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Abstract

Constraints on downside risk, measured by shortfall probability, expected shortfall,
semi-variance etc., lead to optimal asset allocations which differ from the mean-
variance optimum. The resulting optimization problem can become quite complex
as it exhibits multiple local extrema and discontinuities, in particular if we also intro-
duce constraints restricting the trading variables to integers, constraints on the hold-
ing size of assets or on the maximum number of different assets in the portfolio. In
such situations classical optimization methods fail to work efficiently and heuristic
optimization techniques can be the only way out. The paper shows how a particular
optimization heuristic, called threshold accepting, can be successfully used to solve
complex portfolio choice problems.

JEL codes: G11, C61, C63.
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Executive Summary

Mean-variance optimization is certainly the most popular approach to portfolio choice.
In this framework, the investor is faced with a trade-off between the profitability of
his portfolio — characterized by the expected return — and the risk, measured by
the variance of the portfolio returns. Notwithstanding its popularity, this approach
has been subject to a lot of criticism. Alternative approaches attempt to conform the
fundamental assumptions to reality by dismissing the normality hypothesis in order to
account for the fat-tailedness and the asymmetry of the asset returns.

Consequently, other measures of risk, such as Value at Risk (VaR), expected shortfall,
mean absolute deviation, semi-variance and so on are employed which leads to prob-
lems that can not always be reduced to standard linear or quadratic programs. The
resulting optimization problem often becomes quite complex as it exhibits multiple
local extrema and discontinuities, in particular if we introduce constraints restricting
the trading variables to integers, limits in the proportions held in a given asset, con-
straints on the maximum number of different assets in the portfolio, class constraints,
etc.

In this paper, we illustrate how a heuristic optimization algorithm, called threshold
accepting, can be successfully applied to solve realistic non-convex portfolio opti-
mization problems arising in situations where we have to deal with downside risk and
the constraints described above.

The working of the threshold accepting algorithm is first illustrated to solve a standard
mean-variance optimization problem for which the solution is also computed with the
quadratic programming algorithm which is used as a benchmark and thus provides
some insight into the quality of the threshold accepting heuristic. Second the thresh-
old accepting algorithm is used to solve a non-convex optimization problem where
we maximize the future return for a given shortfall probability, i.e. we restrict the
probability that the future portfolio value falls below a given VaR level.

From our results we conclude that the threshold accepting algorithm opens new per-
spectives in the practice of portfolio management as it allows to deal easily with all
sort of constraints of practical importance, it provides useful approximations of the
optimal solutions, it appears to be computationally efficient and is relatively easy to
implement. We also observed that the algorithm is robust to changes in problem char-
acteristics.
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1 Introduction

The fundamental goal of an investor is to optimally allocate his investments among
different assets. The pioneering work of (Markowitz, 1952) introduced mean-variance
optimization as a quantitative tool which carries out this allocation by considering the
trade-off between risk (measured by the variance of the future asset returns) and return.
Assuming the normality of the returns and quadratic investor’s preferences allow the
simplification of the problem in a relatively easy to solve quadratic program.

Notwithstanding its popularity, this approach has also been subject to a lot of criticism.
Alternative approaches attempt to conform the fundamental assumptions to reality by
dismissing the normality hypothesis in order to account for the fat-tailedness and the
asymmetry of the asset returns. Consequently, other measures of risk, such as Value
at Risk (VaR), expected shortfall, mean absolute deviation, semi-variance and so on
are used, leading to problems that cannot always be reduced to standard linear or
quadratic programs. The resulting optimization problem often becomes quite complex
as it exhibits multiple local extrema and discontinuities, in particular if we introduce
constraints restricting the trading variables to integers, constraints on the holding size
of assets, on the maximum number of different assets in the portfolio, etc.

In such situations, classical optimization methods do not work efficiently and heuristic
optimization techniques can be the only way out. They are relatively easy to imple-
ment and computationally attractive. The use of heuristic optimization techniques
to portfolio selection has already been suggested by (Mansini and Speranza, 1999),
(Changet al., 2000) and (Speranza, 1996). This paper builds on work by (Dueck and
Winker, 1992) who first applied a heuristic optimization technique, called Threshold
Accepting, to portfolio choice problems. We show how this technique can be success-
fully employed to solve complex portfolio choice problems where risk is characterized
by Value at Risk and Expected Shortfall.

