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Abstract

We aim at accommodating the existing affine jump-diffusion and quadratic models under the
same roof, namely the linear-quadratic jump-diffusion (LQJD) class. We give a complete charac-
terization of the dynamics underlying this class of models as well as identification constraints, and
compute standard and extended transforms relevant to asset pricing. We also show that the LQJD
class can be embedded into the affine class through use of an augmented state vector. We further
establish that an equivalence relationship holds between both classes in terms of transform analysis.
An option pricing application to multifactor stochastic volatility models reveals that adding nonlin-
earity into the model significantly reduces pricing errors, and further addition of a jump component
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Executive summary 
 
We aim at accommodating the existing affine jump-diffusion (AJD) and quadratic models 
under the same roof, namely the linear-quadratic jump-diffusion (LQJD) class. The 
generalization inherits from the AJD and quadratic classes their computational advantages, 
while pushing the boundaries out in designing a comprehensive structure for capturing 
stylised properties of the underlying processes driven by economic intuition. In particular, the 
LQJD class is able to house naturally jumps and non-linearity, both of which have been 
documented empirically in financial markets but cannot be simultaneously handled in either 
the AJD or quadratic class. 
 
We derive and justify necessary and sufficient identification conditions on the structure of the 
underlying jump-diffusion process. Using the method of undetermined coefficients, we are 
able to derive standard and extended transforms in linear-quadratic processes, which prove to 
be useful in deriving various pricing formulas for a substantial set of financial claims. We 
show explicitly that the identification procedure leads to a system of ordinary differential 
equations, which we discover to be non-symmetric Riccati differential equations. Given that 
there is a standard routine for such purpose, we demonstrate rigorously that the computational 
burden is not much augmented in the LQJD class. 
 
We also recover in detail the intimate link between the LQJD and the AJD classes. 
Specifically, we show how a linear-quadratic model can be converted to its affine counterpart 
in an automatic manner through use of an augmented state vector. Since this rewriting can be 
done in an automatic way through use of matrix algebra, it also means that the procedure can 
be easily implemented in a symbolic calculus package. Furthermore, we prove that the system 
of ordinary equations obtained for the quadratic class is identical to that from its affine 
version using the results from the affine class. This, together with the fact that the affine class 
is nested in the quadratic class, establishes an equivalence relationship between the two 
classes of models in terms of their transforms. In other words, the set of quadratic models that 
is absolutely distinct from the affine class is empty when considering asset pricing by 
transform analysis. This is a strong result, for the quadratic class has always been taken to be 
a separate group from the affine class in asset pricing methodology. 
 
The equivalence result also reveals that, when an equal number of state variables is 
considered in both classes, quadratic models have obvious advantages over affine ones by 
their intrinsic parsimony as well as their ability to accommodate nonlinearity. We demonstrate 
this through a numerical example on stochastic volatility. The 'horse-race' of the linear-
quadratic model against the affine ones shows that adding a supplementary state variable into 
the volatility process and introducing nonlinearity into the structure significantly improves 
goodness-of-fit. 
 
Since our model is very flexible, selecting an appropriate one for the modelling of various 
stochastic processes in finance will be of great concern. We leave this issue, as well as further 
econometric analysis of the performance of LQJD modelling, for future research. 
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1 Introduction

In modelling dynamics of state variables in an arbitrage free economy, researchers are
inevitably confronted with the tension between the comprehensiveness of the underlying
structure for matching stylized properties of the underlying processes driven by economic
intuition, and the complexity involved in subsequent computations and calibrations.

Not surprisingly, the first, and probably still the most exploited models come from the
class of affine jump-diffusions. Originated from the seminal works of Vasicek (1977) and Cox,
Ingersoll, and Ross (1985), the affine class has found its way into many branches of finance,
especially in the modelling of the term structure of interest rates. In answering requests
from empirical analysis for more versatile structures, it has grown rapidly from single factor
models without jumps to higher dimensions with non-trivial correlation structures between
the state variables and jumps with even stochastic arrivals. A generalization of the affine
class without jumps can be found in Duffie and Kan (1996), where closed-form solutions
are found for zero-coupon-bond prices. Dai and Singleton (2000) carry out a specification
analysis and sort out individual models into ’maximal flexible’ subgroups. Duffie, Filipovic,
Schachermayer (2002) give a complete characterization of regular affine processes and discuss
their applications in the term structure of interest rates, default risks, and option pricing
theory. With paramount generality, Duffie, Pan, and Singleton (2000) fully characterize the
structure of affine diffusion models with jumps (AJD models), and using techniques dating
back to Heston (1993), derive closed-form expressions for an ’extended transform’ of such
processes up to the solutions of a system of ordinary differential equations.

Despite the level of sophistication of the affine class of models and its relative compu-
tational simplicity, there is strong pressure to go beyond. The research efforts are again
triggered by empirical studies from various areas of finance but mostly from the term struc-
ture of interest rates. The utmost concerns are (i) to achieve better goodness-of-fits while
maintaining the positiveness of the underlying process and (ii) to capture nonlinearity in
the state price density. It has been shown, empirically, that neither can rest well under
the roof of the affine class. Notable works include Dai and Singleton (2000) where it is
found that adding Gaussian variables in the affine state vector allows for much more flexi-
bility in modelling and consequently improves the fitting performance; and Backus, Foresi,
Mozumda, and Wu (2001) where it is shown that adding negative square-root variables help
better explaining anomalies in interest rates. However, the only affine model that guaran-
tees the positiveness of the short rates is the one where all state variables are square-root
processes. Incorporating additional Gaussian or negative square-root factors will not permit
almost surely positive interest rates. Furthermore, the empirical study by Dai and Single-
ton (2000) shows that pricing errors are sensitive to the slopes of the swap yield curves,
suggesting omitted nonlinearity in the affine models.

The first step towards nonlinear models is, naturally, to consider the quadratic class
where the drift and covariance matrices are quadratic forms of the state vector. Such
attempts start in the early 1990s and involve the double square-root model of Longstaff
(1989), the univariate and multivariate quadratic models of Beaglehole and Tenney (1992)
and Beaglehole and Tenney (1991), the squared-autoregressive-independent-variable normal
term structure (SAINTS) model of Constantinides (1992), the quadratic model of El Karoui,
Myneni, and Viswanathan (1992), and the generalized SAINTS model of Ahn (1995). How-
ever, the general theory of the quadratic class has not taken shape until recently. The
pioneering studies that lay down the framework of the quadratic class are Ahn, Dittmar,
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and Gallant (2002), Leippold and Wu (2002), and Chen and Poor (2002). The first two
pieces of works characterize the structure of the state vector under the quadratic class, clarify
the identification constraints, and develop pricing formulas for discount bonds. The speci-
fication that the short rates are quadratic in the state vector then guarantees its positivity
without sacrificing modelling flexibility, and nonlinearity is taken into account by construc-
tion. It has also been noted by Leippold and Wu (2002) that the computational burdens
are not much heavier than in the affine class. Chen and Poor (2002) approach the problem
from a different perspective. Similar in spirits to Duffie, Filipovic, Schachermayer (2002),
they define a regular quadratic Gaussian process and characterize with mathematical rigor
quadratic term structure models in a gerneral Markov setting. On the empirical side, Ahn,
Dittmar, and Gallant (2002), and Leippold and Wu (2001) calibrate the quadratic models
against the term structure of interest rates. Their results strongly favour the quadratic
models over the affine ones.

However, the theory is still far from complete. First of all, the quadratic class is de-
veloped with modelling the yield curve in mind. When it comes to the pricing of equity
options with stochastic volatility, for instance, the assumption that the stock price and the
state variables underlying the volatility dynamics are independent has to be made. Since
correlation between the stock price and the volatility processes is instrumental to generate
smile skewness (see, e.g., Renault and Touzi (1996)), and indeed a skew is commonly found
empirically (see, e.g., Bates (1991, 1997)), such independence assumption is obviously a very
undesirable feature. Secondly, the empirical literature of stochastic volatility also reveals
that having jumps in the stock price poses a strong explanation for the magnitude of the
smile effects. For example, the study of Bates (1996) on the dynamics of exchange rates
embedded in Deutsche Mark option prices shows that the stochastic volatility parameters
are implausible given the time series properties of implied volatilities, while a process with
jumps yields much more consistent estimates. Study of the S&P500 futures option market
in Bates (2000) further confirms these findings. Moreover, Bakshi, Cao, and Chen (1997)
show that incorporating stochastic volatility and jumps is important for pricing and internal
consistency of the model. Albeit that these models are affine, they all point to the fact that
jumps play an important role in modelling the underlying price process. However, such fea-
ture cannot be reconciled in the quadratic class. Last but not least, it is intuitive to think
that, by a simple change-of-variables technique the quadratic variables can be replaced by
affine ones and there must be an intimate link between the quadratic and affine classes. No
such efforts have been conducted in Ahn, Dittmar, and Gallant (2002) and Leippold and
Wu (2002).

It is therefore our aim to establish a theoretical framework which could fulfill the un-
accomplished tasks of the quadratic class in terms of asset pricing. It turns out that the
only way to proceed is to partition the state vector into two parts: the quadratic vector
and the affine vector. The quadratic vector is allowed to enter the quadratic forms, and
the affine vector is restricted to affine forms. Moreover, the jump components are attached
only to the affine vector. This structure is called linear-quadratic to reflect its construction.
The drift matrix, the covariance matrix and the jump intensity are specified to be linear-
quadratic in the state vector, while extra conditions are required to ensure identifiability of
linear-quadratic diffusion model with jumps (LQJD models).

