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Abstract

We investigate the consequences for value-at-risk and expected short-

fall purposes of using a GARCH filter on various mis-specified processes.

We show that careful investigation of the adequacy of the GARCH fil-

ter is necessary since under mis-specifications a GARCH filter appears

to do more harm than good. Using an unconditional non filtered tail

estimate appears to perform satisfactorily for dependent data with a

degree of dependency corresponding to actual market conditions.
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1 Introduction

Extreme value theory has become a precious tool to assess the likelihood of rare

but large events in stock markets. In the finance literature, such estimations

have become very popular.1 In this strand of literature the estimations are

typically performed under the assumption that the return generating process

is i.i.d.. Actual returns do not obey this relation however, returns’ variability

clusters. As pointed out by Mandelbrot (1963), large events tend to be fol-

lowed by other large events. Such phenomena are typically modeled as ARCH

or GARCH processes, see Engel (1982) and Bollerslev (1986). There exists

in the statistics literature elements on how to deal with certain types of de-

pendency, especially to correct standard errors, see Leadbetter, Lindgren and

Rootzén (1983), and Hsing (1991b). There also exist links between the ARCH

literature and extreme value theory. For instance, de Haan et al. (1989) estab-

lish the extremal index for a simple ARCH model. They hint at how to obtain

the extremal index of the general GARCH model, and an actual derivation

thereof may be found in Stariça and Mikosch (2000). Further bridges between

the two literatures may be found in Quintos, Fan and Phillips (2001). In

these contributions it is shown how to test for the stability of the estimates

of the tail index as well as how to adjust the standard errors under ARCH or

GARCH specifications.

As an alternative to adjusting standard errors, within a VaR context, Mc-

Neil and Frey (2000) propose an interesting technique consisting in first fil-

tering the data, then applying extreme value techniques to the tails of the

1Without dressing a complete list, such estimations are discussed in Danielsson, de Haan,

Peng and de Vries (1998), Danielsson and de Vries (1997), de Haan et al. (1989), Hols and

de Vries (1991), Huisman, Koedijk, Kool, and Palm (2001), Longin (1986), Jondeau and

Rockinger (2003). At the textbook level, one may mention Embrechts, Klüppelberg, and

Mikosch (1997) as well as Reiss and Thomas (1997).
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innovations while bootstrapping the central part of the distribution. From

there on, it is possible to obtain realistically behaved returns using simula-

tion techniques that may be useful for VaR purposes. Our contribution is

inspired by this work in that we investigate the consequences of following

such a methodology when the GARCH process is mis-specified. To do so

we consider various return generating processes such as a GARCH (1,1), a

switching-regime model inspired by the work of Hamilton (1994), as well as a

stochastic volatility model such as described by Pan (2000). Last, we consider

a pure jump model as is often assumed in the finance literature.

Our findings may be summarized as follows. We find that filtering the data

introduces a downward bias of the tail thickness for GARCH (1,1), switching-

regime data, and stochastic volatility models. The bias tends to decrease as

the threshold increases. These findings suggest that the GARCH filter ‘grabs’

for such specifications too much of the tails. On the other hand, when the

data is actually generated by a pure jump process, then the GARCH filter

induces an upward bias of the tail thickness. We show that for data obtained

for market-type parameters, the conventional extreme value theory estimate

leads to crash predictions with the smallest bias.

These findings suggest that data should only be filtered after careful ver-

ification that the GARCH filter is truly adequate for a given set of data. In

case the true data generating process is not of the GARCH type, filtering may

induce a bias.

The structure of this paper is as follows. In the next section we very briefly

recall the working of the GARCH model mainly to introduce notation, and

explain the extreme value method used to describe the tail behavior. In section

3 we describe the possible non GARCH specifications used as hypothetical

true data generating processes in the simulations. In section 4 we show how

expected shortfall is affected in this setting. Section 5 concludes.
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2 Methods

Consider (Xt, t ∈ Z) a strictly stationary time series representing daily ob-

servation of the negative log-return computed for a financial asset price. The

dynamics of Xt are assumed to be

Xt = µt + σtZt,

when the innovations Zt are a strict white noise process, independent and

identically distributed, with zero mean, unit variance and marginal distribu-

tion function FZ(z). The possibly time varying parameters µt and σt are

measurable with respect to It−1, the information available up to time t − 1.

Let FXt(x) denote the marginal distribution of Xt and for a horizon h ∈ N

, let FXt+1+...+Xt+h|It(x) denote the predictive distribution of the return over

the next h days, given the knowledge of returns up to and including day t.

