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Abstract

We consider a consistent test, that is similar to a Kolmogorov-Smirnov test, of the
complete set of restrictions that relate to the copula representation of positive quadrant
dependence. For such a test we propose and justify inference relying on a simulation
based multiplier method and a bootstrap method. We also explore the finite sample
behavior of both methods with Monte Carlo experiments. A first empirical illustration is
given for US insurance claim data. A second one examines the presence of positive
quadrant dependence in life expectancies at birth of males and females among countries.
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1. INTRODUCTION

The concept of positive quadrant dependence (PQD) was introduced by Lehmann (1966).
Two random variables are said to be PQD when the probability that they are simultane-
ously large (or small) is at least as great as it would be were they independent. Recent work
in finance, insurance and risk management has emphasized the importance of PQD; e.g.,
Dhaene & Goovaerts (1996), Denuit, Dhaene & Ribas (2001), Embrechts, McNeil & Strau-
mann (2000). For example, one interest of this dependence structure is that it allows the risk
manager to compare directly the sum of PQD random variables with the corresponding sum
under the independence assumption. The comparison is in the sense of different stochastic
orderings expressing the common preferences of rational decision-makers. Inferring that two
claims are PQD, no matter what is the strength of this dependence, immediately allows
one to conclude to the underestimation of most insurance premiums involving a portfolio of
these two claims if the independence assumption is made instead. In a financial setting the
same holds true but for risk measures and derivative prices related to a portfolio of two PQD
financial assets. We refer the reader to Denuit & Scaillet (2004) for an extensive discussion
of examples of application of PQD in finance and actuarial sciences. Implications of PQD
are also found in reliability theory (Lai & Xie (2003)), and several other fields (see e.g. Levy
(1992), Shaked & Shanthikumar (1994), Mari & Kotz (2001)).
Formally, two random variables X and Y are said to be PQD if, for all (z,y) € R?,

PX <uz,Y <y] > P[X <z|P[Y <y (0.1)
Of course, (0.1) is equivalent to
PIX >z,Y >y| > P[X > z|PlY >y (0.2)

which enjoys a similar interpretation (with “small" replaced with “large"). Note further that
negative quadrant dependence (NQD) is defined analogously if we subsitute < for > in (0.1).

Considering (0.1)-(0.2), PQD appears as a comparison of the joint distribution of (X,Y")
to that of (X,Y)+, where (X,Y)! denotes an independent version of the random vector
(X,Y), that is, (X,Y) and (X,Y)* have identical univariate marginals, and (X,Y)" has
independent components. It can thus be considered as a special case of comparisons of pairs
of bivariate distributions with identical marginals in terms of stochastic dominance.

Clearly, X and Y are PQD if, and only if, a(X) and b(Y) are PQD for any strictly
increasing functions a and b. This indicates that PQD is a property of the underlying
copula, and is not influenced by the marginals. In fact Inequality (0.1) can be written in
terms of the copula C' of the two random variables, since (0.1) is equivalent to the condition
that, for all (u,v) € [0, 1]?,

C(u,v) > C*+(u,v) = uv. (0.3)

Recall that the copula C' is such that P[X < z,Y < y] = C(P[X <z, P[Y < y]) (Sklar
(1959)); see, e.g., Joe (1997) & Nelsen (1999) for detailed explanations on copulas, their
properties and their use. Note that parametric copulas may or may not exhibit PQD per
se. For example families that only allow PQD are the Cook-Johnson family and the Gumbel



family. On the contrary a member of the Farlie-Gumbel-Morgenstern family, the Frank
family, or the Gaussian family, induces PQD when the parameter is positive, and NQD
when the parameter is negative.

In this paper we propose a consistent test of PQD, that is similar to a Kolmogorov-
Smirnov test, of the complete set of restrictions that relate to the copula representation (0.3)
of PQD. Observe that Denuit & Scaillet (2004) has already suggested some nonparametric
ways to test for PQD. These are inspired by traditional stochastic dominance tests as in
Anderson (1996), Dardanoni & Forcina (1999), Davidson & Duclos (2000), and are either
based on distance tests or intersection-union tests for inequality constraints. However these
tests rely on pairwise comparisons made at a fixed number of arbitrary chosen points. This
is not a desirable feature since it introduces the possibility of test inconsistency.

