unconditioned vector of error terms &, in Gray (1996) and
in Dueker (1997) involves the multiplication the error term ey,, in each state s, by
its correspondent regime probability p(s¢|re—1,T¢~2,...;8) and then the sum of the
product over all possible states s;:

X .
&y = EP(Stht~1,7‘t~2,-~; 9)‘5t|.9g (2-21)

g¢=1

where p(s¢|rs—1,T¢-2,...;0) stands for the regime probability; that is, the probability
that a certain state occurs conditional to the information set at time t-17.

In turn, Dueker (1997) computed the unconditional variance-covariance matrix
H, , first, by multiplying each conditional Hy,, by its respective regime probability

7See next section for an example of its computation.



p(s¢lre—1,r¢—2,-..;6) and then, sumnming up all the products:

K
Ht = Z P(Sg‘fg_l,’rt_z, ay 6)‘Ht]3g (2‘22)

se=1

while the unconditioned variance-covariance matrix H, in Gray (1996) is simply
found through the use of the definition of conditional variances:

K
H, = Ep(st[rt._l,...;B)qu.sﬁlst

8:=1

K K !
- (Z p(selre-1,.-; B)sq_‘,‘) (Z p(selre-1,-.; B)Etm) (2.23)
se=1 se=1

3. CAPM with Changes in Volatility

In this section I propose extensions to Hamilton and Susmel (1994), Gray (1996)
and Dueker (1997) that allow different variance-covariance matrices in a multi-
variate GARCH-M specification for different states of volatility.

If the variance-covariance matrix of excess returns is different for each regime
of volatility, then the equilibrium asset pricing equation (2.6.1) can be written as:

Ty = Qs Wiy + Eyjs, (3.1)

where the vector of error terms g4, has a N(0, Hy,,) distribution. As previously
indicated, the use of the Constrained Asset Share Estimation (CASE) Method
constrains the conditional variance-covariance matrix €2y,, of excess returns to be
equal to the conditional variance-covariance matrix Hy,, of the error terms &4, :

Qtlsg = Et—] (5t|836;f3t) = Ht’ag (3'2)

With the latter constraint, the previous asset pricing expression (3.1) can be
written as:
e = 6Ht|8twt—1 + Etls, (3'3)

In the variance-covariance matrix Hy,, above, the state variable s, drives the
volatility in all asset markets; however, there could exist different state variables
driving volatility in the different asset markets. An exarmple would be different
state variables driving the foreign currency exchange and stock markets in an

9



International CAPM. For the ease of presentation, I assume that the only state
variable s, that drives volatility in all asset markets evolves according to a Markov
process with a (KxK) transition probability matrix P*:

Pui P21 .- Pr1
P= DPi2 P22 ... Dr2
Pix P2k - DPrk

The conditions for stability of a Markov process are assumed to hold.

To complete the description of the model, the process for the variance-covariance
matrix Hy,, needs to be specified. In a BEKK representation where all the ele-
ments in the constant matrix C and in the coefficient matrices A,,..., Ay, By,...,
B, are subject to changes in regime (as in Gray (1996)), the variance-covariance
matrix Hy, can be written as:

Ht}s: = CLeCag + A'1|3¢5t-15:1_1A1|8¢ + ...+ A-Iplsget—Pg:t-qAPfst
+Bgl]s¢Ht-1Bl|st + ...+ B;p,Ht—qu]st (34)

where both the error terms g;_1,..., £:—» and the matrices H;_,..., H;_, are uncon-
ditioned with respect to past state variables s;_;,8;-3,... . With a small number
of assets and states, the number of parameters to be estimated in the variance-
covariance matrix Hy,, is large. For a GARCH(1,1) process with 2 assets and 2
states, the BEKK representation above has 22 parameters!

To decrease the number of parareters, I adopt two procedures. The first is
to set all the off-diagonal elements in the coefficient matrices Ay, ..., Ags, and
By|s,s---» Bpjs, €qual to zero as in De Santis and Gerard (1996) and De Santis and
Gerard (1997). The second procedure is to scale all the elements in the matrix
H;,, with respect to a matrix H, that does not switch with the state of volatility.
For instance, if variances and covariances of excess returns change by the same
proportion from one state to another, the variance-covariance matrix Hyj,, can be
decomposed as:

Htlst = gs, H; (35)

8Regarding the elements of the transition probability matrix, they may: (a) remain constant
through all the sample size as assumed in the text; (b) be time-varying, that is, a function of
observed economic fundamentals as in Filardo (1994); (c) be duration-depend, that is, not only
a function of the inferred current state but also of the number of periods in which the state
variable s; has remained as in Durland and McCurdy (1994). The last two possibilities provide
some flexibility to capture expected changes in the duration of phases of low and high volatility.