We are interested in estimating unconditional and conditional quantiles in

the tails of the negative log-return distribution. We remind that for 0 < q <

1, the qth unconditional quantile is a quantile of the marginal distribution

denoted by

xq = inf{x ∈ R : FX(x) ≥ q},

and a conditional quantile is a quantile of the predictive distribution for

the return over the next h days denoted by

xt
q(h) = inf{x ∈ R : FXt+1+...+Xt+h|It(x) ≥ q}.

We also consider the expected shortfall (ES), known to be a measure of risk

for the tail of a distribution.2 The ES is a coherent measure of risk in the sense

of Artzner, Delbaen, Elsner, and Heath (2000). The unconditional expected

shortfall is defined to be

Sq = E[X|X > xq],

2The expected shortfall is sometimes called a conditional value at risk or CVaR.
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and the conditional expected shortfall is written as

St
q(h) = E[

h∑
j=1

Xt+j|
h∑

j=1

Xt+j > xt
q(h), It].

In this paper we restrict ourselves to the h = 1 step predictive distribution.

Thus, we denote the quantiles respectively by xt
q and St

q. Since

FXt+1|It(x) = P{µt+1 + σt+1Zt+1 ≤ x|It},

trivially it holds that

FXt+1|It(x) = FZ((x− µt+1)/σt+1).

As a consequence, the quantile and expected shortfall become

xt
q = µt+1 + σt+1zq,

St
q = µt+1 + σt+1E[Z|Z > zq],

where zq is the upper qth quantile of the marginal distribution of Zt, which

by assumption does not depend on t.

2.1 Estimating µt+1 and σt+1

We estimate the conditional mean as an AR(1) process, i.e. µt = φXt−1.

In empirical work, the description of data with the GARCH(1,1) model is

a popular way of modelling volatility. We follow this road and model the

volatility of the mean-adjusted series, εt = Xt − µt, by

σ2
t = α0 + α1ε

2
t−1 + βσ2

t−1,

where α0 > 0, α1 > 0, and β > 0.

This model is fitted using the Pseudo Maximum Likelihood (PML) method

of Gourieroux, Monfort, and Trognon (1984). If we consider a GARCH(1,1)

5



model with normal innovations, the likelihood is maximized to obtain the pa-

rameter estimates θ̂ = (φ̂, α̂0, α̂1, β̂). It has been shown that the PML method

yields a consistent and asymptotically normal estimator. Another approach

consists in assuming that the innovations have a leptokurtic distribution such

as a Student’s t distribution, scaled to have variance 1, see Bollerslev and

Wooldgridge (1984). Note that the additional parameter, v representing the

degrees of freedom of the Student t, can be estimated, along with the other

parameters by PML. Furthermore, for our estimation and simulation exper-

iment, since the focus is on the tail rather than on the central part of the

distribution, the choice of the innovations’ distribution is not a key issue.

In order to make predictions, we fix a constant memory n so that at the end

of day t, the data consist of the last n negative log returns (xt−n+1, ..., xt−1, xt).

Estimates of the conditional mean and standard deviation series (µ̂t−n+1, ..., µ̂t)

and (σ̂t−n+1, ..., σ̂t) can be calculated from the equations above, after substi-

tution of some sensible starting values. Residuals are calculated both to check

the adequacy of the GARCH modelling and as an input for the second stage

of the method. The estimates of the conditional mean and variance for day

t + 1, are calculated as

µ̂t+1 = φ̂xt,

σ̂2
t+1 = α̂0 + α̂1ε̂

2
t + β̂σ̂2

t ,

where ε̂t = xt − µ̂t.

To validate our GARCH filter, we perform a simulation of a GARCH

(1,1), with parameters φ̂ = 0.05, α̂0 = 0, α̂1 = 0.037, β̂ = 0.95, and Gaussian

innovations. Besides recovering the correct parameter values, as the upper

part of Figure 1 shows, the autocorrelation function of the raw simulated

returns displays no autocorrelation but some dependency of the absolute value

of returns. The lower part of Figure 1 applies the same tests to the residuals
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of the GARCH (1,1). Now, both residuals and their absolute values display

no longer correlation.