Following the methodology of Heston (1993) and Duffie, Pan, and Singleton (2000), we
are able to derive standard and extended transforms in linear-quadratic processes, which
prove to be useful in deriving various pricing formulas for a substantial set of financial claims.
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The identification procedure leads to a system of ordinary differential equations, which
we discover to be non-symmetric Riccati differential equations. We compute explicitly the
coefficient matrices of the non-symmetric Riccati differential equations, and cite results from
the literature of differential equations on how the system can be solved. Given that there
is a standard routine for such purpose, we demonstrate rigorously that the computational
burden is not much augmented in the linear-quadratic class.

We also recover in detail the intimate link between the quadratic and the affine classes.
Specifically, we show how a linear-quadratic model can be converted to its affine counterpart
in an automatic manner through use of an augmented state vector. Since this rewriting can
be done in an automatic way through use of matrix algebra, it also means that the procedure
can be easily implemented in a symbolic calculus package. Furthermore, we prove that the
system of ordinary equations obtained for the quadratic class is identical to that from its
affine version using the results from the affine class. This, together with the fact that the
affine class is nested in the quadratic class, establishes an equivalence relationship between
the two classes of models in terms of their transforms. In other words, the set of quadratic
models that is absolutely distinct from the affine class is empty when considering asset
pricing by transform analysis.

However, when an equal number of state variables is considered in both classes, quadratic
models have obvious advantages over affine ones by their intrinsic parsimony as well as their
ability to accommodate nonlinearity. We demonstrate this through a numerical example
on stochastic volatility. The ’horse-race’ of the linear-quadratic model against the affine
ones of Bates (2000), Duffie, Pan, and Singleton (2000) and Heston (1993), both with and
without jumps, shows that adding a supplementary state variable into the volatility process
and introducing nonlinearity into the structure significantly improves goodness-of-fit.

The first LQJD model, to the best of our knowledge, appears in Piazzesi (2001), where
again the problem of modelling the yield curve is considered. The paper initiates the issue of
including jumps with quadratic arrival intensity in the quadratic class, and fulfil the task by
partitioning the state vector into two parts, one being pure Gaussian-Markov without jumps,
and the other being square-root process with jumps. The drift and variance-covariance
matrices are still constrained to be affine in the state vector and no further discussion is
carried out in the structural constaints on these matrices, which render the paper falling
out of being a complete characterization of the LQJD class.

In a study of separable term structure models, Filipovíc (2002) proves that the maximal
consistent order of the polynomial term structure models is two. In this sense, our study of
the LQJD model actually serves as the final touch to the whole picture.

The rest of the paper is structured as follows. Section 2 describes the specification of
the LQJD framework and conditions for identification. Section 3 computes the standard
and extended transforms, discusses numerical solution procedures, and shows the link and
equivalence between the linear-quadratic and affine classes. Section 4 presents the option
pricing theory in the linear-quadratic setting, followed by Section 5 on a numerical appli-
cation of LQJD modelling to stochastic volatility. Section 6 concludes. Four appendices
contain technicalities and an example of affine reformulation of an LQJD model.

2 Characterization of LQJD modelling

In this section we give a detailed description of LQJD modelling.
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2.1 The general LQJD setting

Suppose an n-dimension vector Xt, characterized by the stochastic differential equation
(SDE):

(2.1) dXt = µ (Xt, t) dt+ σ (Xt, t) dWt + dJt,

is drawn from some state space D, with
(i) Wt a standard n◦-dimension Brownian motion;
(ii) Jt a pure jump process with size distribution Π (X, dy, t) and a non-negative arrival

intensity λ (Xt, t), both continuous in X and depending only on Xt− = lims↑tXs so that
the process is Markovian; and

(iii) (E ,F ,P) the usual probability space with (W,J)-augmented filtration (Ft)t≥0.
For identification, we require that n ≥ n◦, i.e. the dimension of the state vector is at

least as large as that of the Brownian motion.
In the LQJD setting, it is assumed that the drift matrix µ (Xt), the covariance ma-

trix Ω (Xt, t) = σ (Xt, t)σ (Xt, t)
>, and the jump arrival intensity λ (Xt, t) are all linear-

quadratic (LQ) in the state vector Xt, namely each entry of the coefficient matrices are of
the following form:

(2.2) κ (X, t) =
1

2
X>Λ (t)X + b> (t)X + c (t) ,

where the superscript > denotes the transpose of the underlying matrix, and the coefficient
matrices Λn×n, bn×1 and c (possibly complex-valued) are all deterministic in t.

More specifically, Λ is block diagonal with only the leading square block being non-
singular and all remaining entries being zeros:

Assumption 1 For all κ,

(2.3) Λ =

µ
A 0
0 0

¶
,

where Am×m, m ≤ n, is non-singular and symmetric.

By Assumption 1, only the firstm components of the state vector will enter the quadratic
term of (2.2). To see this, partition the state vector X and the coefficient vector of the affine
term b as:

(2.4) X =

µ
X̄
X
¯

¶
, b =

µ
k
l

¶
,

where the upper part are m× 1 and the lower part are (n−m) × 1, respectively. We can
now rewrite (2.2) as:

(2.5) κ (X, t) =
1

2
X̄>A(t)X̄+ k> (t) X̄+ l> (t)X

¯
+ c (t) .

We will switch between the representations (2.2) and (2.5) in the sequel, whichever is more
convenient.
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It is obvious that models of the AJD class are obtained by setting A ≡ 0 and k ≡ 0 in
(2.5), while models of the quadratic class correspond to the absence of a jump component
and l ≡ 0. By reference to these two classes, the variables X̄, resp. X

¯
, are named quadratic,

resp. affine. With the additional quadratic components introduced through X̄, LQJDmodels
can capture nonlinearity in the drift, diffusion, and jump intensity of the state vector, a
property that is often found empirically (see, e.g., Ait-Sahalia (1996), Ahn and Gao (1999)),
but missing from AJD models.

2.2 The identification constraints

For an LQJD model to be identifiable (in the sense of permitting use of the method of
undetermined coefficients discussed in Section 3), we need specific constraints on the drift
and covariance matrices as well as the jump component. We state these constraints as
assumptions and explain the necessity of their existence in an intuitive manner. Appendix
A gives a formal treatment of this issue.

As already mentioned the state vectors of quadratic and AJD models correspond to X̄
and X

¯
of X, respectively. Given that the maximum order of X in the LQJD setting is the

same as that in the quadratic class and higher than that in the AJD class, we expect the
identification constraints of the quadratic class to be binding (on X̄) in the LQJD class as
well, and those of the AJD class to be relaxed.

In the quadratic case, it is necessary (and sufficient) to have the drift matrix be affine
in the state vector and the diffusion matrix be constant. See, for example, Leippold and
Wu (2002) for details. Therefore:

Assumption 2 The drift matrix µ̄ of the quadratic variables X̄ is affine in the quadratic
variables X̄.

Assumption 3 The diffusion matrix σ̄ of the quadratic variables X̄ is deterministic in t.

We further require the next restriction on the drift.

Assumption 4 The drift matrix µ̄ of the quadratic variables X̄ is independent of the affine
variables X

¯
.

Assumption 4 could be justified heuristically by the fact that X
¯
should only remain in

affine terms, hence must not enter the drift of X̄ which will pass through the quadratic
terms. This might look quite restrictive because it might be of interest in some models
to link members of X

¯
with X̄. For instance, if X

¯
is the logarithm of stock price and X̄ is

the state vector describing the dynamics of stock price volatility, it is indeed desirable to
let the logarithm of the stock price X

¯
play a ‘feedback’ role on the volatility state vector

X̄. Assumption 4 rules out the possibility of having this type of ‘feedback’ effect through
the drift of X̄ in the LQJD setting. However, we can still model this effect through the
correlation structure of X. The numerical example in Section 5 demonstrates that this
could be effectively done by including a factor that is (almost) perfectly correlated with the
logarithm of the stock price.

In the AJD class, the model is identifiable as long as the drift and the covariance matrices
of the state vector are affine. Since the order of X is raised to two in the LQJD framework,
the drift and the covariance matrices of X

¯
gain further flexibility in specification, i.e.,
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Assumption 5 The drift matrix µ of the affine variables X
¯
is LQ in X.

Assumption 6 Each entry in the diffusion matrix σ of the affine variables X
¯
can be either

affine in the quadratic variables X̄ or square-root affine in an LQ function of X, but not
both.

Assumption 6 differs from the usual practice in affine modelling, which tends to restrict
the diffusion matrix to be square-root affine in the state vector. See, for example, Dai
and Singleton (2000). The motivation for such restriction is to ensure that the underlying
process is positive almost surely. In the LQJD environment, however, positiveness of the
underlying process is naturally guaranteed through the quadratic state vector X̄. Moreover,
as is also pointed out in Duffie, Pan and Singleton (2000), it is the covariance matrix, not
the diffusion matrix itself, that matters in the procedure of identification. Such restriction
in the LQJD setting would in fact exclude an important group of model candidates, which
distinguish themselves from square-root affine models by carrying sign information in the
diffusion matrix.