The paper is organised as follows. In Section 2 we describe the test statistic, and analyse
the asymptotic properties of the test for PQD. We follow closely Barrett & Donald (BD)
(2003), who extend and justify the procedure of McFadden (1989) (see also Abadie (2002),
Linton, Maasoumi & Whang (2001)) leading to consistent tests of stochastic dominance.
From a technical point of view, we differ from their work by the multivariate aspect of our
distributional setting as well as the use of empirical copula processes instead of univariate
empirical processes. In Section 3 we discuss two practical ways to compute the p-values
for testing PQD. The first one relies on a simulation-based multiplier method while the
second relies on a bootstrap method. In Section 4 we explore the finite-sample behavior
of both methods with Monte Carlo experiments. A first empirical illustration is given for
US insurance claim data in Section 5. A second one examines the presence of PQD in
life expectancies at birth of males and females across countries. We give some concluding
remarks and discuss some potential extensions for dimensions higher than two in Section 6.
Proofs are gathered in an appendix.

2. TEST STATISTIC AND ASYMPTOTIC PROPERTIES

We consider a setting made of pairs of i.i.d. observations {(X;,Y;); i =1,...,n} of a random
vector taking values in R?. These data may correspond to either observed individual losses
on insurance contracts, the amounts of claims reported by a given policy holder on different
guarantees in a multiline product, or observed returns of financial assets. The margins are
denoted by F' and G, respectively.

Let us define the empirical copula function by

o, v) = %Z]I{FH(Xi) < u, Go(Y:) < o, (u,v) € [0,1]2,

where F,, and G,, are the empirical cdf computed from {X;; ¢ = 1,...,n} and {YV;; i =
1,...,n}, respectively.

Observe that C,, is actually a function of the ranks of the observations since nF,(X;),
resp. nG,(Y;), gives the rank of X;, resp. ¥;.

Let Dy (u,v) :== uv — Cy(u,v), D(u,v) := uv — C(u,v) and 1°°([0, 1]?) be the set of all
locally bounded real functions on [0, 1]2.



Lemma 0.1. Let the copula function C(u,v) have continuous partial derivatives. Then
Vn{ Dy (u,v)—D(u,v)} converges weakly to a tight mean zero Gaussian process {Ge(u, v),0 <
u,v < 1} i 1°°(]0, 1)%), whose covariance function is

Qg (u,v,u',0") = E[Ge(u,v)Ge(u',v")]
= Qu,v,u,v) — hCW, v)Qu,v,u',1) — 0C(u,v")Qu,v,1,0)
—01C(u,v) (Qu, 1,u',v") — 01C (W, 0")Qu, 1, ', 1) — 9O (v, v")Q(u, 1,1,0"))
—C(u,v) (21, v,u,0") — K C (W, )L, 0,4, 1) — IO (u',0)Q(1,v,1,0")),

for each 0 < u,u',v,v" <1, where
Qu, v, v/, v") = Clu Au';v AV — C(u,v)C(u',0),
and x Ay := min(z,y).

This lemma is deduced from the weak convergence properties of the empirical copula
process. We rely here on Theorem 4 in Fermanian, Radulovic & Wegkamp (FRW) (2004),
which shows that the result obtained by van der Vaart & Wellner (VW) (1996 p. 389) (see
also Stute (1984), Génssler & Stute (1987) for weak convergence in the Skorokhod space
D([0,1]?)) holds true in a larger space under weaker assumptions. Note that uniform almost
sure convergence is a by-product of this type of weak convergence. The weak convergence of
Vn{Cy(u,v) — C(u,v)} towards a completely-tucked Brownian sheet when the two margins
are independent has already been given, for example, in Deheuvels (1981) in the context of
a Kolmogorov-Smirnov test for independence.

