IMMUNIZATION OF BOND PORTFOLIOS: SOME NEW RESULTS

Olivier de LA GRANDVILLE
University of Geneva

Research Paper N° 40
February 2002
The International Center for Financial Asset Management and Engineering (FAME) is a private foundation created in 1996 at the initiative of 21 leading partners of the finance and technology community together with three Universities of the Lake Geneva Region (Universities of Geneva, University of Lausanne and the Graduate Institute of International Studies).

Fame is about research, doctoral training, and executive education with “interfacing” activities such as the FAME lectures, the Research Day/Annual Meeting, and the Research Paper Series.

The FAME Research Paper Series includes three types of contributions:
- First, it reports on the research carried out at FAME by students and research fellows.
- Second, it includes research work contributed by Swiss academics and practitioners interested in a wider dissemination of their ideas, in practitioners' circles in particular.
- Finally, prominent international contributions of particular interest to our constituency are included as well on a regular basis.

FAME will strive to promote the research work in finance carried out in the three partner Universities. These papers are distributed with a ‘double’ identification: the FAME logo and the logo of the corresponding partner institution. With this policy, we want to underline the vital lifeline existing between FAME and the Universities, while simultaneously fostering a wider recognition of the strength of the academic community supporting FAME and enriching the Lemanic region.

Each contribution is preceded by an Executive Summary of two to three pages explaining in non-technical terms the question asked, discussing its relevance and outlining the answer provided. We hope the series will be followed attentively by all academics and practitioners interested in the fields covered by our name.

I am delighted to serve as coordinator of the FAME Research Paper Series. Please contact me if you are interested in submitting a paper or for all suggestions concerning this matter.

Sincerely,

Prof. Martin Hoesli
University of Geneva, HEC
40 bd du Pont d'Arve
1211 Genève 4
Tel: +41 (022) 705 8122
Martin.Hoesli@hec.unige.ch
Immunization of Bond Portfolios: Some New Results

Olivier de LA GRANDVILLE

February 2002
Contents

1 Basic concepts for valuation and immunization of bond portfolios in continuous time 5
 1.1 The instantaneous forward rate 5
 1.2 The continuously compounded spot rate 8
 1.3 Introducing the missing link: the continuously compounded total return 10
 1.3.1 Definition of the continuously compounded total return 12
 1.4 Relationships between the total return, the forward rate and the spot rate 14
 1.5 Theorems on the behavior of the forward rate and the total return 16
 1.5.1 Theorem 1 .. 16
 1.5.2 Proof .. 16
 1.5.3 Theorem 2 .. 18
 1.5.4 Proof .. 18
 1.6 The spot rate curve as a spline and its corresponding forward rate curve 18

2 Immunization: a First Approach 24
 2.1 The continuously compounded horizon rate of return 25
 2.2 A geometrical representation of the horizon rate of return 26
 2.3 Existence and characteristics of an immunizing horizon 27
 2.4 A first generalization .. 29
3 Protecting investors against any shift in the interest rate structure – a general immunization theorem 30

3.1 Notation 30
3.2 Present values at time 0 33
3.3 Future values at time 0 33
3.4 Present values at time ϵ 34
3.5 Future values at time ϵ 35
3.6 Further Concepts for Immunization: The Moments of Order k of a Bond and a Bond Portfolio 35
 3.6.1 The moment of order k of a bond 35
 3.6.2 The moment of order k of a bond portfolio 36
 3.6.3 Properties of moments 36
3.7 A general immunization theorem 38
 3.7.1 Theorem 5 38
 3.7.2 Proof 39
3.8 The nature of the cash flows of an immunizing portfolio 48

4 Applications 49
4.1 The spot structures and their shifts 50
4.2 Building immunizing portfolios 52
4.3 Immunization results 54
4.4 How large should we set the immunization parameter K? 58
4.5 Infinity of solutions 60
4.6 How sensitive are immunizing portfolios to changes in horizon H? 61
4.7 How sensitive are immunizing portfolios to a change in the basket of available bonds? 64

5 By way of conclusion: a few suggestions 66
Executive Summary

Immunization of Bond Portfolios: Some New Results

by

Olivier de La Grandville

All losses are restor’d, and sorrows end

Sonnets

Thou quiet soul, sleep thou a quiet sleep
Dream of success and happy victory!

Richard III

Individual and collective security are among the gauges of civilization, and at the same time they constitute necessary conditions for its progress. Their systematic pursuit is relatively recent among nations: prompted by the dreadful lessons of the 20th century, they took their present shape after World War II. Only at that time serious consideration started being given to social and economic security, which resulted into insurance and pension plans being widespread. Large savings, concomitant to decades of economic progress, were invested into default-free vehicles, by those institutions which were looking for steady, fixed, income flows.

In the world of fixed exchange rates which followed the Bretton-Woods agreements, it was only natural that interest rates remained relatively stable.

2Department of Economics, University of Geneva, 40 Boulevard du Pont-d’Arve, 1211 Genève 4, Switzerland. E-mail: Olivier.DeLaGrandville@ecopo.unige.ch. I wish to thank a number of Institutions and persons for the support they have provided to this study: Lombard Odier, and especially Thierry Lombard, Patrick Odier, Ileana Regly and Philippe Sarasin; the TIAA–CREF Institute, and particularly Douglas Fore. It is with equal pleasure that I express my gratitude to Ken Clements, Jean-Marie Grether, Jochen Kleinknecht, Henri Loubergé, Michael McAleer, Paul Miller, Elizabeth Paté-Cornell, Brigitte Van Baalen, Jürg Weber and Milad Zarin-Nejadan. In particular, I wish to acknowledge the insightful comments of Anthony Pakes.

This study was partly carried out while I was visiting the Department of Management Science and Engineering at Stanford University and the Department of Economics at the University of Western Australia. Both institutions should be thanked for their hospitality and their stimulating working atmosphere.
When that state of affairs was disrupted some three decades later, volatile interest rates transformed so-called fixed income assets into risky investments. It is at that time that considerable research was undertaken to protect institutional investors against the fluctuations of interest rates and of bond prices. The word “immunization” describes the steps taken by a bond manager to build up a portfolio which will be minimally sensitive to interest rate shifts. This study has two aims: to give a comprehensive presentation of the immunization problem; to provide novel, original results.

Let us first explain briefly what is at stake. What are the exact consequences of a rise, for instance, in interest rates? For a bond holder, is it good or bad news? The answer to this question depends crucially on the horizon of the investor. It is easy to figure out that an investor with a short horizon will suffer from a rise in interest rates because her bond (or bond portfolio) will immediately decrease in value, and this capital loss may not be compensated by the reinvestment of coupons at a higher rate. On the other hand, an investor with a longer horizon may welcome such a rise in interest rates for the two following reasons: first, the initial capital loss will start vanishing as bond prices return to their par value, and second, coupons will be reinvested at a higher rate. We may then surmise that under special circumstances there may exist an intermediate horizon for which the investor may be indifferent to a change in interest rates because capital gains (or losses) are nearly exactly compensated by losses (or gains) in coupon reinvestment.

Such a horizon exists, indeed; it is equal to the duration of the portfolio’s bond, which is the weighted average of the portfolio’s times of payment, the weights being the shares of the portfolio’s present value cash flows in the portfolio’s total value. This prompts to ask the natural question: reversing the problem, consider an investor’s horizon as given. Is it possible to constitute a bond portfolio such that the investor is protected (immunized) against any change in the interest rate structure? The problem was well understood and tackled a few decades ago under simple hypotheses: the interest rate structure (the interest rates corresponding to various maturities) was supposed to receive parallel shifts. The recipe was basically to build a portfolio such that its duration was equal to the investor’s horizon. In order to take into account the fact that short rates were usually more volatile than long ones, it was later proposed to equate not only the first moment (the duration) of the portfolio to the horizon, but some of its successive moments to the successive integer powers of the horizon (see D. Chambers and S. Nawalkha, eds. (1999)) – a portfolio’s moment of order k is the natural generalization
if the concept of duration: it is the weighted average of the \(k\)th power of its times of payment.

No analytic foundation, however, seems to have been given to the question of determining how many moments should be taken into consideration. Indeed, it seems that no link was established between first- and second order conditions for immunization, on the one hand, and the number of moments to be considered. It is even difficult to figure out how second order conditions for a minimum of the portfolio’s future value have been brought into the picture, if at all. Finally, present theory is silent on the question of the minimum number of bonds to include in any immunizing portfolio. This study intends to fill in those gaps. To do so, we will propose a general method which will always lead to a local minimum of the portfolio’s future value.

Our first task will be to lay out carefully our tools of analysis: the instantaneous forward rate and the continuously compounded spot rate (Section 1). The reason for paying particular attention to those tools is that, in our opinion, they are not well understood, as the following examples illustrate. First consider the well-known, usual, shape of the spot rate curve (the spot rate as a function of maturity): increasing, concave, leveling off to a plateau. It does not seem to be realized that the corresponding forward curve must be decreasing before the spot rate reaches its plateau. This failure is evidenced by the various descriptions of the companion forward curve: the fruit of remarkable imagination, they unfortunately never exhibit the right properties. On a more general level – and this may explain the shortcomings just mentioned – it is not recognized that the forward instantaneous rate and the continuously compounded spot rate play exactly the same roles as a marginal and an average quantity in economics. The reason for this poor perception may be the following: while marginal and average values in economics are derived from well-known quantities (for example, total cost, or total revenue), the common variable giving rise here to marginal and average values is well-hidden: to the best of our knowledge, it has not yet even been defined. We will need to introduce it, and we will call it the “continuously compounded total return”.

In Section 2, we will present the concept of immunization for those readers who are not already familiar with it, in the following, simple framework. We will consider that the spot rate curve undergoes parallel shifts. We will then show that under those special circumstances duration plays indeed a central role in the immunization process, in the sense that a portfolio is completely immunized if its duration is equal to the investor’s horizon.
Section 3 will be devoted to stating and proving a general immunization theorem. In order to cope with real world cases, where the spot rate curve can receive any kind of shift, it will be necessary to recall the concept of the kth moment of a bond portfolio. Its properties are essential, and will be carefully spelt out. The key to successful immunization will be to build a portfolio such that the gradient of its future value is zero, and such that its Hessian matrix is positive definite. In order to achieve this last aim, we will suggest to equate the last element of the Hessian matrix to a positive, arbitrary, parameter. We will examine the important consequences of these conditions in terms of the total number of bonds to be considered in the immunizing portfolio, and of the structure of the portfolio. Finally, the theorem will be put to the test in Section 4, where numerous applications will be given. We will consider completely arbitrary initial spot rate curves, as well as large, arbitrary shifts of those.

JEL codes: B4; C0; E4; G0
Keywords: Finance; interest rates; immunization
1 Basic concepts for valuation and immunization of bond portfolios in continuous time

1.1 The instantaneous forward rate

Consider a time span \([u, v]\) subdivided into \(n\) intervals \(\Delta z_1, \Delta z_2, \ldots, \Delta z_j, \ldots, \Delta z_n\). This partitioning of \([u, v]\) is arbitrary in the following sense: each \(\Delta z_j\) interval \((j = 1, \ldots, n)\) has arbitrary length; two given intervals, say \(\Delta z_1\) and \(\Delta z_2\), may or may not be equal. Such an arbitrary partitioning of the time span \([u, v]\) is represented in Figure 1.

\[
\begin{array}{cccccc}
& u & & \Delta z_1 & & \Delta z_2 & & \Delta z_j & & \Delta z_n & \text{Time} & v \\
\end{array}
\]

Fig. 1. An arbitrary partitioning of the time span \([u, v]\)

Suppose that to each interval \(\Delta z_j\) corresponds a forward rate. Such a forward rate is defined as the yearly interest rate for a loan agreed upon at time \(u\); the loan is to start at the beginning of the \(\Delta z_j\) interval, and is to be paid back at the end of \(\Delta z_j\). Call \(f_j\) this forward rate. For instance, \(f_j\) may be equal to 5\% per year.

If \$1 is lent at the beginning of this time interval \(\Delta z_j\), what will be the amount to be reimbursed at the end of \(\Delta z_j\)? There are two ways of answering this question. One could agree that it is:

- either \((1 + f_j)^{\Delta z_j}\), in conformity with annual interest compounding if \(\Delta z_j\) is typically equal to a few years
- or \(1 + f_j \Delta z_j\), following what is usually done if the interval \(\Delta z_j\) is smaller than one year, which will be justified below.

Until now, we have said nothing of the length of the time span \([u, v]\). In fact, inasmuch as the partitioning of \([u, v]\) is arbitrary, so is its length: it could be a non integer number of years or days. It turns out that, whatever this length may be, we will at one point consider that the number \(n\) of intervals \(\Delta z_j\) tends towards infinity, and that at the same time the largest of those intervals tends towards zero. Therefore, we can assume already at this stage that \(\Delta z_j\) is small. We will now show why it is both natural and legitimate to use the second formula, i.e. \(1 + f_j \Delta z_j\).

We could first observe that, for any fixed value \(\Delta z_j\), \(1 + f_j \Delta z_j\) is a first-order approximation of \((1 + f_j)^{\Delta z_j}\) at point \(f_j = 0\). This can be shown by
taking the first-order Taylor expansion of \((1 + f_j)^{\Delta z_j}\) around \(f_j = 0\). But there is more to it. It turns out that \((1 + f_j)^{\Delta z_j}\) is an excellent, second-order, approximation of the \((1 + f_j)^{\Delta z_j}\) around point \((f_j, \Delta z_j) = (0, 0)\). Indeed, consider the latter expression as a function of the two variables \(f_j\) and \(\Delta z_j\), which we will for convenience denote momentarily as \(f\) and \(h\) respectively.

Let \(\varphi(.)\) be the function

\[
\varphi(f, h) = (1 + f)^h \equiv (1 + f_j)^{\Delta z_j}. \tag{1}
\]

Develop (1) in Taylor series around point \((f, h) = (0, 0)\). The second-order approximation is:

\[
\varphi(f, h) \approx \varphi(0, 0) + \frac{\partial \varphi}{\partial f}(0, 0)f + \frac{\partial \varphi}{\partial h}(0, 0)h \\
+ \frac{1}{2} \left[\frac{\partial^2 \varphi}{\partial f^2}(0, 0)f^2 + 2 \frac{\partial^2 \varphi}{\partial f \partial h}(0, 0)fh + \frac{\partial^2 \varphi}{\partial h^2}(0, 0)h^2 \right]. \tag{2}
\]

Immediate calculations show that among the six terms in the right-hand side of (2), all are equal to zero except the first one, equal to 1, and the fifth (involving the cross second-order derivative), equal to \(fh\). Therefore, we may write

\[
1 + fh \approx (1 + f)^h \tag{3}
\]

as a second-order approximation. From a geometric point of view, \(1 + fh\) is a surface which has a high (second-order) degree of contact with surface \((1 + f)^h\) at point \((0, 0)\) because all partial derivatives up to the second-order are equal for each function (as to the tangent plane at \((0, 0)\), or the first-order contact surface, it is just \(\varphi(f, h) = 1\)). To get some sense of this closeness, suppose that \(f_j\) is 5% per year and \(\Delta z_j\) is one month, or 0.083 year. On the one hand, \((1 + f_j)^{\Delta z_j} = 1.0041\), while \(1 + f_j\Delta z_j = 1.0042\) on the other.

Consider now that the rate of interest \(f_j\) is compounded not once within interval \(\Delta z_j\), but \(m\) times. Using this approximation, one dollar invested at the beginning of this interval thus becomes \((1 + f_j\Delta z_j/m)^m\) where \(\Delta z_j/m\) is the length of time over which the interest is compounded. Now set \(f_j\Delta z_j/m = 1/k\); thus \(m = kf_j\Delta z_j\) and one dollar becomes \((1 + 1/k)^{kf_j\Delta z_j}\). Take the limit of this amount when the number of compounding \(m\) within \(\Delta z_j\) tends towards infinity – equivalently, when \(k \to \infty\), since the \(f_j\Delta z_j/m\’s\) terms are finite. We get:

\[
\lim_{k \to \infty} \left(1 + \frac{1}{k} \right)^{kf_j\Delta z_j} = e^{f_j\Delta z_j}. \tag{4}
\]
Note that this result could have been reached without recourse to the
second-order approximation \((1+f_j)^\Delta z_j \approx 1+f_j \Delta z_j\). From formula \((1+f_j)^\Delta z_j\),
when interest is compounded \(m\) times within \(\Delta z_j\), we get \((1+f_j/m)^m \Delta z_j\) at
the end of interval \(\Delta z_j\). Now set \(f_j/m = 1/k\), so that \(m = kf_j\). One dollar
becomes \((1+1/k)^{kf_j \Delta z_j}\), and we get the above result.

It is clear that if the same limiting process is taken for each interval
\(\Delta z_j\) \((j=1,\ldots,n)\), an investment \(C_u\) at time \(u\) becomes
\[
C_v = C_u e^\sum_{j=1}^n f_j \Delta z_j
\]
at time \(v\).

Suppose now that, whatever the initial partitioning of the time span \([u,v]\),
the sum \(\sum_{j=1}^n f_j \Delta z_j\) tends toward a unique limit when the number of time
intervals \(n\) tends toward infinity, and when the maximum interval length \(\Delta z_j\)
tends toward zero. The forward rate function is then said to be integrable,
and the limit is the definite integral of \(f_j\) over \([u,v]\). We have:
\[
\lim_{n \to \infty, \max \Delta z_j \to 0} \sum_{j=1}^n f_j \Delta z_j = \int_u^v f(z)\,dz.
\]

We are now ready for a definition of the instantaneous forward rate.

Definition. Let \([u,v]\) be a time span. Let \(z\) be any point of time within
this interval. The *instantaneous forward rate* \(f(z)\) is the yearly interest rate
decided upon at time \(u\) for a loan starting at time \(z\), \(z \in [u,v]\), for an
infinitesimal trading period \(dz\).

Sometimes, to recall the time \((u)\) at which this instantaneous forward
rate is agreed upon, the forward rate is denoted \(f(u,z)\). If, for instance, the
time of inception of the contract is 0 and the time at which the loan starts
is \(T\) (with an infinitesimal trading period), the instantaneous forward rate
is denoted \(f(0,T)\), and so forth.

From (5) and (6) a sum \(C_u\) invested during \([u,v]\) at the infinite number
of instantaneous forward rates \(f(u,z)\) – or \(f(z)\) for short – becomes
\[
C_v = C_u e^{\int_u^v f(z)\,dz}.
\]

A final word about (6) and (7) is in order. Notice the dimension of the
infinitesimal element \(f(z)\,dz\) in the integral: since \(f(z)\) is in \((1/time)\) units,
and since \(dz\) is in time units, \(f(z)\,dz\) is dimensionless; and so are \(\int_u^v f(z)\,dz\)
and \(\exp[\int_u^v f(z)\,dz]\).
1.2 The continuously compounded spot rate

Consider the following, particular, rate of interest:

- the time of signing of the contract and the starting point of the loan are at the same point of time: \(u \).
- the length of the loan is the time span \([u, v]\).
- the amount loaned is \(C_u \); the amount due is \(C_v \).

There are a number of ways of defining the rate of interest on such a loan. If this rate is calculated once only over the whole period \([v - u]\) (which may or may not be an integer number of years), one could define this rate as the spot rate (because it corresponds to a loan starting at the very signing of the contract) compounded \textit{once} over \([v - u]\). Denote such a spot rate as \(s_{u,v}^{(1)} \). The lower indexes of \(s \) are self-explanatory; the superscript \((1) \) refers to the fact that the rate of interest is calculated once over \([u, v]\). We have

\[
s_{u,v}^{(1)} = \frac{C_v - C_u}{C_u} / (v - u)
\]

(8)

and equivalently

\[
C_v = C_u [1 + s_{u,v}^{(1)} (v - u)].
\]

(9)

Suppose now that our spot interest is compounded \(m \) times over interval \((v - u)\) instead of once only. It implies that the length of time between any two successive compoundings is \((v - u)/m\). The spot rate is now written \(s_{u,v}^{(m)} \), and equation (9) becomes

\[
C_v = C_u [1 + s_{u,v}^{(m)} (v - u)/m]^m.
\]

(10)

In order for the contracts to be equivalent (that is, to yield the same amount due \(C_v \)), the right-hand sides of (9) and (10) must be the same. We must have

\[
1 + s_{u,v}^{(1)} (v - u) = [1 + s_{u,v}^{(m)} (v - u)/m]^m
\]

(11)

or
Note that replacing \(m \) by 1 in the right-hand side of (12) yields \(s^{(1)}_{u,v} \) as it should.