If a square-root affine process does enter the affine variables X
¯
, there are some extra

restrictions on other members of X such that no square roots in the state vector show up
in Ω and its LQ property is maintained:

Assumption 7 If the (i, j)th entry of the diffusion matrix σ of the affine variables X
¯
is

square-root affine in an LQ function of X, then each entry in the jth column must also be
square-root affine in the same function.

Assumption 8 If the jth column of the diffusion matrix σ of the affine variables X
¯
is

square-root affine, then the quadratic variables X̄ are independent of the corresponding
Brownian motion Wj.

To complete the LQJD setup, we note that jumps will be restricted to the affine variables
X
¯
. This assumption avoids quadratic jump components impeding identification.

Assumption 9 The first m entries of the jump component J are zeros.

We further need positivity of the jump intensity, as well as the variances of the state
variables which are diagonal terms of Ω. We use the superscript + to denote the Moore-
Penrose, or generalized inverse of a matrix. When a matrix Λ is non-singular, Λ+ = Λ−1.
The necessary and sufficient conditions for the LQ jump intensity and variances to be
positive semi-definite are:

Assumption 10 The jump intensity and the variances of the state variables are LQ in the
state vector, and their coefficient matrices

¡
Λ· b· c·

¢
satisfy:

i) Λ· is positive semidefinite;
ii) b· belongs to the column space of Λ·; and
iii) c· ≥ 1

2b
>· Λ+· b·.

We may now restate the structure of the LQJD state vector X more clearly by stacking
the coefficient matrices.
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a) For the quadratic variables X̄:

(2.6) dX̄t = µ̄
¡
X̄t, t

¢
dt+ σ̄dWt,

where µ̄
¡
X̄t, t

¢
is m× 1 and σ̄ (t) is m× n. By Assumption 3, the drift is equal to:

(2.7) µ̄
¡
X̄t, t

¢
=

 k>1 X̄t + c1
...

k>mX̄t + cm

 .
To streamline notations, we use calligraphic letters

¡ A K L C ¢ for coefficient matrices
associated with the drift:

K̄ =

 k̄>1
...
k̄>m


m×m

, C̄ =

 c̄1
...
c̄m


m×1

.

An upper bar denotes that the coefficients are those of µ̄
¡
X̄t, t

¢
, which can now be written

compactly as:

(2.8) µ̄
¡
X̄t, t

¢
= K̄X̄t + C̄.

Moreover, the covariance matrix Ω̄ (t) = σ̄ (t) σ̄ (t)> of X̄t is deterministic in t by As-
sumption 3.

b) For the affine variables X
¯
:

(2.9) dX
¯ t
= µ

¡
X̄t,X¯ t

, t
¢
dt+ σ

¡
X̄t,X¯ t

, t
¢
dWt + dJ,

where J is the lower (n−m) × 1 block of the jump vector J , µ ¡X̄t,X¯ t, t¢ is (n−m) × 1
and σ

¡
X̄t,X¯ t

, t
¢
is (n−m)× n.

Similar analysis leads to:

(2.10) µ
¡
X̄t,X¯ t

, t
¢
=
1

2

³
In−m ⊗ X̄>t

´
AX̄t +KX̄t + LX¯ t + C,

and:

(2.11) Ω
¡
X̄t,X¯ t

, t
¢
=
1

2

³
In−m ⊗ X̄>

´
A
¡
In−m ⊗ X̄

¢
+ K

¡
In−m ⊗ X̄

¢
+ L (In−m ⊗X¯ ) + C,

where Fractur style letters
¡
A K L C

¢
are used for coefficients of the covariance matrix

and an under bar denotes their position, In denotes the identity matrix of order n, ⊗ is the
Kronecker product operator,

M =

 M1
...

Mn−m

 ,
withM = A,K,L, C (M = A, k, l, c) and dimensionsm (n−m)×m, (n−m)×m, (n−m)×



Linear-Quadratic Jump-Diffusion Modelling 9

(n−m), (n−m)× 1, respectively, and

M =

 M1,1 · · · M1,n−m
...

. . .
...

Mn−m,1 · · · Mn−m,n−m

 ,
with M = A,K,L,C (M = A, k, l, c) and dimensions m (n−m) × m (n−m) , (n−m) ×
m (n−m) , (n−m)× (n−m)2, (n−m)× (n−m), respectively.

Finally, by Assumptions 3, 7 and 8, the covariance matrix between the quadratic and
affine variables will be affine in X̄ only. Hence, it can be represented as:

(2.12) Ω̃
¡
X̄t, t

¢
= K̃

¡
In−m ⊗ X̄

¢
+ C̃,

where:

M̃ =

 M̃>
1,1
...

M̃>
m,1

· · ·
. . .
· · ·

M̃>
1,n−m
...

M̃>
m,n−m

 ,
with M̃ = K̃, C̃ (M = k, c), and dimensions m×m (n−m) and m× (n−m), respectively.

c) Eventually the complete drift and covariance matrices of the state vector X are given
by:

(2.13) µ (Xt, t) =

µ
µ̄
¡
X̄t
¢

µ
¡
X̄t,X¯ t

¢ ¶
n×1

,

and

(2.14) Ω (Xt, t) =

Ã
Ω̄ Ω̃

¡
X̄t
¢

Ω̃
¡
X̄t
¢>

Ω
¡
X̄t,X¯ t

¢ !
n×n

.

3 The transforms

Given that the underlying state vector is specified so that it satisfies all identification con-
straints, we are able to compute the expected value of some discounted payoffs up to the
solution of a system of ordinary differential equations (ODE).

The procedure of identifying the system of ODEs is similar to that used in the AJD
and quadratic classes. We first use Ito’s lemma to decompose a random payoff into a fi-
nite variation part and a martingale. If the finite variation part is null, the conditional
expectation of the random payoff is a martingale. This yields a partial differential equation
(PDE) characterization of the payoff. The system of ODEs can then be obtained by conjec-
turing a solution, passing it through the PDE, and applying the method of undetermined
coefficients.

The above discussion also indicates that payoffs that can be priced analytically are not
arbitrary. The class of payoffs (possibly after some kind of transforms) that can be handled
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by such procedure must be one of the following:

(3.1) V s (XT , T ) = e
g1(XT ,T ),

or

(3.2) V e (XT , T ) = g0 (XT,T ) e
g1(XT ,T ),

where the discount rate is R (Xt, t) , and gi (Xt, t), i = 0, 1, andR (Xt, t) are all LQ functions.
Note that adequate retrictions as in Assumption 10 may be imposed to ensure positivity of
interest rate (and default rate) processes modelled as LQ functions.

The payoff V s, resp. V e, is termed the standard, resp. extended, transform by Duffie,
Pan and Singleton (2000) in addressing AJD models. We adopt the same terminology here,
but note that the set of payoffs that we work on has been enlarged. Typical examples of
this extended class of payoffs are those that are quadratic in X̄.

Before going for the computations, we introduce the following notations for differentia-
tion: for any C1,1 function f : D×R+ → C, define:

ḟ (x, t) =
∂f

∂t
(x, t) ,

fxi (x, t) =
∂f

∂xi
(x, t) ,

5xf (x, t) = [fx1 (x, t) , ..., fxn (x, t)]
> ,

5xxf (x, t) = [5xfx1 (x, t) , ...,5xfxn (x, t)] .

The infinitesimal operator D is then defined as:

Df (x, t) = ḟ (x, t) + µ (x)>5x f (x, t) +
1

2
tr [Ω (x)5xx f (x, t)](3.3)

+λ (x, t)

Z
D
[f (x+ y, t)− f (x, t)]Π (x, dy, t) .

To alleviate the notational burden, we will often omit all function arguments in the
following sections as well as in the appendices.

3.1 The standard transform

We aim at computing the standard transform defined as follows:

(3.4) φs (g1;Xt, t, T ) = Et

·
exp

µ
−
Z T

t
R (Xs, s) ds

¶
eg1(XT ,T )

¸
.

One may have noticed that the standard transform gives the time t price of a fu-
ture payoff eg1(XT ,T ) where R (Xt, t) is the appropriate discount rate. For instance, when
g1 (Xt, t) ≡ 0, (3.4) yields the price of a zero-coupon bond. For truncated payoffs such as
European and Asian options, (3.4) is not directly applicable. However, many authors have
shown that, after some transformations, the prices assume the form of (3.4) and they can
then be solved in the transformed space using the results of this section. See also Carr and
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Madan (1999) and Lewis (2001) for details on option pricing using transform techniques.
To solve for the standard transform, first consider the process:

(3.5) Φt = exp

µ
−
Z t

0
R(Xs, s)ds

¶
eg1(Xt,t).

By Ito’s lemma, we have

(3.6) Φt = Φ0 +

Z t

0
DΦsds+

Z t

0
ηsdWs + Jt.

The processes ηt and Jt are, respectively,

(3.7) ηt = (5xΦt)
> σt,

and

(3.8) Jt =
X

0<τ(i)≤t

¡
Φτ(i) − Φτ(i)−

¢− Z t

0
γsds,

where τ(i) denotes the ith jump time of X and:

(3.9) γt = λ

Z
D
[Φ (Xt + y)− Φ (Xt)]Π (Xt, dy) .

Suppose the technical integrability conditions given below are satisfied:

(3.10)

(i) E [|ΦT |] <∞,
(ii) E

·³R T
0 ηsη

0
sds
´1/2¸

<∞,
(iii) E

hR T
0 |γs|ds

i
<∞.