10



which scales the variance-covariance matrix Hy,, with respect to matrix H;. The
latter matrix H; simply follows a GARCH(p,q) process:

H, = c'C+ A’lé't_]E:__lAl + .+ A;,St_pé:;_pA?
+BiH; 1B, + ...+ B, H: B, (3.6)

Note that all the past matrices Hy 1,...,H;_ 4, on the right hand side of the
expression above are not conditioned on past states. This is not due to a pre-
multiplication of past matrices Hys,_, ,-.-,Hejs,_, Dy their respective regime proba-
bilities as in Dueker (1997), but to a possible inversibility of the GARCH process.
For a diagonal BEKK representation, the previous expression can be rewritten as:

(I-0:8, @ L— ... —bgt, ® L) Hy = C'C + (a10y ® L + ... + a0}, ® [*) &4t
(3.7)
where the a; and b; are vectors containing the diagonal elements in matrices A;
and Bj, respectively, and where L. stands for lag operator. Inversibility means
that the matrix H; is an infinite sum of unconditioned past squared error terms:

Ht = C‘IC' + (dl R L + d2 s3] L2 -+ ...)Sté'; (3.8)

where: 1
CYC* = (I — by — ... = bg},) C'C (3.9)

and where the term (d1 ® L + d» ® L? + ...) is an (NxN) matrix representing the
result of the product:

(I-bb@L— ...~ b, ® L%) " (210} ® L + ... + a,a}, @ I?)
Expression (3.5) is equivalent to:

Etjse = +/Gs: Mrve (3.10)

where v; is an (Nx1) vector of error terms with a N(0,I) distribution and where
the matrix M, stands for the Cholesky decomposition of the variance-covariance
matrix H;.

In this setting there exists only one scaling factor g, for all the elements in
the variance-covariance matrix H,. However, different assets may have different
scaling factors in different regimes. Even though financial markets share simulta-
neous periods of high and low volatility, the degree to which each market responds
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may be different. This observation leads to a redefinition of the vector of error
terms &y, as:

edgs, = G3* Myv, (3.11)

where the (NxN) matrix G2 of scaling factors contains the squared root of the
scaling factors for each asset in its diagonal:

‘}gllst 0 s 0
air=|° VGiler e O (3.12)

0 0 aee gN|s.
With the latter redefinition, the conditional variance-covariance matrix Hy,, of
the error terms &;,, becomes:

Hys, = GY2H,G/? (3.13)
| L1 8¢

For the estimation of the parameters in the variance-covariance matrix Hys,,
of the elements in the transition probability matrix P, and of the price of risk
6 (all comprised in the vector 8), I use the filter described in Hamilton (1994),
chapter 22:

(i) given the past unconditional error terms g,_3, ..., £;—p and variance-covariance
matrices Hy_1, ..., H;_4, I compute the conditional density function at time t, rep-
resented by a normal distribution:

1 -
10) = —m——== exp[(ri— 6 Hyjo,ws-1)'(Hyjs,) " (Te— 6 Hyjs, we-1)]

f(rtlst: Tt—1,Tt-2,...;0) =
VerlH, |
(3.14)

(i1) from the multiplication of the conditional density function of excess returns
by the regime probability, I calculate the joint density function of excess returns
and state sg:

f(re, 84lrea1, 102, .3 9) = f("'tlsm Tt—1,Tt-25 -4} 9)-P(3tlrz—1,?”t~2= -3 9) (3-15)

(ii1) to find out.the unconditional density distribution function of excess re-
turns, I sum the joint density functions over all states s;:

K
flrelroy,emg,..;0) = D f(re, selre-1,74-2,...;6) (3.16)

se=1
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(iv) to update the regime probabilities, I use the following Bayesian rule:

f(rt: st|rt—1: T2, .23 0)
_ _9,...58) =
P(st|’f‘t,7't 1,7Tt—2;---5 ) f(Tt!T'a-l,T‘z—z, o 9)

(v) to obtain a forecast for the regime probabilities in period t+1 based on
information available at time t, I multiply the updated probabilities by the tran-
sition probability:

(3.17)

P(se+1, Selre, Te—1,7e—2, -1 0) = p(Se41|8¢)-p(Se|re, 7e1,Te—2, ..., 6) (3.18)

and, then, sum over s;:

K
P(8e41lTe, Te-1,Te—2,-30) = Z P(Se+1, SelTe, o1, Te—2, -3 0) (3.19)

8¢ =1

(vi) finally, I compute the unconditional error terms needed in the beginning
of the next iteration:

K
& = z p(se|re—1,Te-2, - 8)-€4s, (3.20)
8¢=1
As a by-product of the use of the filter in steps (i) and (ii), the sample log-
likelihood can be calculated:

T
L(8) = > _log(f(re|re-1,7e2,--;0)) (3-21)
t=1
Once all the coefficients are estimated, the conditional expected excess returns
at time t based on the state s;=k and on past excess returns can be easily computed
as:
E('rdst = k, Te—1,Tt—2, -+ 9) = 6H¢|3t=kwt_1 (322)

In addition, conditionally expected excess returns based only on past excess
returns are obtained by multiplying the expected excess returns conditioned on
state s; by the regime probability in state s, and then summing over all possible
states: '

E(Tzlf'z—l,f‘t—m---;e) = E(E(Ttlst,T‘t—lﬂ‘t—z,~--;9)]"'t—1,7’t—2,---;9) (3~23)

K
= Z P(stlrt-ly'rt—Z: -3 g)~6Ht|.9¢wt—1

st=1
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Economic agents are able to calculate precisely the variance-covariance matrix
of excess returns on each state. However, they do not know exactly the current
state of volatility. They infer the probability of being on certain state and weight
the expected excess returns on that state by its respective probability. Therefore,
conditionally expected excess returns are not based on any state but only on past
excess returns.

Note that, to start the algorithm above, pre-sample values for the conditional
variance-covariance matrix, for the error terms and for regime probabilities are
necessary. A similar procedure as in De Santis and Gerard (1997) can be used
for the pre-sample variance-covariance. In the first iteration each element in the
sample variance-covariance matrix of excess returns is divided by the respective
element in the matrix of scaling factors. In the other iterations the pre-sample
variance-covariance matrix is set equal to sample variance-covariance matrix of
the unconditional error terms of the previous iteration divided by the respec-
tive element in the matrix of scaling factors. Finally, the pre-sample values for
the regime probabilities are simply set to equal to the ergodic probabilities, as
suggested in Hamilton (1994).

4. Data Description and Interpretation of Empirical Results

The market portfolio studied in this section is composed of U.S. treasury bills,
bonds and stocks. Treasury bills are the riskless asset. The data are monthly
percentage excess returns and asset shares from March 1958 to December 1995,
for a total of 454 observations. Monthly excess returns for all assets are taken from
Ibbotson and Associates (1995) while assets shares are taken from publications of
the Federal Reserve Bank. Asset shares are plotted in figure 4.1. For a detailed
description of the data sources, definitions and transformations see the Appendix.

Table 4.1 provides suminary statistics for the excess returns on bonds and
stocks. In panel A, the computed statistics for the excess kurtosis for bonds and
stocks are statistically different from zero at the 5% level. Since I use a “moment
specification testing” approach (as in Cho and West (1995)) to estimate jointly the
mean, the standard deviation, the skewness and the excess kurtosis coefficients, a
test of the null hypothesis of normality of the excess returns simply corresponds
to a Wald test of the skewness and of excess kurtosis coefficients being equal
to zero. Since the Wald test statistics is greater than its critical value at a 5%
level, I reject the null hypothesis of normality for the excess returns on bonds and

14



o2

Figure 4.1: U.S. government bonds, stocks and treasury bills shares in the market
portfolio, from March 1985 to December 1995.

stocks. I use a GARCH model with regime switches as an attempt to capture the
non-normality of excess returns.

In panel A of table 4.1, I also compute a Modified Ljung-Box statistics adjusted
to consider ARCH effects®. Diebold (1986) showed that the existence of ARCH
effects may underestimate the standard errors of the autocorrelation coefficients
and the Ljung-Box test statistics. Despite the adjustment for ARCH effects, the
Ljung-Box test statistics show the existence of an autocorrelation of orders 1
and 3 in the excess returns for bonds!'?. Since parameter estimators are unbiased

9Cho and West (1995) suggested the modified Box-Ljung statistics below to account for
ARCH effects:

N(N +2)0§2 > (N = 3)"(p}2/k5) ~ x*(r)
=1

where 04?2 is the unconditional variance, pfz is the calculated autocorrelation coefficient at lag
j, and
N
K} =N-1 Z (r; — mean)?(rs—; — mean)?®
t=j+1
0The cause of autocorrelation in the return on bonds msay be, in part, due to the non-
synchronous trading phenomenon discussed in Lo and MacKinlay (1988). Among the different

maturities that compound our government bonds, one particular maturity is reponsible for the
autocorrelation: the U.S. Intermediate Government Bonds.
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Table 4.1: Summary statistics for monthly excess returns on U.S. governement
bonds and stocks, from March 1958 to December 1995.