In Section 2, we outline the different frameworks for portfolio choice as well as the
most frequently used risk measures. Section 3 gives a general representation of the
threshold accepting heuristic we use. The performance and efficiency of the algorithm
is discussed in Section 4 by, first, comparing it with the quadratic programming so-
lutions in the mean-variance framework and, second, applying the algorithm to prob-
lems minimizing the portfolio expected shortfall or VaR conditional to some return
constraints. Section 5 concludes.
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2 Approaches to the portfolio choice problem

2.1 The mean-variance approach

Mean-variance optimization is certainly the most popular approach to portfolio choice.
In this framework, the investor is faced with a trade-off between the profitability of his
portfolio, characterized by the expected return, and the risk, measured by the variance
of the portfolio returns. The first two moments of the portfolio future return are suffi-
cient to define a complete ordering of the investors preferences. This strong result is
due to the simplistic hypothesis that the investors’ preferences are quadratic and the
returns are normally distributed.

Denoting byxi, i = 1; : : : ; nA, the amount invested in asseti out of an initial
capital v0 and byri, i = 1; : : : ; nA, the log-returns for each asset over the plan-
ning period, then the expected return on the portfolio defined by the vectorx =

(x1; x2; : : : ; xnA)
0 is given as

�(x) =
1

v0

nAX
i=1

E(ri)xi =
1

v0
x
0
E(r) :

The variance of the portfolio return is

�
2
(x) = x

0
Qx ;

whereQ is the matrix of variances and covariances of the vector of returnsr.

Thus the mean-variance efficient portfolios, defined as having the highest expected
return for a given variance and the minimum variance for a given expected return, are
obtained by solving the following quadratic program

min
x

1
2
x
0
QxP

j xjrj � � v
0P

j xj = v
0

x
`
j � xj � x

u
j j = 1; : : : ; nA :

(1)

for different values of�, where� is the required return on the portfolio. The vectors
x
`
j , x

u
j , j = 1; : : : ; nA represent constraints on the minimum and maximum holding

size of the individual assets.

The implementation of the Markowitz model withnA assets requiresnA estimates of
expected returns,nA estimates of variances andnA(nA�1)=2 correlation coefficients.
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Several efficient algorithms exist to compute the mean-variance portfolios. Early suc-
cessful parametric quadratic programming methods include the critical-line algorithm
and the simplex method.

2.2 Scenario generation

An alternative approach to the above optimization setting is the scenario analysis
where uncertainty about future returns is modeled through a set of possible realiza-
tions, called scenarios. Scenarios of future outcomes can be generated relying on a
model, past returns or experts’ opinions.

A simple approach is to use empirical distributions computed from past returns as
equiprobable scenarios. Observations of returns overnS overlapping periods of length
�t are considered as thenS possible outcomes (or scenarios) of the future returns and
a probability of1=nS is assigned to each of them.

Assume that we haveT historical pricesph, h = 1; : : : ; T of the assets under con-
sideration. For each point in time, we can compute the realized return vector over
the previous period of length�t, which will further be considered as one of thenS
scenarios for the future returns on the assets. Thus, for example, a scenarior

s
j for the

return on assetj is obtained as

r
s
j = log(p

t+�t
j =p

t
j) : (2)

For each asset, we obtain as many scenarios as there are overlapping periods of length
�t, i.e.nS . In this setting, problem (1) becomes

min
x

1

nS

nSX
s=1

0
@ nAX

j=1

r
s
jxj �

1

nS

nAX
j=1

nSX
s=1

r
s
jxj

1
A
2

1

nS

nAX
j=1

nSX
s=1

r
s
jxj � � v

0

P
j xj = v

0

x
`
j � xj � x

u
j j = 1; : : : ; nA :

(3)
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2.3 Mean downside-risk framework

If we denote byv the future portfolio value, i.e. the value of the portfolio by the end
of the planning period, then the probability

P (v < VaR) (4)

that the portfolio value falls below theVaR level, is called theshortfall probability.
The conditional mean value of the portfolio given that the portfolio value has fallen
belowVaR, called theexpected shortfall, is defined as

E(v j v < VaR) : (5)

Other risk measures used in practice are themean absolute deviation

E(jv �Evj)

and thesemi-variance

E((v �Ev)
2 j v < Ev)

where we consider only the negative deviations from the mean.