Consider now what happens to (10) when the number of compoundings \(m \) tends toward infinity. In the same vein as what we did before (§1.1), we can replace \(s^{(m)}_{u,v} (v - u)/m \) by \(1/k \); therefore, with \(m = k s^{(m)}_{u,v} (v - u) \), we can write:

\[
C_v = C_u \left(1 + \frac{1}{k} \right)^{k s^{(m)}_{u,v} (v - u)}.
\]

Taking the limit of \(C_v \) when \(m \to \infty \) and \(k \to \infty \):

\[
\lim_{m \to \infty} \lim_{k \to \infty} C_v = C_u e^{s^{(\infty)}_{u,v} (v - u)}.
\]

This leads to the following definition.

● Definition. Let \([u, v]\) be a time span. The continuously compounded spot rate is the yearly interest rate, denoted \(s(u, v) \), that transforms an investment \(C_u \) at time \(u \) into \(C_v \) at time \(v \), the rate being compounded over infinitesimally small time intervals between \(u \) and \(v \).

Denote for simplicity \(s^{(\infty)}_{u,v} \equiv s(u, v) \). Equation (14) can be written as

\[
C_v = C_u e^{s(u,v)(v-u)}.
\]

From (15), we deduce

\[
s(u,v) = \ln(C_v/C_u)/ (v-u).
\]

There is an all-important relationship between the continuously compounded spot rate \(s(u,v) \) (a number) and the forward rate \(f(z) \) (a function defined over the interval \([u, v]\)). Arbitrage without transaction costs guarantees that the right-hand sides of (7) and (15) must be identical. Thus, from

\[
e^{\int_u^v f(z)dz} = e^{s(u,v)(v-u)}
\]

we get
\[
\begin{align*}
\frac{v}{v - u} \int_u^v f(z)dz = & s(u, v) \\
\end{align*}
\]

Therefore the spot rate \(s(u, v) \) is nothing else than the average value of the forward rate function \(f(z) \) over the interval \([u, v]\). Notice that in this average the infinitely large number of elements \(f(z) \) are all weighted by the infinitely small quantities \(dz/(v - u) \) whose sum is equal to one.

On the other hand, it is always possible to express a forward rate as a function of a spot rate. Write (17) as

\[
\int_u^v f(z)dz = (v - u) s(u, v)
\]

and take the derivative of (18) with respect to \(v \). This yields

\[
f(v) = s(u, v) + (v - u) \frac{ds(u, v)}{dv}.
\]

We should stress that the instantaneous forward rate and the continuously compounded spot rate play respectively exactly the roles of a marginal and an average quantity, in economics parlance. This fact does not seem to be known, and for that reason we will now introduce what we feel to be the missing link between the two concepts, namely the continuously compounded total return.

1.3 \textbf{Introducing the missing link: the continuously compounded total return}

Let us first simplify our notation. Without loss of generality, call 0 instant \(u \), and \(T \) instant \(v \). Our time span \([u, v]\) is now replaced by \([0, T]\). The simplification comes from the fact that \(T \) stands both for an \textit{instant} of time and for the \textit{length} of the time span \([0, T]\). With this notation, our spot rate compounded once over period \(T \), corresponding to equation (8), is now written

\[
s_{0,T}^{(1)} = \frac{C_T - C_0}{C_0} / T
\]

implying
This last quantity can be called the total return compounded once over period T. Contrary to the forward rate and the spot rate, which were expressed in (1/time) units, this magnitude is unitless. (Notice also that to emphasize this fact, we have not called $s^{(1)}_{0,T} T$ the total rate of return, but the total return). Equation (19) implies

$$C_T = C_0 \left[1 + s^{(1)}_{0,T} T \right]. \quad (20)$$

Suppose now that this total return corresponds to a spot rate compounded n times over the same interval T. It is thus defined as the product of that spot rate and the time length T. Call $s^{(n)}_{0,T}$ the corresponding rate of return per year. The length of time after which this rate is compounded is T/n. Therefore equation (20) is transformed into

$$C_T = C_0 \left[1 + s^{(n)}_{0,T} \frac{T}{n} \right] = C_0 \left(1 + \frac{s^{(n)}_{0,T} T}{n} \right)^n. \quad (21)$$

The total return when the spot rate is compounded n times over T is denoted as $s^{(n)}_{0,T} T$, and remains dimensionless.

From (21) and (20), we have

$$s^{(n)}_{0,T} T = n \left[(C_T/C_0)^{1/n} - 1 \right] = n[(1 + s^{(1)}_{0,T} T)^{1/n} - 1]. \quad (22)$$

Setting $n = 1$ into (22), we verify that we get (19) as we should.

Let $n \to \infty$. We will now determine the limit of the corresponding, unitless, total return $s^{(\infty)}_{0,T} T$. We have to calculate

$$s^{(\infty)}_{0,T} T = \lim_{n \to \infty} s^{(n)}_{0,T} T = \lim_{n \to \infty} n[(C_T/C_0)^{1/n} - 1]. \quad (23)$$

which will be called the \textit{continuously compounded total return}.

Set $n = 1/\alpha$; then

$$s^{(\infty)}_{0,T} T = \lim_{n \to \infty} s^{(n)}_{0,T} T = \lim_{\alpha \to 0} \{[(C_T/C_0)^\alpha - 1]/\alpha\}. \quad (24)$$
Applying L’Hospital’s rule to (24), we get:

\[
s_{0,T}^{(\infty)}T = \lim_{\alpha \to 0} [(C_T/C_0)^\alpha \ln(C_T/C_0)] = \ln(C_T/C_0).
\]

(25)

We had previously denoted \(s_{0,T}^{(\infty)} \equiv s(0,T) \). So the continuously compounded total return \(s(0,T)T \), which will be denoted \(S(0,T) \). We thus have:

\[
S(0,T) = \ln(C_T/C_0).
\]

Let now \(f(0,z) \) be the forward rate decided upon at time 0, for an infinitesimal trading period starting at time \(z \), with \(z \) between 0 and \(T \). In the case of an infinite number of forward markets and in the absence of transaction costs, we know that arbitrage will enforce the equalities:

\[
C_T = C_0 e^{s(0,T)T} = C_0 e^\int_0^T f(0,z)dz
\]

from which \(S(0,T) = \log(C_T/C_0) = s(0,T)T = \int_0^T f(0,z)dz \) results. Notice that the continuously compounded total return is dimensionless, as it should.

We may now state a formal definition of the continuously compounded total return.

1.3.1 Definition of the continuously compounded total return

Let \(f(0,z) \) be an instantaneous forward rate agreed upon at 0 for a loan starting at \(z \) \((0 \leq z < T)\), for an infinitesimal trading period. We define the *continuously compounded total return*\(^3\) at time \(T \) as the integral sum of the forward rates between 0 and \(T \), equal to \(\int_0^T f(0,z)dz \). It is denoted \(S(0,T) \), and is a pure (dimensionless) number.

From what precedes, we can state the following properties:

- **Property 1.** Let \(s(0,T) \) be a continuously compounded spot rate for a loan started at time 0 and maturing at \(T \). Then the total return \(S(0,T) \) is equal to \(s(0,T)T \).

- **Property 2.** Let \(C_0 \) denote the value of an investment at time 0; \(C_T \) is its value at time \(T \). Then the total return \(S(0,T) \) equals \(\ln(C_T/C_0) \).

\(^3\)Further abbreviated as the *total return*. From now on, the continuously compounded spot rate \(s(0,T) \) will abbreviated as “spot rate”, and “forward rate” will stand for the instantaneous forward rate \(f(0,T) \).
An example may be useful. Suppose the total return is 32% or 0.32 after four years. It means that one dollar becomes $e^{0.32} = 1.377$ dollars after four years. Equivalently, it also means also that

- the continuously compounded yearly return, or the spot rate with 4-years maturity is $0.32/4 = 0.08$ per year.
- the forward rate function for maturities between $t = 0$ and $t = 4$ is any function $f(z)$ such that
 \[\int_0^4 f(z)dz = 0.32, \]
or that its average value is $\frac{1}{4} \int_0^4 f(z)dz = 0.08$ per year. In order to get such a function $f(0, z)$, choose any differentiable function $s(0, z)$ with $z \in [0, 4]$ that goes through point $(4, 0.08)$. Then $f(0, z)$ is simply $s(0, z) + z \frac{ds(0, z)}{dz}$.
- the yearly, once-a-year compounded spot rate, $s_{0,4}$, is such that
 \[(1 + s_{0,4})^4 = e^{0.32} \]
or
 \[s_{0,4} = e^{0.08} - 1 = 0.083 \text{ per year}. \]

Those definitions of the forward rate, the spot rate and the total return enable us to write the following equalities:

\[C_T = C_0 e^{\int_0^T f(z)dz} = C_0 e^{s(0,T)T} = C_0 e^{S(0,T)}. \] (26)

Noticing that the first equality in (26) can be written as

\[C_T = C_0 e^{\left[\frac{1}{T} \int_0^T f(z)dz\right]T}, \]

equalities (26) allow for a nice interpretation of the Euler number e. The Euler number, e, is equal to what becomes of $\$1$ when, equivalently:

- the average of the forward rates over period T is $1/T$
- the spot rate $s(0, T)$ is equal to $1/T$
- the continuously compounded total return is 1 (100%).

As an example, suppose that $T = 25$ years. Then $1/T$ is 4% per year. One dollar becomes $e = 2.718...$ dollars if the average of the forward rates over 25 years – equivalently the spot rate $s(0, 25)$ – is 4%. Notice that this average of 4% allows for negative values of the forward rate inasmuch as the
forward rate is a real forward rate, defined as the difference between the nominal forward rate and the inflation rate.

We will now examine the precise relationships existing between the three concepts we have defined. Understanding these relationships seems essential to avoid innumerable erroneous depictions of forward and spot rate curves such as those appearing regularly in otherwise excellent texts on finance. Indeed, all too often the traditional increasing, concave spot curve leveling off to a plateau is accompanied by a forward curve which has simply no relevance to it. The latter’s position can be way off the mark, being faulty on many grounds. In particular, before the spot rate reaches a plateau, it is depicted as still increasing while it must be decreasing – this is a property that will be demonstrated in §1.5. Also, it turns out that texts are sometimes graced with hump-shaped spot rate curves; not infrequently the decreasing part of the hump exhibits a subtangent (measured on the ordinate) larger than the spot rate⁴, thus entailing nonsensical negative nominal forward rates.

1.4 Relationships between the total return, the forward rate and the spot rate

It is now straightforward to show that the forward rate and the spot rate are, respectively, the marginal and average quantities of a common value, the total return.

First, consider the total return as expressed as an integral sum, and take its derivative with respect to T. We get the forward rate:

$$\frac{dS(0, T)}{dT} = \frac{d}{dT} \left[\int_0^T f(0, z)dz \right] = f(0, T).$$

(27)

In economic parlance, the forward rate is simply the marginal return.

⁴The subtangent of $s(0, T)$ is defined as the absolute value of the differential $Tds(0, T)/dT$. If the spot rate is decreasing, we must still have, with $ds(0, T)/dT < 0$:

$$f(T) = s(0, T) + T \frac{ds(0, T)}{dT} > 0$$

or

$$-T \frac{ds(0, T)}{dT} = \left| T \frac{ds(0, T)}{dT} \right| < s(0, T).$$
Second, take the average value of $S(0, T)$. We get the spot rate

$$\frac{S(0, T)}{T} = \frac{\int_0^T f(0, z)dz}{T} = \frac{s(0, T)T}{T} = s(0, T).$$ \hspace{1cm} (28)$$

Thus the spot rate is the average return.

Taking the derivative of $S(0, T) = s(0, T)T$ with respect to T and using (27) we get

$$f(0, T) = s(0, T) + \frac{ds(0, T)}{dT}T. \hspace{1cm} (29)$$

This shows that the forward rate can be constructed geometrically by adding to the spot rate $s(0, T)$ the differential $[ds(0, T)/dT]T$ (see §1.6).

In order to avoid some of the errors we alluded to at the end of §1.3, it is important to understand the full meaning of the differential $[ds(0, T)/dT]T$ of the spot curve. If $s(0, T)$, the average value of the forward rates, is an increasing function of T, the forward rate (the marginal value of the total return) is equal to the average value (the spot rate) plus the increase in the average that now applies to all infinitesimal time increments from 0 to T. This increase is $[ds(0, T)/dT]T$; indeed it is the rate of increase per additional time to maturity $[ds(0, T)/dT]$ multiplied by the sum of all increases in maturity from 0 to T, i.e. $\int_0^T dz = T$. Thus, the geometrical construction of the forward rate from the spot rate as $f(0, T) = s(0, T) + [ds(0, T)/dT]T$ makes sound economic sense. As an application, we can understand immediately what is at stake when representing a spot rate curve with a hump: the decreasing part of the hump may be too steep, in the sense that $[ds(0, T)/dT]T < -s(0, T)$ over some interval of T, thus entailing $s(0, T) + [ds(0, T)/dT]T < 0$ and hence non-sensical negative (nominal) forward rates $f(0, T)$ over that interval.

Figure 2 summarizes the relationships between the three concepts of total return, spot rate and forward rate. As the reader can verify, there is a one-to-one correspondence between these three concepts, and always two ways of going from one of these to any of the other two: a direct one and an indirect one. These relationships will be put to work on an equal basis in the next two sections.
Figure 2. Summary of the relationships between the total return $S(0,T)$, the spot rate $s(0,T)$ and the forward rate $f(0,T)$.
1.5 Theorems on the behavior of the forward rate and the total return

We will now state and demonstrate a property of the forward rate and the total return that pertains to the most commonly observed behavior of the spot rate.

1.5.1 Theorem 1

Let the spot rate \(s(0, T) \) be represented by an increasing, concave function of maturity \(T \), leveling off at \(s(0, T) = \bar{s} \) for an abscissa \(T \), and equal to level \(\bar{s} \) beyond \(T \). Then:

a) the forward rate goes at least through one maximum in the interval \((0, \bar{T})\) and is decreasing in an interval to the left of \(\bar{T} \). If \(T \geq \bar{T} \), the forward rate is equal to the spot rate \(\bar{s} \).

b) the total return is an increasing function of \(T \), with at least one inflection point for \(0 < T < \bar{T} \). If \(T \geq \bar{T} \), the total return becomes a linear function of \(T \).

1.5.2 Proof

Let us first consider the behavior of the slope of the forward rate curve at the origin, i.e. when \(T \to 0 \). The above assumptions imply \(ds(0, 0)/dT > 0 \). On the other hand, taking the derivative of (34) with respect to \(T \), we deduce

\[
\frac{df(0, T)}{dT} = \frac{ds(0, T)}{dT} + \frac{d^2s(0, T)}{dT^2} T + \frac{ds(0, T)}{dT} = 2 \frac{ds(0, T)}{dT} + \frac{d^2s(0, T)}{dT^2} T \tag{30}
\]

and therefore, with \(T = 0 \)

\[
\frac{df(0, 0)}{dT} = 2 \frac{ds(0, 0)}{dT}. \tag{31}
\]

(Notice how surprisingly simple this intermediate result is: whatever the spot rate curve, and in particular whatever the sign of the spot curve slope at the origin, the initial slope of the forward rate curve will always be twice that of the spot curve.\(^5\))

\(^5\)This result can be generalized while retaining its simplicity. It is easy to show that at the origin the \(n^{th} \) derivative of the forward rate is \((n + 1)\) times the \(n^{th} \) derivative of the spot rate, i.e. \(d^n f(0, 0)/dT^n = (n + 1) d^n s(0, 0)/dT^n \).
Coming back to (30), we know that for $T = T$, $ds(0, T)/dT = 0$ and its left-hand side second derivative is negative $(d^2s(0, T_0)/dT^2 < 0)$, as implied in our concavity hypothesis. This leads to a left-hand side derivative of $f(0, T)$ equal to

$$\frac{df(0, T)}{dT} = \frac{d^2s(0, T)}{dT^2} < 0$$

and therefore the forward rate is decreasing in an interval on the left-hand side of T.

We know that $df(0, 0)/dT$ is strictly positive and that $df(0, T_0)/dT$ is strictly negative. It follows that $df(0, T)/dT$ changes sign from positive to negative at least once within the interval $[0, T]$, and therefore that $f(0, T)$ goes through a local maximum at least for one value of the maturity. We denote such a value \hat{T} ($\hat{T} \in (0, T)$) – assuming it is unique.

The final part of part a) of the theorem is evident from (29): if $ds(0, T)/dT = 0$ for $T > T$, then $f(0, T) = s(0, T)$.

Part b) is just a direct consequence of a). If $f(0, T)$ goes through a unique maximum in the interval $[0, T]$ (at $T = \hat{T}$), its integral (the total return $S(0, T)$) has an inflection point at \hat{T}; it is a convex function between 0 and \hat{T} and a concave function between \hat{T} and T. Finally, if for $T > T$ $f(0, T)$ is equal to a constant $s(0, T) \equiv \bar{s}$, then

$$S(0, T)|_{T \geq T} = \int_0^T f(0, z)dz\bigg|_{T \geq T} = \int_0^T f(0, z)dz + \int_{T}^T f(0, z)dz\bigg|_{T \geq T} = \bar{s}T + \bar{s}T - \bar{s}T = \bar{s}T|_{T \geq T},$$

a linear function of maturity T. The proof is thus complete. Note that this theorem could be generalized in a natural way to the relationship between the derivative of a function and the average value of that function.

6This theorem allows for the following interpretation. Consider the continuous maturity variable as a discrete one, albeit with infinitesimally short increments. First, let us explain the property that at the origin the forward rate is equal to the spot rate, and that the forward curve has twice the slope of the spot curve. Let $\varepsilon(\varepsilon \rightarrow 0)$ be the first maturity, 2ε the second one. For only one maturity, the spot rate is the average of one forward rate only; therefore it is equal to it. So $s(0, 1) = f(0, 0)$. Suppose now that the spot rate for maturity 2ε has increased by an amount Δs. If an average increases by Δs for one
A corollary to this theorem is the following:

1.5.3 Theorem 2

Let the spot rate be represented by a decreasing, convex function of maturity \(T \), leveling off at \(s(0, T) = \tilde{s} \) for an abscissa \(\tilde{T} \), and equal to level \(\tilde{s} \) beyond \(\tilde{T} \). Then:

a) the forward rate goes at least through one minimum in the interval \((0, T)\) and is increasing in an interval to the left of \(\tilde{T} \). If \(T \geq \tilde{T} \), the forward rate is equal to the spot rate \(\tilde{s} \).

b) the total return is an increasing function of \(T \), with at least one inflection point for \(0 < T < \tilde{T} \). If \(T \geq \tilde{T} \), the total return becomes a linear function of \(T \).

1.5.4 Proof

The proof follows the same lines as above.

1.6 The spot rate curve as a spline and its corresponding forward rate curve

In order to derive a correct forward curve corresponding to a spot rate curve, we could proceed geometrically and obtain a fair result by adding to the spot rate its differential \(T \cdot ds(0, T)/dT \). Consider any value of the maturity, for additional element, it implies that the second element has increased by twice the increase of the average, i.e. by \(2\Delta s \). The same argument carries of course to the case where the average decreases by \(\Delta s \). Therefore at the origin the slope of the forward rate must be twice the slope of the spot rate. Furthermore, at the point where the spot rate (the average of the forward rates) reaches a maximum, the last forward rate must be equal to the spot rate. The fact that between the origin and that point the forward rate goes at least through one maximum is just a consequence of Rolle’s theorem applied to the difference between the forward rate and the spot rate.