Bonds Stocks

Panel A: ¢
Mean 0.0011 0.0052
(0.0009) (0.0020)
Std.dev. 0.0175 0.0413
(0.0014) (0.0025)
Skewness 0.5299 -0.3508
(0.4240) (0.3404)
Excess kurtosis 4.8064 2.4363
(2.3838) (1.2645)
Wald test for normality 4.6067 5.2062
(Hp: Skewness and excess kurtosis=0) [0.0999] [0.0741]
Modified L-B Q(1) 5.6032 0.2844
[0.0179] [0.5938]
Modified L-B Q(2) 6.1072 0.5049
[0.0472] [0.7769]
Modified L-B Q(6) 9.9549 6.3847
[0.1265] [0.3815]

Panel B: r2
Mean 0.0003 0.0017
(0.0000) (0.0002)
Std.dev. 0.0008 0.0035
(0.0002) (0.0007)
L-B Q(1) 8.4334 5.0634
{0.0037] [0.0244]
L-B Q(2) 32.5223 7.2376
[0.0000] [0.0268]
L-B Q(6) 79.0749 14.3975
{0.0000] [0.0255]

1) Standard errors computed according to Newey and West (1987),
with an automatic lag selection as in Newey and West (1994), are
shown in parenthesis.
2) Modified Ljung-Box statistics, adjusted for possible conditional
heteroskedasticity effects, are computed according to Cho and West
(1995).
3) p-values of the chi-squared statitics are shown in brackets.
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but inefficient when there exists autocorrelation, I compute heteroskedasticity and
autocorrelation-consistent standard errors - as in Newey and West (1987), with an
automatic lag selection as in Newey and West (1994) - for the mean, the standard
deviation and the skewness and excess kurtosis coefficients.

Panel B of table 4.1 reports summary statistics for the squared excess returns.
The Ljung-Box test statistics is significantly different from zero even at high lags,
which provides support for the use of a GARCH parametrization. This volatility
clustering is exactly the reason why the GARCH framework was designed.

The estimation of the many statistical models in this section are undertaken
with MINUIT!!. MINUIT is an optimization program widely employed by physi-
cists and is specially suited to handling difficult problems such as these. The
algorithm implemented in MINUIT is a stable variation of the DFP variable met-
ric algorithm. However, MINUIT does not provide the scores, which are useful for
economists in the computation of robust standard errors and in other specifica-
tion tests. To overcome this drawback, I use a subroutine to calculate numerically
the first derivative of the likelihood, at each point at time, with respect to each
parameter once the maximum is obtained.

As a benchmark, I fit a GARCH(1,1) within a single regime. This captures only
the time-varying nature of the second moments and corresponds to the statistical
model:

Ty = 5Htwt_1 + & (41)

where

Hg =C'C -+ A’IEt_].E;_lAl -+ Bth-l.Bl (4.2)

Table 4.2, panel A, first column, reports the Maximum Likelihood estimates and
standard errors from the inverse of the Hessian matrix and from a procedure in
Newey and West (1987), with an automatic lag selection as in Newey and West
(1994). Except for the coefficient cp; in the constant matrix C, all the other
coefficients in the mean equation (the relative risk aversion coefficient §) and in
the GARCH(1,1) process (the elements in matrices C, A;, and B,) are statistically
significant at a 5% level. Interestingly, the value for the risk aversion coefficient §
is equal to 4.75.