2.2 Estimating zq using EVT

We fix a high threshold u and we assume that excess residuals over this thresh-

old have a generalized Pareto distribution (GPD) with tail index ξ,

Gξ,β(y) =

 1− (1 + ξy/β)−1/ξ if ξ 6= 0,

1− exp(y/β) if ξ = 0,

where β > 0, and the support is y ≥ 0 when ξ ≥ 0 and 0 ≤ y ≤ −β/ξ

when ξ < 0. The choice of this distribution is motivated by a limit result in

EVT. Consider a general distribution function F and the corresponding excess

distribution above the threshold u defined by

Fu(y) = P{X − u ≤ y|X > u} =
F (y + u)− F (u)

1− F (u)
,

for 0 ≤ y < x0 − u, where x0 is the right endpoint of F . It is possible to

find, for a large class of distributions F , a positive measurable function β(u)

such that

lim
u→x0

sup
0≤y<x0−u

|Fu(y)−Gξ,β(u)(y)| = 0.

This result was shown by Balkema and de Haan (1974) and Pickands

(1975). This result holds for most continuous distributions used in statis-

tics. According to the value of the parameter ξ, the GPD approximation may

be subdivided into three groups. The heavy tailed distributions corresponds

to the case ξ > 0, such as the Pareto, Student’s t, Cauchy, and Fréchet

distributions. The tails of this heavy tailed distributions, decay like power

functions. The case ξ = 0 corresponds to distributions like the normal, ex-

ponential, gamma, and lognormal, whose tails decay exponentially. Finally,
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distributions with ξ < 0 are short-tailed with a finite right endpoint, such as

the uniform and beta distributions.

In our case we assume that the tail of the underlying distribution begins at

the threshold u. We assume that the excesses over the threshold are i.i.d. with

an exact GPD distribution. The parameters ξ and β are estimated by maxi-

mum likelihood. Smith (1985) has shown that maximum likelihood estimates

ξ̂ and β̂ of the GPD parameters ξ and β are consistent and asymptotically

normal as N → ∞, provided ξ > −1/2. The following equality holds for

points x > u in the tail of F

1− F (x) = (1− F (u))(1− Fu(x− u)).

We assume that in our sample of n points, the number of exceedances

above threshold u is N . If we estimate the first term in the right hand side of

this equation, using the random proportion of the data in the tail, i.e. N/n,

and if we estimate the second term by approximating the excess distribution

with a GPD fitted by maximum likelihood, we get the tail estimator

F̂ (x) = 1− N

n

(
1 + ξ̂

x− u

β̂

)−1/ξ̂

for x > u. Let z(1) ≥ z(2) ≥ z(3) ≥ ... ≥ z(n) represent the ordered residuals.

If we fix the number of data in the tail to be N = k, this give us a random

threshold at the (k+1)th order statistic. The GPD with parameters ξ and β

is fitted to the data (z(1) − z(k+1), ..., z(k) − z(k+1)), the excess amounts over

the threshold for all residuals exceeding the threshold. The form of the tail

estimator for FZ(Z) is then

F̂Z(Z) = 1− k

n

(
1 + ξ̂

z − z(k+1)

β̂

)−1/ξ̂

.

For q > 1− k/n we can invert this tail formula to get

Ẑq = z(k+1) +
β̂

ξ̂

((
1− q

k/n

)−ξ̂

− 1

)
.
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We also use the GPD tail estimator to estimate the right tail of the nega-

tive return distribution FX(x) by applying it directly to the raw return data

xt−n+1, ..., xt. In this way, we calculate the unconditional EVT quantile esti-

mate x̂q. According to McNeil and Frey (2000), it should be noted that the

assumption of independent excesses over threshold is much less satisfactory

for the raw return data. In fact, the procedure gives much more unstable

results when applied to non-i.i.d. data. For more details, see Embrechts et al.

(1997).

3 Various non-GARCH data generating pro-

cesses

The method presented above shows satisfactory empirical results when ap-

plied to return series. However, if a series is mis-specified with respect to

the dynamics that is initially assumed, one is not certain that the method

is still consistent. To answer this problem, we assume two different behavior

for financial asset return series, which will constitute our non-GARCH, spec-

ifications. We then apply the method following McNeil and Frey (2000) to

these processes, and check wether or not the method remains valid. We select

a model that dynamically incorporates both stochastic volatility and jumps,

and another one with a switching regime volatility. These two dynamics are

assumed to be potentially true DGPs for actual asset return series. Presently,

we turn to describing how we perform the various simulations.