By Lemma 1 in Appendix A of Duffie, Pan and Singleton (2000), both Jt and
R t
0 ηsdWs

are martingales. Furthermore, if DΦt ≡ 0, Φ is driftless and hence a martingale as well,
namely:

(3.11) Φt = E
χ
t [ΦT ].

Multiplying both sides of this last equality by exp
³R t
0 R(Xs, s)ds

´
yields our standard

transform (3.4), i.e.,

(3.12) φs (g1;Xt, t, T ) = e
g1(Xt,t).

What remains now is to find a suitable function g1 (Xt, t) such that the condition DΦt ≡
0 holds. Let:

(3.13) θ1 (l1) =

Z
D
el
>
1 y¯Π (x, dy) ,

where y
¯
is the lower (n−m)× 1 block of y. We have:
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Lemma 1 If the technical integrability conditions (3.4) hold and the LQ function g1 (Xt, t)
satisfies the partial integro-differential equation (PIDE) (the Cauchy problem):

(3.14) R = ġ1 + µ
>5x g1 +

1

2
tr
h³
5xxg1 +5xg1 (5xg1)

>
´
Ω
i
+ λ [θ1 (l1)− 1] ,

then Φt is a martingale.

Proof. Since the first m components of y are zeros by construction, we conclude that
for any LQ function κ:

κ (x+ y) = κ (x) + l>κ y
¯
.

Hence:
Φt (x+ y)− Φt (x) = Φt

³
el
>
1 y¯ − 1

´
.

The rest of the proof is then straightforward from computing the derivative terms in DΦt.

Since the functional form g1 is known, we can identify g1 by the method of undetermined
coefficients. This procedure results in a set of ODEs which have to be satisfied by the
coefficient matrices

¡
A1 k1 l1 c1

¢
of g1. The problem of (3.4) is henceforth reduced

to solving the system of ODEs in the following proposition.

Proposition 1 Suppose the technical integrability conditions (3.10) hold and the following
system of ODEs, with initial conditions given by g1 (Xτ , τ)|τ=0 = g1 (Xt, t)|t=T , τ = T − t,
admits a unique solution:

d

dτ
l1 = L>l1 + 1

2

³
l>1 ⊗ In−m

´
L>l1 + [θ1 (l1)− 1] lλ − lR,(3.15)

d

dτ
$1 =M21 +M22$1 −$1M11 −$1M12$1,(3.16)

d

dτ
c1 = b

>
1 C +

1

2

³
tr
h
A1Ω̄

>
i
+ b>1 Cb1

´
+ [θ1 (l1)− 1] cλ − cR,(3.17)

where (A, k, l, c)λ,R are the coefficient matrices of LQ functions λ and R, respectively, $1 =¡
A1 k1

¢
, and matrices

¡
M11 M12 M21 M22

¢
are functions of τ and l1 with explicit

expressions detailed in Appendix A. Then the standard transform φs defined by (3.4) is
given by (3.12).

Proof. Straightforward from previous discussion and the computations made in Ap-
pendix A during the identification process.

One may have noticed that ODEs (3.15) and (3.17) bear close resemblance to the ones
of the AJD class (see Equations (2.5) and (2.6) of Duffie, Pan and Singleton (2000)). This
heavily suggests that there is some intimate link between LQJD and AJD models. Further-
more, (3.15) is a system of its own and thus can be solved independently of others. This
further suggests that the appropriate procedure of solving the whole system is to follow the
sequence of the sub-systems (3.15), (3.16) and (3.17). Finally, the ODE (3.16) is of the
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standard form of a system of non-symmetric matrix Riccati differential equations (RDE).
Since standard procedures exist for solving non-symmetric RDEs, we have a complete rou-
tine for disentangling the whole system, and the level of complexity obviously depends on
the sub-system (3.15). We will elaborate on these points after a brief discussion of the
extended transform.

3.2 The extended transform

By the same rationale as that in the case of the standard transform, we can identify the
system of ODEs for the extended transform:

(3.18) φe (g0, g1;Xt, t, T ) = Et

·
exp

µ
−
Z T

t
R (Xs, s) ds

¶
g0 (XT , T ) e

g1(XT ,T )

¸
.

Consider the random process:

(3.19) Φ̃t = exp

µ
−
Z t

0
Rsds

¶
g0e

g1 .

Assume that following technical integrability conditions hold:

(3.20)

(i) E
h
|Φ̃T |

i
<∞ ,

(ii) E

·³R T
0 η̃sη̃

0
sds
´1/2¸

<∞ ,

(iii) E
hR T
0 |γ̃s|ds

i
<∞ ,

where:

(3.21) η̃t =
³
5xΦ̃t

´>
σt,

and

(3.22) γ̃t = λ

Z
D

h
Φ̃ (Xt + y)− Φ̃ (Xt)

i
Π (Xt, dy) .

If functions gi (Xt, t), i = 0, 1, uniquely exist such that DΦ̃t = 0, then Φ̃t is a martingale.
We then have a solution to the extended transform:

(3.23) φe (g0, g1;Xt, t, T ) = g0 (Xt, t) e
g1(Xt,t).

Applying results obtained for g1, we can identify the PIDE for g0. Let:

(3.24) θ0 (l0,l1) =

Z
D

³
l>0 y
¯

´
el
>
1 y¯Π (x, dy) .

We have:

Lemma 2 If the technical integrability conditions (3.20) hold and the LQ function g0 (x, t)
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satisfies the PIDE:

(3.25) 0 = ġ0 + µ
>5x g0 +

1

2
tr
h³
5xxg0 + 25x g0 (5xg1)

>
´
Ω
i
+ λθ0 (l0,l1) ,

then Φ̃t is a martingale.

Proof. Recall that, for any LQ function κ:

κ (x+ y) = κ (x) + l>κ y
¯
.

So:

Φ̃ (x+ y)− Φ̃ (x) = g0 (x+ y)Φ (x+ y)− g0 (x)Φ (x)
= g0 (x) [Φ (x+ y)−Φ (x)] + l>κ y

¯
Φ (x+ y) ,

which gives Z
D

h
Φ̃ (x+ y)− Φ̃ (x)

i
Π (x, dy)

= Φ̃

·Z
D
el
>
1 y¯Π (x, dy)− 1

¸
+Φ

·Z
D

³
l>0 y
¯

´
el
>
1 y¯Π (x, dy)

¸
.

The rest of the proof is straightforward from computing terms of derivatives in DΦ̃t.

Now by the same technique of coefficient identification as the one used for Proposition
1, we get a set of ODEs for the coefficient matrices

¡
A0 k0 l0 c0

¢
of g0:

Proposition 2 Suppose the technical integrability conditions (3.20) hold and the following
system of ODEs, with initial conditions given by [g0 (Xτ , τ)]τ=0 = [g0 (Xt, t)]t=T , τ = T − t,
admits a unique solution:

d

dτ
l0 = L>l0 +

³
l>0 ⊗ In−m

´
L>l1 + θ0 (l0, l1) lλ,(3.26)

d

dτ
$0 =M

e
21 +M

e
22$0 −$0Me

11 −$0Me
12$0,(3.27)

d

dτ
c0 = b

>
0 C +

1

2
tr
h
A0Ω̄

>
i
+ b>0 Cb1 + θ0 (l0, l1) cλ,(3.28)

where $0 =
¡
A0 k0

¢
, and matrices

¡
Me
11 Me

12 Me
21 Me

22

¢
are functions of τ , l0 and

l1 with explicit forms detailed in Appendix A. Then the extended transform φe defined by
(3.18) is given by (3.23) where g1 is determined as in Proposition 1.

Proof. Similar to that of Proposition 1.

Note that ODES (3.26) and (3.28) are also akin to ODEs encountered in AJD modelling
(see Duffie, Pan and Singleton (2000)).
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3.3 Solving non-symmetric matrix Riccati equations

As we have previously remarked, the ODEs satisfied by $i, i = 0, 1, are non-symmetric
matrix RDEs, which are, in general, of the form:

(3.29)
d

dτ
$ =M21 (τ) +M22 (τ)$ −$M11 (τ)−$M12 (τ)$,

where $ is a matrix and the coefficients,

(3.30) M (τ) =

µ
M11 (τ) M12 (τ)
M21 (τ) M22 (τ)

¶
,

can be real or complex. A powerful result on RDEs, the Radon’s lemma (see Freiling
(2002)), says that each non-symmetric matrix RDE system is equivalent to a linear system
in the following sense:

Theorem 1 (Radon’s lemma)

1. Let $ (τ) be on some interval U ⊂ R a solution of the RDE (3.29) with $ (τ0) = $0.
If Q is for τ ∈ U the unique solution of the initial value problem

d

dτ
Q (τ) = (M11 (τ) +M12 (τ0)$ (τ))Q (τ) ,

Q (τ0) = I,

and P (τ) := $ (τ)Q (τ), then

Y (τ) =

µ
Q (τ)
P (τ)

¶

defines for τ ∈ U the solution of (3.31) with Y (τ0) =
µ

I
$0

¶
.