Table 4.3 provides summary statistics for the standardized residuals. Since the
Modified Ljung-Box statistics for the residuals in the first equation are weakly dif-
ferent from zero at lags 1, 2, 3 and 4 (not shown) at the 5% level, heteroskedasticity

11@) Centre Européen pour la Recherche Nucleaire (CERN).
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Table 4.2: Maximum likelihood estimates and specification tests of the relative risk
aversion coefficient § and of the elements in matrices A;, B3, and C in expressions
(4.1), (4.2), (4,3) and (4.5), within a single, two and three regimes of volatility.
Panel A: Coefficients in Matrices A;, B; and C and é within:
Single Regime Two Regimes Three Regimes

n ~0.0013 0.0008 0.0004
(0.0004) (0.0001) (0.0001)
[0.0011] [0.0002] [0.0001]
co1 0.0003 -0.0002 -0.0001
(0.0003) (0.0001) (0.0000)
[0.0005] [0.0001] [0.0000]
Can 0.0010 -0.0067 -0.0062
(0.0024) (0.0015) (0.0019)
[0.0022] [0.0013] [0.0020]
an 0.4230 . 0.0658 0.0382
(0.0532) (0.0128) (0.0100)
[0.1378] [0.0195] [0.0109]
a2 0.2500 0.1738 0.1482
(0.0410) (0.0403) (0.0501)
[0.0541] [0.0573] [0.0743]
b1 0.9202 -0.9273 -0.9686
(0.0167) (0.0216) (0.0109)
[0.0430] (0.0339)] [0.0113]
bas 0.9386 -0.9399 -0.9512
(0.0184) (0.0162) (0.0194)
[0.0166] [0.0135] [0.0202]
5 4.7587 4.4417 4.4253
(1.4584) (1.4693) (1.5263)
[1.9346] [1.9462] [1.8834]
Loglikelihood ~ 2506.102 2541.609 2560.827

Panel B: Wald Test Statitics of the Null Hypothesis Aj=B;=0 within:
. Single Regime Two Regimes Three Regimes

Hessian 31849 7186 19731

N.W. 11954 8085 17197

1) Standard errors from the Hessian matrix are shown in parenthesis.

2) Standard errors computed according to Newey and West (1987),

with an automatic lag selection as in Newey and West (1994), are

shown in brackets.
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Figure 4.2: Conditional standard deviation for U.S. government bonds and stocks,
computed according to expression (4.2), from March 1958 to December 1995.

and autocorrelation-consistent standard errors for the mean, the standard devi-
ation and the skewness and excess kurtosis coefficients are also computed. The
skewness and the excess kurtosis coefficients for the residuals in the first equation
are statistically different from zero at the 5% level. A weakly significant Wald
test statistics for the residuals implies that they may not be normally distributed.
Since weak evidence of heteroskedasticity and autocorrelation was detected in the
standardized residuals within a single regime, I also report heteroskedasticity and
autocorrelation-consistent standard errors for all the estimates in tables 4.2 and
4.4 within a single, two and three regimes of volatility.

Conditional standard deviations and the risk premia, from March 1958 to De-
cember 1995, for bonds and stocks are plotted in figures 4.2 and 4.3, respectively.
With the estimates of the parameters and pre-sample values for the error terms
go and for the variance-covariance matrix Hy, series for the conditional standard
deviation and the risk premia are calculated recursively. Note that both figures
also show that the simple regime GARCH(1,1) model is able to capture the oil
shock of 1974, the changes in the monetary policy by the Federal Reserve during
the period 1979 to 1982, and the stock market crash of October 1987.

In addition to the time-varying second moments, the inclusion of regime shifts
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Table 4.3: Summary statistics for the standardized residuals in expressions (4.1),
from March 1958 to December (1995).

Bonds Stocks
Panel A: &
Mean -0.0251 -0.0348
(0.0529) (0.0495)
Std.dev. 0.9850 0.9876
(0.0526) (0.0463)
Skewness -0.5714 -0.4835
(0.2857) (0.2889)
Excess kurtosis 2.9465 1.9091
(1.0051) (1.2051)
‘Wald test for normality 10.1760 2.8366
(Ho: Skewness and excess kurtosis=0) [0.0061] [0.2421]
Modified L-B Q(1) 7.5747 0.3576
[0.0226] [0.5499]
Modified L-B Q(2) 7.5891 0.4089
[0.0553] [0.8151]
Modified L-B Q(6) 10.2780 7.5453
[0.1143] [0.2733]
Panel B: &7
Mean 0.9704 0.9766
(0.1045) (0.0930)
Std.dev. 2.1700 1.9464
(0.3999) (0.4133)
L-B Q(1) 0.0654 0.1322
[0.7982] [0.7161]
L-B Q(2) 0.0796 0.1652
[0.9610] [0.9210]
L-B Q(6) 4.7844 0.6620
[0.5712] [0.9953]