Since we wish to test for PQD, namely

Hy: wv < C(u,v) for all (u,v) € [0,1]%
Hy: wv > C(u,v) for some (u,v) € [0, 1)?,
we consider the test statistic
Sp = v/nsup D, (u,v),
and a test based on the decision rule:

“reject Hy if S, >c”,
where c is some critical value that will be discussed later. B
The following result characterizes the properties of the test, where S := sup, , Ge(u, v).

Proposition 0.2. Let ¢ be a positive finite constant, then:

i) if Hy is true, B
lim P[reject Hy] < P[S > ¢] := a(c),

n—oo

with equality when C(u,v) = uv for all (u,v) € [0,1]%;

i) if Hy is false,
lim Plreject Hy| = 1.

n—oo



The first part of the result provides a random variable that dominates the limiting random
variable corresponding to the test statistic under the null hypothesis. The inequality tells
us that the test will never reject more often than a(c) when the null hypothesis is satisfied.
Furthermore the probability of rejection will asymptotically be exactly a(c) when the copula
corresponds to the independent copula. The first part also implies that if one could find a
¢ to set the a(c) to some desired probability level (say the conventional 0.05 or 0.01) then
this would be the significance level for composite null hypotheses in the sense described by
Lehmann (1986). The second part of the result indicates that the test is capable of detecting
any violation of the full set of restrictions of the null hypothesis.

Of course, in order to make the result operational, we need to find an appropriate critical
value c. Since the distribution of the test statistic depends on the underlying copula, this is
not an easy task. Indeed, recall that the null hypothesis is not independence. Therefore, we
cannot directly simulate under the independence hypothesis; i.e., draw from the independent
copula. Such a procedure would not reflect the dependence of the distribution of the test
statistic on the underlying copula. Hereafter we rely on two different methods to simulate
p-values.

3. SIMULATING p-VALUES
3.1. MULTIPLIER METHOD

In this section we use a similation-based method that exploits the multiplier central limit
theory discussed in VW (1996) Section 2.9 (see BD for use in stochastic dominance test and
Hansen (1996), Glidden (1999), Guay & Scaillet (2003) for other uses). The idea is to rely on
artificial pseudo-random numbers to simulate a process that is identical but (asymptotically)
independent of G¢. To do this let {U;; @ = 1,...,n} denote a sequence of i.i.d. N(0,1)
random variables that are independent of the data sample. Then since G¢(u, v) = Be(u, v) —
01C(u, v)Be(u, 1) — 95C(u, v)Be(1,v), where Be is a tight Brownian bridge on [0,1]?* (see
the proof of Lemma 0.1), the process is easily generated from:

Ge, (u,v) = \/_Z]I{F ) < u, Gn(Y;) < v} — Ch(u, 0)] U
—c1 (U, v)— Z]I{F ) <u} —u]U;

—Co (U, v)—= Z]I{G ) < v} =] U,

where ¢;,(u,v) is a consistent estimate of 0,C(u,v) ¢ = 1,2. Consistent estimates are
easily obtained from smoothed versions of the empirical copula process. For example, one
can use the nonparametric estimators ¢y ,(u,v) = O H, {EF7 (u), G (v)}/ fo{F7 (u)} and
Con(u,v) = O H, {F (u), G (v)}/9,{G; ' (v)}, where estimates of H, f and g are obtained
from kernel based estimators H,,, f, and g,, respectively; see Fermanian & Scaillet (2003) for
details and proofs of asymptotic properties of such estimators. The p-value can be estimated
from:
pn = Pylsup Ge, (u, v) > Sy,

u,v



where Py is the probability function associated with the normal random variable U and is
conditional on the realized sample. The following result provides the decision rule in this
environment.

Proposition 0.3. Assuming that a < 1/2, a test for PQD based on the rule:
“reject Hy if pn<a”,
satisfies the following

lim Plreject Ho) < « if Hy is true,
lim Plreject Hy)| = 1 if Hyis false.