Maximizing the expected value of the portfolio for a certain level of risk characterized
by one of the measures defined above leads to alternative ways of describing the in-
vestor’s problem (e.g. (Leibowitz and Kogelman, 1991), (Lucas and Klaassen, 1998)
and (Palmquist, Uryasev and Krokhmal, 1999)). Earlier related work had suggested a
safety-first approach (see e.g. (Arzac and Bawa, 1977) and (Roy, 1952)).

For example, if the risk profile of the investor is determined in terms of VaR, a mean-
VaR efficient portfolio would be the solution of the following optimization problem:

max
x

Ev

P (v < VaR) � �P
j xj = v

0

x
`
j � xj � x

u
j j = 1; : : : ; nA :

(6)

In other words, such an investor is trying to maximize the future value of his portfolio,
which requires the probability that the future value of his portfolio falls below VaR
not to be greater than�.
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If the uncertainty in the future asset returns is handled via scenario generation, the
above optimization can be further explicited as follows:

min
x

�
1

nS

nSX
s=1

v
s

#fs j vs < VaRg � � nSP
j xj = v

0

x
`
j � xj � x

u
j j = 1; : : : ; nA :

(7)

Furthermore, it would be realistic to consider an investor who cares not only for the
shortfall probability, but also for the extent to which his portfolio value can fall below
the VaR level. In this case, the investor’s risk profile is defined via a constraint on
the expected shortfall tolerated� if the portfolio value falls below VaR. Then the
mean-expected shortfall efficient portfolios are solutions of the following program for
different values of�:

max
x

Ev

E[v j v < VaR] � �P
j xj = v

0

x
`
j � xj � x

u
j j = 1; : : : ; nA :

(8)

Again if the future returns are generated by scenarios, the optimization problem be-
comes:

min
x

�
1

nS

nSX
s=1

v
s

1
#fsjvs<VaRg

X
sjvs<VaR

v
s � �

#fs j vs < VaRg � � nSP
j xj = v

0

x
`
j � xj � x

u
j j = 1; : : : ; nA :

(9)

3 The threshold accepting optimization heuristic

Heuristic approaches prove useful in situations where the classical optimization meth-
ods fail to work efficiently. Heuristic optimization techniques like simulated anneal-
ing (Kirkpatrick et al., 1983) and genetic algorithms (Holland, 1975) are used with
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increasing success in a variety of disciplines. The reason for their success is that they
are relatively easy to implement and that the cost of computing power is no longer a
matter of concern.

Threshold accepting (TA) was introduced by (Dueck and Scheuer, 1990) as a deter-
ministic analog to simulated annealing. It is a refined local search procedure which
escapes local minima by accepting solutions which are not worse by more than a given
threshold. The algorithm is deterministic in the sense that we fix a number of itera-
tions and explore the neighborhood with a fixed number of steps during each iteration.
The threshold is decreased successively and reaches the value of zero in the last round.

The threshold accepting algorithm has the advantage of an easy parameterization, it
is robust to changes in problem characteristics and works well for many problem in-
stances. An extensive introduction to threshold accepting is given in (Winker, 2000).

Let us formalize our optimization problem asf : X ! R whereX is a discrete set
and where we may have more then one optimal solution defined by the set

Xmin = fx 2 X j f(x) = foptg (10)

with

fopt = min
x2X

f(x) : (11)

The threshold accepting heuristic described in algorithm 1 will, after completion, pro-
vide us with a solutionx 2 Xmin or a solution close to an element inXmin. The
complexity of the algorithm isO(niter � steps).

Algorithm 1 Pseudo-code for the threshold accepting algorithm.
1: Initialize niter andsteps
2: Initialize sequence of thresholdsthr, r = 1; 2; : : : ;niter

3: Generate starting pointx0 2 X
4: for r = 1 to niter do
5: for i = 1 to steps do
6: Generatex1 2 Nx0 (neighbor ofx0)
7: if f(x1) < f(x

0
) + thr then

8: x
0
= x

1

9: end if
10: end for
11: end for

The parameters of the algorithm are the number of iterationsniter , the number of
steps per iterationsteps and the sequence of thresholdsth. In practice, we start with
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the definition of the objective function, which can be a non-trivial task iff comprises
several dimensions. Second, we construct a mappingN : X ! 2

X which defines for
eachx 2 X a neighborhoodN (x) � X . Third, we define the sequence of thresholds
by exploring the neighborhood of randomly selected elementsx 2 X .