1) Standard errors computed according to Newey and West (1987),
with an automatic lag selection as in Newey and West (1994), are
shown in parenthesis.
2) Modified Ljung-Box statistics adjusted for possible conditional
heteroskedasticity effects and computed according to Cho and West
(1995).
3) p-values of the chi-squared statitics are shown in brackets.
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Figure 4.3: Risk premium for U.S. government bonds and stocks, computed ac-
cording to expression (4.1), from March 1958 to December 1995.

in volatility in the Conditional Capital Asset Pricing Model yields the following
statistical model:

Ty = 6Ht|3tw¢_1 + €t|3¢ (4.3)
where:
Hy,, = G32H,GY? (4.4)
and:
H, = C'C+ A'15t—152_1A1 4 B;Ht_lBl (45)
and: 0
1/2 _ 91is; 46
ayr=| ¥ | (4.6)

Indexing the scaling factors gs,, the state variable s, is driven by the transition
probability matrix P:

P= [ P 251 ] (4.7)
P12 D22
within a two regime framework, and by:
P Pn1 P31
P =12 P2 D3 (4.8)
P13 P23 DPs3
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within a three regime framework.

Table 4.2, panel A, also shows the estimates for the risk aversion coefficient
and the coefficients in matrices A; and B; that do not vary despite the shifts in the
regime of volatility. These coefficients in the GARCH(1,1) process characterize
the time-varying nature of the second moments within regimes. When there exist
two and three regimes of volatility, the risk aversion coefficient § and all the
diagonal elements in the matrices A; and B, are significantly different from zero.
Interestingly, the diagonal elements ay; and ay, in matrix A; within two and three
regimes are much smaller than within a single regime. This evidently decreases
the impact of past shocks ;-1 on the conditional variances and covariances. In
turn, the persistence effect measured by the diagonal coefficients by; and bgg
is still high. The Wald test statistics in panel A for the null hypothesis that
aj;=age=Dbj;=Dbyy=0 is statistically different from zero at the 5% level.

The estimates for the coefficients a;;, ase, by; and bse also imply that the cur-
rent conditional variance-covariance matrix is covariance stationary. The matrix
H, represents an infinite sum of past squared error terms and it is not conditioned
on any present or past state. The possibility that the inclusion of regime switches
in volatility implies covariance stationary in the GARCH process will be left for
future research.

Characterizing the shifts in the level of volatility, the scaling parameters in
matrix G!/2 are shown in table 4.4, panel A. Within two regimes of volatility, the
scaling parameters for bonds and stocks in state 2 are 24.4 and 2.2, respectively,
and they are statistically significant. This means that the conditional variance in
state 2 is 24.4 times higher than the one in state 1 for bonds and 2.2 times higher
for stocks. Within a three-regime framework, the conditional variance in state 2
is 25.2 times higher than the one in state 1 for bonds and 1.93 times higher for
stocks. In state 3, the conditional volatility for stocks is 165.86 and 7.54 times
greater than the one in state 1 for bonds and stocks respectively. These numbers
and figure 4.4 - which shows conditional standard deviations for bonds and stocks
within a three-regime framework - suggest that bonds are much less volatile than
stocks.

I next test the hypothesis that volatility could have remained constant within
regimes and only changed with shifts in the regime of volatility. This hypothesis is
equivalent to set the diagonal elements in matrices A; and B; in expression (4.5)
equal to zero and involves 4 restrictions. Table 4.2, panel B, also presents the Wald
statistics for this null hypothesis. I reject a constant variance-covariance matrix
Hys within regimes. This rejection favors the interpretation that volatility is not
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Table 4.4: Maximum likelihood estimates of the cofficients in the scaling factor
matrix G and in the probility matrix P in expressions (4.6), (4.7) and (4.8), within

two and three regimes of volatility.

Panel A: Scaling Factor Matrix G within:

Two Regimes Three Regimes
se=1 s5:=2 s=1 s;=2 s:=3
Eils: 1 24.2170 1 25.1760 168.2700
- (6.5894) - (7.2997) (91.7990)
- [9.9873] - [8.7506] [84.24869]
£a)s: 1 2.2302 1 1.9919 7.5091
- (0.5854) (0.6581) (3.4443)
- [0.7450] - [0.9286] [4.8070]
Panel B: Transition Probability Matrix P within:
Two Reglimes Three Regimes
P11 0.9335 0.9303
(0.0404) (0.0395)
[0.0385] [0.0369]
Pi2 0.0665 0.0697
(0.0404) (0.0395)
[0.0385] [0.0369]
P21 0.0107 0.0090
(0.0068) (0.0058)
[0.0083] [0.0059]
P22 0.9893 0.9667
(0.0068) (0.0185)
[0.0083] [0.0214]
P23 - 0.0243
- (0.0243)
- [0.0273]
Pa2 - 0.4180
- (0.2082)
- [0.2806]
P33 - 0.5820
- (0.2082)
- [0.2806]