2. If Y (τ) =
µ
Q (τ)
P (τ)

¶
is on some interval U ⊂ R a solution of the linear system:

(3.31)
d

dτ
Y (τ) =M (τ)Y (τ) ,

such that detQ (τ) 6= 0 for τ ∈ U , then:

$ (τ) = P (τ)Q (τ)−1

is a solution of (3.29); in particular, $ (τ0) = P (τ0)Q (τ0)
−1.

By Radon’s lemma, the initial problem for a matrix RDE system that we have to solve
in the LQJD setting is (locally) equivalent to an initial value problem for the linear system
defined in (3.31). Since standard procedures exist for solving linear systems of ODEs such as
(3.31), the added computation burden relative to that of an AJD model is limited, whereas
restrictions are unleashed on the structural flexibility of the state vector, which had to be
sacrificed for computational efficiency.
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We make no further efforts on the discussion about the existence and uniqueness of
the solutions of RDE systems. First there does not exist a general theory on these issues
for matrix Riccati systems (see Freiling (2002)). This implies that such discussions must
be case specific. Second all models for financial applications are simple enough to admit
unique solutions. One example is that li is forced to be a constant, i.e. d

dτ li = 0, so
that the coefficients of the Riccati systems $i are constant and that unique solutions are
guaranteed2. Although such a restriction is not necessary, it does ease the computations,
and the resulting structures of the state vector are still sophisticated enough to capture
stylized facts found for the underlying processes. For further details on RDE systems, see,
for instance, Freiling (2002) and the references therein.

Finally, we note that some authors tend to call all quadratic matrix differential equations
matrix RDEs. However, not all quadratic differential equations can be represented in a form
similar to (3.16) and (3.27). Previous studies on AJD and quadratic models have mentioned
that the resulting ODE systems are Riccati equations, but none of them has clarified their
own views on this point. We are the first to represent the system in the form of non-
symmetric matrix RDEs with all coefficient matrices explicitly identified. See Appendix A
for details.

3.4 The equivalence between LQJD and AJD classes

As already mentioned the AJD class is a subset of the LQJD class. It will soon be shown
that the LQJD class can be accommodated in the AJD class by replacing the quadratic
terms by some new variables or pseudo-factors. This way of proceeding should not come
as a surprise if one recalls how a quadratic fit can be easily achieved in the usual linear
regression model. Quadratic and cross-products terms only need to be treated as additional
factors (explanatory variables in the regression case). This reformulation will lead to an
equivalence relationship between LQJD and AJD classes in terms of their transforms.

To see this, first note that all quadratic terms are affine in elements of XtX>
t . Therefore,

we introduce the vector Z of pseudo-factors, which is defined as:

(3.32) Z = v
h
X̄X̄>

i
,

where v is the vector-half operator. This operator, also sometimes denoted by vech, stacks
the lower elements of an m×m matrix into an m(m+1)/2×1 vector. Hence v

h
X̄X̄>

i
only

collects the distinct elements of the squared symmetric matrix X̄X̄>. See Appendix B for
further details. The v or vech operator is well known by empirical finance researchers, for
example in multivariate GARCH modelling.

We can now rephrase the LQJD setting in terms of the augmented state vector:

(3.33) Xa =

 Z
X̄
X
¯

 .
2 If we conceive a square-root process as quadratic of an arithmetic process, then most of the existing

affine models (e.g., Heston (1993)) are of this kind, with li corresponding to the multiplicator of the stock
price logarithm.
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Using notations from Duffie, Pan and Singleton (2000), we have:

(3.34) dXa = µa (Xa
t ) dt+ σa (Xa

t ) dWt + dJ
a
t ,

where:

µa = K1X
a +K0,

Ωa = H1 (IN+n ⊗Xa) +H0.

All matrices H0, H1, K0, K1 are explicitly given in terms of the drift and covariance
matrices of the initial state vectors X̄ and X

¯
of the LQJD model in Appendix B. The above

expressions show that all terms in the LQJD setting can be represented as affine forms of
Xa, which means that LQJD and AJD classes are in fact nested within each other. We
further have:

Proposition 3 The standard and extended transforms in an n-factor LQJD model are
equal to the transforms in an (N + n)-factor

¡
N = 1

2m (m+ 1)
¢
AJD model, where the

state vector is augmented by an additional N × 1 pseudo state vector Z = v
³
X̄X̄>

´
.

Proof. See Appendix C.

Note that the equivalence relationship of AJD and LQJD classes does not hold for general
payoffs. Neither does the technique of change of variables apply for general structures of the
state vector. This equivalence is really due to the presence of LQ structures at every step
of the identification precedure. This, however, does not hold in general. For example, the
equivalence relationship breaks down when the pseudo factors correspond to exponentials
of the initial state variables.

Proposition 3 is a strong result, for the quadratic class has always been taken to be a
separate group from the affine class in asset pricing methodology. We have just shown that
this perception is not valid at all, and demonstrated how an LQJD model can be trans-
formed into an AJD one in an automatic manner. The above proposition concerns both a
theoretical and a numerical equivalence. Indeed we show in the proof that the underlying
ODEs are rigorously the same in both settings. This implies that numerical schemes nec-
essary for computing their solutions will deliver exactly the same results. To illustrate this
equivalence, we present in Appendix D an example of affine reformulation of a two-factor
LQ stochastic volatility model, which is to be discussed in Section 5. Besides, a straight-
forward consequence of Proposition 3 is that it allows applying the specification analysis
(with slight modifications due to Assumption 6) developed by Dai and Singleton (2000)
once quadratic term structure models are reformulated as affine term structure models.

Nevertheless, residing in the LQJD setting has advantages of its own. An obvious one
is its parsimony over the AJD models: for the same number of factors, an LQJD model
has the extra capacity to accommodate effects that cannot be handled in an AJD model
without introducing the pseudo-factors Z. Put it differently, N additional factors have to
be introduced for drawing up equivalence between an n-factor LQJD model and its AJD
counterpart. Apparently, N grows fast with m, e.g., for m = 1, N = 1; m = 2, N = 3;
m = 3, N = 6; etc.. Furthermore, since the ODEs satisfied by li are the same in both
frameworks, and the procedures for solving the Riccati systems are standard, it costs little
but rewards much by shifting directly to LQJD modelling.
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4 Option pricing in the LQJD setting

In this section we show how future payoffs of given types can be priced in the LQJD
framework. Results are akin to other results obtained for asset pricing using transform
analysis (see e.g. Duffie, Pan and Singleton (2000) and Carr and Madan (1999)).

4.1 The state-price density

It is well known that option prices are not derived from the data generating process under the
historical (objective) measure P, but from some risk-adjusted process under an equivalent
measure Q. Therefore, for pricing purpose, one needs to know the specification of one of the
following three terms: the state-price density, the numéraire, or the market price of risk.

We use the state-price density to pin down the issue. Suppose the data generating
process under the measure P is that of (2.1). We define the state-price density ξt as:

(4.1) ξt = exp

µ
−
Z t

0
RP (Xs, s) ds

¶
egξ(Xt,t),

where

gξ (Xt, t) =
1

2
X>
t ΛξXt+b

>
ξ (t)Xt + cξ (t)

=
1

2
X̄>AξX̄+ k>ξ (t) X̄+ l

>
ξ (t)X¯

+ cξ (t) ,

satisfies the PIDE (3.14). Without loss of generality, we assume ξ0 = 1, which gives the
initial condition for the PIDE. By Lemma 1, ξ is a positive P-martingale. Furthermore, by
restricting ξt to be exponential LQ in Xt, we have ensured that the structure of the state
vector remains LQ under the new measure Q.

The equivalent risk-adjusted measure Q is defined via:

(4.2)
dQ
dP

¯̄̄̄
t

=
ξT
ξt
.

Let:

(4.3) WQ
t =W

P
t −

Z t

0
σ (Xs, s)

> [Λξ (s)Xs + bξ (s)] ds.

The following Lemma, which is similar to Lemma 2 in Appendix C of Duffie, Pan and
Singleton (2000), states that ξWQ is a P local martingale. It then follows that WQ is a
standard Brownian Motion under Q.

Lemma 3 Provided that all technical integrability conditions are satisfied, ξWQ is a P-
martingale.
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Proof. By Ito’s formula, for 0 ≤ s ≤ t ≤ T ,

ξtW
Q
t = ξsW

Q
s +

Z t

s
WQ
u dξu +

Z t

s
ξu−dW

Q
u +

Z t

s
d
D
ξ,WQ

Ec
u

= ξsW
Q
s +

Z t

s
WQ
u dξu +

Z t

s
ξu−

³
dWP

u − σ (Xu, u)
> [Λξ (u)Xu + bξ (u)] du

´
+

Z t

s
ξuσ (Xu, u)

> [Λξ (u)Xu + bξ (u)] du

= ξsW
Q
s +

Z t

s
WQ
u dξu +

Z t

s
ξu−dW

P
u ,

where

ξ,WQ®c denotes the continuous part of ξ,WQ®. Since WP and ξ are both P-

martingales,
R t
0 W

Q
u dξu and

R t
0 ξu−dW

P
u , t ≥ 0, are P-martingales as well. Hence ξtWQ

t is a
P-martingale.

Moreover, let N be the jump counting process with intensity λP under P and λQ under
Q. Define:

(4.4) MQ = NP
t −

Z t

0
θ1 (lξ)λ

Pds.