These different steps of the implementation and parameterization of the algorithm will
be illustrated with the application presented in the following section.

4 Application

The working of the TA algorithm is first illustrated to solve a standard mean-variance
optimization problem for which the solution is also computed with the quadratic pro-
gramming algorithm which will be used as a benchmark. Second we apply the TA
algorithm to a non-convex optimization problem with integer variables and a variety
of constraints such as holding and trading size.

4.1 Mean-variance optimization

In the following application we consider an investment opportunity set of ten assets
from the Swiss Market Index (SMI) and cash. The annual mean returnr and the matrix
of variances and covariancesQ are based on the closing prices of the last 90 trading
days before June 30, 1999.

The mean-variance optimization problem has already been defined in (1). The follow-
ing is a reformulation of the problem where the initial capitalv

0 has been normalized
to one:

min
!

1
2
!
0
Q!

!
0
r � �

�
0
! = 1

!
l
j � !j � !

u
j j = 1; : : : ; nA + 1 :

The composition of the portfolio is defined by the shares!i = xi=v
0 and!nA+1 is

the proportion of cash in the portfolio. The risk-free return of cash isrnA+1.
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Definition of objective function

The variance can now be minimized by exploring with the threshold accepting algo-
rithm 1 the elements in the setX which satisfy the constraints. However, a better way
is to accept solutions which violate the return constraint in the search process. This
can be done by minimizing the following objective function

F (!) = V (!) + p (��R(!))

wherep is a penalty function defined as

p =

(
Vmax�Vmin

��R
if � > R(!)

0 otherwise:

V (!) andR(!) denote respectively the variance and the return of a portfolio defined
by !. The values forVmax, Vmin andR which define the scaling constant(Vmax�

Vmin)=(��R) are estimated from 1000 randomly drawn portfolios.

Definition of neighborhood

To generate a pointx1 in the neighborhoodNx0 of a given pointx0 we draw with a
probability1=(nA + 1) two assetsi andj out of allnA assets and cash. The amount
of i andj in the portfolio is!i, respectively!j . We then sell a fractionq of asseti,
i.e. q !i and buy for the corresponding amount assetj. After this move the amount of
i andj in the portfolio is(1 � q)!i, respectively!j + q !i. The fractionq is a fixed
parameter.

Algorithm 2 Definition of neighborhood.
1: Select two assetsi andj with probability1=(nA + 1)

2: t = q !i

3: if (!i � t) � !
l

i then
4: !i = !i � t

5: else
6: t = !i

7: !i = 0

8: end if
9: if (!j + t) � !

u

j then
10: !j = !j + t

11: else
12: !nA+1 = !nA+1 + t

13: end if
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In order to avoid short selling and to respect the constraints on the holding size of
the assets, the procedure for the selection of a neighbor solution must be refined.
Algorithm 2 describes the procedure of the selection of a neighbor-solution in detail.

Definition of thresholds

In order to define the sequence of thresholds, we compute the empirical distribution
of the distance of the objective function evaluated at random points and its neigh-
bors. Figure 1 shows this empirical distribution computed from 5000 random points.
In this case the computed quantiles which determine the sequence of thresholds are
10

�3
�
22:5 3:4 1:1 0:7 0:4 0

�
.

0 10 20 30 40 50 60
0

0.5

1

Figure 1: Empirical distribution of distance betweenx
0 and neighborsx1.

Choosingniter = 6 andsteps = 1000 we have determined all the parameters of our
TA algorithm. Figure 2 illustrates how the algorithm searches its way to the solution.
At the optimal solution the expected return and the variance are practically the same
for the QP and TA algorithms. The optimal portfolio contains asset 3, 5 and 8 and cash
(column 11). The weights of the assets in the optimal portfolio for both algorithms are
given in Figure 3.