The property that the forward rate must be decreasing just before the spot rate has reached its maximum (or its plateau) can now be demonstrated as follows. Consider an increasing spot rate. It means that the last forward rate is above it: this is what has made the spot rate increase. Now if the spot rate, for the next maturity, does not change (because it has reached a maximum, or a plateau), the forward rate must be decreasing. Indeed, suppose the contrary: if the forward rate increases or stays constant, the spot rate will still increase, entailing a contradiction with our hypothesis. Therefore, the forward rate can only decrease. Theorem 2 (to follow in the text) has a similar interpretation.
instance T_0. For this value of the abscissa, the differential $\frac{ds}{dT}(0, T_0)T_0$ is equal to distance δ drawn on the ordinate (Figure 3). Adding δ to the spot rate $s(0, T_0)$ yields the forward rate $f(0, T_0)$.

Conversely, from any given forward curve $f(0, T)$ the spot rate can be sketched in the following way. From point T_0 on the abscissa draw the vertical with ordinate $f(0, T_0)$. Consider a series of horizontal lines of length T_0 between height $f(0, T_0)$ and the abscissa. Each of those lines delineates two areas: one below the forward curve and above the horizontal; the other one below the horizontal and above the forward curve. The height of the horizontal for which both areas (A_2 and A_1 in our diagram) are equal yields the spot rate $s(0, T_0)$ (you have just applied the property $s(0, T_0)T_0 = \int_0^{T_0} f(0, z)dz$). Furthermore, not only do you get a fair idea of the spot rate, but of the slope of the spot curve as well at that point. Indeed, consider the difference δ between the forward curve and the spot curve at T_0; substract δ from $s(0, T_0)$ on the ordinate. The line between that point and $(T_0, s(0, T_0))$ is the tangent of the spot curve at T_0.

But it would be more rewarding to verify with precision the property we developed in Theorem 1. To that effect, we will proceed analytically and consider the spot rate curve as a spline7 represented by a third order polynomial starting at point $(0, 0.05)$ and ending at point $(20, 0.0929)$8, with a slope equal to zero at that end point.

The reason for which practitioners use third order polynomials for splines is little known, and merits mentioning here. It stems from the following important property. If a polynomial represents a lath joining a given set of points, a third-order polynomial minimizes both the curvature of the lath and its deformation energy. Indeed, either of these concepts is basically represented – within the confines of affine transformations – by the functional

$$I[s(z)] = \int_a^b [s''(z)]^2 dz$$

where $s''(z)$ is the second derivative of the spot rate – or of the spline (denoted $s(z)$ for convenience).

8We have chosen those values arbitrarily. Of course, our qualitative results are independent of this choice.
Figure 3. The continuously compounded total return, the spot rate and the instantaneous forward rate.
Minimizing the integral I is a particular case of minimizing a functional

$$J[s(z)] = \int_a^b F[z, s(z), s'(z), s''(z)]dx.$$

Such a problem is solved by the Euler-Poisson 4th order differential equation

$$\frac{\partial F}{\partial s}(z, s, s', s'') - \frac{d}{dz} \frac{\partial F}{\partial s'}(z, s, s', s'') + \frac{d^2}{dz^2} \frac{\partial F}{\partial s''}(z, s, s', s'') = 0. \quad (33)$$

Notice that in our case (equation (32)) the arguments z, s and s' are missing in F, which depends solely upon s''. So the Euler-Poisson equation (33) boils down to

$$\frac{d^2}{dz^2} \frac{\partial F}{\partial s''}(s'') = 0. \quad (34)$$

Applying (34) to (32), we have

$$\frac{\partial F}{\partial s''}(s'') = 2s''(z) \quad (35)$$

and therefore a first-order condition for $s(z)$ to minimize the functional I is that it solves the 4th order differential equation

$$\frac{d^2}{dz^2} [2s''(z)] = 2s^{(4)}(z) = 0, \quad (36)$$

which leads to the third-order polynomial

$$s(z) = \alpha_3 z^3 + \alpha_2 z^2 + \alpha_1 z + \alpha_0. \quad (37)$$

We will now adjust this polynomial to the curve depicted in Figure 3. To that effect, let us revert to our notation

$$s(0, T) = \alpha_3 T^3 + \alpha_2 T^2 + \alpha_1 T + \alpha_0. \quad (37a)$$

Since the spot rate curve is supposed to level off at its end point, only three points will be needed to adjust the curve: indeed, together with the first condition this will imply four equations in the four unknowns $\alpha_0, \alpha_1, \alpha_2$ and α_3. The first three equations are determined by the knowledge of the initial
point, any intermediate point and the end point. Let these three points be denoted as

\[(T_0, s(0, T_0)) \equiv (T_0, s_0),\]

\[(T_1, s(0, T_1)) \equiv (T_1, s_1),\]

\[(\bar{T}, s(0, \bar{T})) \equiv (\bar{T}, \bar{s}).\]

Constraining the spot curve to go through these three points leads to the first three equations of system (38) below; the last equation of (38) reflects the fact that the derivative of the spot curve at \(T = \bar{T}\) is equal to zero. The system of four equations in the four unknowns \(\alpha_0, \alpha_1, \alpha_2, \alpha_3\) is:

\[
\begin{align*}
\alpha_3 T_0^3 + \alpha_2 T_0^2 + \alpha_1 T_0 + \alpha_0 &= s_0, \\
\alpha_3 T_1^3 + \alpha_2 T_1^2 + \alpha_1 T_1 + \alpha_0 &= s_1, \\
\alpha_3 \bar{T}^3 + \alpha_2 \bar{T}^2 + \alpha_1 \bar{T} + \alpha_0 &= \bar{s}, \\
3\alpha_3 \bar{T}^2 + 2\alpha_2 \bar{T} + \alpha_1 &= 0.
\end{align*}
\]

Using the simplifying notation

\[\alpha = (\alpha_3, \alpha_2, \alpha_1, \alpha_0)'\]

\[s = (s_0, s_1, \bar{s}, 0)'

\[T = \begin{bmatrix}
T_0^3 & T_0^2 & T_0 & 1 \\
T_1^3 & T_1^2 & T_1 & 1 \\
\bar{T}^3 & \bar{T}^2 & \bar{T} & 1 \\
3\bar{T}^2 & 2\bar{T} & 1 & 0
\end{bmatrix}
\]

the vector of unknowns \(\alpha\) of the polynomial is such that

\[T \cdot \alpha = s\]

and therefore \(\alpha\) is equal to

\[\alpha = T^{-1} \cdot s\]

provided \(T\) is not singular.

In the example of Figure 3, the three points are\(^9\):

\(^9\)These are rounded values. The actual ordinates \(s_1\) and \(s_2\) used in the calculations were 0.071241 and 0.092857. Throughout this study all results are rounded, but the actual calculations are carried out with 20 decimals.
\[(T_0, s_0) = (0, 0.05), \]
\[(T_1, s_1) = (5, 0.0712), \]
\[(T, s) = (20, 0.0929), \]

which leads to the spot rate curve

\[
s(0, T) = 2.21 \times 10^{-6} T^3 - 0.000196 T^2 + 0.005171 T + 0.05 \quad \text{if} \quad T \leq T, \]
\[
s(0, T) = 0.0929 \quad \text{if} \quad T > 20, \]
\[
(41) \]

from which the following forward rate results:

\[
f(0, T) = 8.86 \times 10^{-6} T^3 - 0.000587 T^2 + 0.01034 T, \]
\[
f(0, T) = 0.0929 \quad (T > 20). \]
\[
(42) \]

It is immediate to show that \(f(0, T) \) has indeed the kind of behavior that was forecast. It goes through a maximum at an abscissa \(\hat{T} = 12.146 \); from \(\hat{T} \) to \(T \) it is a decreasing function of maturity.

Figure 3 illustrates the behavior of the forward curve corresponding to the spot curve, together with the total return curve.

In accordance with (41) and (42), the total return is

\[
S(0, T) = s(0, T) \cdot T = \int_0^T f(0, z) dz \]
\[
= \begin{cases}
2.21 \times 10^{-6} T^4 - 0.000196 T^3 + & 0.005171 T^2 + 0.05 T \\
0.0928 T & (T \leq 20) \\
0.0929 & (T \geq 20).
\end{cases} \]
\[
(43) \]

Continuously increasing, with a continuous first derivative, the total return has an inflection point at \(\hat{T} = 12.146 \).

A word of caution is in order here: we have shown that the forward rate curve went at least through one maximum for \(T < \hat{T} \), but we have said nothing about its concavity or convexity. In the example of Figure 3, the forward curve implied by the concave spot curve turned out to be concave throughout, but this is not at all a general rule. Local convexity can be the case if the following occurs. Consider the derivative of (30). We get

\[
\frac{d^2 f(0, T)}{dT^2} = 3 \frac{d^2 s(0, T)}{dT^2} + \frac{d^3 s(0, T)}{dT^3} T. \]
\[
(44) \]
At the origin $(T = 0)$ a concave spot curve $(d^2 s(0, 0)/dT^2 < 0)$ will always entail a concave forward curve $(d^2 f(0, 0)/dT^2 < 0)$. But for $T > 0$, the forward curve will be convex $(d^2 f(0, T)/dT^2 > 0)$ if and only if

$$\frac{d^3 s(0, T)}{dT^3} > -3 \frac{d^2 s(0, T)}{T \cdot dT^2}. \quad (45)$$

which implies, since $d^2 s(0, T)/dT^2 < 0$, $\frac{d^3 s(0, T)}{dT^3} / \frac{d^2 s(0, T)}{dT^2} < -3 / T$.

Denote

$$\frac{d^3 s(0, T)}{dT^3} / \frac{d^2 s(0, T)}{dT^2} = \frac{s'''}{s''} = \frac{d \ln s''}{dT} \equiv c$$

the relative rate of increase in concavity of $s(0, T)$. Condition (45) just amounts to $c < -3/T$.

It is quite interesting to observe how sensitive this condition is to a very small variation in the spot rate. We will suppose that one point only of our original spline is modified by changing point $(5, 0.0712)$ into $(5, 0.0747)$. The spline, always concave, becomes

$$s(0, T) = 5.3 (10^{-6}) T^3 - 0.00032 T^2 + 0.0064 T + 0.05 \quad (46)$$

and the forward curve becomes

$$f(0, T) = 0.000021 T^3 - 0.000967 T^2 + 0.01282 T + 0.05. \quad (47)$$

This time the forward rate goes through an inflection point at $T^* = 15.045$ years\(^{10}\), and becomes convex between T^* and T, as Figure 4 shows. Only precise calculations of condition (45) lead to this conclusion, which cannot be obtained by simple inspection of the spot rate curve.

We will now close this section by drawing attention upon a rather surprising consequence of Theorem 1. The usual, innocuous looking, increasing and concave spot rate curve covers a well-hidden, important message regarding the efficiency of investments as a function of their horizon. Indeed, it implies a total return on investments which has the exact outlook of a one-variable S–shaped production function with an inflection point, where the variable is neither capital nor labor, but the investment’s horizon (see Theorem 1 in §1.5, illustrated in Figure 3). For short and medium term projects, this

\(^{10}\)This corresponds to the solution of equation $c = s'''(0, T)/s''(0, T) = -3/T$.

23
Figure 4. A concave spot rate curve does not necessarily entail a concave forward rate curve.
marginal efficiency is first increasing; it is then decreasing. For very long horizons the horizontal spot rate curve, equal to the forward rate, makes the case of constant returns.

These observations prompt us to indulge in the following conjecture. An increasing marginal efficiency of short and medium term investments followed by decreasing marginal efficiency of longer investments may help track down the ever-elusive causes of the “normal” shape of the interest rate term structure. It is our belief that theories of the interest term structure may have been somewhat lopsided until now, centering essentially on the behavior of agents in the financial markets, thus giving short shrift to its real counterpart. A natural question to ask now is whether the increasing and decreasing marginal efficiency of investments according to their horizon stands the trial of facts.

2 Immunization: a First Approach

In the introduction of this chapter, we have shown the essential role of the investor’s horizon when evaluating the consequences of any change in the rates of interest. We had in mind two objects of interest: first, the instantaneous change in the bond portfolio’s value due to the drop or the rise of interest rates; and second, the relative decrease or increase, respectively, of the reinvestment proceeds of the coupons. We can now be more specific, and define the future value, at horizon H, of the portfolio: this will take into account both effects at the same time.

However, this measure of the future bond performance can still be improved upon for the following reason. The attractiveness of an investment in terms of its future value is not easy to figure out. For instance, an investment’s future value equal to 136, in $H = 6$ years, when the present value is 94, is difficult to interpret. It is much more convenient to read the investment’s performance in terms of a yearly rate of return, either compounded once a year, or continuously compounded. If compounded once a year, the yearly return is $(136/94)^{1/6} - 1 = 6.35\%$; continuously compounded, the yearly return is $(1/6) \ln(136/94) = 6.16\%$. We will now introduce in a precise way the horizon rate of return. We have at least two choices: we can consider it either compounded once a year, or continuously compounded. As the reader will appreciate later, continuously compounded returns are much more convenient to deal with than any other form of return, so we will use
those.

In order to have a clear idea of immunization, we will first suppose that the spot rate structure is flat, and that it undergoes a parallel shift. We can use the tools we are now familiar with, and set in the spot rate polynomial

\[s(0, T) = a_1 + a_2 T + a_3 T^2 + a_4 T^3, \]

(48)

\[a_2 = a_3 = a_4 = 0, \]

retaining only \(a_1 \). So \(s(0, T) = a_1 \) at time 0 when a bond or a bond portfolio is bought. A very short time later, at time \(\varepsilon \), the spot structure shifts to a new value \(A_1 \), which may be higher or lower than \(a_1 \). The portfolio’s original value, denoted \(B(a_1) \), now changes to \(B(A_1) \). In terms of the horizon \(H \), its new (future) value, denoted \(B_H(A_1) \), is:

\[B_H(A_1) = B(A_1) \exp(A_1 H). \]

(49)

2.1 The continuously compounded horizon rate of return

The continuously compounded \(H \)-horizon rate of return, \(r_H \), transforms an initial investment value, \(B(a_1) \), which undergoes an instantaneous change in the rates of interest, into a future value at horizon \(H \). Let us denote it \(r_H \). Using (49), \(r_H \) is such that

\[B(a_1) e^{r_H H} = B_H(A_1) = B(A_1) e^{A_1 H} \]

(50)

and hence

\[r_H = \frac{1}{H} \log \left[\frac{B(A_1)}{B(a_1)} \right] + A_1. \]

(51)

The horizon rate of return, given \(a_1 \), is a function of the two variables \(A_1 \) and \(H \). It can thus be viewed as a family of curves in \((r_H, A_1)\) space where \(H \) plays the role of a parameter. Those parametric curves are written \(r_H = r_H(H; A_1) \).

Before rushing to a diagram representing this family of curves, let us think about the first messages conveyed by formula (51). One of the most immediate is quite remarkable: if interest rates do not change, the horizon rate of return is independent from the horizon. Indeed, set \(A_1 = a_1 \) in (51); \(r_H \) then equals \(a_1 \) and is independent of \(H \). So we already know that all curves \(r_H(H; A_1) \) will go through the fixed point \((a_1, a_1)\). This is not at all
obvious: think of a 8.75 percent coupon bond, with maturity 22.3 years; consider a horizon of 6 years. It is not evident that if the spot rate remains at 7.25 percent the 6-year horizon rate of return will be 7.25. Only a lengthy reasoning through arbitrage on the bond’s value would provide that simple property.

The second message carried by (51) is that when H tends to infinity, the horizon rate of return becomes identical to A_1, i.e. $\lim_{H \to \infty} r_H = A_1$. In (r_H, A_1) space, r_H becomes the linear function A_1. This has an immediate interpretation: whatever initial capital gain or loss the bond has incurred because a_1 moved to A_1, in the long run only rate A_1 prevails as a determinant of the investor’s return.

2.2 A geometrical representation of the horizon rate of return

Now we may want to think of the nature of the curves we must get. We already know that all curves will go through point (a_1, a_1). Additionally, we may surmise that short horizon curves must be decreasing. The reason is that in the short run capital gains due to a decrease in a_1 far outweigh the losses entailed by coupon reinvestment at a lower rate, and the converse is true in the case of increasing rates. Also, long horizon curves must be increasing, for symmetrical reasons.

We may well venture to guess how any of those curves moves when parameter H increases. Definitely, it must move counter-clockwise. The reason is subtle, and is two-fold. Think how a 2-year horizon curve must behave with regard to a 1-year horizon curve. For values of A_1 smaller than a_1, the 2-year curve must be lower than the 1-year curve: first, the initial capital gain entailed by the spot rate decrease is more eroded after 2 years than after one year; and second, the coupon is reinvested at a lower rate during a longer time. The contrary applies when the rates increase; so definitely the curves will pivot counter-clockwise around the fixed point (a_1, a_1). This is indeed confirmed in figure 5, where the horizon rate of return is depicted for the holder of a 20-year, 8 percent bond, for horizons equal to 1, 2, 5, 15 years, and for an infinite horizon. The curves look like straight lines, although they are not (with the exception of $r_{H=\infty} = A_1$). Each displays a slight convexity, as we will show later.

The natural question to ask now is whether there exists an intermediate
Figure 5. The family of horizon rates of return $r_H(A_1)$ for various horizons. All curves are very slightly convex, except the straight line $r_{H=\infty} = A_1$.
horizon such that the rate of return for that horizon is an (almost flat) curve going through \((a_1, a_1)\). From an economic point of view, it implies that any capital gain (or loss) due to a change in interest rates is compensated by a corresponding loss (or gain) in the reinvestment of coupons. Should this prove to be the case, it would imply that the investor with such a horizon would be protected against any unforeseen change in the interest rates. It turns out that this horizon exists, and that it corresponds to an essential feature of the bond; we now tackle this question of central importance.

2.3 Existence and characteristics of an immunizing horizon

For such an immunizing horizon to exist, \(H\) must be such that \(r_H\) goes through a minimum at point \((a_1, a_1)\). A sufficient condition is that \(r'_H(a_1) = 0\) and \(r''_H(a_1) > 0\). The first-order condition implies

\[
r'_H(a_1) = \frac{1}{H} \left. \frac{d \log B}{dA_1} \right|_{A_1 = a_1} + 1 = 0
\]

and hence

\[
H = -\left. \frac{d \log B}{dA_1} \right|_{A_1 = a_1}.
\]

Thus the horizon should be equal to minus the logarithmic derivative of the bond’s value with respect to \(A_1\) at point \(a_1\). Denoting \(c_t\) \((t = 1, \ldots, N)\) the cashflows of the bond, we have

\[
B(A_1) = \sum_{t=1}^{N} c_t e^{-A_1 t}
\]

and

\[
H = -\left. \frac{d \log B(A_1)}{dA_1} \right|_{A_1 = a_1} = -\left. \frac{1}{B(A_1)} \frac{dB(A_1)}{dA_1} \right|_{A_1 = a_1} = \sum_{t=1}^{N} t c_t e^{-a_1 t} / B(a_1).
\]

The last expression in (55) is the weighted average of the times of payment of the bond, the weights being the shares of the present value cashflows in the bond’s value. This average is called the duration of the bond and is denoted
D. It is of central importance in bond immunization11. Invented by Frederik
Macaulay (1938), it bears the name “Macaulay duration” if \(a \) is either the
spot interest rate, constant for all maturities, or equivalently the bond’s yield
to maturity. If the cash flows are discounted with a non-constant spot rate
structure, it bears the name “Fisher-Weil duration”, from Lawrence Fisher
and Roman Weil’s 1971 paper.

It should be noted that the duration of a bond portfolio is the weighted
average of the durations of the bonds comprising the portfolio, the weights
being the shares of each bond of the portfolio. The demonstration will be
made in §3.6.3, in a more general context. Thus a first-order condition for an
investment in bonds to be immunized against changes in the interest rates is
that the horizon is equal to the duration of the bond.