The multiplier method can be justified by showing that the simulated process converges
weakly to an identical independent copy of the Gaussian process G¢. Then an application
of the continuous mapping theorem shows that we get a simulated copy of the bounding
random variable that appears in Proposition 0.2. In practice, we use Monte-Carlo methods
to approximate the probability and a grid to approximate the supremum. The p-value is
simply approximated by

R
1
n N 5 ]ISnr Sn;
p R;{ r > Sn}

where the averaging is made on R replications and S, , is computed from a fine grid on
[0,1]2. Note that the replication number and the grid mesh can be chosen to make the
approximations as accurate as one desires given time and computer constraints.

3.2. BOOTSTRAP METHOD

The second method relies on the standard bootstrap (see BD and Abadie (2002) for use in
stochastic dominance tests). An alternative resampling technique could be subsampling, for
which similar results can be shown to hold as well (see Linton, Maasoumi & Whang (2001)
for use in stochastic dominance tests).

Let us denote {(X;,Y;*); i =1,...,n} a random sample drawn from the observed pairs
of data, and C(u, v) the empirical copula function built from this bootstrap sample. Let us
further take

S;kz = \/ﬁSllp {Cr*z(uv U) o Cn(u7 U)} )

and define
pr = P[S! > S,].

Then the bootstrap method is justified by the next statement.

Proposition 0.4. Assuming that a < 1/2, a test for PQD based on the rule:
“reject Hy if p, <a”,

satisfies the following

lim Plreject Hy) < a if Hyis true,
lim Plreject H)| = 1 if Hyis false.



Again we need to rely on Monte-Carlo methods to approximate the probability and a grid
to approximate the supremum in a manner analogous to the one of the previous subsection.

4. MONTE CARLO RESULTS

In this section we examine the performance of the Kolmogorov-Smirnov type test in small
samples. The grid is made of the values (u,v) evenly spaced inside {0.05,0.10,...,0.95}
x {0.05,0.10, ...,0.95}, while the nonparametric estimator of the derivatives of the copula
function rely on a Gaussian product kernel and the quick standard rule of thumb (Silverman
(1986)) to select the two individual bandwidths. The replication number R to approximate
the p-value is set equal to 1000. For each case 1000 Monte Carlo simulations are performed,
and the rejection rates are computed for the multiplier method and the bootstrap method
w.r.t. the two conventional significance levels of & = 0.05 and a = 0.01. Samples are gener-
ated with both margins corresponding to an exponential distribution with a unit parameter.
This can be seen as mimicking the behaviour of claim or duration data. Note that the numer-
ical results below remain exactly the same if we use other strictly monotonic continuously
differentiable cdfs (such as Gaussian or Student margins to mimick financial returns) and
keep the same seeds in the pseudo-random generators. The reason is that both procedures
rely intrinsically on ranks.

In Table I the true copula is the independent copula. Then Proposition 0.2 suggests that
the test should reject the null hypothesis with a frequency close to the chosen nominal signif-
icance level. This experiment should give us some idea about the validity of the asymptotic
theory and the two methods used to simulate the p-values in small samples. The values
shown in Table I indicate that the test tends to overreject with the multiplier method and
underreject with the bootstrap method, but with a rejection rate converging in both cases
to the chosen nominal significance level as n increases.

TABLE I: Independent copula

a=005|n=50 n=100 n=200 n =400
KSm 103 .097 .066 .064
KSb .024 .020 .027 .032
a=001|n=50 n=100 n=200 n =400
KSm .024 .023 .021 .014
KSb .003 .002 .004 .007

Table IT gathers results concerning the power of the testing procedure when the true
copula is a Frank copula, a Gaussian copula, or a Farlie-Gumbel-Morgenstern (FGM) copula
inducing NQD. These parametric families are often used in actuarial and financial applica-
tions, and permit quick simulations (Genest (1987), Nelsen (1999)). The chosen values of
the parameter 6 are § € {—1, —2, —3} for the Frank copula, § € {—.17, —.32, —.46} for the
Gaussian copula, and 0 € {—.495, —.945, —1.395} for the FGM copula. They match low and
moderate negative dependences as exhibited by the corresponding true values of the Kendall
tau, 7 € {—.11,—.21,—.31}. The sample size is fixed at n = 200. The reported num-
bers show that both testing procedures have nice power properties under different negative
dependence structures.