Since jumps are restricted to affine variables X
¯
only, results from Duffie, Pan and Single-

ton (2000) concerning jumps are directly applicable in the LQJD setting. Specifically, by
Lemma 3 in Appendix C of Duffie, Pan and Singleton (2000), and provided that the tech-
nical integrability conditions are satisfied, ξMQ is a P-martingale. It follows that MQ is a
compensated jump counting process under Q.

The structure of the state vector under the measure Q is now:

(4.5) dXt = µ
Q (Xt, t) dt+ σ (Xt, t) dW

Q
t + dJ

Q
t ,

with the drift being:

(4.6) µQ (Xt, t) = µ (Xt, t) + Ω (Xt, t) [Λξ (t)Xt + bξ (t)] ,

and the jump intensity:

(4.7) λQ (Xt, t) = θ1 (lξ)λ
P (Xt, t) .

The diffusion part remains unchanged.

One may now easily infer from (4.5) the market price of risk relative to the Q drift
µQ (Xt, t) and the numéraire under Q. It can also be shown that both have incorporated
nonlinearity as well as jumps in their structures.

Since the state-price density is obtained explicitly, one may estimate jointly the objective
and the risk-adjusted measures in the LQJD settings and extract information content from
the options market. An analysis of this kind can be found in Chernov and Ghysels (2000),
where the Heston model is applied.
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4.2 The expected present value of a truncated future value

We now lend some space to the computation of the present value of a truncated future
value, which is especially relevant to option pricing problems and is defined, in general, as
follows:

(4.8) Gg1,g2 (k;Xt, t, T ) = E
Q
t

·
exp

µ
−
Z T

t
R (Xs, s) ds

¶
eg1(XT ,T )I{g2(XT ,T )≤k}

¸
,

where I{·} is the indicator function, and the superscript Q denote the risk-adjusted measure.
For ease of exposition, we will use g1t for g1 (Xt, t) and suppress the arguments (Xt, t, T ) in
the following.

The equation (4.8) has to be transformed before results from previous sections on stan-
dard and extended transforms can be applied. Two transform procedures exist for such
purpose: the Fourier-Stieltjes transform of Gg1,g2 (k), defined as:

(4.9) Gg1,g2 (v) =
Z
R
eivkdGg1,g2 (k) ,

and the generalized Fourier transform, defined as:

(4.10) Gg1,g2 (v) =
Z
R
eivkGg1,g2 (k) dk.

The Fourier-Stieltjes transform (4.9) has been used in Duffie, Pan and Singleton (2000),
where the transform variable v is restricted to take real values, and it is shown that:

(4.11) Gg1,g2 (v) = φs (g1T + ivg2T ) .

We can easily extend v to the complex domain: v = vr + ivi, where vr, vi ∈ R and i2 = −1.
By choosing properly the imaginary part of v such that eivkGg1,g2 (k) vanishes as k → ±∞,
we can establish an equivalence relationship between Gg1,g2 (v) and Gg1,g2 (v):

(4.12) Gg1,g2 (v) = −
1

iv
Gg1,g2 (v) .

Then, by the Fourier inversion formula and the facts thatGg1,g2 (k) is real and thusGg1,g2 (v)
is odd in its imaginary part and even in its real part, we have

(4.13) Gg1,g2 (k) =
evik

π

Z ∞

0
Re
h
e−ivrkGg1,g2 (v)

i
dvr.

See also Proposition 4 of Leippold and Wu (2002) for similar results.
One may consider the generalized Fourier transfrom ofGg1,g2 (k) as the Fourier transform

of e−vikGg1,g2 (k), which corresponds to the modified call price in Carr and Madan (1999).
The factor e−vik is applied such that the modified price satisfies the integrability conditions.
One may check that vi = −α, where α is the dampening coefficient in Carr and Madan
(1999).

In practice, one may choose between the Fourier-Stieltjes transform and the generalized
Fourier transform. The advantage of the generalized Fourier transform is that it is much
more efficient in terms of numerical computations. In some cases, as we will show in the
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following section, the option prices are obtained by one integration, whereas using the
Fourier-Stieltjes transform involves two. Moreover, one may easily apply the fast Fourier
transform (FFT) algorithm once the generalized Fourier transform is obtained. See, for
instance, Carr and Madan (1999) for details on how this could be done.

However, to apply the generalized Fourier transform, one always has to consider a proper
choice for vi for numerical efficiency. Carr and Madan (1999) give a heuristic discussion
about the choice of vi in the context of pricing simple European options. They suggest
to find bounds on vi such that higher moments of the stock price St = est are finite and
that singularities are avoided. However, the most efficient value for vi within these bounds
remains a choice of experience.

4.3 The generalized Fourier transform of some payoffs

The following table presents examples of the generalized Fourier transforms of some option
prices:

––Table I. Fourier transform of some payoffs ––

One may have noticed that all the transforms are linked to the standard transform of
the stock price logarithm φs ((iv + 1) sT ), which can be computed by Proposition 1. It
is also shown that simple European calls and puts have exactly the same transforms. The
difference, however, lies in their restrictions on vi: to obtain the price of a call, the transform
has to be integrated along a contour parallel to the vr-axis and in the negative vi part of
the v-plane, and for a put the contour must be above vi = 1.

A similar table can be found on page 37 of Lewis (2000). There the transform is carried
out for the terminal stock price logarithm sT = lnST , whereas here the transform is for
the strike price logarithm k = lnK. The resulting transforms are identical, except for the
expectation E [·] that has to be taken through the standard transofrm of the stock price
logarithm φs ((iv + 1) sT ) in this context. This is not surprising, for in these claims sT
and k are homogeneous of degree one. The difference, again, lies in the restrictions on vi:
for simple European calls and puts the restrictions are reversed here versus those in Lewis
(2000); for covered calls, the restrictions are the same.

We have left out from Table I a special claim that does not exist in the market but is
of practical importance numerically: the ‘out-of-the-money’ (OTM) claims, defined as:

C (k) = Et

h
e−

R T
t Rsds

³³
ek − eg2T

´
Ig2T<k

´i
Ig2t>k(4.14)

+Et

h
e−

R T
t Rsds

³³
eg2T − ek

´
I−g2T<−k

´i
I−g2t>−k.

As Carr and Madan (1999) have pointed out, options of short maturities approach their
non-analytic intrinsic values quickly, and the resulting integrands in the Fourier inversion
are highly oscillatory. It is therefore computationally more efficient to consider claims with
only time values, such as those of (4.14). The prices of ‘in-the-money’ (ITM) claims can
then be derived via parity relationships such as the Put-Call Parity.
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To compute the generalized Fourier transform of (4.14), we can first write it as:

C (k) =
h
ekG0,g2 (k)−Gg2,g2 (k)

i
Ig2t>k

+
h
Gg2,−g2 (−k)− ekG0,−g2 (−k)

i
I−g2t>−k.

The following lemma states the transform of Gg1,g2 (k) I{g3t≥k}, where gi, i = 1, 2, 3 are all
LQ functions:

Lemma 4 Provided all technical integration conditions are satisfied, the generalized Fourier
transform of Gg1,g2 (k) I{g3t≥k} is:

Gg1,g2,g3 (v) =

Z
R
eivkGg1,g2 (k) I{g3t≥k}dk(4.15)

=
1

iv

h
eivg3tGg1,g2 (g3t)−Gg1+ivg2 ,g2 (g3t)

i
.

Proof. The result is easily derived by applying Fubini Theorem.

Note that Gg1,g2 (k) is actually a limiting case of Gg1,g2 (k) I{g3t≥k}, taken at g3t → ∞.
Moreover, Gg1,g2 (y) converges to φ

s (g1T ) as y → ∞. It can be checked that, by choosing
an appropriate value for the imaginary part of v, eivg3tGg1,g2 (g3t) vanishes in the limits and
(4.15) reduces to (4.12).

The generalized Fourier transform can now be computed for an OTM claim

Proposition 4 The generalized Fourier transform of an OTM claim is:

C (v) =

Z
R
eivkC (k) dk(4.16)

=
1

1 + iv
e(1+iv)g2tφs (0)− 1

iv
eivg2tφs (g2T )− 1

v2 − ivφ
s ((1 + iv) g2T ) .

Proof. The result of Lemma 4 is directly applicable:

C (v) =
1

1 + iv

h
e(1+iv)g2tG0,g2 (g2t)−G(1+iv)g2,g2 (g2t)

i
− 1
iv

£
eivg2tGg2,g2 (g2t)−G(1+iv)g2,g2 (g2t)

¤
+
1

iv

£
G(1+iv)g2,−g2 (−g2t)− eivg2tGg2,−g2 (−g2t)

¤
− 1

1 + iv

h
G(1+iv)g2,−g2 (−g2t)− e(1+iv)g2tG0,−g2 (−g2t)

i
.

Further note that:
Gg1,g2 (k) +Gg1,−g2 (−k) = φs (g1T ) .

A simplification yields the result.
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5 A two-factor stochastic volatility model: a numerical ex-
ample

In this section we consider a simple 2-factor stochastic volatility model as a numerical
application of LQJD modelling.