Let us now check that the second-order condition, \(r''_H(a_1) > 0 \), is met.
Taking the derivative of (52) with respect to \(A_1 \) gives:

\[
 r''_H = \frac{d}{dA_1} \left[\frac{1}{H} \frac{B'}{B} \right] = \frac{1}{H} \left[\frac{B''B - B'B'}{B^2} \right] = \frac{1}{H} \left[\frac{B''}{B} - \left(\frac{B'}{B} \right)^2 \right]. \tag{56}
\]

Evaluating \(B''(A_1)/B(A_1) \), and denoting \(B(A_1) \) as \(B \), we have:

\[
 \frac{B''}{B} = \frac{1}{B} \frac{d}{dA_1} \left[- \sum_{t=1}^{N} t c_t e^{-A_1 t} \right] = \sum_{t=1}^{N} t^2 c_t e^{-A_1 t} / B(A_1), \tag{57}
\]

which is a measure of the convexity of the bond.
Plugging this result into (56) and using the simplifying notation \(c_t e^{-A_1 t} / B = w_t \), we can write \(r''_H \) as:

\[
 r''_H = \frac{1}{H} \left[\sum_{t=1}^{N} t^2 w_t - \left(\sum_{t=1}^{N} t w_t \right)^2 \right]. \tag{58}
\]

The bracketed term is just the variance of the times of payment, which is
always positive. Thus the second order condition for a global minimum of
\(r_H \) is met12. This is confirmed in our example. Our bond has a duration

11For a general presentation of this concept and its properties, we take the liberty to
refer the reader to our book.

12It is useful to check the units of our formula (58). First, \(r_H \) is in (1/year), so \(r'_H = dr_H/dA_1 \) is unitless since \(A_1 \) is in (1/year). Therefore \(r''_H = dr'/dA_1 \) must be in 1/(1/year) = years. This is the case: the right-hand side of (58) is in (years\(^2\)/year) = years.
\[D = \sum_{t=1}^{N} t \ c_t e^{-a_1 t} / B(a_1) = 11.89 \text{ years.} \]

The curve \(r_{H=D} = 11.89 \) goes through a minimum at point \(a_1 \). Note also that the global convexity of \(r_H \) enables to confirm that all curves in figure 5 are strictly convex (except \(r_{H=\infty} = A_1 \)).

As the reader can appreciate, these result immediately extend from a given bond to a bond portfolio, because the formula \(\sum_{t=1}^{N} c_t w_t \) for the value of a bond immediately encompasses that of a bond portfolio: \(c_t \) stands for any fixed income received at time \(t \), and it may well correspond to a bond portfolio.

Until now we have considered the problem of finding a horizon \(H \) such that a bond, or a bond portfolio, would be immune to variations of the horizontal spot structure. We can now ask the converse question: given a horizon \(H \), is it possible to build a portfolio such that its horizon-\(H \) rate of return (equivalently: its future value) would be immune to a variation of that structure. And we can immediately generalize the question to the construction of a bond portfolio whose future value would be protected against any variation of any initial spot rate structure.

2.4 A first generalization

We can see easily how this simple case is nothing but a particular case of the more general setting in which the spot rate for maturity \(t \), \(s(t) \), is expressed as an \(m - 1 \) order polynomial \(s(t) = a_1 + a_2 t + a_3 t^2 + \ldots + a_m t^{m-1} \). The total return would be

\[S(t) = s(t) t = a_1 t + a_2 t^2 + \ldots + a_m t^m \]

and the values of the portfolio would be a function of the vector \(\mathbf{a} = (a_1, \ldots, a_m) \) instead of the scalar \(a_1 \). Suppose however that, among the elements of this vector, \(a_1 \) only is allowed to move: this implies that the spot rate curve \(s(t) \) is shifted by a constant, i.e. it moves parallel to itself.

Since only \(a_1 \) is allowed to move to a new value \(A_1 \), the horizon rate is still given by (51); the only difference is that in the right-hand side we have

\[B(A_1) = \sum_{t=1}^{m} c_t e^{-(A_1 t + a_2 t^2 + \ldots + a_m t^m)} \] (59)

and

\[B(a_1) = \sum_{t=1}^{m} c_t e^{-(a_1 t + a_2 t^2 + \ldots + a_m t^m)}. \] (60)
Equation (52) again applies; as to minus the logarithmic derivative of $B(A_1)$ in (53), it is given by

$$-rac{d \log B}{d A_1} \bigg|_{A_1=a_1} = \sum_{t=1}^{N} t \ c_t \ e^{-(a_1 t + a_2 t^2 + \ldots + a_m t^m)}/B(a)$$

(61)

where the expression on the right-hand side of (61) is defined as the duration of the bond portfolio.

There is no reason however why such simple scenarios would apply in reality: first, the spot rate structure is practically never represented by a horizontal; second, if considered as a polynomial, there is no reason why it should shift by a constant. Quite on the contrary, short rates are more volatile than longer ones. In consequence a broader analysis is called for, allowing for arbitrary changes in the spot rate structure. This is the question we address in Section 3.

3 Protecting investors against any shift in the interest rate structure – a general immunization theorem

We will determine the present and future values of a bond portfolio before and after the shift in the interest rate structure. We will then present some new tools which are of central importance in the immunization process: the moment of order k of a bond and of a bond portfolio, as well as fundamental properties of those moments. We will then be ready to state and prove our immunization theorem.

3.1 Notation

We will use the following notation:

$L \equiv$ number of different securities (bonds) in the bond portfolio bought at time 0; the bonds are labelled $l = 1, \ldots, L$.

$n_l \equiv$ number of type l bonds in portfolio. The total number of securities in the portfolio is $\sum_1^L n_l$.
\(c_{lt} \equiv \text{nominal cash flow received by holder of bond } l \text{ at time } t; \text{ in monetary units (for instance } \$). \)

\(c_t = \sum_{l=1}^{L} n_l c_{lt} \equiv \text{total nominal cash flows received by holder of portfolio at time } t; \text{ in } \$. \)

\(s(t) \equiv \text{the continuously compounded interest rate (per year) applying today, at time } t = 0, \text{ for a loan to be reimbursed in } t \text{ years (} t \text{ not necessarily an integer). Expressed in } (1/\text{year}). \text{ It is also called the continuously compounded spot rate at time } 0 \text{ for maturity } t. \)

\(f(u) \equiv \text{the forward rate agreed upon at time } 0 \text{ for lending at time } u(u > 0) \text{ for an infinitesimally short interval - equivalently: for “instantaneous” lending. Expressed in } (1/\text{year}). \)

\(S(t) \equiv \text{the continuously compounded total return over a period } t. \text{ It is equal to the integral sum of the forward rates over } [0, t], \int_0^t f(u)du = s(t)t. \text{ It is a pure (dimensionless) number.} \)

\(a = (a_1, a_2, \ldots, a_m) \equiv (\text{line}) \text{ vector of order } m \text{ of Taylor’s series expansion coefficients for } s(t) \text{ at time } 0 \text{ when the portfolio is bought; } s(t) \approx a_1 + a_2 t + \ldots + a_m t^{m-1}. \text{ Note the measurement units of } a_j: \text{ they are } 1/(\text{year})^j, \ j = 1, \ldots, m. \text{ This observation will prove to be quite useful later in this Section. For the time being, observe that } s(t) \approx a_1 + a_2 t + \ldots + a_m t^{m-1} \text{ is therefore expressed in } (1/\text{year}) \text{ as it should.} \)

\(t^p = (t^1, t^2, \ldots, t^m) = (\text{column}) \text{ vector of } m \text{ successive positive integer powers of } t \text{ (the small “} p \text{” as a subscript of } t \text{ stands as “powers”).} \)

\(S(t) = s(t)t = \int_0^t f(u)du \text{ can be approximated by the following polynomial:} \)

\[S(t) \approx a_1 t + a_2 t^2 + \ldots + a_m t^m = a \cdot t^p \]

and is expressed as a pure number.

\(B_l^0(a) \equiv \text{value of bond } l \text{ at time } 0 \text{ (in } \$). \)

\(P_0(a) \equiv \text{value of portfolio at time } 0 \text{ (in } \$). \)

\(H \equiv \text{immunization horizon, in years; not necessarily an integer number.} \)
\(K \equiv \) a positive constant; its dimension is \((\text{years})^{2m}\).

\(h^p = (H^1, H^2, \ldots, H^m) \equiv m\)-component vector of successive positive integer powers of horizon \(H \).

\(h^p_{2m+1} \equiv (2m + 1)\)-component vector, equal to: \((1, H, H^2, \ldots, H^{2m} + K) \).

\(\varepsilon \equiv \) time, infinitesimally close to 0, at which the spot rate structure undergoes a variation.

\(A = (A_1, A_2, \ldots, A_m) \equiv \) new vector of coefficients of \(s(t) \)'s Taylor expansion at time \(\varepsilon \).

\(B_l^{(t)}(A) \equiv \) value of bond \(l \) at time \(\varepsilon \), when the spot rate function \(s(t) \) has undergone a variation.

\(P_t(A) \equiv \) value of portfolio at time \(\varepsilon \), when the \(s(t) \) function has undergone a variation.

\(B_l^{(t)}(A) \equiv \) value of bond \(l \) at time \(\varepsilon \) in terms of year \(H \) dollars, when the \(s(t) \) function has undergone a variation (future value of bond \(l \) at time \(\varepsilon \)).

\(P_H(A) \equiv \) value of portfolio at time \(\varepsilon \) in terms of year \(H \) dollars, when the \(s(t) \) function has undergone a variation (future value of portfolio at time \(\varepsilon \)).

\(N \equiv \) portfolio's maturity (in years); maximum maturity of bonds in the portfolio.

\(r \equiv \) yield to maturity of bond portfolio; \(r \) is defined by the equality \(P_0 = \sum_{t=1}^N c_t \exp(-rt) \).

\(\sum_{t=1}^N tc_t \exp(-rt)/P_0 \equiv \) Macaulay duration of portfolio, evaluated with continuous compounding.

\(\sum_{t=1}^N tc_t \exp[-s(t)t] \equiv \) Fisher-Weil duration = \(\sum_{t=1}^N tc_t \exp(-\int_0^t f(u)du) = \sum_{t=1}^N tc_t \exp[-S(t)] = \sum_{t=1}^N tc_t \exp(-a.t^p) \).

We consider, for bonds and bond portfolios, basically four types of value:
• present value at time \(t = 0 \), the time of purchase (or in $ of year 0).
3.2 Present values at time 0

The present values, at time 0, are:

- for bond \(l \) \((l = 1, \ldots, L)\):

\[
B_l^0(a) = \sum_{t=1}^{N} c_t e^{-s(t)t} = \sum_{t=1}^{N} c_t e^{-\int_{0}^{t} f(u)du} = \sum_{t=1}^{N} c_t e^{-S(t)} = \sum_{t=1}^{N} c_t \exp(-a \cdot t^p). \quad (62)
\]

- for the portfolio:

\[
P_0(a) = \sum_{t=1}^{N} c_t e^{-s(t)t} = \sum_{t=1}^{N} c_t e^{-\int_{0}^{t} f(u)du} = \sum_{t=1}^{N} c_t e^{-S(t)} = \sum_{t=1}^{N} \exp(-a \cdot t^p) = \sum_{t=1}^{N} \sum_{l=1}^{L} n_l c_t \exp(-a \cdot t^p). \quad (63)
\]

3.3 Future values at time 0

The bonds and portfolios “future values”, expressed at time 0 in terms of \(H \)-year dollars, are, respectively:
\[B_{0,H}(a) = B_0^l(a)e^{s(H)H} = B_0^l(a)e^{l_0H I(u)du} = B_0^l(a)e^{S(H)} \]

\[= \sum_{i=1}^{N} c_i e^{-(a_1 t + a_2 t^2 + \ldots + a_m t^m)} e^{a_i H + a_j H^2 + \ldots + a_m H^m} \]

\[= \sum_{i=1}^{N} c_i \exp(-a \cdot t^p) \cdot \exp(a \cdot h^p) \]

\[= \sum_{i=1}^{N} c_i \exp[-a \cdot (t^p - h^p)]. \] (64)

Similarly, the portfolio’s value in terms of horizon-\(H \) years is

\[P_{0,H} = \sum_{i=1}^{N} c_i \exp(-a \cdot (t^p - h^p)) = \sum_{i=1}^{N} \sum_{l=1}^{L} n_l c_{lt} \exp(-a \cdot (t^p - h^p)). \] (65)

3.4 Present values at time \(\varepsilon \)

Suppose now that at time \(\varepsilon \) the spot rate function \(s(t) \) has undergone a variation (which may be denoted \(\eta(t) \)), such that its new approximation as a Taylor expansion is:

\[s_{\varepsilon}(t) = A_1 + A_2 t + \ldots + A_j t^{j-1} + \ldots + A_m t^{m-1}. \] (66)

We then have:

\[S_{\varepsilon}(t) = A_1 t + A_2 t^2 + \ldots + A_j t^{j} + \ldots + A_m t^{m} = A \cdot t^p. \] (67)

The new present and future values formulas for the bond and the bond portfolio keep the same form as above, except that vector \(A \) now replaces vector \(a \); the present values are:

\[B_{\varepsilon}^l(A) = \sum_{i=1}^{N} c_{lt} \exp(-A \cdot t^p) \] (68)

and

\[P_{\varepsilon}(A) = \sum_{i=1}^{N} c_i \exp(-A \cdot t^p) = \sum_{i=1}^{N} \sum_{l=1}^{S} n_l c_{lt} \exp(-A \cdot t^p). \] (69)
3.5 Future values at time ε

Under the new spot rate structure, the future values are, at time ε:

$$B_{\varepsilon,H}^l(A) = \sum_{t=1}^{N} c_t \exp[-A \cdot (t^p - h^p)]$$ \hspace{1cm} (70)

and

$$P_{\varepsilon,H}(A) = \sum_{t=1}^{N} c_t \exp[-A \cdot (t^p - h^p)] = \sum_{t=1}^{N} \sum_{l=1}^{S} n_l c_t \exp[-A \cdot (t^p - h^p)].$$ \hspace{1cm} (71)

3.6 Further Concepts for Immunization: The Moments of Order k of a Bond and a Bond Portfolio

We will now introduce some little known, but essential, concepts: the moment of order k of a bond or a bond portfolio. This concept is very much akin to the moment of a random variable, with two main differences: the objects for which the calculation of moments are made are not random, but deterministic, and their values are always positive.

3.6.1 The moment of order k of a bond

- Definition: The moment of order k of a bond is the weighted average of the kth power of its times of payments, the weights being the shares of the bond’s cash flows in present value in the bond’s present value. For bond l, this moment of order k is denoted $\mu_k^{(l)}$, and is equal to:

$$\mu_k^{(l)} = \sum_{t=1}^{N} t^k c_te^{-s(t)} / B_0^l = \sum_{t=1}^{N} t^k c_te^{-\int_0^t f(u)du} / B_0^l = \sum_{t=1}^{N} t^k c_t e^{-\int_0^t f(u)du} / B_0^l,$$

$$k = 0, 1, 2, \ldots$$

and, using our assumption that about $s(t)$:

$$\mu_k^{(l)} = \sum_{t=1}^{N} t^k c_t \exp(-a \cdot t^p) / B_0^l(a), \hspace{0.5cm} k = 0, 1, 2, \ldots$$ \hspace{1cm} (72)

A moment of order k is expressed in $(\text{year})^k$ units.
3.6.2 The moment of order k of a bond portfolio

- Definition: The moment of order k of a bond portfolio is the weighted average of the kth power of its times of payments, the weights being the shares of the portfolio's cashflows in present value in the portfolio’s present value. Denoted $\mu_k^{(P)}$, it is equal to:

$$\mu_k^{(P)} = \sum_{t=1}^{N} t^k c_t \exp(-a \cdot t^p) / P_0(a), \ k = 0, 1, 2, \ldots$$

(73)

Note that the moment of order 0 of a portfolio (or a bond) is one, since it is the weighted average of 1’s. Also, the moment of order one of a portfolio (or a bond) is its Fisher-Weil duration.

3.6.3 Properties of moments

We will first show the relationship between the moments of order k of a portfolio and the moments of same order of the bonds making up the portfolio. We will then show how these moments measure sensitivities of the bond prices to changes in the coefficients of the $s(t)$’s polynomial.

3.6.3.1 Theorem 3

The kth moment of a bond portfolio is the weighted average of the kth moments of the bonds making up the portfolio; the weights are the shares of each bond in the portfolio.

3.6.3.2 Proof

From (73) we can write successively:

$$\mu_k^{(P)} = \sum_{t=1}^{N} t^k c_t \exp(-a \cdot t^p) / P_0(a) = \sum_{l=1}^{L} n_l c_{lt} \exp(-a \cdot t^p) / P_0(a)$$

$$= \sum_{l=1}^{L} \sum_{t=1}^{N} t^k n_l c_{lt} \exp(-a \cdot t^p) / P_0(a) = \sum_{l=1}^{L} n_l \sum_{t=1}^{N} t^k c_{lt} \exp(-a \cdot t^p) / P_0(a)$$

$$= \sum_{l=1}^{L} \frac{n_l B_l^0(a)}{P_0(a)} \sum_{t=1}^{N} t^k c_{lt} \exp(-a \cdot t^p) / B_l^0(a).$$

(74)
If $\alpha_l = \frac{n_l B_l(a)}{P_0(a)}$ designates the share of bond l's value in the initial portfolio ($\sum_{l=1}^{L} \alpha_l = 1$), then:

$$\mu_k^{(P)} = \sum_{l=1}^{L} \alpha_l \mu_k^{(l)}, k = 0, 1, 2, \ldots. \quad (75)$$

3.6.3.3. Theorem 4

Minus the logarithmic derivative of the l bond's [the portfolio's] price with respect to coefficient a_j is equal to the jth moment of the bond [the portfolio].

3.6.3.4. Proof

We will prove this theorem for a bond portfolio, a single bond being just a particular case.

From (63):

$$P_0(a) = \sum_{t=1}^{N} c_t \exp(-a \cdot t^p).$$

Its logarithmic derivative (its relative rate of increase in linear approximation) with respect to a_j is

$$\frac{1}{P_0(a)} \frac{\partial P_0(a)}{\partial a_j} = -\sum_{t=1}^{N} t^j c_t \exp(-a \cdot t^p) / P_0(a) \quad (j = 1, \ldots, m). \quad (76)$$

Applying (73), we recognize in the right-hand side of (76) minus the jth moment of the portfolio. Thus we have the fundamental relationship contained in Theorem 4:

$$\frac{-1}{P_0(a)} \frac{\partial P_0(a)}{\partial a_j} = \mu_j^{(P)} \quad (j = 1, \ldots, m). \quad (77)$$

Three remarks are in order at this point. First, note that the dimensions of both sides of (77) do match, as they should: from our observation in §3.1 on the measurement units of a_j ($j = 1, \ldots, m$), the left-hand side of (77) is expressed in $1/[1/(\text{year})] = \text{year}^3$. These are indeed the units of the jth moment of the portfolio, as noted above.
Second, suppose that the polynomial $s(t)$ reduces to a_1. We then have

$$s(t) = a_1 = r \text{ (a constant)}$$

and $S(t) = s(t)t = \int_0^t f(u)du = \int_0^t a_1du = a_1t$. The portfolio’s value reduces to $P_0(a_1) = \sum_{t=1}^N c_t \exp(-a_1t)$; a_1 is nothing else than the portfolio’s yield to maturity, equal to r, by the definition of the yield to maturity given in §3.1.

We then have:

$$-\frac{1}{P_0(t)} \frac{dP_0(a_1)}{da_1} = \sum_{t=1}^N t c_t \exp(-a_1t) / P_0(a_1). \tag{78}$$

This reduces to the well-known property that the logarithmic derivative of the portfolio’s value with respect to the constant $a_1 = r$ (or the yield to maturity) is equal to minus its Macaulay duration evaluated with continuous compounding.