TABLE II: Frank, Gaussian and FGM copulas

T=-0.11 T=-0.21 7= —0.31
a=005| F G FGM | F G FGM| F G FGM
KSm 686 628.  .680 | .993 973 .991 | 1.000 1.000 1.000
KSb 495 421 493 | 979 924 974 | 1.000 1.000 1.000
a=001| F G FGM | F G FGM| F G FGM
KSm 430 345 431 | 963 .896 .953 | 1.000 .999 1.000
KSb 208 177 202 | 863 753 .851 | 998 994  .998

5. EMPIRICAL ILLUSTRATIONS
5.1. US INSURANCE CLAIMS

Various processes in casualty insurance involve correlated pairs of variables. A prominent
example is the loss and allocated loss adjustment expenses (ALAE, for short) on a single
claim. Here ALAE are type of insurance company expenses that are specifically attributable
to the settlement of individual claims such as lawyers’ fees and claims investigation expenses.
The joint modelling in parametric settings of those two variables has been examined by
Frees & Valdez (1998), and Klugman & Parsa (1999). The data used in these empirical
studies were collected by the US Insurance Services Office, and comprise general liability
claims randomly choosen from late settlement lags. Frees & Valdez (1998) choose the Pareto
distribution to model the margins, and select Gumbel and Frank copulas (on the basis of a
graphical procedure suitable for Archimedean copulas). Both models express PQD by their
estimated parameter values. Klugman & Parsa (1999) opt for the Inverse Paralogistic for
the losses and for the Inverse Burr for ALAE’s. They use the Frank copula. Again, the
estimated value of the dependence parameter entails PQD for losses and ALAE’s. In the
following we rely on a nonparametric approach to assess PQD. This assessment has many
implications in insurance, for example, for the computation of reinsurance premiums (where
the sharing of expenses between the ceding company and the reinsurer has to be decided
on) and for the determination of the expense level for a given loss level (for reserving an
appropriate amount to cover future settlement expenses). We refer to Denuit & Scaillet
(2004) for further discussion and practical implications on the design of reinsurance treaties
when PQD is present.

The data consist in n = 1,466 uncensored observed values of the pair (LOSS,ALAE).
The grid, the number of replications, the bivariate kernel and the bandwidthes are chosen
as in the previous Monte Carlo experiments. We have found p,, = 1.000 (multiplier method)
and p = 1.000 (bootstrap method) for S,, = —0.0356, which means that we cannot reject
PQD.

5.2. LIFE EXPECTANCIES AT BIRTH

This second empirical illlustration aims to detect a PQD behavior in life expectancies at
birth of males and females across 225 different countries. These data are available at
http://www.odci.gov/cia/publications/factbook/. A slightly different type of data

7



(life expectancy on total population versus difference between life expectancy of males and
females) has been examined in Amblard & Girard (2003) in the context of semiparametric es-
timation of bivariate copulas under a PQD assumption. The grid, the number of replications,
the bivariate kernel and the bandwidthes are again chosen as in the previous Monte Carlo
experiments. We have found p, = 1.000 (multiplier method) and p: = 1.000 (bootstrap
method) for S,, = —0.0208, which means that we cannot reject PQD.

6. CONCLUDING REMARKS AND EXTENSIONS

In this paper we have considered a Kolmogorov-Smirnov type test for PQD. This test is
consistent since it is based on an examination of the complete set of restrictions that result
from the copula representation of PQD. Two empirical examples have illustrated its practical
use in detecting PQD in US insurance claim data and life expectancy data.

The test has been designed in the spirit of a Kolmogorov-Smirnov functional, but other
possibilities are available. We may for example opt for a weighted supremum test statistic
vnsup,  {Dn(u,v)w(u,v)} for some non-negative weighting function w(u,v). The results
of this paper carry over in that case. We may also design tests based on Cramer-von Mises
type functionals, such as [ [[max{0, D,(u,v)}]"w(u, v)dudv for some positive r. However
the bootstrap procedure needs then to be modified to make it consistent. Note also that
there is no obvious ranking across these sorts of tests as which functional yields asymptotic
efficiency depends on the alternative being tested (see Nikitin (1995)).