1) Standard errors from the Hessian matrix are shown in parenthesis.
2) Standard errors computed according to Newey and West (1987),
with an automatic lag selection as in Newey and West (1994), are
shown in brackets.
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Figure 4.4: Conditional standard deviations for U.S. government bonds and stocks
within three regimes of volatility, computed according to expression (4.4), (4.5)
and (4.6), from March 1958 to December 1995.
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a static concept in the sense that financial markets may be in a high volatility
state today, but the same volatility level may be considered low in another period
of time. “High” and “low” are, after all, relative terms.

The distinction of different states of volatility evidently implies more flexibil-
ity in capturing sudden changes in volatility than allowed by the single regime
framework . Driving the changes in volatility, the estimates of the elements in the
transition probability matrix P within two and three states are shown in table 4.4,
panel B. Initially, no constraints were imposed within a three regime framework
apart from the conditions'? that 0<p;; <1 and >3_,p;;=1. However, many of the
Maximum Likelihood estimations had the elements pi13 and ps1 on the boundary of
zero. For purposes of finding the standard errors, these elements were set equal to
zero and treated as constants. The intuition behind these two probabilities being
set equal to zero is that markets do not jump from the lowest state of volatility
to the highest and vice-versa.

A comparison between the values obtained for the elements p1; and pa; within
two and three regimes of volatility shows that the probability of going from state
1 at time t to state 1 at time t+1 is very high in both frameworks, and the same
remarks also apply to the probability of going from state 2 at time t to state 2 at
time t+1. The probability of going from state 3 at time t to state 3 at time t+1
within a three regime framework is around 57.46%, and this implies a probability
of 42.54% of going from state 3 to state 2. This is enough to cause a reversion
from the state of high volatility to the medium regime.

Figures 4.5 plot the smoothed probabilities for the regimes 1, 2 and 3, re-
spectively, within a three regime framework. Smoothed probabilities represent
“the smoothed inference about the regime the process was in at date t based

12 A5 in Hamilton and Susmel (1994), these conditions were guaranteed through a reparame-
trization of the log-likelihood function. The elements in the transition probability matrix were
redefined as:

pu=wj,/(14+w};);

pi2=1/(1+w},);

P21 =wgl/(1+“-’§1+“’%2)5

p2e=woz/(14+w3; +wiy);

p2s=1/(14+w}; +wh,);

paa=wiz/(1+wp);

and paz=1/(14+w2,).

Once the estimates for w;; are obtained, they can be substituted in the above expressions to
compute the probabilities p;; The latter probabilities are then used in the routines to find the
standard errors.
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on data obtained through some later date T.”'® Given the last regime probabili-
ties p(sr|rr,r1—1,.--;@), smoothed probabilities are obtained through the following
algorithm:

P(si|rr, ..;0) = P(stlre, ...;0) © {P'. {P(sesalrr, ..: 6) (+) Pseaalre, s 6) 1}

where P(.|.) may stand for an (3x1) vector of regime or smoothed probabilities
and where the symbols ® and (+) stand for the multiplication and division of
element by element of the vectors, respectively.

A simple examination of figure 4.5 shows that volatility stays in regime 2
during most of the period from March 1958 to December 1995. Periods of low
volatility are the ones observed between December 1962 and August 1965, between
November 1971 and November 1972, and between February 1977 and September
1977. Periods of high volatility include the sharp changes in market rates from
June 1958 to July 1958, the oil shock and the Bankhaus Herstatt and Franklin
National crises from September 1974 to October 1974, the changes in monetary
policy by the Federal Reserve from October 1979 to April 1980, and the stock
market crash in October 1987.

According to figure 4.5, the periods of high volatility are brief, suggesting the
existence of a mean reversion in volatility. However, Hamilton and Susmel (1994)
obtained different results. In their work, the periods of high volatility in the stock
market in a three regime framework last longer than the ones indicated here.
They suggested that the periods of high volatility are associated with downturns
in business cycles.

Figure 4.6 plots expected excess returns for bonds and stocks in all states
within a three-regime framework. Expected excess returns for bonds and stocks
are greater than zero from March 1958 to 1995 in all states of volatility. Expected
excess returns in the highest state of volatility are greater than in the others, as
one would expect from an inspection of the conditional standard deviations in
figure 4.5.