Finally, suppose that the spot rate structure does not reduce to a constant, but that it retains its general form of an $(m-1)$th order polynomial. However, consider that only coefficient a_1 moves: this implies that the whole structure (which is not a constant) is shifted up or down by a given amount. In other words, the structure moves in a parallel fashion. Taking the logarithmic partial derivative of (63) with respect to a_1 (or, equivalently, replacing a_j by a_1 in (76)), we get:

$$-\frac{1}{P_0(a)} \frac{\partial P_0(a)}{\partial a_1} = \sum_{t=1}^N t c_t \exp(-a \cdot t^p) / P_0(a). \tag{79}$$

This time our particular case amounts to the equality between the portfolio’s sensitivity to a parallel change in the spot rate structure and the Fisher-Weil duration.

3.7 A general immunization theorem

We will now state and prove the following immunization theorem.

3.7.1 Theorem 5

Suppose that the spot rate structure can be expanded into a Taylor series of order $m-1$, and that it undergoes a variation. Then a sufficient condition for a bond portfolio to be immunized against such a variation is the following:
· any moment of order \(k \) \((k = 0, 1, \ldots, 2m - 1)\) of the bond portfolio is equal to the \(k \)th power of the investor’s horizon \(H \) and
· the moment of order \(2m \) is equal to the \(2m \)th power of \(H \) plus a positive, arbitrary constant.

3.7.2 Proof

Suppose that the initial spot rate structure \(s(t) \) can be approximated to the \((m - 1)\)th order by the following polynomial

\[
s(t) \approx a_1 + a_2 t + a_3 t^2 + \cdots + a_j t^{j-1} + \cdots + a_m t^{m-1}
\]

(80)

where \(a_j = \frac{1}{(j-1)!} s^{(j-1)}(0), j = 1, \ldots, m; \) \(s^{(j-1)}(0) \) is the \((j - 1)\)th derivative of \(s(t) \) at \(t = 0 \).

The total return \(S(t) = s(t)t \) is therefore approximated by

\[
S(t) = a_1 t + a_2 t^2 + a_3 t^3 + \cdots + a_j t^{j-1} + \cdots + a_m t^{m-1} = a \cdot t^p.
\]

(81)

The implied forward rate function is then:

\[
f(t) = S'(t) = a_1 + 2a_2 t + 3a_3 t^2 + \cdots + ja_j t^{j-1} + \cdots + ma_m t^{m-1}.
\]

(82)

(The reader may verify on this example one of the properties we had demonstrated under §1.5, namely that at the origin the slope of the forward rate curve is twice that of the spot rate curve. Indeed, at the origin the slope of the spot rate curve is \(s'(0) = a_2 \), while \(f'(0) = 2a_2 \).)

The value of a bond portfolio bought at time 0, under the initial spot rate structure, is thus

\[
P_0(a) \approx \sum_{t=1}^{N} c_t \exp(-a \cdot t^p).
\]

Under the initial spot structure \(a \cdot t^p \), the portfolio’s future value, at horizon \(H \) is:

\[
P_{0,H}(a) \approx P_0(a)e^{a_1 H + a_2 H^2 + \cdots + a_m H^m} = P_0(a) \exp(a \cdot h^p)
\]

where \(h^p \) denotes the vector \((H, H^2, \ldots, H^m)\). Therefore

\[
P_{0,H}(a) = \sum_{t=1}^{N} c_t \exp(-a \cdot t^p) \exp(a \cdot h^p) = \exp(a \cdot h^p) \sum_{t=1}^{N} c_t \exp(-a \cdot t^p).
\]

39
Suppose now that the whole spot rate structure \(s(t)\) undergoes a variation: from \(\mathbf{a} \cdot \mathbf{t}^p\) at time 0 it becomes \(\mathbf{A} \cdot \mathbf{t}^p\) at time \(\varepsilon\). Therefore the future value of the bond portfolio becomes

\[
P_{\varepsilon,H} = \sum_{t=1}^{N} c_t \exp(-\mathbf{A} \cdot \mathbf{t}^p) \exp(\mathbf{A} \cdot \mathbf{h}^p).
\] (83)

For the portfolio to be immunized, a first order condition is that the gradient of any positive transformation of \(P_{\varepsilon,H}\) equals zero. Taking logs on both sides of (83) gives:

\[
\log P_{\varepsilon,H} = \mathbf{A} \cdot \mathbf{h}^p + \log \left[\sum_{t=1}^{N} c_t \exp(-\mathbf{A} \cdot \mathbf{t}^p) \right].
\] (84)

Differentiate (84) with respect to the \(m\) variables \(A_1, \ldots, A_j, \ldots, A_m\), and equate to zero these derivatives at point \(a\):

\[
\frac{\partial \log P_{\varepsilon,H}(\mathbf{a})}{\partial A_j} = H_j + \frac{-1}{P_0} \sum_{t=1}^{N} \nu c_t \exp(-\mathbf{a} \cdot \mathbf{t}^p) = 0, \quad j = 1, \ldots, m.
\] (85)

These \(m\) equations (85) imply that each \(j\)th moment of the portfolio must be equal to the \(j\)th power of the investor’s horizon:

\[
\mu_j^{(P)} = H_j, \quad j = 1, \ldots, m.
\] (86)

A first set of conditions is defined by the \(m + 1\) equations corresponding to:

a) the \(m\) equations implied by (86)

b) an additional equation corresponding to the accounting constraint: the sum of all shares of each bond in the portfolio must be equal to one.

We will take up these conditions in order, together with their implications in terms of the amounts of the bonds to be chosen.

For (a) to be met, let us use the property that the portfolio’s moment of order \(j\) is the weighted average of each bond’s moment of order \(j\), the weights being the share of each bond in the portfolio:

\[
\mu_j^{(P)} = \sum_{l=1}^{L} \frac{n_l B_l^j(\mathbf{a})}{P_0(\mathbf{a})} \mu_j^{(l)}, \quad j = 1, \ldots, m.
\] (87)
Thus (86) translates as:

$$
\sum_{l=1}^{L} \frac{n_l B_{l}^{i}(a)}{P_0(a)} \mu_j^{(l)} = H^j, \quad j = 1, \ldots, m.
$$

(88)

Furthermore, the L unknowns n_l ($l = 1, \ldots, L$) must be such that the sum of the shares $n_l B_{l}^{i}(a)/P_0(a)$ equals one. In addition to the m equations (88), the L unknowns n_l must verify

$$
\sum_{l=1}^{L} n_l B_{l}^{i}(a)/P_0(a) = 1.
$$

(89)

So equations (88) and (89) amount to a system of $m + 1$ equations in $m + 1 = L$ unknowns n_l ($l = 1, \ldots, m + 1$). To gain insight into the structure of system (88),(89), it may be useful to write it out completely. Before proceeding, notice that equation (89) has exactly the same structure as (88): it implies that all moments of order j of the portfolio must be equal to the jth power of the horizon H^j, including the moment of order zero; that moment is just equal to the sum of the shares of each bond in the portfolio, which must be equal to one.

For clarity, let us express (88) and (89) in terms of their components. This system of $m + 1$ equations can be written in the following way, starting with equation (89), followed by system (88).

Since the moment of order 0 of each bond is equal to one by definition, equation (89) and system (88) can be written equivalently as:

$$
\frac{B_1^{i}(a)}{P_0(a)} \mu_1^{(1)} n_1 + \frac{B_0^{i}(a)}{P_0(a)} \mu_0^{(2)} n_2 + \cdots + \frac{B_l^{i}(a)}{P_0(a)} \mu_l^{(l)} n_l + \cdots + \frac{B_{m}^{i}(a)}{P_0(a)} \mu_{m}^{(m)} n_{m+1} = 1
$$

$$
\frac{B_1^{i}(a)}{P_0(a)} \mu_1^{(1)} n_1 + \frac{B_0^{i}(a)}{P_0(a)} \mu_0^{(2)} n_2 + \cdots + \frac{B_l^{i}(a)}{P_0(a)} \mu_l^{(l)} n_l + \cdots + \frac{B_{m}^{i}(a)}{P_0(a)} \mu_{m}^{(m)} n_{m+1} = H
$$

$$
\frac{B_1^{i}(a)}{P_0(a)} \mu_1^{(1)} n_1 + \frac{B_0^{i}(a)}{P_0(a)} \mu_0^{(2)} n_2 + \cdots + \frac{B_l^{i}(a)}{P_0(a)} \mu_l^{(l)} n_l + \cdots + \frac{B_{m}^{i}(a)}{P_0(a)} \mu_{m}^{(m)} n_{m+1} = H^k
$$

$$
\frac{B_1^{i}(a)}{P_0(a)} \mu_1^{(1)} n_1 + \frac{B_0^{i}(a)}{P_0(a)} \mu_0^{(2)} n_2 + \cdots + \frac{B_l^{i}(a)}{P_0(a)} \mu_l^{(l)} n_l + \cdots + \frac{B_{m}^{i}(a)}{P_0(a)} \mu_{m}^{(m)} n_{m+1} = H^m
$$

(90)
A word of caution is needed here. It would be tempting to solve the above system of \(m+1\) equations in the \(m+1\) unknowns \(n_1, \ldots, n_{m+1}\) and consider the solution as a possible solution for the immunizing portfolio. This system reflects the first order conditions only and not the second-order ones. We will show that we can never form an optimal portfolio by relying on first-order conditions only.

Let us now address second-order conditions and their implications. For a local minimum of \(P_H(A)\) at \(A = a\), to equations (90) we have to add those corresponding to a positive semi-definite Hessian matrix for \(P_H(A)\) at \(A = a\). We will now tackle these conditions.

Recall that the portfolio’s future value at horizon \(H\) and at time \(\varepsilon\) is given by (83), which we can write equivalently as:

\[
P_{\varepsilon,H}(A) = \sum_{t=1}^{N} c_t \exp[-A \cdot (t^p - h^p)]. \tag{91}
\]

Taking the partial derivative of (91) with respect to \(A_j\) \((j = 1, \ldots, m)\) yields

\[
\frac{\partial P_{\varepsilon,H}(A)}{\partial A_j} = -\sum_{t=1}^{N} c_t (t^j - H^j) \exp[-A \cdot (t^p - h^p)], \quad j = 1, \ldots, m. \tag{92}
\]

The partial derivative of (92) with respect to \(A_i\) yields the generic element of the Hessian matrix:

\[
\frac{\partial^2 P_{\varepsilon,H}(A)}{\partial A_i \partial A_j} = \sum_{t=1}^{N} c_t (t^i - H^i)(t^j - H^j) \exp[-A \cdot (t^p - h^p)],
\]

\[
i = 1, \ldots, m; \quad j = 1, \ldots, m. \tag{93}
\]

To simplify notation, let

\[
g_t \equiv c_t \exp[-A \cdot (t^p - h^p)], \quad t = 1, \ldots, N \tag{94}
\]

denote the portfolio’s cashflow received at time \(t\) expressed in future value (i.e. in horizon \(H\)’s value). Notice how each \(g_t\) depends upon \(A\).
Let \(Q_{ij} \) denote the generic element of the Hessian matrix \(\partial^2 P_{\epsilon,H}(\mathbf{a})/\partial A_i \partial A_j \), \(i = 1, \ldots, m; \; j = 1, \ldots, m \). \(Q_{ij} \) is then

\[
Q_{ij} = \sum_{t=1}^{N} g_t (t^j - H^j) (t^i - H^i) = \sum_{t=1}^{N} g_t (t^i t^j - t^j H^i - H^i t^j + H^i H^j)
\]

\[
= \sum_{t=1}^{N} g_t t^{i+j} - H^j \sum_{t=1}^{N} g_t t^i - H^i \sum_{t=1}^{N} g_t t^j + H^{i+j} \sum_{t=1}^{N} g_t,
\]

\(i = 1, \ldots, m; \; j = 1, \ldots, m. \) (95)

From the first-order conditions (85)

\[
\frac{1}{P_0} \sum_{t=1}^{N} t^j c_t \exp(-\mathbf{a} \cdot \mathbf{t}^p) = H^j, \quad j = 1, \ldots, m,
\]

we can deduce

\[
\sum_{t=1}^{N} t^j c_t \exp(-\mathbf{a} \cdot \mathbf{t}^p) = H^j \sum_{t=1}^{N} c_t \exp(-\mathbf{a} \cdot \mathbf{t}^p) \quad (96)
\]

and

\[
\sum_{t=1}^{N} t^j c_t \exp[-\mathbf{a} \cdot (\mathbf{t}^p - \mathbf{h}^p)] = H^j \sum_{t=1}^{N} c_t \exp[-\mathbf{a} \cdot (\mathbf{t}^p - \mathbf{h}^p)].
\]

Therefore, we have

\[
\sum_{t=1}^{N} g_t t^j = H^j \sum_{t=1}^{N} g_t, \quad j = 1, \ldots, m
\]

which is also valid when \(j \) is replaced by \(i \) (\(i = 1, \ldots, m \)). In expression (95), \(\sum_{t=1}^{N} g_t t^i \) and \(\sum_{t=1}^{N} g_t t^j \) can thus be replaced by \(H^i \sum_{t=1}^{N} g_t \) and \(H^j \sum_{t=1}^{N} g_t \) respectively, and the generic term of the Hessian at \(\mathbf{a} \) becomes

\[
Q_{i,j}(\mathbf{a}) = \sum_{t=1}^{N} g_t t^{i+j} - H^{i+j} \sum_{t=1}^{N} g_t \quad (97)
\]

or, reverting to the notation using the \(c_t \)'s

\[
Q_{i,j}(\mathbf{a}) = \sum_{t=1}^{N} c_t \exp[-\mathbf{a} \cdot (\mathbf{t}^p - \mathbf{h}^p)] t^{i+j} - H^{i+j} \sum_{t=1}^{N} c_t \exp[-\mathbf{a} \cdot (\mathbf{t}^p - \mathbf{h}^p)]. \quad (98)
\]
Multiplying and dividing the first term in the right-hand side of equation (98) by $P_0 = \sum_{t=1}^{N} c_t \exp(-a \cdot t^p)$, we get
\[Q_{i,j}(a) = P_0 \sum_{t=1}^{N} t^{i+j} c_t \exp[-a \cdot (t^p - h^p)]/P_0 - H^{i+j} P_0 \exp(a \cdot h^p) \]
\[= P_0 \exp(a \cdot h^p) \mu_{i+j}^{(P)} - H^{i+j} P_0 \exp(a \cdot h^p) \]
\[= P_0 \exp(a \cdot h^p)[\mu_{i+j}^{(P)} - H^{i+j}] \]
\[= P_{0,H} [\mu_{i+j}^{(P)} - H^{i+j}], \quad 1 \leq i \leq m, 1 \leq j \leq m. \] (99)

Call the difference between the moment of order k and the kth power H the \textit{generalized variance} of order k of the portfolio, and denote this generalized variance by
\[\gamma_k = \mu_k^{(P)} - H^k, \quad k > 0. \] (100)

All elements $Q_{i,j}(a)$ of the Hessian matrix are those of the matrix $\mu_{i+j}^{(P)} - H^{i+j} = \gamma_{i+j} \equiv \gamma_{i,j}$, each one being multiplied by the positive constant $P_{0,H}$. So the discussion of the positive semi-definiteness of matrix Q whose elements are $Q_{i,j}$ reduces to that of matrix $\Gamma_m \equiv (\gamma_{i+j})$.

The first-order conditions imply that all generalized variances up to the mth order must vanish. So all elements in the triangle above the second principal diagonal\footnote{We call “second principal diagonal” of matrix Γ_m the diagonal between its lower-left element and its upper-right element (this diagonal has m elements, all equal to γ_{m+1}).} of the Γ_m matrix are equal to zero. Observe also that all elements in any diagonal parallel to the second diagonal must be equal to one another: indeed $\gamma_{i,j} = \gamma_{i+j}$.

We are now left with the task of looking for the properties that matrix Γ_m must exhibit in order to be positive semi-definite. Γ_m may be written as follows:
\[
\Gamma_m = \begin{bmatrix}
0 & 0 & 0 & \cdots & \gamma_{m+1} \\
0 & 0 & \gamma_{m+1} & \gamma_{m+2} & \cdots \\
0 & \gamma_{m+2} & \gamma_{m+3} & \cdots \\
\vdots & \vdots & \vdots & \ddots & \\
\gamma_{m+1} & \gamma_{m+2} & \gamma_{m+3} & \cdots & \gamma_{2m}
\end{bmatrix}.
\]

For Γ_m to be positive semi-definite, all its principal minors must be either positive or zero. Consider, in the above matrix, the (2x2) principal minor exhibiting one zero in its upper-left corner. There are two possibilities:
i) m is even; the above-mentioned principal minor is then of the form

\[
\begin{vmatrix}
0 & \gamma_{m+1} \\
\gamma_{m+1} & \gamma_{m+2}
\end{vmatrix}.
\]

For this minor to be positive or zero, γ_{m+1} must be zero.

ii) m is odd; the principal minor is

\[
\begin{vmatrix}
0 & 0 & \gamma_{m+1} \\
0 & \gamma_{m+1} & \gamma_{m+2} \\
\gamma_{m+1} & \gamma_{m+2} & \gamma_{m+3}
\end{vmatrix}
\]

and, adding one line and one column, an adjacent principal minor is then

\[
\begin{vmatrix}
0 & 0 & \gamma_{m+1} \\
0 & \gamma_{m+2} & \gamma_{m+3} \\
\gamma_{m+2} & \gamma_{m+3} & \gamma_{m+4}
\end{vmatrix}
\]

which must also be positive or zero. For Γ_m to be positive semi-definite, γ_{m+1} has to be positive or equal to zero. Suppose it is positive. Then this adjacent minor is equal to $-\gamma_{m+1}^3$, which is negative, entailing a contradiction. Thus γ_{m+1} must be equal to zero.

Let us now take up γ_{m+2}. Consider again case i). γ_{m+2} being a principal minor, it must be either positive or equal to zero. Suppose it is positive. An adjacent principal minor is

\[
\begin{vmatrix}
0 & \gamma_{m+1} & \gamma_{m+2} \\
\gamma_{m+1} & \gamma_{m+2} & \gamma_{m+3} \\
\gamma_{m+2} & \gamma_{m+3} & \gamma_{m+4}
\end{vmatrix}
\]

(from what has been shown above), and its value is $-\gamma_{m+2}^3 < 0$, which is not allowed. So γ_{m+2} must be zero.

In the ii) case, a principal minor is

\[
\begin{vmatrix}
\gamma_{m+1} & \gamma_{m+2} \\
\gamma_{m+2} & \gamma_{m+3}
\end{vmatrix}
\]

and its value is $-\gamma_{m+2}^2$. For it to be positive or zero, γ_{m+2} has to be zero.

Carrying on the same argument, all terms γ_k must be equal to zero, except the last one, equal to $\gamma_{2m} = \mu_{2m} - H^{2m}$, which can be set at any (arbitrary) positive value K, expressed in (years)2m.

45
So the first-order conditions imply the \(m \) equations
\[
\begin{align*}
\mu_1^{(P)} &= H \\
\mu_2^{(P)} &= H^2 \\
&\vdots \\
\mu_m^{(P)} &= H^m.
\end{align*}
\]

The second-order conditions imply the \(m \) following equations
\[
\begin{align*}
\mu_{m+1}^{(P)} &= H^{m+1} \\
\mu_{m+2}^{(P)} &= H^{m+2} \\
&\vdots \\
\mu_{2m-1}^{(P)} &= H^{2m-1} \\
\mu_{2m}^{(P)} &= H^{2m} + K
\end{align*}
\]
to which finally the accounting constraint \(\mu_0 = 1 \) must be added, for a total of \(2m+1 \) equations, implying \(2m+1 \) bonds in the immunizing portfolio. This completes the proof of theorem 5. To illustrate, if a polynomial of order 3 is used for the spot rate structure, 4 coefficients correspond to that polynomial (\(m = 4 \)). The immunizing portfolio will then be made out of \(2m+1 = 9 \) bonds.