3.1 Jump diffusion models

Following Pan (1997), we present a model for asset returns that incorporates

jumps. At each point of time, the occurrence of a jump is dictated by Bernoulli

9



trials whereas the jump-size is assumed to be normally distributed. Under

a discrete-time setting, let ε = {εt : t = 1, 2, ...} be a sequence of i.i.d.

random variables with standard normal distribution, J = {Jt : t = 1, 2, ...}

be Bernoulli trials with success probability p, and Z = {Zt : t = 1, 2, ...} be

a sequence of i.i.d. random variables normally distributed with mean µZ and

variance σ2
Z . We assume that the various sets {ε}, {J}, and {Z} are mutually

independent. As a first DGP, we model the return process as follows

Xt = µ + σtεt + ZtJt,

σ2
t = cJt−1 + a0 + a1(Xt−1 − µ)2 + a2σ

2
t−1

where µ, a0, a1, a2 ∈ R. In that model, the time-t jump arrival is dictated

by Jt, while the jump size is modelled by Zt. At time t, the marginal movement

in returns is modelled by εt with a stochastic volatility σt. Both J and ε

contribute to the dynamics of σt. In this paper we simulate the general model

above and a restriction thereof where volatility is held constant, hence, where

only the mean is allowed to jump. Despite the fact that in Pan (1997), the

fit of the restricted model is far less satisfactory than the general model with

stochastic volatility, we consider that this model could possess the appearance

of a certain financial returns series and, therefore, can represent the dynamic

of an asset return.

3.2 Switching regime volatility model

Switching regime models present a further alternative that proved useful in

modelling financial time series. See for instance Duecker (1997), Gray (1996),

Hamilton (1989), Hamilton and Liu (1996), as well as Hamilton and Susmel

(1994). See also van Norden and Schaller (1997) and Timmermann (2000)

who have proposed a Markov switching regime volatility model assuming that

returns are a mixture of normal distributions. This means that returns are
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drawn from a normal distribution where the mean and the variance can take

different values depending on the state of the Markov chain. Following van

Norden and Schaller (1997), such a model may be written as

Xt = µ + [σ1St + σ0(1− St)]εt,

The innovations εt are independent and identically distributed normal in-

novations with mean 0 and variance 1. The state variable, St, is a Markov

chain taking the values 0 and 1 and with transition probabilities p = [p00, p01, p10, p11]

such that

Pr[St = 1|St−1 = 1] = p11, P r[St = 0|St−1 = 1] = p01,

Pr[St = 1|St−1 = 0] = p10, P r[St = 0|St−1 = 0] = p00,

where p11 + p01 = 1 and p10 + p00 = 1. Such a model may be easily estimated

with the EM algorithm, see Kitagawa (1987) or Hamilton (1989), or via PML

as in van Norden and Schaller (1997).

4 Implementation and empirical results

Presently, we wish to discuss the way we simulate the various series. The

samples we use for our simulations involve n = 1000 observations, this would

correspond to somewhat less than four years of daily data. Concerning the

number of observations, k, that should belong to the tail, according to McNeil

and Frey (2000), the GPD-based quantile estimator is stable in terms of mean

squared error for a choice of k, with k taking a value of approximately 80. For

this reason, in the applications a value of 100 seems reasonable for k. This

means that the 90th percentile of the estimation distribution is estimated by

historical simulation, but that higher percentiles are estimated using the GPD

tail estimator. On each day t ∈ T we fit a new AR(1)-GARCH(1,1) model

and determine a new GPD tail estimate.
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To access the quality of the VaR prediction capability, we compare xt
q

with xt+1 for q ∈ {0.95, 0.99, 0.995}. A violation is said to occur whenever

xt+1 > xt
q.

As mentioned in the previous sections, to test the method, we simulate

four processes. A GARCH(1,1) as benchmark data generating process that

serves as a reference for the empirical results. Our alternative specifications

consist in a switching volatility regime model, a stochastic volatility process

with jumps, and a pure jump diffusion. Parameters for both the stochastic

volatility with jumps process and the pure jump process have been estimated

in Pan (1997) on daily returns of the SP500 composite index using data from

1986 to 1997.3 Concerning the switching regime volatility model, parameters

have been estimated in van Norden and Schaller (1997) based on CRSP value-

monthly returns over the period January 1927 to December 1989.4

Insert Figures 1,2,3, and 4 somewhere here

We have plotted realizations of our various processes and the correspond-

ing conditional EVT quantile estimate x̂t
0.95. Figure 2 shows clearly that the

conditional EVT estimate responds quickly to increases in volatility, but tends

to overestimate the series in periods of lower volatility. This is specially evi-

dent for the switching regime volatility model graph. We develop a binomial

test of the success of this quantile estimation method based on the number

of violations. Assuming the dynamics initially introduced and described in

3The parameter values used for the stochastic volatility with jumps model are the

following: µ = 0 (in Pan (1997) µ was set to 0.1842 ), µZ = −0.0183, σ2
Z = 0.0024,

a0 = 1.1273 ∗ 10−4, a1 = 0.0363, a2 = 0.9494, c = 0.0275, and p = 0.0124. For the pure

jumps process the parameters are: µ = 0 (in Pan (1997) µ = 0.1938), ), µZ = −0.0043,

σ2
Z = 0.007, a0 = 0.0113.