5.1 The stochastic dynamics of the state vector

Under the risk-adjusted measure, the instantaneous variance, Vt, is specified to be the square
of the sum of two random variables such that it is guaranteed to be positive:

(5.1) Vt = 2 (X1t +X2t)
2 ,

where the two factors are both mean-reverting processes:

(5.2) d

µ
X1t
X2t

¶
=

µ
κ1 (θ −X1t)
−κ2X2t

¶
dt+

µ
σ1 0
0 σ2

¶
d

µ
W1t

W2t

¶
,

with W1t being independent of W2t. We force the long-term mean of X2 to be zero, such
that it acts as a correction to the driving factor X1. One may then view the instantaneous
volatility

√
Vt as behaving mostly like X1, which captures major information contents on

the market, with small extra variations from X2, which reflect small frequent shifts from
time to time.

To ensure that the correlation between the instantaneous variance and the stock return
processes is a constant, we let st = lnSt, where St is the stock price, and:
(5.3)

dst =

µ
r − δ − 1

2
Vt − λm̄

¶
dt+ (X1 +X2)

·
ρ1dW1t + ρ2dW2t +

q
2− ρ21 − ρ22dW3t

¸
+ dJt,

where:

r = constant risk-free interest rate,

δ = continuously compounded dividend rate,

λ = jump arrival intensity,

m̄ = jump risk premium.

The correlation, ρs,V , between the price logarithm and the instantaneous variance is then:

(5.4) ρs,V =
ρ1σ1 + ρ2σ2q
2
¡
σ21 + σ22

¢ .
An interesting property of the model is that, in contrast to existing two-factor models,

the diffusion term in (5.3) is allowed to be either positive or negative. We do not think it
brings about any problem, for on the one hand there is indeed an equilibrium economy to
support such dynamics3, and on the other hand the correlation structure between the price
logarithm and the factors has more variations, which we consider as an advantage.

3We thank J. Detemple for pointing this out to us.
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To see this point, let:

(5.5) ρs,Xi (t) =
(X1t +X2t) ρi√

Vt

be the correlation of st and Xit. Obviously, the sign of ρs,Xi (t) now depends on the sign
of (X1t +X2t). In practice, we usually expect ρi to be negative, which will be verified once
we calibrate the model to a real data set. Assume this is true for the moment, and consider
the following cases:

1. (X1t +X2t) > 0 at time t, and the correlation ρs,Xi (t) is negative. Therefore, an
increase (decrease) in magnitude of st will lead to a decrease (increase) in (X1t +X2t)
and thus Vt, which is indeed consistent with common thinking that a price fall (soar)
will drive up (down) the volatility.

2. (X1t +X2t) ≤ 0 at time t, and the correlation ρs,Xi (t) is positive. Since X1 is quickly
reverting to a positive number θ, it is expected that in this case, the absolute value
of (X1t +X2t) is likely to be small, and the market is in a quiet state. Now:

(a) If st decreases in the next instant, (X1t +X2t) will decrease as well. And, since
(X1t +X2t) is negative, Vt will actually increase, which is again consistent with
common sense.

(b) If st increases in the next instant, (X1t +X2t) will increase as well. Two scenarios
might occur here: (i) st soars by a small amount such that (X1t +X2t) actually
decreases in absolute terms, then Vt decreases and the market continues in the
quiet state; but (ii) st might increase by a large scale such that (X1t +X2t)
increases in absolute terms. Then Vt increases and the market turns towards a
more disturbed state.

3. Of course, it is also possible that (X1t +X2t) is significantly negative. Mimicking the
analysis in the last point, we see that in this case increases in st will probably bring
the market back to normal, i.e., (X1t +X2t) and Vt will be pulled back to zero; and
only further decreases in st or increases of extreme scales in st would push (X1t +X2t)
and Vt away from zero, which probably corresponds to a market turmoil.

Since both Xi’s are modelled as Ornstein-Uhlenbeck (OU) processes, and since they are
independent, it is actually possible to compute explicitly the probability of X1T +X2T < 0.
Knowing that, for an OU process X with parameters

¡
k θ σ

¢
,

(5.6) XT | Ft ∼ N
µ
(Xt − θ) e−k(T−t) + θ,

σ2

2k

³
1− e−2k(T−t)

´¶
,

we have:

(5.7) X1T +X2T | Ft ∼ N
¡
η, ξ2

¢
,
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where:

η = X1te
−k1(T−t) +X2te−k2(T−t) + θ1

³
1− e−k1(T−t)

´
(5.8)

ξ2 =
σ21
2k1

³
1− e−2k1(T−t)

´
+

σ22
2k2

³
1− e−2k2(T−t)

´
(5.9)

The probability that X1T +X2T is negative is then:

(5.10) P (X1T +X2T < 0) = N

µ−η
ξ

¶
,

where N (·) is the cumulative distribution function of the standard normal distribution.

5.2 Other related models

Our LQJD model extends the Stein and Stein model in three directions by introducing two
volatility factors, correlation and jumps. In Stein and Stein (1991), the volatility of the
stock price is modelled as the square of an OU process X with parameters

¡
k θ σ

¢
,

which is assumed to be independent of s. A correlated version of the Stein and Stein model
with closed form solutions for call option prices can be found in Schöbel and Zhu (1999).

A simple application of Ito’s lemma on Vt = X2
t reveals that

(5.11) dVt = 2k

·µ
σ2

2k
+ θXt

¶
− Vt

¸
dt+ 2XtσtdW1t.

When θ ≡ 0, the correlated Stein and Stein model looks very similar to that of Heston
(1993) where Vt is a square-root process. However, it is obvious that if the volatility of
the stock price is modelled as the square of an OU process, the diffusion of the volatility
factor plays an important role in the drift of Vt, while in the Heston model, the diffusion
of the volatility factor, now Vt itself, has nothing to do with the drift of Vt. This property
also holds asymptotically, namely on the stationary distribution of the variance process. In
the correlated Stein and Stein case, the stationary distribution is a chi-square distribution
with mean dependent on the diffusion term of the volatility factor, while in the Heston case
it is a Gamma distribution with mean independent of the diffusion term. We believe that
the former is more intuitively appealing, for it is indeed expected that, when volatility of
volatility is high, the level of the volatility itself is large as well. Clearly the scaled integrated
variance

R T
t Vsds/(T − t) will also inherit this dependence feature for either finite or infinite

maturities.

Preliminary calibration exercise indicates that, for the data set we have used, the long
term level θ of the volatility factor is essentially zero. The model is then almost identical to
the Heston one and is short of interest for subsequent comparisons. For a detailed discussion
of the boundary behavior of the instantaneous volatility at Vt = 0, see Schöbel and Zhu
(1999).

Our aim is then to compare the performance of multi-factor volatility models. The first
two factor volatility model we take for comparison is the affine model proposed by Duffie,
Pan, and Singleton (2000). The instantaneous variance Vt is now made mean-reverting to
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a stochastic long-term trend V̄t and is correlated with st at a constant rate ρ:
(5.12)

d

 Vt
V̄t
st

 =

 κ1
¡
V̄t − Vt

¢
κ2
¡
θ − V̄t

¢
r − δ − 1

2Vt

 dt+
 σ

p
1− ρ2

√
Vt 0 σρ

√
Vt

0 σ0
p
V̄t 0

0 0
√
Vt

 d
 W1t

W2t

W3t

 .
The model resembles ours in that the instantaneous variance process has constant correla-
tion with the price logarithm and that a stochastic factor has been identified to capture the
long-term level of the variance. The difference between Vt and V̄t can thus be considered
as the correction factor, which we try to model with X2. However, besides being affine,
the model also differs from ours in the correlation structure between st and the volatility
factors. In this case, the correlation is fully captured by Vt alone, and the long-term level
of the volatility is allowed to drift around freely. Our calibration results in the following
reveal that such specification dampens the benefits of introducing a second factor for the
volatility.

A more closely related model to ours is the affine model of Bates (2000), where the two
factors are modelled as square-root processes:

(5.13) dVit = κi (θi −Xit) dt+ σi
p
VitdWit, i = 1, 2,

each having a constant correlation ρi with the stock price logarithm, and the instantaneous
variance is simply the sum of factors: Vt = V1t + V2t.

Several differences exist between this affine model and our quadratic model. First,
since the volatility factors in the Bates model have the same structure, they are not clearly
identifiable. This gives rise to confusion in both estimating and interpreting the results. For
instance, the magnitudes of long term means θi and the mean-reverting speeds κi alternate
in order completely when different estimation methods are applied. See Bates (2000) (e.g.,
Table 2 on page 203 and Table 6 on page 215). To amend for this problem, we restrict θ2
to be zero as in our two-factor LQJD model. Such restriction assigns the same role to V2 as
that of X2 in our model, and facilitates meaningful comparisons of the fitted parameters.

Second, the Bates’ model is essentially linear, while ours is nonlinear. Obviously, the
factors in Bates (2000) correspond to the squares of our factors, i.e. Vi ∼ X2

i for i = 1, 2.
What is missing is the cross products of the factors, X1X2, which can be considered as an
additional factor by Proposition 3. Considering that nonlinearity has been documented in
many empirical studies, the existence of such factor in our model seems to a great advantage
as will also be revealed in the numerical section of this paper.

The third difference lies in the correlation structure. The correlation between the price
logarithm and the instantaneous variance in Bates’ model is:

(5.14) ρBs,V (t) =
ρ1σ1V1t + ρ2σ2V2tq
Vt
¡
σ21V1t + σ22V2t

¢ ,
which is not a constant. Although the time varying feature of ρBs,V (t) is desirable, the facts
that it stays negative over time and that the correlations between the price logarithm and
the factors are constant make the model less versatile in handling different states of market
as compared to ours.