The quantities \(n_l \) (\(l = 1, \ldots, 2m+1 \)) of each bond will be the solution of the following system of \(2m+1 \) equations:
\[
\begin{align*}
\frac{B_0^1(a)}{P_0(a)} \mu_0^{(1)} n_1 + \frac{B_0^2(a)}{P_0(a)} \mu_0^{(2)} n_2 + \cdots + \frac{B_0^{l+1}(a)}{P_0(a)} \mu_0^{(l+1)} n_l + \cdots + \frac{B_0^{2m+1}(a)}{P_0(a)} \mu_0^{(2m+1)} n_{2m+1} &= 1 \\
\frac{B_0^1(a)}{P_0(a)} \mu_1^{(1)} n_1 + \frac{B_0^2(a)}{P_0(a)} \mu_1^{(2)} n_2 + \cdots + \frac{B_0^{l+1}(a)}{P_0(a)} \mu_1^{(l+1)} n_l + \cdots + \frac{B_0^{2m+1}(a)}{P_0(a)} \mu_1^{(2m+1)} n_{2m+1} &= H \\
&\vdots \\
\frac{B_0^1(a)}{P_0(a)} \mu_{2m}^{(1)} n_1 + \frac{B_0^2(a)}{P_0(a)} \mu_{2m}^{(2)} n_2 + \cdots + \frac{B_0^{l+1}(a)}{P_0(a)} \mu_{2m}^{(l+1)} n_l + \cdots + \frac{B_0^{2m+1}(a)}{P_0(a)} \mu_{2m}^{(2m+1)} n_{2m+1} &= H^k \\
&\vdots \\
\frac{B_0^1(a)}{P_0(a)} \mu_{2m}^{(1)} n_1 + \frac{B_0^2(a)}{P_0(a)} \mu_{2m}^{(2)} n_2 + \cdots + \frac{B_0^{l+1}(a)}{P_0(a)} \mu_{2m}^{(l+1)} n_l + \cdots + \frac{B_0^{2m+1}(a)}{P_0(a)} \mu_{2m}^{(2m+1)} n_{2m+1} &= H^{2m} + K.
\end{align*}
\]

(101)

Let \(M \) denote the \((2m+1) \times (2m+1) \) matrix whose generic term is \([B_0^i(a)/P_0(a)] \mu_k^{(l)} \), \(k = 0, \ldots, 2m; l = 1, \ldots, 2m+1 \). Each of those elements
is the kth moment of bond l weighted by the ratio of bond l’s initial value $B_0^l(a)$ to the portfolio’s initial value $P_0(a)$. Let \mathbf{n} be the $(2m+1)$ dimensional column vector $(n_1, \ldots, n_i, \ldots, n_{2m+1})$. Finally, let \mathbf{h}_{2m+1}^p stand for the column vector $(1, H, \ldots, H^k, \ldots, H^{2m} + K)$. System (101) becomes\(^\text{14}\) simply

$$M\mathbf{n} = \mathbf{h}_{2m+1}^p$$

(102)

which can be solved in n if and only if M is not singular. We get

$$\mathbf{n} = M^{-1}\mathbf{h}_{2m+1}^p.$$

(103)

Let us now come back to the Hessian matrix. It is equal to:

$$P_{0,H}\mathbf{\Gamma} = P_{0,H}\begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & 0 \\ 0 & \cdots & 0 & K \\ \end{bmatrix} = \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \ddots \\ 0 & 0 & 0 \\ 0 & \cdots & 0 & P_{0,H}K \\ \end{bmatrix}$$

(104)

and therefore the associated quadratic form is

$$d\mathbf{A}^T \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & 0 \\ 0 & \cdots & 0 & P_{0,H}K \\ \end{bmatrix} d\mathbf{A} = P_{0,H}K d\mathbf{A}_m^2,$$

(105)

Taking into account the fact that the gradient of P_H at a, $\nabla P_H(a)$, is equal to zero, the Taylor development of $P_H(\mathbf{A})$ around point a yields

$$P_H(\mathbf{A}) - P_H(a) = P_{0,H}(a)K d\mathbf{A}_m^2 + R_2(a, d\mathbf{A})$$

(106)

where $R_2(a, d\mathbf{A})$ denotes the remainder of the Taylor series. Since by definition $R_2(a, d\mathbf{A})$ is finite, we can always determine a value of K such that $P_H(\mathbf{A}) > P_H(a)$, thus making $P_H(\mathbf{A})$ convex at point a whatever the magnitude of the displacement of \mathbf{A}, $d\mathbf{A}$. In applying our theorem, we will illustrate

\(^{14}\)Notice that this is not the only way to envision system (101). An alternative would be to consider the shares $n_l B_0^l / P_0 \equiv \alpha_l (l = 1, \ldots, 2m + 1)$ and then the square matrix of $(2m + 1)^2$ elements $\alpha_l \mu_{lk} (l = 1, \ldots, 2m + 1; k = 0, \ldots, 2m)$, each of those elements corresponding to line k and column l respectively. This matrix multiplies the column vector of the α_l’s, the unknowns. The system is thus solved in terms of the shares α_l instead of the numbers n_l. Both methods are of course equivalent in terms of results.
how increasing K increases only the local convexity of the portfolio’s future value.

We will now show that it is impossible to achieve immunization simply by meeting first order conditions. In other words, if one builds up a bond portfolio that conforms to first-order conditions only (all moments of order $k, k = 0, \ldots, m$, are equal to the kth power of the horizon), it will never be possible to achieve second-order conditions for a minimum of the portfolio’s future value. The likelihood that a portfolio formed in such a way that $\gamma_0, \gamma_1, \ldots, \gamma_m = 0$ (such that it meets the first-order conditions) and that, in addition, it meets independently any of the conditions $\gamma_{m+1}, \gamma_{m+2}, \ldots, \gamma_{2m-1} = 0$, is nil. So is the probability that it meets all of them. Suppose then that one value of $\gamma_k (k = m + 1, \ldots, 2m - 1)$ differs ever so slightly from zero. Call this generalized variance γ'. From what we have shown above, at least one line of elements parallel to the second diagonal of the Hessian matrix is made of γ’s. There are two possibilities: either γ is on the first diagonal, or it is not. We take them up in order:

a) γ is on the first diagonal. In that case γ must be positive. Also, there is a principal minor such as

$$
\begin{vmatrix}
0 & 0 & \gamma \\
0 & \gamma & \gamma' \\
\gamma & \gamma' & \gamma^*
\end{vmatrix}
$$

where γ' and γ^* are as yet unspecified. The minor is equal to $-\gamma^3 < 0$; thus the portfolio cannot reach a minimum at a.

b) γ is not on the first diagonal. Then there is a principal minor such as

$$
\begin{vmatrix}
0 & \gamma \\
\gamma & \gamma'
\end{vmatrix}
$$

which is equal to $-\gamma^2 < 0$ whatever the sign of γ, a contradiction with necessary conditions for a minimum.

3.8 The nature of the cash flows of an immunizing portfolio

Equations (101) look innocuous enough. However, they carry deep implications about the nature of the cash flows of the immunizing portfolio. Indeed, they imply that if an immunizing portfolio exists, it must have one or more
negative cash flows15. Indeed, consider the second and the third equations of system (101). They stem from the first and the second equations of system (85), which can be written as

\[
\sum_{t=1}^{N} t \ c_t \exp(-a \cdot t^p)/P(a) = H \tag{85-1}
\]

and

\[
\sum_{t=1}^{N} t^2 c_t \exp(-a \cdot t^p)/P(a) = H^2. \tag{85-2}
\]

Both equations imply

\[
\sum_{t=1}^{N} (t - H)^2 c_t \exp(-a \cdot t^p)/P(a) = 0. \tag{85-3}
\]

If equation (85-3) is to hold, as well as system (101), at least one cash flow \(c_t \) must be negative. In turn, this is possible if and only if at least one position \(n_l \) \((l = 1, \ldots, L)\) is negative. We will be able to verify, in the following applications, that immunizing portfolios always carry some negative cash flows, and therefore that immunizing portfolios have always at least one negative position.

4 Applications

Suppose we observe today a spot structure which, for reasons explained in Section 1, is represented by a third-order polynomial. The future spot rate curve, i.e. the structure that will prevail in, say, one year, is unknown and is assumed to remain unpredictable. We will now show with concrete examples how an immunizing portfolio is to be constructed, and we will put this portfolio to the test of very strong variations of the initial spot rate structure. In fact, those variations will even amount, in some cases, to changing the structure from a steeply increasing one to a decreasing one, and vice versa.

15This property was shown by A. Pakes (2001).
4.1 The spot structures and their shifts

We will consider eight arbitrary spot structures, labeled as $A, B, C, \ldots, G, H^{16}$. To each spot rate structure corresponds a triplet of points through which the spot rate curve passes. Those eight triplets are indicated in table 1.

Table 1. Basic spot rate structures, as defined by series of points $(t, s(t))$

<table>
<thead>
<tr>
<th>Maturity t (years)</th>
<th>Spot rates $s(t)$ for various structures $s_A(t)$ $s_B(t)$ $s_C(t)$ $s_D(t)$ (per year, continuously compounded)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.04 0.06 0.048 0.04</td>
</tr>
<tr>
<td>5</td>
<td>0.05 0.06 0.054 0.047</td>
</tr>
<tr>
<td>$t = \bar{t} = 20$</td>
<td>0.06 0.06 0.06 0.055</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maturity t (years)</th>
<th>Spot rates $s(t)$ for various structures $s_E(t)$ $s_F(t)$ $s_G(t)$ $s_H(t)$ (per year, continuously compounded)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.053 0.035 0.052 0.049</td>
</tr>
<tr>
<td>5</td>
<td>0.060 0.042 0.048 0.053</td>
</tr>
<tr>
<td>$t = \bar{t} = 20$</td>
<td>0.066 0.052 0.045 0.06</td>
</tr>
</tbody>
</table>

This designation is independent from that of the immunization horizon H.

16 This designation is independent from that of the immunization horizon H.

50
Each of those curves is supposed to level off for maturity \(t = \bar{s} = 20 \) years. In order to find the coefficients of the corresponding polynomials, we have to solve system of equations (101). Doing so yields the following polynomials:

\[
\begin{align*}
A : \quad s_A(t) &= 1.1(10^{-6}) t^3 - 9.4(10^{-5}) t^2 + 0.002444 t + 0.04 \quad (107) \\
B : \quad s_B(t) &= 0.06 \\
C : \quad s_C(t) &= 6.7(10^{-7}) t^3 - 5.7(10^{-5}) t^2 + 0.001467 t + 0.048 \quad (108) \\
D : \quad s_D(t) &= 3.9(10^{-7}) t^3 - 5.3(10^{-5}) t^2 + 0.001656 t + 0.04 \quad (109) \\
E : \quad s_E(t) &= 1.2(10^{-6}) t^3 - 7.9(10^{-5}) t^2 + 0.001767 t + 0.053 \quad (110) \\
F : \quad s_F(t) &= -3.9(10^{-7}) t^3 - 2.7(10^{-5}) t^2 + 0.001544 t + 0.035 \quad (111) \\
G : \quad s_G(t) &= -8.3((10^{-7}) t^3 + 0.000051 t^2 - 0.00103 t + 0.052 \quad (112) \\
H : \quad s_H(t) &= -7.2(10^{-7}) t^3 + 1.4(10^{-6}) t^2 + 0.000811 t + 0.049. \quad (113)
\end{align*}
\]

These eight structures are represented in Figures 6 and 7. They can be combined into 8x7 = 56 pairs: \(AB, AC, \ldots, HG \) each pair designating a scenario. The first letter corresponds to the initial structure; the second one designates the structure that is observed immediately after the bond portfolio’s purchase. Any of those 56 scenarios can generate an infinity of sub-scenarios, in the following way.

Let \(\lambda \in [-1, 2] \) denote a parameter (the definition interval of \(\lambda \) is arbitrary; it could be made larger or smaller). Let \(s_a(t) \) be an initial spot rate structure; let \(s_b(t) \) designate a new one. Consider the spot rate (denoted \(s_{ab,\lambda}(t) \)) defined by

\[
s_{ab,\lambda}(t) = s_a(t) + \lambda[s_b(t) - s_a(t)] = (1 - \lambda)s_a(t) + \lambda s_b(t). \quad (114)
\]

Thus \(s_{ab,\lambda}(t) \) is a linear combination of the spot rates \(s_a \) and \(s_b \); particular cases correspond to \(\lambda = 0 \) (\(s_{ab,0}(t) = s_a(t) \), the initial structure) and \(\lambda = 1 \) (\(s_{ab,1}(t) = s_b(t) \), the “new” structure). Note that the initial spot structure \(s_a \) and the new spot rate \(s_b \), together with \(\lambda \), define a direction of change in the space of the polynomials’ coefficients. This directional vector is simply \(\lambda(A - a) \) where \(a \) is the vector of the coefficients of the initial polynomial \((s_a(t) \) in this case) and \(A \) is the vector of the coefficients of the new polynomial \((s_b(t) \) here).

An infinity of variations of the spot rate curve can thus be generated by changing \(\lambda \). Figure 8 illustrates such variations with \(\lambda \) taking the values -1; -0.5; 0; 0.5; 1; 1.5. The initial spot rate curve (\(\lambda = 0 \)) is \(s_D \); it is steeply
Figure 6. Spot structures $s_A(t), s_B(t), s_C(t)$ and $s_D(t)$ (continuously compounded yearly rates)
Figure 7. Spot structures $s_E(t), s_F(t), s_G(t)$ and $s_H(t)$
(continuously compounded yearly rates)
Figure 8. Varying parameter λ generates an infinity of spot rate curves.
increasing (from 4% for short rates to 5.5% for long ones). The new structure \(\lambda = -1 \) is \(s_B \), a horizontal at 6%. The values \(\lambda = -1 \) and \(\lambda = -0.5 \) correspond to a decrease of all rates; the value \(\lambda = 0.5 \) yields intermediate spot rates between \(s_D \) and \(s_B \). As to \(\lambda = 1.5 \), it leads to an inversion of the structure, i.e. to a decreasing spot rate. Indeed, from the definition

\[
s_{ab,\lambda}(t) = s_a(t) + \lambda [s_b(t) - s_a(t)]
\]

we have

\[
s'_{ab,\lambda}(t) = s'_a(t) + \lambda [s'_b(t) - s'_a(t)],
\]

from which we deduce immediately the rule about the slope of \(s_{ab,\lambda}(t) \):

- if \(s'_b > s'_a \)

 \[
 s'_{ab,\lambda}(t) \geq 0 \text{ if and only if } \lambda \leq \frac{s'_a(t)}{s'_a(t) - s'_b(t)}
 \]

- if \(s'_b < s'_a \)

 \[
 s'_{ab,\lambda}(t) \leq 0 \text{ if and only if } \lambda \geq \frac{s'_a(t)}{s'_a(t) - s'_b(t)}
 \]

- if \(s'_b = s'_a \), \(s'_{ab,\lambda}(t) = s'_a(t) = s'_b(t) \).

In one example, \(s'_a(t) = s'_D(t) > 0 \) and \(s'_b(t) = s'_B(t) = 0 \); so we are in the case \(s'_b < s'_a \), and we have an inversion of the spot rate curve if and only if \(\lambda > 1 \).

We are now ready to describe the immunization process by which our investor can protect himself against any change in the structure of spot rates.

4.2 Building immunizing portfolios

Suppose that we have at our disposal 9 bonds, labeled \(B_l, l = 1, \ldots, 9 \), whose characteristics are summarized in the following table:
Table 2. Basic characteristics of bonds used in immunization portfolio

<table>
<thead>
<tr>
<th>Bond number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coupon rate (in percent)</td>
<td>4</td>
<td>4.75</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>4.5</td>
<td>7</td>
<td>5</td>
<td>5.5</td>
</tr>
<tr>
<td>Maturity (years)</td>
<td>7</td>
<td>8</td>
<td>15</td>
<td>20</td>
<td>6</td>
<td>9</td>
<td>16</td>
<td>12</td>
<td>10</td>
</tr>
</tbody>
</table>

Suppose also that our initial spot rate curve is given by \(s_A(t) \)

\[
s_A(t) = 1.1(10^{-6}) t^3 - 9.4(10^{-5}) t^2 + 0.002444 t + 0.04
\]

Recall that we have to determine the vector \(n = n_1, \ldots, n_9 \) that solves system

\[
Mn = h^p.
\]

In other words, \(n \) is given by

\[
n = M^{-1}h^p.
\]

So our first task is to build matrix \(M \) whose elements are \([B_l(a)/p_0(a)]\mu_k^{(l)}\), \(k = 0, \ldots, 2m; l = 1, \ldots, 2m + 1 \). Using the spot structure \(s_A(t) \), we obtain the values of the bonds and their various moments. The results are presented in table 3, which can be viewed as a (9x9) matrix. Recall that the moment of order \(k \) is expressed in \((\text{years})^k\).

Note that the (1x9) first line of matrix \(M \) is the first line of table 3 (the initial value of each bond expressed in terms of its par value); each subsequent line of matrix \(M \) is the corresponding line of table 3, scaled by the value of each bond in par value. Matrix \(M \) can thus be seen as table 3 premultiplied by the diagonal matrix of the values of the bonds.

Finally, suppose our immunization horizon is 7 years. We know that all generalized variances of order 0 to \(2m - 1 \) should be equal to zero, and
that the generalized variance of order m, γ_{2m}, should be positive. Since $\gamma_{2m} = \gamma_8 = \mu_8 - h^8$, the way to achieve this is to equate μ_8 to H^8 plus a positive constant K. Set this constant arbitrarily to 200,000 (expressed in (years)8). This amounts to setting K at a relatively low level, equal to about 3.4% of H^8. We shall discuss further the consequences, for the immunizing process, of setting K at various levels. For the time being, we can rest assured that a local minimum will be attained for the portfolio’s future value. Inverting matrix M, n is simply:

$$n = M^{-1} \cdot h$$

where h is given by:

$$h = \begin{bmatrix}
1 \\
7 \\
49 \\
343 \\
2,401 \\
16,807 \\
117,649 \\
823,543 \\
5,964,801
\end{bmatrix}.$$

Performing the necessary calculations, we obtain the following immunizing portfolio:

$$n_1 = 6.161 \quad n_4 = 0.009 \quad n_7 = -0.448$$
$$n_2 = -6.534 \quad n_5 = -1.211 \quad n_8 = 1.512$$
$$n_3 = 0.823 \quad n_6 = 2.474 \quad n_9 = -1.371.$$

4.3 Immunization results

We now have to check that this portfolio protects us against any change in the spot rate structure. To that effect we will consider all scenarios AB, AC, \ldots, HG, and for each scenario a set of λ values from -1 to $+1.5$. Table 4 provides the results. The first figure in each cell indicates the portfolio’s value just after the change from the initial structure to the new one; the second figure is the future portfolio’s value based upon the new structure. Consider, for instance, the third cell of the first line, under $\lambda = 0.5$. It carries
two numbers: the first figure (97.5335) indicates the new present value of the portfolio at time \(\varepsilon \), i.e. for a structure half-way between structures \(A \) and \(B \), and thus equal to

\[
s_{AB,0.5}(t) = s_A(t) + 0.5[s_B(t) - s_A(t)].
\]

The second figure (144.7809) is the future value of the portfolio at horizon 7 years under the new structure \(s_{AB,0.5}(t) \): it tells us that the portfolio is perfectly immunized since that is the future value of the portfolio before the spot structure change.

From the results laid out in Table 4, we conclude of course that immunization is obtained in each of the scenarios starting with spot rate structure \(s_A(t) \). The same conclusion would be reached should the initial spot structure be \(s_B(t), \ldots, s_H(t) \). Table 5 indicates, for each of those initial structures, the future value protected, as well as the corresponding portfolio.