Let us further remark that the procedure is rather straighforward to extend to accom-
modate dimensions higher than two. This will lead to tests for positive orthant dependences
(see e.g. Newman (1984)) as described in the next lines.

A d-dimensional random vector Y is said to be positively lower orthant dependent
(PLOD, in short) if

d
C(“la"w“d) Z CL(ulw"aud) = Hui7 V(Ul,...,Ud) S [0’ 1]d’ (04)
i=1

while it is said to be positively upper orthant dependent (PUOD, in short) if
d
C(U17...,Ud) Z C_(L<U1,...7Ud) = H(l _ui)ﬂ V(Ul,...,Ud) S [07 1]d7 (05)

=1

where C' denotes the survival copula associated with C' (see Nelsen (1999)). Of course, (0.4)
and (0.5) are no more equivalent when d > 3. When (0.4) and (0.5) simultaneously hold,
then Y is said to be positively orthant dependent (POD, in short).
The extension of the testing procedure in the PLOD case is immediate. Indeed we have
that the empirical copula process converges weakly to
Ge(u, .y ug) = Be(ug, ..., uq) — 1 C(ug, ..., ug)Be(ug, 1, .., 1)
e 8dC'(u1, ...,Ud)Bc(l, P 1, Ud),

where B¢ is a tight Brownian bridge on [0, 1]? with covariance function

EBc(u1, .., ug)Bo(uy, ..., uy)] = Clug A, .oy ug Auly) — Cug, ..., ug)C(ul, ..., uly),

8



for each 0 < wy,...,u,; < 1. Hence the aforementioned results remain valid with
_____ ud{CL(ul,...,ud) —C’n(ul,...,ud)}. B
The PUOD case is more delicate to handle. One could rely on the link between C' and C'.
When d = 3, we have C(u1, ug, u3) = u; +ug+uz —2+C(1 —up, 1 —ug) +C(1 —up, 1 —u3) +
C(1—wug, 1 —uz) —C(1 —uy, 1 —ug, 1 —us3) (see Georges, Lamy, Nicolas, Quibel & Roncalli
(2001) for a translation formula in the general case), and build the estimator C,, obtained
from substituting C,, for C'. The weak convergence of the empirical copula process can then
be again invoked to conclude that /n(C, — C) has a Gaussian limit. This means that the

w0 (u, oy ug) = C (g, ..oy ug) b

-----

should be similar.

Finally to derive a test for POD, one could rely on a test statistic equal to the supremum
of the bivariate vector made of \/n{C*(uy, ..., ug) — Cp(u1, ..., ug) } and /n{CH(uy, ..., uq) —
Cp(uy, ..., uq)}, and parallel the previous developments.

APPENDIX
All limits are taken as n goes to infinity.
Proof of Lemma 0.1

Under continuous differentiability of the copula function, Theorem 4 of FRW states that the
empirical copula process converges weakly in [*°([0, 1]?) towards

Ge(u,v) =Be(u,v) — 01C(u, v)Be(u, 1) — 0:C(u, v)Be(1, v),
where B¢ is a tight Brownian bridge on [0, 1]? with covariance function
Qu, v,u',v") == E[Be(u, v)Be(u',v)] = Clu A, v Av') — Clu,v)C(u',0'),
for each 0 < w,u’,v,v" < 1. This yields the result after computing the covariance function.
Proof of Proposition 0.2

1. Proof of Part 4):

From the definitions of S, and the fact that under Hy, D(u,v) < 0 for all (u,v) € [0, 1]?,
we get that

Su < supy/i{Da(uv) — D(u,v)} + supv/nD(u, v)

< sup Vn{D,(u,v) — D(u,v)}.

Hence the results follows from the weak convergence of \/n{D,(u,v) — D(u,v)} and the
definition of S.