4The parameters used following van Norden and Schaller (1997) are: µ = 0.0071, σ0 =

0.0392, σ1 = 0.1180, and the transition probabilities are p00 = 0.991, and p11 = 0.9452.
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section 1, the indicator for a violation at time t ∈ T is Bernoulli

It := 1{Xt+1>xt
q} = 1{Zt+1>zq} ∼ Be(1− q).

For t, s ∈ T and t 6= s, since Zt+1 and Zs+1 are independent, Is and

It are independent. Therefore, the total number of violations is binomially

distributed under the model,∑
t∈T

It ∼ B(card(T ), 1− q).

Under the null hypothesis that a method correctly estimates the condi-

tional quantiles, the empirical version of the statistic
∑

t∈T1{Xt+1>xt
q} is from

the binomial distribution B(card(T ), 1 − q). We perform a two-sided bino-

mial test of the null hypothesis against the alternative that the method has

a systematic estimation error and gives too few or too many violations. A

p-value less than or equal to 0.05 will be interpreted as evidence against the

null hypothesis. The corresponding binomial probabilities are given in Table

2 alongside the numbers of violations for each method and each process simu-

lation. Table 2 shows that on no occasion the approach fails. Then, following

these empirical results we note that the approach does not fail for any mis-

specification with stochastic volatility, as well as for the constant volatility

case.

However, we clearly note that filtering the data introduces a downward bias

for GARCH (1,1) ,switching-regime data, and stochastic volatility with jumps

model. The bias tends to decrease as the threshold increases. This obser-

vation suggest that the GARCH filter snatch too much of the tail for such

specifications. Concerning the data generated by a pure jump process, the

GARCH filter induces an upward bias of the tail thickness. The second im-

portant observation from these empirical results, is that in 11 out of 12 the

unconditional EVT quantile estimate has the smallest bias and therefore is

closest to the mark.
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Insert Table 1 somewhere here

5 Expected shortfall

The concept of Value-at-Risk,VaR, is a quantile-based risk measure. Depend-

ing on the assumptions, VaR condenses all of the risk in a portfolio into a

single number that describes the magnitude of the likely losses on the port-

folio. It has undesirable properties such as lack of sub-additivity, i.e., VaR of

a portfolio with two instruments may be greater than the sum of individual

VaRs of these two instruments, and total absence of information on the size of

the loss exceeding the VaR. The expected shortfall, ES, is an alternative risk

measure to the quantile-based risk-measures such as VaR, which overcomes

the deficiencies of the latter, see Artzner et al. (2000). The ES provides in-

formation of the average size of a potential loss given that a loss bigger than

VaR has occurred.

5.1 Estimation

The conditional one-step expected shortfall is given by

St
q = µt+1 + σt+1E[Z|Z > zq]

where µt+1 and σt+1 have been already estimated in the previous section.

Thus, we need to estimate E[Z|Z > zq]. For a random variable W with an

exact GPD distribution with parameters ξ < 1 and β, we know that

E[W |W > w] = (w + β)/(1− ξ),

where wξ + β > 0. By noting that for zq > u we can write

Z − zq|Z > zq = (Z − u)− (zq − u)|(Z − u) > (zq − u),
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and then that

Z − zq|Z > zq ∼ Gξ,β+ξ(zq−u).

We note that excesses over the higher threshold zq also have a GPD distribu-

tion with the same shape parameter ξ but a different scaling parameter. By

using the equations introduced above, we get

E[Z|Z > zq] = zq

[
1

1− ξ
+

β − ξu

(1− ξ)zq

]
.

These GPD-based estimates gives us the conditional expected shortfall

estimate

Ŝt
q = µ̂t+1 + σ̂t+1ẑq

[
1

1− ξ̂
+

β̂ − ξ̂ẑq

(1− ξ̂)ẑq

]
.

5.2 Backtesting

To backtest the method, we are interested in the size of the discrepancy be-

tween Xt+1 and St
q in the event of a quantile violation, i.e., xt+1 > x̂t

q. We

define residuals as the random variables

Et+1 =
Xt+1 − St

q

σt+1

= Zt+1 − E[Z|Z > zq].