A remarkable, far from intuitive, conclusion emerges: the optimal portfolios are little sensitive to different initial (observed) structures. Even quite different initial spot curves such as \(s_A(t), s_E(t), \) or \(s_G(t) \) are not conducive to substantial modifications in the immunizing portfolios. Their orders of magnitude remain the same (within boundaries of 3%), and of course the position signs remain the same.

This weak sensitivity of the portfolio to the initial spot structure implies that the cashflows generated by an asset are more important than the exact discounting factors in the evaluation process: in other words, what counts most is the cashflow profile of each bond. We will confirm this when we look for the optimal portfolio that would be built up from different sets of bonds. We will introduce variations first in the coupons, then in maturities, and finally in both parameters. Prior to that, we should discuss the question of the magnitude of the immunization parameter \(K \).
Table 3. Value and moments of order $k = 1, \ldots, 2m = 8$ of each bond under spot rate structure:
$s_A(t) = 1.1(10^{-6}) t^3 - 9.4(10^{-5}) t^2 + 0.002444 t + 0.04$

<table>
<thead>
<tr>
<th>Bond</th>
<th>B_1</th>
<th>B_2</th>
<th>B_3</th>
<th>B_4</th>
<th>B_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial value(^\dagger)</td>
<td>0.9215</td>
<td>0.9537</td>
<td>1.1085</td>
<td>1.2343</td>
<td>1.0390</td>
</tr>
<tr>
<td>Moments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ_1</td>
<td>6.1940</td>
<td>6.7878</td>
<td>9.8975</td>
<td>11.3019</td>
<td>5.2211</td>
</tr>
<tr>
<td>μ_2</td>
<td>41.3000</td>
<td>50.853</td>
<td>124.486</td>
<td>175.241</td>
<td>29.569</td>
</tr>
<tr>
<td>μ_3</td>
<td>282.14</td>
<td>393.60</td>
<td>1703.4</td>
<td>3058.9</td>
<td>172.29</td>
</tr>
<tr>
<td>μ_4</td>
<td>1946.9</td>
<td>3087.8</td>
<td>24174</td>
<td>56300</td>
<td>1016.0</td>
</tr>
<tr>
<td>μ_5</td>
<td>13501</td>
<td>24388</td>
<td>349522</td>
<td>1.065209</td>
<td>6028</td>
</tr>
<tr>
<td>μ_6</td>
<td>93,898</td>
<td>193,361</td>
<td>5,108,123</td>
<td>20,479,893</td>
<td>35,884</td>
</tr>
<tr>
<td>μ_7</td>
<td>654,177</td>
<td>1,536,761</td>
<td>75,155,699</td>
<td>4.0(10^8)</td>
<td>214,086</td>
</tr>
<tr>
<td>μ_8</td>
<td>4,562,925</td>
<td>12,232,997</td>
<td>1.1(10^9)</td>
<td>7.8(10^9)</td>
<td>1,279,087</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bond</th>
<th>B_6</th>
<th>B_7</th>
<th>B_8</th>
<th>B_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial value</td>
<td>0.9250</td>
<td>1.1099</td>
<td>0.9505</td>
<td>0.9755</td>
</tr>
<tr>
<td>Moments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ_1</td>
<td>7.5036</td>
<td>10.2761</td>
<td>8.0123</td>
<td>8.9826</td>
</tr>
<tr>
<td>μ_2</td>
<td>62.849</td>
<td>136.15</td>
<td>73.349</td>
<td>95.892</td>
</tr>
<tr>
<td>μ_3</td>
<td>545.57</td>
<td>1973.91</td>
<td>701.47</td>
<td>1084.2</td>
</tr>
<tr>
<td>μ_4</td>
<td>4806.3</td>
<td>29757</td>
<td>6831.2</td>
<td>12556</td>
</tr>
<tr>
<td>μ_5</td>
<td>42655</td>
<td>457680</td>
<td>67134</td>
<td>147197</td>
</tr>
<tr>
<td>μ_6</td>
<td>380,145</td>
<td>7,120,937</td>
<td>663,180</td>
<td>1,737,533</td>
</tr>
<tr>
<td>μ_7</td>
<td>3,396,730</td>
<td>1.1(10^8)</td>
<td>6,572,335</td>
<td>20,598,422</td>
</tr>
<tr>
<td>μ_8</td>
<td>30,403,315</td>
<td>1.8(10^8)</td>
<td>65,273,038</td>
<td>2.4(10^8)</td>
</tr>
</tbody>
</table>

\(^\dagger\)This initial value is expressed in terms of its par value B_T. It is equal to B_0/B_T. Moments of order k are expressed in (yearsk).

56
Table 4. Immunization results for initial spot rate $s_A(t)$.

Present value of portfolio at time 0: 100. Future value protected at time 0: 144.7809\(^{(1)}\); $K = 200,000$

- first figure in each cell: present value of portfolio at time ε, under new spot structure
- second figure: future value of portfolio at time ε, under new spot structure.

<table>
<thead>
<tr>
<th>scenario</th>
<th>$\lambda = -1$</th>
<th>$\lambda = -0.5$</th>
<th>$\lambda = 0.5$</th>
<th>$\lambda = 1$</th>
<th>$\lambda = 1.5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>105.1217</td>
<td>102.5289</td>
<td>97.5335</td>
<td>95.1278</td>
<td>92.7815</td>
</tr>
<tr>
<td></td>
<td>144.7809</td>
<td>144.7809</td>
<td>144.7809</td>
<td>144.7809</td>
<td>144.7809</td>
</tr>
<tr>
<td>AC</td>
<td>102.0181</td>
<td>101.044</td>
<td>99.006</td>
<td>98.0219</td>
<td>97.0475</td>
</tr>
<tr>
<td></td>
<td>144.7809</td>
<td>144.7809</td>
<td>144.7809</td>
<td>144.7809</td>
<td>144.7809</td>
</tr>
<tr>
<td>AD</td>
<td>97.4147</td>
<td>98.6989</td>
<td>101.3183</td>
<td>102.6539</td>
<td>104.0072</td>
</tr>
<tr>
<td></td>
<td>144.7809</td>
<td>144.7809</td>
<td>144.7809</td>
<td>144.7809</td>
<td>144.7809</td>
</tr>
<tr>
<td>AE</td>
<td>106.52</td>
<td>103.2085</td>
<td>96.8912</td>
<td>93.8791</td>
<td>90.9606</td>
</tr>
<tr>
<td></td>
<td>144.7809</td>
<td>144.7809</td>
<td>144.7809</td>
<td>144.7809</td>
<td>144.7809</td>
</tr>
<tr>
<td>AF</td>
<td>94.2190</td>
<td>97.0664</td>
<td>103.0222</td>
<td>106.1358</td>
<td>109.3435</td>
</tr>
<tr>
<td></td>
<td>144.7809</td>
<td>144.7809</td>
<td>144.7809</td>
<td>144.7809</td>
<td>144.7809</td>
</tr>
<tr>
<td>AG</td>
<td>95.9591</td>
<td>97.0664</td>
<td>102.0839</td>
<td>104.2112</td>
<td>106.3829</td>
</tr>
<tr>
<td></td>
<td>144.7809</td>
<td>144.7809</td>
<td>144.7809</td>
<td>144.7809</td>
<td>144.7809</td>
</tr>
<tr>
<td>AH</td>
<td>101.1502</td>
<td>100.5734</td>
<td>99.4299</td>
<td>98.8630</td>
<td>98.2994</td>
</tr>
<tr>
<td></td>
<td>144.7809</td>
<td>144.7809</td>
<td>144.7809</td>
<td>144.7809</td>
<td>144.7809</td>
</tr>
</tbody>
</table>

\(^{(1)}\) This value is equal to 100 exp\([s_A(7) \cdot 7]\).
Table 5. Future value protected and immunizing portfolio for each initial spot rate structure $s_A(t),\ldots, s_H(t)$ Horizon $H = 7$ years; $K = 200,000$.

<table>
<thead>
<tr>
<th>Initial structure</th>
<th>Future value protected</th>
<th>n_1</th>
<th>n_5</th>
<th>n_2</th>
<th>n_6</th>
<th>n_3</th>
<th>n_7</th>
<th>n_4</th>
<th>n_8</th>
<th>n_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_A(t)$</td>
<td>144.7809</td>
<td>6.161</td>
<td></td>
<td>-6.534</td>
<td></td>
<td>0.823</td>
<td></td>
<td>0.009</td>
<td></td>
<td>-1.371</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.211</td>
<td>2.474</td>
<td>-0.448</td>
<td>1.512</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$s_B(t)$</td>
<td>152.1962</td>
<td>6.475</td>
<td></td>
<td>-6.857</td>
<td></td>
<td>0.833</td>
<td></td>
<td>0.009</td>
<td></td>
<td>-1.407</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.273</td>
<td>2.598</td>
<td>-0.452</td>
<td>1.562</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$s_C(t)$</td>
<td>147.7026</td>
<td>6.285</td>
<td></td>
<td>-6.662</td>
<td></td>
<td>0.827</td>
<td></td>
<td>0.009</td>
<td></td>
<td>-1.386</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.236</td>
<td>2.523</td>
<td>-0.450</td>
<td>1.532</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$s_D(t)$</td>
<td>141.0378</td>
<td>5.993</td>
<td></td>
<td>-6.306</td>
<td></td>
<td>0.765</td>
<td></td>
<td>0.008</td>
<td></td>
<td>-1.297</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.186</td>
<td>2.355</td>
<td>-0.414</td>
<td>1.460</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$s_E(t)$</td>
<td>154.2206</td>
<td>6.5724</td>
<td></td>
<td>-7.0296</td>
<td></td>
<td>0.9055</td>
<td></td>
<td>0.0098</td>
<td></td>
<td>-1.4893</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.2828</td>
<td>2.7049</td>
<td>-0.4953</td>
<td>1.6101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$s_F(t)$</td>
<td>136.411</td>
<td>5.7910</td>
<td></td>
<td>-6.0620</td>
<td></td>
<td>0.7273</td>
<td></td>
<td>0.0074</td>
<td></td>
<td>-1.2402</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.1510</td>
<td>2.2419</td>
<td>-0.3935</td>
<td>1.4103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$s_G(t)$</td>
<td>138.9303</td>
<td>5.8877</td>
<td></td>
<td>-6.0986</td>
<td></td>
<td>0.6679</td>
<td></td>
<td>0.0064</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.1782</td>
<td>2.2214</td>
<td>-0.3566</td>
<td>1.3961</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.1890</td>
</tr>
<tr>
<td>$s_H(t)$</td>
<td>146.446</td>
<td>6.2298</td>
<td></td>
<td>-6.5922</td>
<td></td>
<td>0.8216</td>
<td></td>
<td>0.0087</td>
<td></td>
<td>-1.3713</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.2272</td>
<td>2.4904</td>
<td>-0.4476</td>
<td>1.5173</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.4 How large should we set the immunization parameter K?

Recall that we introduced parameter K in order to set the generalized variance $\gamma_{2m+1} = \gamma$ at a positive number. We had set arbitrarily K at 200,000. For that value of K, it is always possible to protect the investor against any change generated in any possible scenario AB,\ldots, HG for values of λ between -1 and $+1.5$. This means that immunization is warranted at least in this interval. We will now study this relationship.

We have to keep in mind that the immunization process has the happy effect of making the future value $F_H(\lambda)$ an extremely flat curve in F_H, λ space,
and we have to ask the question whether the fact that the portfolio’s future value is guaranteed within 4 decimal places (as table 4 reveals) warrants that this future value is strictly higher than the value to be protected. This prods us to examine each figure with more than 4 decimals. The conclusion is that for all scenarios these future values are indeed strictly larger than the aim, with one exception: if the initial structure is D and counter-pivots with respect to structure B, this strict inequality does not hold for values of \(\lambda \) such that \(\lambda < -0.346 \) – see Table 6. Of course, practitioners would be happy to protect an investment as well as in case \(\lambda = -1 \), for instance: Table 6 tells us that the future value of an initial $100,000,000 portfolio is immunized against a very large, non-parallel shift of the spot curve within a margin smaller than $4. Nevertheless, we want to study this case on the following grounds: it is important to be able to picture \(B_H(\lambda) \) as a locally convex curve of \(\lambda \), with a local minimum at \(\lambda \), and to see how this curve is modified when changing \(K \). From what we have shown previously, \(K \) should play the role of a local convexity parameter: the higher \(K \), the more convex should be the curve in \(F_H, \lambda \) space, and our aim now is to verify this.

We shall first consider a close-up of the situation within a close vicinity of \(\lambda = 0 \), i.e. in the interval \(\lambda \in [-0.2, +0.2] \), with the following immunization constants: \(K = 200,000 \); \(K = 100,000 \) and \(K = 50,000 \). The results conform exactly our predictions: a higher value of \(K \) enhances convexity of the \(P_H(\lambda) \) curve in a vicinity of the minimum point \((0, P_H(0))\) as evidenced in figure 9.

Now let us pay attention to this family of curves. Observe that for positive values of \(\lambda \), the curves exhibit strong convexity, whilst for negative values convexity is somewhat weaker, transforming relatively quickly into concavity. This leads us to surmise that, if complete immunization is easily achieved for positive values of \(\lambda \), the portfolio’s future value may well decline and even become slightly smaller than the target if \(\lambda \) is sufficiently large in absolute value. This indeed turns out to be the case as evidenced by Figure 10 where we have considered values of \(\lambda \) from -0.6 to 0.24. If \(\lambda \) is sufficiently small, the future value starts declining and ultimately becomes lower – if ever slightly than \(F_H(a) \). Let us remember, however, the orders of magnitude: in our example, the future value (at horizon 7 years) of $100,000,000 today remains immunized within $4! One striking feature of Figures 9-11 is to throw light onto the fact that \(K \) is a local convexity parameter: its sole predictable effect to increase convexity at the initial point \(a \) (equivalently: for \(\lambda = 0 \)). (Observe how, around \(\lambda = -0.36 \), the curves intersects).
Figure 9. Increasing K enhances local convexity of the portfolio's future value.
Figure 10. While increasing local convexity, higher values of \(K \) do not necessarily widen immunization interval.
Figure 11. At a wider scale, F_H may look going through an inflection point at $\lambda = 0$, although it undergoes a local minimum there.
We conclude from this analysis, and the one that can be carried out from a wider range of initial spot structures, that it is enough to use an immunization constant K in the order of 3% of the last moment.

Table 6. Results of immunization; scenario DB;
horizon $H = 7$ years; $K = 200,000$
Target: $B_{0,H} = 141,037,819.08 = 100 \exp[7s_D(7)]$

<table>
<thead>
<tr>
<th>λ</th>
<th>$B_H{s_D(t) + \lambda[s_B(t) - s_D(\lambda)]}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>141,037, 827.60</td>
</tr>
<tr>
<td>0.8</td>
<td>141,037, 823.70</td>
</tr>
<tr>
<td>0.6</td>
<td>141,037, 821.22</td>
</tr>
<tr>
<td>0.4</td>
<td>141,037, 819.83</td>
</tr>
<tr>
<td>0.2</td>
<td>141,037, 819.22</td>
</tr>
<tr>
<td>0</td>
<td>141,037, 819.08</td>
</tr>
<tr>
<td>-0.2</td>
<td>141,037, 819.12</td>
</tr>
<tr>
<td>-0.346*</td>
<td>141,037, 819.08</td>
</tr>
<tr>
<td>-0.4</td>
<td>141,037, 819.03</td>
</tr>
<tr>
<td>-0.6</td>
<td>141,037, 818.53</td>
</tr>
<tr>
<td>-0.8</td>
<td>141,037, 817.33</td>
</tr>
<tr>
<td>-1</td>
<td>141,037, 815.15</td>
</tr>
</tbody>
</table>

values higher or equal to target

values lower than target

* Rounded value; $\lambda = -0.34596239916$.

4.5 Infinity of solutions

We are now ready to state our last theorem, concerning the number of solutions that correspond to the various possible values of K.

• Theorem 6

Suppose that the spot rate structure can be expanded into a Taylor series. Then there exist an infinity of immunizing bond portfolios.

The proof of this theorem rests upon the continuity of the immunization constant K.

60
The fact that an infinity of bond portfolios can protect the investor has important practical applications. As we had indicated before, the outcome of the immunization process is to make the future value of the portfolio an extremely “flat” curve in \((P_H, \lambda)\) space. Therefore the interest of having large choices for \(K\) will not be to try to enhance convexity; it will rather reside in the extended available choices when building portfolios.

A natural way to apply this important property could be to choose \(K\) such as to minimize the transaction costs of building up, or adjusting the bond portfolio.

4.6 How sensitive are immunizing portfolios to changes in horizon \(H\)?

We now address the all-important question of the sensitivity of immunizing portfolios to changes in the horizon. In order to answer that question, we have chosen to study optimal portfolios corresponding to the initial spot rate structures \(s_A(t), s_B(t)\) and \(s_G(t)\), for horizons ranging from three years to twenty years. This span of years for horizon \(H\) could have been wider, because theory tells us that immunizing portfolios do exist for a broader range of horizons. However, since the basket of bonds to chose from is the initial one, with maturities between 6 and 20 years, we may surmise that overly large negative and positive positions would be the rule if we attempted to perform immunization for very long or very short horizons with bonds to be chosen from such a basket. We will be able to confirm this.

For the time being, let us examine the results we get when immunizing under the initial spot rate structure \(s_A(t)\). The portfolios for each horizon are indicated in table 7, and their evolution with respect to the horizon are pictured in figure 12 (bonds 1-5) and in figure 13 (bonds 6-9). It is quite striking to notice how stable the portfolios remain when the horizons are in the 6-16 years range. When horizons exceed that range, the portfolios become highly unstable.

Our initial structure \((s_A(t))\) was an increasing one. We can now confirm these results in the case of a constant structure \((s_B(t))\) and a decreasing one \((s_G(t))\) (see tables 8 and 9, and the corresponding figures 14 to 17). The similarity of the portfolios for any initial spot rate is striking. It generalizes the property we had shown previously for all spot structures from \(s_A(t)\) to \(s_G(t)\) when the horizon was 7 years. Now we can see that this property
applies to all immunization horizons. Furthermore, we can observe that for any kind of initial spot rate, portfolios are very stable for mid-range horizons, and become highly unstable outside that range.