Expected excess returns computed within one (based only on past information)
and three regimes of volatility are plotted in figure 4.7. Expected excess returns
within three regimes are higher than within one regime in the episodes of high

13 Hamilton (1994), p. 694.

14 «The sharp turnaround in market rates in July 1958 followed a large Treasury financing in
mid-June and gave rise to outcries against speculation in government securities. The result was
an extensive investigation by the Federal Reserve System and the Treasury”. (Friedman and
Schwartz (1963), p. 618)
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Figure 4.5:
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medium (s;=2) or high (s,=3) volatility, from March 1958 to December
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Figure 4.6: Expected excess returns for U.S. government bonds and stocks in
all states, computed according to expression 4.3, within a three-regime volatility
framework, from March 1958 to December 1995.
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volatility. Indeed, expected excess returns are never negative within three regimes
for both stocks and bonds. ‘

5. Conclusion

In this paper I extended a multivariate GARCH-M model to the case where volatil-
ity is also subject to changes in regime. Essentially, I introduced different condi-
tional variance-covariance matrices for different states of volatility in the Capital
Asset Pricing Model (CAPM). The different conditional variance-covariance ma-
trices were scaled with respect to a conditional variance-covariance matrix only
following 2 GARCH(1,1) process.

Corresponding to the different conditional variance-covariance matrices, differ-
ent expected excess returns were also computed. I observed that expected excess
returns for bonds and stocks within a three-regime framework are higher than the
ones computed within a single regime during the episodes of high volatility.

Moreover, I computed the probability that U.S. financial markets were in a
low, medium, or high regime of volatility from, March 1958 to December 1995.
The model implied a high probability of the U.S. financial markets being in high
volatility state during the sharp changes in market rates in 1958; during the oil
shock of the beginning of the 1970s; during the change in the monetary policy by
the Federal Reserve in the late 1970s and early 1980s; and during the stock market
crash in 1987. The periods of high volatility are brief, suggesting the existence of
a mean reversion in volatility.

An important policy application concerns predictions of financial and exchange
rate crises. If asset returns are really characterized by different probability dis-
tributions and financial and exchange rate crises correspond to periods of high
volatility, then the econometric model in this paper could be used to compute the
probability of such crises.

Appendix

The data used in this study includes the period from March 1958 to Decem-
ber 1996 and is similar to the one in Bollerslev, Engle, and Wooldridge (1988).
Basically, the market portfolio is composed of U.S. Treasury Bills, U.S. Govern-
ment Bonds and U.S. corporate equities. All excess returns over the riskless U.S.
Treasury Bills are available in Ibbotson and Associates (1995). The asset shares
are calculated from the amount of interest-bearing public debt held by private
investors published in the Federal Reserve Bulletin/Treasury Bulletin, and from
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Figure 4.7: Expected excess returns for U.S. government bonds and stocks within
one and three regimes of volatility, from March 1958 to December 1995.
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the total market value of corporate equities available on-line from the Board of
Governors of the Federal Reserve System. )

Ibbotson and Associates (1995) publish monthly excess returns of Long and
Intermediate-Term Government Bonds and of Large Company Stocks over Trea-
sury Bills. However, in the text, I use aggregate excess returns for Government
Bonds. The latter is calculated as follows: the amount of one to five-year and
five to ten-year marketable interest-bearing debt (lagged one period) is added to
obtain the outstanding amount of Intermediate-Termm Government Bonds. The
outstanding amount of maturities over the 10-year period is also added to calcu-
late the outstanding amount of Long-Term Government Bonds.

Given the calculated outstanding amount of Long and Intermediate-Term Gov-
ernment Bonds, their excess returns can be weighted in order to calculate the
excess returns of Government Bonds over U.S. Treasury Bills. The outstanding
amount of Government Bonds is essentially the sum of the outstanding amount
of Long and Intermediate-Term Government Bonds. The market values of the
latter are obtained from a multiplication of their par values by a price index for
marketable treasury debt described in Cox (1985) and kindly provided by the
Federal Reserve Bank of Kansas.

Since the Flows of Funds tables contains only quarterly data, the monthly
market value of corporate equities is calculated through the use of the command
“Interpolate” in MATHEMATICA®!. The behavior of the quarterly data for the
total market value of equities is very smooth.

Finally, from the monthly outstanding amount of Government Bonds and Cor-
porate Equities, asset shares can be calculated.
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