Under the model specification, these residuals are i.i.d., and, conditional

on {Xt+1 > xt
q} or equivalently {Zt+1 > zq}, they have an expected value

of zero. We construct empirical estimates of these residuals on days when

violations occurs denoted by

{et+1 : t ∈ T, xt+1 > x̂t
q}, where et+1 =

xt+1 − Ŝt
q

σ̂t+1

.

Under the null hypothesis that we correctly estimate the dynamics of the

process and E[Z|Z > zq], these residuals should behave like an i.i.d. sample

with mean zero. To test the hypothesis of mean zero we use a bootstrap test

that makes no assumption about the underlying distribution of the residuals.
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We apply a one-sided test against the alternative hypothesis that the resid-

uals have mean greater than zero or, equivalently, that conditional expected

shortfall is systematically underestimated. For more details about this test,

report to Efron and Tibshirani (1993). Following McNeil and Frey (2000) the

residuals derived under an assumption of normality always fail the test with

p-value, and in opposition, the GPD-based residuals are much more plausibly

mean zero. In Table 2 we show p-values for the test applied to the GPD resid-

uals for the GARCH(1,1) simulation, and for the three processes supposed to

describe our alternative dynamics.

Insert Table 2 somewhere here

We note that p-values are always greater than 0.05, thus we conclude that

on no occasion does the null hypothesis of the model being correct get rejected.

6 Conclusion

The true temporal dependency of financial returns is a complex issue. As a

way to improve relevant measures for risk management, one could consider a

two step procedure: First, filtering the returns through a more or less com-

plex GARCH model, and, second, estimating the tail parameters using the

assumption of i.i.d data. The actual measures for risk management can then

be obtained following the two steps. In this paper we investigate the conse-

quences of using GARCH filtered returns when the GARCH process is mis-

specified. We assume as mis-specified GARCH series a simulated stochastic

volatility process with jumps, a pure jump process, and a switching regime

volatility model. Our findings may be summarized as follows. Filtering the

data introduces a bias of the tail thickness for our various models. The bias

tends to decrease as the threshold increases, suggesting that the GARCH filter

16



absorbes too much of the tail of such specifications. The second important

observation from these simulation results is that for data corresponding to

market type parameters, the unconditional EVT quantile estimate has the

smallest bias. These results suggest that great care should be exercised before

applying EVT techniques to GARCH filtered processes.
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Captions

Table 1: Theoretically expected number of violations (exceedence of vari-

ous thresholds) and actual number of violations obtained using the approach,

a GARCH-model with normally distributed innovations, a GARCH-model

with Student t-innovations, and quantile estimates obtained from uncondi-

tional EVT, for our four simulations. p-values for a binomial test are given in

brackets.

Table 2: p-values for a one-sided bootstrap test of the hypothesis that the

exceedence residuals in the GPD case have mean zero against the alternative

that the mean is greater than zero.

Figure 1: A GARCH(1,1) simulation and the corresponding conditional

EVT quantile estimate x̂t
0.95 represented with a continuous line.

Figure 2: Simulated data obtained with a Markov switching-regime volatil-

ity model and the corresponding conditional EVT quantile estimate x̂t
0.95 rep-

resented with a continuous line.

Figure 3: Simulated data obtained with a Stochastic volatility with jumps

model and the conditional EVT quantile estimate x̂t
0.95 represented with a

continuous line.

Figure 5: Simulated data obtained with a pure jump process with con-

stant volatility and the conditional EVT quantile estimate x̂t
0.95 represented

with a continuous line.
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Process GARCH

(1,1)

switching

regime

volatility

Stochastic-

volatility

with

jumps

Pure

Jumps

0.95 Quantile

Expected 50 50 50 50

Conditional EVT 42 (0.24) 46 (0.61) 41 (0.19) 57 (0.31)

Conditional normal 45 (0.51) 47 (0.71) 42 (0.24) 57 (0.31)

Conditional t 43 (0.34) 49 (0.94) 43 (0.34) 57(0.31)

Unconditional EVT 50 (1) 50 (1) 48 (0.82) 48 (0.82)

0.99 Quantile

Expected 10 10 10 10

Conditional EVT 6 (0.21) 8 (0.63) 8 (0.63) 14 (0.26)

Conditional normal 6 (0.21) 10 (1) 6 (0.21) 12 (0.52)

Conditional t 9 (0.87) 10 (1) 9 (0.87) 12 (0.52)