1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

Assets

W
e
i
g
h
t
s

Figure 3: Composition of the optimal portfolio for QP (left bars) and TA (right bars).
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0.12 0.14 0.16

0.02

0.025

0.03

0.035

0.04

Variance of portfolio

R
e
t
u
r
n
 
o
f
 
p
o
r
t
f
o
l
i
o

Starting point

Solution

Figure 2: Working of the TA algorithm. Efficient frontier with cash (upper line) and
without cash (lower curve).

4.2 Mean downside risk optimization

Our second illustration of the working of the TA algorithm is a non-convex optimiza-
tion problem with integer variables and a variety of constraints such as holding and
trading size.

In the following, the quantity of each asset in the portfolio is defined by an integer
number. The generation of neighborsx1 2 N 0

x to a given solutionx0 is again per-
formed by drawing randomly two assetsi andj. We then sellki assetsi, transfer the
amount to the cash and buykj assetsj from cash. In order to make sure that each
transfer is approximatively the same amount, the number of assetski andkj to be
transferred are defined aski = d

pmax
pi

e andkj = d
pmax
pj

e. This procedure is summa-
rized in algorithm 3 where we omitted the details necessary to check for short selling
and holding constraints.
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Algorithm 3 Definition of neighborhood in case of integer variables.
1: Randomly select asseti to sell
2: xi = xi � ki

3: cash= cash+ ki p
0
i

4: Randomly select assetj to buy
5: xj = xj + kj

6: cash= cash� kj p
0
j

Using the same data set as for the previous problem but considering an investment
opportunity set of 20 assets (including cash) we now solve the mean-VaR problem
defined in (7). To compute the capitalvs at the end of the planning period we use
simulated pricesps, computed as

p
s
= p

0
r
s

s = 1; : : : ; nS

where the rate of returnrs has been defined in (2). We assume an initial capital
of v0 = 800 000 and seek the portfolio which maximises the expected return given
the following constraints: shortfall probability� = 0:05 for aVaR level of 750 000,
minimum and maximum holding size for a particular asset0:01 v

0 respectively0:30 v0

and a maximum of 9 assets in the portfolio. Figure 4 shows the results of the TA
algorithm with the settingniter = 6 andsteps = 1500.

0.045 0.05 0.06
8.07

8.08

8.09

8.1

8.11

x 10
5

Shortfall probability (sP)

E
x
p
e
c
t
e
d
 
v
a
l
u
e
 
(
E
v
)

Starting point

Solution

Figure 4: Search path of the TA algorithm in the�, E(v) plane.
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The composition of the portfolio, the TA algorithm found to be optimal, is given
in figure 5. It contains the assetsf2; 3; 6; 8; 10; 11; 14g and cash. The minimum
position is28 680 (asset 3) and the maximum position is212 936 (asset 14). Thus the
constraints on the holding size and the number of assets in the portfolio are satisfied.

This optimal portfolio has an expected return ofE(v) = 810 520 with a shortfall
probability of0:049 for aVaR level of749 950, which again satisfies the constraints.

0 5 10 15 20 25
0

1

2

3
x 10

5 TA solution for x and cash

Figure 5: Optimal portfolio computed by TA for the mean-VaR problem.

In figure 4, we observe that the solutions lie in planes. The reason for this is the integer
formulation of the problem. Figure 6 illustrates the working of the TA algorithm in
the�, VaR plane and in figure 7, we see its working in theE(v), VaR plane.

0.045 0.05 0.06

7.4

7.45

7.5

7.55

x 10
5

Shortfall probability (sP)

V
a
R

Starting point

Solution

Figure 6: Search path of the TA algorithm in the�, VaR plane.
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VaR

Starting point
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Figure 7: Search path of the TA algorithm in theE(v), VaR plane.

5 Concluding remarks

In this paper, we attempted to illustrate how heuristic optimization algorithms like the
threshold accepting method can be successfully applied to solve realistic non-convex
portfolio optimization problems. We showed that, in the cases where these problems
contain non-linear and non-convex constraints, the heuristic methods are the only rea-
sonable way out. Examples of these situations can be problems where constraints
on downside risk preferences are introduced, where the solutions are required to be
integers, etc.

We mainly focus on the cases where the distribution of the asset future returns are
modelled by equally weighted scenarios of past returns. The sensitivity of optimized
portfolios with respect to alternative scenario generations procedures should be further
investigated.
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