Table 7. Immunizing portfolios according to horizon H, under initial spot rate structure $s_A(t)$; $K = 200,000$; number of each bonds in portfolio

<table>
<thead>
<tr>
<th>Horizon H (years)</th>
<th>Immunizing portfolios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n_1</td>
</tr>
<tr>
<td>4%</td>
<td>-26.34</td>
</tr>
<tr>
<td>7 yrs</td>
<td></td>
</tr>
<tr>
<td>8 yrs</td>
<td>-3.69</td>
</tr>
<tr>
<td>15 yrs</td>
<td>2.45</td>
</tr>
<tr>
<td>20 yrs</td>
<td>6.25</td>
</tr>
<tr>
<td>6 yrs</td>
<td>7 yrs</td>
</tr>
<tr>
<td>7 yrs</td>
<td>6.16</td>
</tr>
<tr>
<td>8 yrs</td>
<td>5.36</td>
</tr>
<tr>
<td>9 yrs</td>
<td>5.23</td>
</tr>
<tr>
<td>10 yrs</td>
<td>5.70</td>
</tr>
<tr>
<td>11 yrs</td>
<td>6.13</td>
</tr>
<tr>
<td>12 yrs</td>
<td>6.21</td>
</tr>
<tr>
<td>13 yrs</td>
<td>6.22</td>
</tr>
<tr>
<td>14 yrs</td>
<td>6.69</td>
</tr>
<tr>
<td>15 yrs</td>
<td>7.57</td>
</tr>
<tr>
<td>16 yrs</td>
<td>7.55</td>
</tr>
<tr>
<td>17 yrs</td>
<td>4.24</td>
</tr>
<tr>
<td>18 yrs</td>
<td>-3.50</td>
</tr>
<tr>
<td>19 yrs</td>
<td>-9.58</td>
</tr>
<tr>
<td>20 yrs</td>
<td>10.74</td>
</tr>
</tbody>
</table>
Figure 12. Immunizing portfolios as a function of horizon H; initial spot structure: s_A; bonds 1-5.
Figure 13. Immunizing portfolios as a function of horizon H; initial spot structure: s_A; bonds 6-9.
<table>
<thead>
<tr>
<th>Horizon H (years)</th>
<th>Immunizing portfolios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n_1</td>
</tr>
<tr>
<td></td>
<td>4%</td>
</tr>
<tr>
<td>7 yrs</td>
<td>-27.46</td>
</tr>
<tr>
<td>8 yrs</td>
<td>-9.03</td>
</tr>
<tr>
<td>15 yrs</td>
<td>2.62</td>
</tr>
<tr>
<td>20 yrs</td>
<td>6.58</td>
</tr>
<tr>
<td>6 yrs</td>
<td>6.48</td>
</tr>
<tr>
<td>9 yrs</td>
<td>5.62</td>
</tr>
<tr>
<td>12 yrs</td>
<td>5.47</td>
</tr>
<tr>
<td>10 yrs</td>
<td>5.94</td>
</tr>
<tr>
<td>11</td>
<td>6.37</td>
</tr>
<tr>
<td>12</td>
<td>6.43</td>
</tr>
<tr>
<td>13</td>
<td>6.41</td>
</tr>
<tr>
<td>14</td>
<td>6.85</td>
</tr>
<tr>
<td>15</td>
<td>7.74</td>
</tr>
<tr>
<td>16</td>
<td>7.69</td>
</tr>
<tr>
<td>17</td>
<td>4.22</td>
</tr>
<tr>
<td>18</td>
<td>-3.85</td>
</tr>
<tr>
<td>19</td>
<td>-10.20</td>
</tr>
<tr>
<td>20</td>
<td>10.94</td>
</tr>
</tbody>
</table>
Figure 14. Immunizing portfolios as a function of horizon H; initial spot structure: s_B; bonds 1-5.
Figure 15. Immunizing portfolios as a function of horizon H; initial spot structure: s_B; bonds 6-9.
Table 9. Immunizing portfolios according to horizon H, under initial spot rate structure $s_G(t)$; $K = 200,000$; number of each bonds in portfolio

<table>
<thead>
<tr>
<th>Horizon H (years)</th>
<th>Immunizing portfolios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n_1</td>
</tr>
<tr>
<td>7 yrs</td>
<td>4%</td>
</tr>
<tr>
<td>8 yrs</td>
<td>-27.86</td>
</tr>
<tr>
<td>10 yrs</td>
<td>-9.16</td>
</tr>
<tr>
<td>15 yrs</td>
<td>2.66</td>
</tr>
<tr>
<td>20 yrs</td>
<td>6.68</td>
</tr>
<tr>
<td>6 yrs</td>
<td>6.58</td>
</tr>
<tr>
<td>9 yrs</td>
<td>5.71</td>
</tr>
<tr>
<td>12 yrs</td>
<td>5.56</td>
</tr>
<tr>
<td>18 yrs</td>
<td>6.03</td>
</tr>
<tr>
<td>15 yrs</td>
<td>6.46</td>
</tr>
<tr>
<td>20 yrs</td>
<td>6.51</td>
</tr>
<tr>
<td>16 yrs</td>
<td>6.48</td>
</tr>
<tr>
<td>17 yrs</td>
<td>6.92</td>
</tr>
<tr>
<td>19 yrs</td>
<td>7.50</td>
</tr>
<tr>
<td>18 yrs</td>
<td>7.75</td>
</tr>
<tr>
<td>20 yrs</td>
<td>4.22</td>
</tr>
<tr>
<td>19 yrs</td>
<td>4.22</td>
</tr>
<tr>
<td>18 yrs</td>
<td>4.22</td>
</tr>
<tr>
<td>17 yrs</td>
<td>4.22</td>
</tr>
<tr>
<td>16 yrs</td>
<td>4.22</td>
</tr>
<tr>
<td>15 yrs</td>
<td>4.22</td>
</tr>
<tr>
<td>14 yrs</td>
<td>4.22</td>
</tr>
<tr>
<td>13 yrs</td>
<td>4.22</td>
</tr>
<tr>
<td>12 yrs</td>
<td>4.22</td>
</tr>
<tr>
<td>11 yrs</td>
<td>4.22</td>
</tr>
<tr>
<td>10 yrs</td>
<td>4.22</td>
</tr>
<tr>
<td>9 yrs</td>
<td>4.22</td>
</tr>
<tr>
<td>8 yrs</td>
<td>4.22</td>
</tr>
<tr>
<td>7 yrs</td>
<td>4.22</td>
</tr>
<tr>
<td>6 yrs</td>
<td>4.22</td>
</tr>
<tr>
<td>5 yrs</td>
<td>4.22</td>
</tr>
<tr>
<td>4 yrs</td>
<td>4.22</td>
</tr>
<tr>
<td>3 yrs</td>
<td>4.22</td>
</tr>
</tbody>
</table>

4.7 How sensitive are immunizing portfolios to a change in the basket of available bonds?

We will now show that the slightest modification in the composition of the basket of available bonds has major consequences on the immunizing portfolio.
Figure 16. Immunizing portfolios as a function of horizon H; initial spot structure: s_0; bonds 1-5.
Figure 17. Immunizing portfolios as a function of horizon H; initial spot structure: s_G; bonds 6-9.
We revert to our base case: immunization with an initial spot rate $s_A(t)$; a horizon $H = 7$ years and a constant $K = 200,000$. We will consider an innocuous-looking, very small change in the features of two among the nine bonds that were available for our initial application, as described in Section 4.2, table 2. Let us keep all last seven bonds identical in their maturity and coupon. Let(10,750),(917,817)

Table 10. The sensitivity of immunizing portfolios to changes in coupon rates

<table>
<thead>
<tr>
<th>Initial bond basket changes(*)</th>
<th>n_1</th>
<th>n_2</th>
<th>n_3</th>
<th>n_4</th>
<th>n_5</th>
<th>n_6</th>
<th>n_7</th>
<th>n_8</th>
<th>n_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c_1 = 4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$c_2 = 4.75$</td>
<td>6.16</td>
<td>-6.53</td>
<td>0.82</td>
<td>0.009</td>
<td>-1.21</td>
<td>2.47</td>
<td>-0.45</td>
<td>1.51</td>
<td>-1.37</td>
</tr>
<tr>
<td>(Initial basket)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$c_1 = 4.75$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$c_2 = 4$</td>
<td>-10.33</td>
<td>32.12</td>
<td>2.13</td>
<td>0.016</td>
<td>1.77</td>
<td>-43.5</td>
<td>-1.05</td>
<td>26.26</td>
<td>-6.08</td>
</tr>
<tr>
<td>$c_6 = 5.5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$c_9 = 4.5$</td>
<td>-1.55</td>
<td>11.57</td>
<td>1.43</td>
<td>0.01</td>
<td>0.19</td>
<td>-18.84</td>
<td>-0.73</td>
<td>13.01</td>
<td>-3.62</td>
</tr>
</tbody>
</table>

(*) In this column we indicate changes in coupons of some of the initial bonds.
We can do the same exercises with bonds 6 and 9: interchanging their coupons while keeping the same maturities leads to the portfolio described in the third line of table 10. (Notice that in the cases considered above, interchanging coupons is tantamount to exchanging maturities, as the reader can verify from table 2, Section 4.2). As to the immunizing results, it is of no surprise that they are as good as those corresponding to the initial basket.

* * *

5 By way of conclusion: a few suggestions

This study brought its fair share of (nice) surprises. First, a portfolio immunized against any change of the spot structure carries always at least one negative position. Also surprising is the simplicity of the central result: if an investor is protecting herself from any shift of a spot curve represented by an \(m - 1 \) order polynomial, she just has to build a portfolio such that its generalized variances of order 1 to \(2m - 1 \) are equal to zero, and its generalized variance of order \(2m \) is equal to a positive, arbitrary number – which leads to the next shocker: even with a limited pool of \(2m + 1 \) available bonds, there exists an infinity of immunizing portfolios for one given, initial, spot rate curve.

Equally unforeseen is the fact that the structure of an immunizing portfolio depends so little on the initial, observed structure, or on the investor’s objective (her horizon), and so much on the nature of the bonds used in the portfolio. Changing if ever so marginally the characteristics of one or two bonds in the basket of the available bonds may alter dramatically the composition of the whole bond portfolio.

These results prompt us to suggest that the next step, for the practitioner, would be to minimize transaction costs by making use of the fact that, even for a well-defined, limited, set of \(2m + 1 \) bonds, an infinity of immunizing portfolios are available. Minimizing transaction costs could be achieved, for instance, by studying numerically the relationship between the immunization parameter \(K \) and the transaction cost. Indeed, starting from an initial, observed, spot rate structure, to each value of the arbitrary, positive, parameter \(K \) corresponds a given immunizing portfolio, which entails a given transaction cost. This could be done when building up a portfolio

66
from scratch. But it could be done also in order to transform an existing, non-protected, portfolio into an immunized one at minimal cost.
References

The history of immunization can be found in the book edited by G. Hawawini (1982a). The reader will find in it not only the cornerstones of duration analysis (the seminal papers by F. Macaulay (1938), J. Hicks (1939) and F. Redington (1952)), but a detailed analysis of the Macaulay duration by G. Hawawini (1982b). The book also carries important articles by M. Hopewell and G. Kaufman (1973), J. Ingersoll, J. Skelton and R. Weil (1978), L. Fisher and R. Weil (1977), G. Bierwag (1977). It is to be noted that the duration concept was rediscovered independently by J. Hicks (1936) and P. Samuelson (1945).

RESEARCH PAPER SERIES

Extra copies of research papers will be available to the public upon request. In order to obtain copies of past or future works, please contact our office at the location below. As well, please note that these works will be available on our website, www.fame.ch, under the heading "Research" in PDF format for your consultation. We thank you for your continuing support and interest in FAME and look forward to serving you in the future.

N° 39: Weak Convergence of Hedging Strategies of Contingent Claims
Jean-Luc PRIGENT, Thema, Université de Cergy-Pontoise; Olivier SCAILLET, HEC Genève and FAME, University of Geneva, January 2002

N° 38: Indirect Estimation of the Parameters of Agent Based Models of Financial Markets
Manfred GILLI, University of Geneva; Peter WINKER, International University in Germany, November 2001

Laurent BARRAS, HEC-University of Geneva, International Center FAME; Dušan ISAKOV, HEC-University of Geneva, International Center FAME, November 2001

N° 36: Coping with Credit Risk
Henri LOUBERGÉ, University of Geneva, Harris SCHLESINGER, University of Alabama, October 2001

Foort HAMELINK, Lombard Odier & Cie and Vrije Universiteit; Hélène HARASTY, Lombard Odier & Cie; Pierre HILLION, Insead (Singapore), Academic Advisor to Lombard Odier & Cie, October 2001

N° 34: Variable Selection for Portfolio Choice
Yacine AÏT-SAHALIA, Princeton University & NBER, and Michael W. BRANDT, Wharton School, University of Pennsylvania & NBER, February 2001
(Please note: The complete paper is available from the Journal of Finance 56, 1297-1351.)

N° 33: The Characteristics of Individual Analysts’ Forecast in Europe
Guido BOLLIGER, University of Neuchâtel and FAME, July 2001

N° 32: Portfolio Diversification: Alive and Well in Euroland
Kpaté ADJAOUTE, HSBC Republic Bank (Suisse), SA and Jean-Pierre DANTHINE, University of Lausanne, CEPR and FAME, July 2001

N° 31: EMU and Portfolio Diversification Opportunities
Kpate ADJAOUTÉ, Morgan Stanley Capital International, Geneva and Jean-Pierre DANTHINE, University of Lausanne, CEPR and FAME, April 2000

N° 30: Serial and Parallel Krylov Methods for Implicit Finite Difference Schemes Arising in Multivariate Option Pricing
Manfred GILLI, University of Geneva, Evis KËLLEZI, University of Geneva and FAME, Giorgio PAULETTO, University of Geneva, March 2001
N° 29: Liquidation Risk
Alexandre ZIEGLER, HEC-University of Lausanne, Darrell DUFFIE, The Graduate School of Business, Stanford University; April 2001

N° 28: Defaultable Security Valuation and Model Risk
Aydin AKGUN, University of Lausanne and FAME; March 2001

N° 27: On Swiss Timing and Selectivity: in the Quest of Alpha
François-Serge LHABITANT, HEC-University of Lausanne and Thunderbird, The American Graduate School of International Management; March 2001

N° 26: Hedging Housing Risk
Peter ENGLUND, Stockholm School of Economics, Min HWANG and John M. QUIGLEY, University of California, Berkeley; December 2000

N° 25: An Incentive Problem in the Dynamic Theory of Banking
Ernst-Ludwig VON THADDEN, DEEP, University of Lausanne and CEPR; December 2000

N° 24: Assessing Market Risk for Hedge Funds and Hedge Funds Portfolios
François-Serge LHABITANT, Union Bancaire Privée and Thunderbird, the American Graduate School of International Management; March 2001

N° 23: On the Informational Content of Changing Risk for Dynamic Asset Allocation
Giovanni BARONE-ADESI, Patrick GAGLIARDINI and Fabio TROJANI, Università della Svizzera Italiana; March 2000

N° 22: The Long-run Performance of Seasoned Equity Offerings with Rights: Evidence From the Swiss Market
Michel DUBOIS and Pierre JEANNERET, University of Neuchatel; January 2000

N° 21: Optimal International Diversification: Theory and Practice from a Swiss Investor’s Perspective
Foort HAMELINK, Tilburg University and Lombard Odier & Cie; December 2000

N° 20: A Heuristic Approach to Portfolio Optimization
Evis KELLEZI; University of Geneva and FAME, Manfred GILLI, University of Geneva, October 2000

N° 19: Banking, Commerce, and Antitrust
Stefan Arping; University of Lausanne; August 2000

N° 18: Extreme Value Theory for Tail-Related Risk Measures
Evis KELLEZI; University of Geneva and FAME, Manfred GILLI, University of Geneva; October 2000

N° 17: International CAPM with Regime Switching GARCH Parameters
Lorenzo CAPIELLO, The Graduate Institute of International Studies; Tom A. FEARNLEY, The Graduate Institute of International Studies and FAME; July 2000
N° 16: Prospect Theory and Asset Prices
Nicholas BARBERIS, University of Chicago; Ming HUANG, Stanford University; Tano SANTOS, University of Chicago; September 2000

N° 15: Evolution of Market Uncertainty around Earnings Announcements
Dušan ISAKOV, University of Geneva and FAME; Christophe PÉRIGNON, HEC-University of Geneva and FAME; June 2000

N° 14: Credit Spread Specification and the Pricing of Spread Options
Nicolas MOUGEOT, IBFM -University of Lausanne and FAME, May 2000

N° 13: European Financial Markets After EMU: A First Assessment
Jean-Pierre DANTHINE, Ernst-Ludwig VON THADDEN, DEEP, Université de Lausanne and CEPR and Francesco GIAVazzi, Università Bocconi, Milan, and CEPR; March 2000

N° 12: Do fixed income securities also show asymmetric effects in conditional second moments?
Lorenzo CAPIELLO, The Graduate Institute of International Studies; January 2000

N° 11: Dynamic Consumption and Portfolio Choice with Stochastic Volatility in Incomplete Markets
George CHACKO, Harvard University; Luis VICEIRA, Harvard University; September 1999

N° 10: Assessing Asset Pricing Anomalies
Michael J. BRENNAN, University of California, Los Angeles; Yihong XIA, University of Pennsylvania; July 1999

N° 9: Recovery Risk in Stock Returns
Aydin AKGUN, University of Lausanne & FAME; Rajna GIBSON, University of Lausanne; July 1999

N° 8: Option pricing and replication with transaction costs and dividends
Stylianos PERRAKIS, University of Ottawa; Jean LEFOLL, University of Geneva; July 1999

N° 7: Optimal catastrophe insurance with multiple catastrophes
Henri LOUBERGÉ, University of Geneva; Harris SCHLESINGER, University of Alabama; September 1999

N° 6: Systematic patterns before and after large price changes: Evidence from high frequency data from the Paris Bourse
Foort HAMELINK, Tilburg University; May 1999

N° 5: Who Should Buy Long-Term Bonds?
John CAMPBELL, Harvard University; Luis VICEIRA, Harvard Business School; October 1998

N° 4: Capital Asset Pricing Model and Changes in Volatility
André Oliveira SANTOS, Graduate Institute of International Studies, Geneva; September 1998
N° 3: Real Options as a Tool in the Decision to Relocate: An Application to the Banking Industry
Pascal BOTTERON, HEC-University of Lausanne; January 2000

N° 2: Application of simple technical trading rules to Swiss stock prices: Is it profitable?
Dušan ISAKOV, HEC-Université de Genève; Marc HOLLISTEIN, Banque Cantonale de Genève; January 1999

N° 1: Enhancing portfolio performance using option strategies: why beating the market is easy.
François-Serge LHABITANT, HEC-University of Lausanne; December 1998
International Center FAME - Partner Institutions

The University of Geneva
The University of Geneva, originally known as the Academy of Geneva, was founded in 1559 by Jean Calvin and Theodore de Beze. In 1873, The Academy of Geneva became the University of Geneva with the creation of a medical school. The Faculty of Economic and Social Sciences was created in 1915. The university is now composed of seven faculties of science; medicine; arts; law; economic and social sciences; psychology; education, and theology. It also includes a school of translation and interpretation; an institute of architecture; seven interdisciplinary centers and six associated institutes.

More than 13’000 students, the majority being foreigners, are enrolled in the various programs from the licence to high-level doctorates. A staff of more than 2’500 persons (professors, lecturers and assistants) is dedicated to the transmission and advancement of scientific knowledge through teaching as well as fundamental and applied research. The University of Geneva has been able to preserve the ancient European tradition of an academic community located in the heart of the city. This favors not only interaction between students, but also their integration in the population and in their participation of the particularly rich artistic and cultural life. http://www.unige.ch

The University of Lausanne
Founded as an academy in 1537, the University of Lausanne (UNIL) is a modern institution of higher education and advanced research. Together with the neighboring Federal Polytechnic Institute of Lausanne, it comprises vast facilities and extends its influence beyond the city and the canton into regional, national, and international spheres.

Lausanne is a comprehensive university composed of seven Schools and Faculties: religious studies; law; arts; social and political sciences; business; science and medicine. With its 9’000 students, it is a medium-sized institution able to foster contact between students and professors as well as to encourage interdisciplinary work. The five humanities faculties and the science faculty are situated on the shores of Lake Leman in the Dorigny plains, a magnificent area of forest and fields that may have inspired the landscape depicted in Brueghel the Elder's masterpiece, the Harvesters. The institutes and various centers of the School of Medicine are grouped around the hospitals in the center of Lausanne. The Institute of Biochemistry is located in Epalinges, in the northern hills overlooking the city. http://www.unil.ch

The Graduate Institute of International Studies
The Graduate Institute of International Studies is a teaching and research institution devoted to the study of international relations at the graduate level. It was founded in 1927 by Professor William Rappard to contribute through scholarships to the experience of international co-operation which the establishment of the League of Nations in Geneva represented at that time. The Institute is a self-governing foundation closely connected with, but independent of, the University of Geneva.

The Institute attempts to be both international and pluridisciplinary. The subjects in its curriculum, the composition of its teaching staff and the diversity of origin of its student body, confer upon it its international character. Professors teaching at the Institute come from all regions of the world, and the approximately 650 students arrive from some 60 different countries. Its international character is further emphasized by the use of both English and French as working languages. Its pluralistic approach - which draws upon the methods of economics, history, law, and political science - reflects its aim to provide a broad approach and in-depth understanding of international relations in general. http://heiwww.unige.ch
Prospect Theory and Asset Prices

Nicholas BARBERIS
University of Chicago

Ming HUANG
Stanford University

Tano SANTOS
University of Chicago

2000 FAME Research Prize
Research Paper No. 16