Unconditional EVT 11 (0.74) 8 (0.63) 11 (0.74) 13 (0.33)

0.995 Quantile

Expected 5 5 5 5

Conditional EVT 4 (0.82) 4 (0.82) 4 (0.82) 8 (0.26)

Conditional normal 4 (0.55) 4 (0.82) 4 (0.82) 7 (0.36)

Conditional t 3 (0.50) 4 (0.82) 4 (0.82) 7 (0.36)

Unconditional EVT 6 (0.64) 4 (0.82) 5 (1) 6 (0.64)
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q 0.95 0.99 0.995

GARCH (1,1) 0.50 0.54 0.57

switching regime volatility 0.49 0.48 0.55

Stochastic-volatility with jumps 0.47 0.49 0.51

Pure Jumps 0.49 0.52 0.54

25



G
A

R
C

H
(1

,1
) 

si
m

ul
at

io
n

0
20

0
40

0
60

0
80

0
10

00

−0.2−0.10.00.10.2

Figure 1:

26



S
w

itc
hi

ng
 r

eg
im

e 
m

od
el

0
20

0
40

0
60

0
80

0
10

00

−2−1012

Figure 2:

27



S
to

ch
as

tic
 v

ol
at

ili
ty

 w
ith

 ju
m

ps

0
20

0
40

0
60

0
80

0
10

00

−0.50.00.51.0

Figure 3:

28



Ju
m

p 
di

ffu
si

on
 w

ith
 c

on
st

an
t v

ol
at

ili
ty

0
20

0
40

0
60

0
80

0
10

00

−0.20.00.2

Figure 4:

29



The FAME Research Paper Series 
 

The International Center for Financial Asset Management and Engineering (FAME) is a private foundation created 
in 1996 on the initiative of 21 leading partners of the finance and technology community, together with three 
Universities of the Lake Geneva Region (Switzerland). FAME is about Research, Doctoral Training, and Executive 
Education with “interfacing” activities such as the FAME lectures, the Research Day/Annual Meeting, and the 
Research Paper Series. 
 

The FAME Research Paper Series includes three types of contributions: First, it reports on the research carried out 
at FAME by students and research fellows; second, it includes research work contributed by Swiss academics and 
practitioners interested in a wider dissemination of their ideas, in practitioners' circles in particular; finally, 
prominent international contributions of particular interest to our constituency are included on a regular basis. 
Papers with strong practical implications are preceded by an Executive Summary, explaining in non-technical terms 
the question asked, discussing its relevance and outlining the answer provided.  
 

Martin Hoesli is acting Head of the Research Paper Series. Please email any comments or queries to the following 
address: Martin.Hoesli@hec.unige.ch. 
 

The following is a list of the 10 most recent FAME Research Papers. For a complete list, please visit our website at 
www.fame.ch under the heading ‘Faculty and Research, Research Paper Series, Complete List’. 

 

 

  
 

 

 
N° 114 Further Evidence on Debt-Equity Choice 

Philippe GAUD, HEC - University of Geneva, Martin HOESLI, HEC- University of Geneva, FAME and University 
of Aberdeen (School of Business), & André BENDER, HEC - University of Geneva and FAME, May 2004 
 

N° 113 Geographic versus Industry Diversification: Constraints Matter 
Paul EHLING – Smeal College of Business, Penn State University & Sofia B. RAMOS, ISCTE-Business School, 
August 2004 
 

N° 112 Nonparametric Estimation of Conditional Expected Shortfall 
Olivier SCAILLET, HEC - University of Geneva and FAME, July 2004 
  

N° 111 The Integration of Securitized Real Estate and Financial Assets 
Séverine CAUCHIE, HEC - University of Geneva 
Martin HOESLI, HEC- University of Geneva, FAME and University of Aberdeen (School of Business), June 2004 
 

N° 110 Higher Order Expectations in Asset Pricing 
Philippe BACCHETTA, Study Center Gerzensee, University of Lausanne and CEPR and Eric VAN WINCOOP, 
University of Virginia and NBER, May 2004 
 

N° 109 Stock Exchange Competition in a Simple Model of Capital Market Equilibrium 
Sofia B. RAMOS, ISCTE-Business School & CEMAF and Ernst-Ludwig VON THADDEN, HEC-University of 
Lausanne, FAME & CEPR, November 2003 
 

N° 108 Some Statistical Pitfalls in Copula Modeling for Financial Applications 
Jean-David FERMANIAN, CDC-Ixis Capital Markets and Olivier SCAILLET, HEC- University of Geneva and 
FAME, March 2004 
  