2. Proof of Part ii):



1], for which D(u, v) =

If the alternative is true, then there is some (u, v), say (u,?) € [0,
u,v) and Theorem 4 of FRW.

d > 0. Then the result follows using the inequality S,, > /n D n(
Proof of Proposition 0.3

Let us write

Go(u,0) = %Z {F,(Xi) < u, G (V) < 0} — Clu, )] U

—c1 (U, v)— Z]I{F ) <u}l —u]U;
_CQnUUfZH{G ) <w}—0|U;,

—{C,(u,v) — C(u, v)}% Z Us.

First consider the last term. Note that Theorem 4 of FRW implies that almost every
observed sample has the property that

sup |Cy,(u, v) — C(u,v)| — 0.
Then since the U; are i.i.d. N(0, 1), we have that conditional on the sample:
1 n
P On ) -C ’ = Ul >
olsup [{Cu(u, ) = Clu “)}\/ﬁz | > ¢

= Pofsup |Ca(us) = Clu )l 3 Z Uil > ¢

< {sup,,,, |Cn(u,v) — C(u, v)[}*E[; 377, Uf]

2

— 0.

€

Consequently for this sample we have that {C,(u,v) — C(u,v)}ﬁ SrLU 0,
(where 0 is the zero function, a member of the space [°°(]0,1]?)) which implies
{Cr(u,v) — C(u,v)}ﬁ > » U = 0. But this holds for almost all samples so that

{C(u,v) — C(u, v)}ﬁ S U =3 0.

For the first term since ||U]|; = E|U| < oo, |Ul21 = [;°+/P(|U| > z)dz < oo, and
Emaxi<i<, |Ui|/v/n — 0, we deduce from the multiplier inequalities of Lemma 2.9.1 of
VW that the asymptotic equicontinuity conditions for the three empirical and multiplier
processes are equivalent, respectively. This means that the sum of first three terms converge
weakly to an independent copy G, of G¢. As in Theorem 2.9.7 of VW this leads to the
almost sure conditional convergence sup,cp;, |Evh(Ge,) — ER(Ge)| == 0 where BL is the
set of bounded Lipschitz functions on [*([0, 1]?).

10



Now to show the result concerning the asymptotic behavior of the p-values, let P,(t) be
the c.d.f. of the process (conditional on the original sample) generated by sup, , G¢, (u, v).
The CMT gives that

sup G, (u, v) =% sup G (u, v), (0.6)

u,v u,v

where the latter random variable is an independent copy of S. Note that the median of the
distribution P°(t) of sup, , G (u,v) is strictly positive and finite. Since G, is a Gaussian
process indexed by two parameters living in the compact set [0,1]2, P° is absolutely con-
tinuous (Tsirel’son (1975)), while c¢(a) defined by P[S > c(a)] = « is finite and positive
for any o < 1/2 (Proposition A.2.7 of VW). The event {p, < a} is equivalent to the event
{S,, > cun(a)} where

inf{t: P,(t) > 1 —a} = c,(a) 25 ¢(a), (0.7)
by (0.6) and the aforementioned properties of PY. Then:

lim P[reject Ho|Hy] = lim P[S, > ¢, ()]

= lim P[S, > c(a)] + Uim{P[S,, > c,(a)] — P[S, > c(a)]}

< P[S > c(a)] == a,
where the last statement comes from (0.7), part i) of Proposition 0.2 and c(a) being a
continuity point of the distribution of S. On the other hand part i) of Proposition 0.2 and
c(a)) < oo ensure that lim Plreject Hy|H;| = 1.

Proof of Proposition 0.4

Let C be the empirical copula associated to the bootstrap sample. Theorem 6 of FRW
states that \/n(C: — C,,) converges weakly to an independent copy G, of G¢ in probability
conditionnally on the sample in the sense sup,cpr, |Exyh(Ge,) — ER(Go)| —= 0, where
Exy is the expectation given the original sample. Hence we deduce from the CMT that

S L sup,, , G¢(u, v), where the latter random variable is an independent copy of S, and
we can pursue as in the proof of Proposition 0.3 but using convergence in probability instead
of almost sure convergence to get the final result.
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