N° 107 Theory and Calibration of Swap Market Models 
Stefano GALLUCCIO, BNPParibas; Zhijhang HUANG, HEC-University of Lausanne and FAME; Jean-Michel LY, 
BNPParibas and Olivier SCAILLET, HEC-University of Geneva and FAME, March 2004 
 

N° 106: Credit Risk in a Network Economy 
Henri SCHELLHORN, HEC-University of Lausanne and FAME and Didier COSSIN, IMD and FAME, March 2004 
 

N° 105: The Effects of Macroeconomic News on Beliefs and Preferences: Evidence from   
The Options Market 
Alessandro BEBER, HEC-University of Lausanne and FAME and Michael W. BRANDT, Fuqua School of 
Business, Duke University & NBER, January 2004 
 



 

 

  
 

 

International Center FAME - Partner Institutions 
 

 

The University of Geneva 
The University of Geneva, originally known as the Academy of Geneva, was founded in 1559 by Jean 
Calvin and Theodore de Beze.  In 1873, The Academy of Geneva became the University of Geneva with the 
creation of a medical school.  The Faculty of Economic and Social Sciences was created in 1915.  The 
university is now composed of seven faculties of science; medicine; arts; law; economic and social sciences; 
psychology; education, and theology.  It also includes a school of translation and interpretation; an institute 
of architecture; seven interdisciplinary centers and six associated institutes. 

 
More than 13’000 students, the majority being foreigners, are enrolled in the various programs from the 
licence to high-level doctorates. A staff of more than 2’500 persons (professors, lecturers and assistants) is 
dedicated to the transmission and advancement of scientific knowledge through teaching as well as 
fundamental and applied research. The University of Geneva has been able to preserve the ancient European 
tradition of an academic community located in the heart of the city. This favors not only interaction between 
students, but also their integration in the population and in their participation of the particularly rich artistic 
and cultural life. http://www.unige.ch 
 
The University of Lausanne 
Founded as an academy in 1537, the University of Lausanne (UNIL) is a modern institution of higher 
education and advanced research.  Together with the neighboring Federal Polytechnic Institute of Lausanne, 
it comprises vast facilities and extends its influence beyond the city and the canton into regional, national, 
and international spheres. 
 
Lausanne is a comprehensive university composed of seven Schools and Faculties: religious studies; law; 
arts; social and political sciences; business; science and medicine. With its 9’000 students, it is a medium-
sized institution able to foster contact between students and professors as well as to encourage 
interdisciplinary work. The five humanities faculties and the science faculty are situated on the shores of 
Lake Leman in the Dorigny plains, a magnificent area of forest and fields that may have inspired the 
landscape depicted in Brueghel the Elder's masterpiece, the Harvesters.  The institutes and various centers of 
the School of Medicine are grouped around the hospitals in the center of Lausanne. The Institute of 
Biochemistry is located in Epalinges, in the northern hills overlooking the city. http://www.unil.ch 
 
The Graduate Institute of International Studies 
The Graduate Institute of International Studies is a teaching and research institution devoted to the study of 
international relations at the graduate level. It was founded in 1927 by Professor William Rappard to 
contribute through scholarships to the experience of international co-operation which the establishment of 
the League of Nations in Geneva represented at that time. The Institute is a self-governing foundation 
closely connected with, but independent of, the University of Geneva. 
 
The Institute attempts to be both international and pluridisciplinary. The subjects in its curriculum, the 
composition of its teaching staff and the diversity of origin of its student body, confer upon it its 
international character.  Professors teaching at the Institute come from all regions of the world, and the 
approximately 650 students arrive from some 60 different countries. Its international character is further 
emphasized by the use of both English and French as working languages. Its pluralistic approach - which 
draws upon the methods of  economics, history, law, and political science - reflects its aim to provide a 
broad approach and in-depth understanding of international relations in general. http://heiwww.unige.ch 
 
 



Prospect Theory
and Asset Prices
Nicholas BARBERIS
University of Chicago

Ming HUANG
Stanford University 

Tano SANTOS
University of Chicago

2000 FAME Research Prize
Research Paper N° 16

FAME - International Center for Financial Asset Management and Engineering

THE GRADUATE INSTITUTE OF
INTERNATIONAL STUDIES

40, Bd. du Pont d’Arve
PO Box, 1211 Geneva 4

Switzerland 
Tel (++4122) 312 09 61  
Fax (++4122) 312 10 26

http: //www.fame.ch 
E-mail: admin@fame.ch