To our best knowledge the three multi-factor volatility models we have discussed so far
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represent the status quo of research in modelling stochastic volatility. We note that Leippold
and Wu (2002) also mention how stochastic volatility can be modelled in the quadratic class
under the stringent assumption that the volatility and the stock price are independent of
each other. It has been shown in several works that a negative correlation, in particular,
leads to a downward volatility skew, which is related to the premium in option prices for large
down-side risk that has existed since the 1987 crash. See, for instance, Renault and Touzi
(1996) for further discussions on the relationship between the correlation and the shape
of implied volatility, and Bates (1991) for relevant empirical evidence. The independence
assumption thus constitutes an intrinsic drawback for modelling stochastic volatility.

In the following calibration exercise, we will use the one-factor affine stochastic volatility
model developed by Heston (1993) as benchmark and confront all models with it in various
aspects. Such exercise would reveal, in hierarchical order, the necessity of having the second
factor in the model, the desirability of a more flexible correlation structure between the state
variables, and the advantages of adding nonlinearity in the structure of the state vector.

We note that the models under discussion can be further extended to include jumps
(with even stochastic intensity of arrivals, either linear or nonlinear) in the state vector. To
keep matters at bay, we present estimation results for models where jumps are only affecting
st. The jump component has a constant arrival time intensity λ with jump size distributed
as a lognormal variable with mean µJ and standard deviation σJ . More sophisticated jump
specifications are left to future research.

5.3 Data and estimation methods

Our data set of option prices corresponds to prices inferred from implied volatilities of
S&P500 index options across strikes and maturities on November 2, 1993 (87 entries in
total). This set extracted from Ait-Sahalia and Lo (1998) is exactly the same as the one
studied in Duffie, Pan and Singleton (2000). This enables us to use their estimates as
guidance in calibration and as benchmark for comparison. We also opt for their choice of
setting the interest rate r = 3.19%, the dividend rate δ = 0, and the jump risk premium

m̄ = exp

µ
µJ +

1

2
σ2J

¶
− 1,

ensuring risk-neutrality. Figure 1 displays the market implied volatility smiles for all ma-
turities.

–– Figure 1. Market implied smiles ––

The generalized Fourier transform of puts and calls are readily available from Table
I. Hence the prices are easily obtained by Fourier inversion, and we only need to choose
a suitable value for the imaginary part of the transform variable vi. Using the technique
discussed at the end of Section 4.2, we decide that vi = 1.5 for puts (the value of vi for
calls can be determined in the same way). A plot of the modulus of the generalized Fourier
transform against the imaginary and the real parts of the transform variable gives a visual
justification of our choice. Figure 2 corresponds to this plot for the LQ model. It can be
seen that the modulus is almost nil for vi = 1.5. Plots of other models are similar and will
not be presented:



28 Cheng, Scaillet

–– Figure 2. The modulus of the transform integrand ––

Apparently, singularities arise in the neighborhood of zero. In other areas the transform
is well-behaved. Therefore, any value of vi that is far enough from zero would suffice for
the Fourier inversion to work, provided that it satisfies the restrictions in Table I. A further
observation is that the plot is symmetric about vi = 0. This property is termed reflection
symmetry in Lewis (2000).

Once the transform variable is determined, we calibrate the theoretical prices to the
market data by minimizing the mean square errors (MSE)4. Since the parameter sets are of
large scale, optimization program may terminate at local optima. We adopt a simple but
effective approach to resolve this issue. First, we set appropriate ranges for the individual
parameters such that absurd values would not show up. Then we optimize MSEs over
randomly chosen initial values inside subsets of the set of parameters, and we select the set
of parameters achieving the best MSE after convergence. Thanks to that procedure we are
convinced that the resulting parameters are what we are after.

We also use the fitted parameters to compute mean absolute errors (MAD) of prices,
as well as MSE and MAD of implied volatilities. Any one of these four criteria can serve
as yardstick for measuring the performance of various models. Note however that market
practitioners usually work and think in terms of fitted smiles, and will probably favour use
of criteria based on implied volatilities.

5.4 Estimation results

The following table presents fitted parameter values for the LQ, Bates, Duffie, Pan and
Singleton (DPS), and Heston models, with and without jumps.

–– Table II. Fitted parameters ––

As could have been expected, the most sophisticated models exhibit better fits: the
Heston and DPS model stick to the lower spectrum of the performance scale, and the Bates
and LQ models compete at the higher end. Moreover, models with jumps significantly
improve the fits in all cases. In terms of MSE of fitted prices, our LQ model emerges as best
among all considered models. The Bates model gives a better fit in the domain of implied
volatilities when calibrated without jumps. However this is no longer the case when jumps
are added.

To verify the results, we further divide the fitted option prices into three subsamples
according to moneyness. An option is at-the-money (ATM) if its strike price is within the
±2% of the spot, and a call (resp. put) is out-of-the-money (OTM) if its strike is above
102% (resp. below 98%) of the spot. In almost all cases, the LQ model beats others by
a fairly large margin. However, the Bates model performs better in terms of MSE in the
cases of ATM and OTM options without jumps, winning by 0.007 and 0.0003, respectively,
over the LQ model. However, it loses by 0.015 in the case of ITM options.

4Programs have been developed in Matlab and rely on the routines ode15s.m for solving the ODEs,
quad.m for numerical integration, and lsqnonlin.m for minimization of MSEs. They are available upon
request from the authors.
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–– Table III. The MSE and MAD ––

It is interesting to observe that the DPS and Heston models are almost identical in all
aspects. Our first observation is that the volatility of the stochastic long-term mean of the
volatility is very close to zero, which in fact renders it to be deterministic for this specific
set of data. Re-examination of the structure of the model then leads us to believe that the
problem arises out of the fact that the long term mean V̄ is made independent of the stock
price process: the stochastic volatility factor Vt, which is correlated with st, has largely
gauged the effects of randomness and hence adding an independent variable would not give
rise to further improvements. This, however, also unveils the other side of the story. If there
is indeed a need to add an extra factor, such factor should be correlated with the stock price
so as to capture what the first volatility factor V1t has missed out. In other words, it should
really play a supplementary role in the model. Adding too many factors may well lead to
over-fitting and must be cautioned against in the name of the principle of parsimony.

Thus, we are more convinced (than ever) that the second volatility factor, X2t, resp.
V2t, in the LQ, resp. Bates, model, should act as a corrector : its mean should be small, and
its variations be far less drastic than the first volatility factor. Our restriction that θ2 = 0
is thus appropriate, if not absolutely necessary.

The calibration exercise indeed yields what has been expected. For example, the volatil-
ity of the second volatility factor is about 1

5 , resp.
1
10 , of that of the first one in the LQ,

resp. Bates, model without jumps, and about 16 , resp.
1
200 , with jumps.

Another interesting parameter estimate is the correlation of the correction factor with
st. In either cases of Bates and LQ models, the correlation is very close to −1. This points
to a possibility of modelling the feedback effect. In previous sections we have shown that
such effect cannot be modelled through the drift matrix in the LQJD setting. However,
the feedback factor can be well incorporated through the diffusion matrix. The data set we
have used has provided an empirical justification for such presumption.

Furthermore, we note that the mean-reverting speed of the second volatility factor is
small. In the LQ model without jumps and the Bates model with jumps, it is virtually zero.
This makes the correction factor a pure innovation that is (perfectly) inversely correlated
with the stock price logarithm. A by-product of having an innovation of this kind is the
justification of order shifting in parameter estimates in the Bates model. Recall that Vi in
the Bates model corresponds to the square of Xi in the LQ model. By Ito’s lemma, it can
be shown that the long term mean θ2 of the second volatility factor is of order σ22Á2k2,
where σ2 and k2 are the parameters of the LQ model. A small k2 would then lead to large
θ2 estimates, provided that the LQ model is the correct one.

The following figures give a visual presentation of the fitted results.

–– Figures 3. Implied volatility surface ––

Figure 3 presents the calibrated implied volatility surfaces of the LQ model, with and
without jumps. One can easily observe that the ’steepness’ of the surface increases with
jump components. Moreover, the slopes of the smiles level out as time to maturity increases.
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–– Figures 4. 17-day-to-maturity implied volatility smiles ––

Figures 4 plots the fitted 17-day-to-maturity smiles of all models againt the market
implied smile. Again, adding jumps significantly improves goodness-of-fit. The LQ and
Bates models come quite close to each other. Both of them display under-pricing in the far
OTM (ITM) ends, and slight over-pricing ATM. The LQ model has more curvature than
the Bates model, by virtue of non-linearity.

–– Figures 5. 318-day-to-maturity implied volatility smiles ––

Figure 5 is similar in spirits to Figure 4, except that the 318-day-to-maturity smiles
are plotted. In this case, the jump component no longer plays an important role in fitting
performance, and all models calibrate the market fairly well. One can again observe that
the LQ model demonstrates more curvature than the rest.

6 Conclusion

We have generalized transform analysis methods existing for the AJD and quadratic classes
to the LQJD case. We present in detail the characterization of the LQJD structure, and
derive in a rigorous manner restrictions for identification. The standard and extended
transforms, as well as pricing formulas for standard financial claims, are also obtained.
Furthermore, we show that the system of ODEs, which is identified as an intermediate step
to solving the transforms, is a system of non-symmetric Riccati differential equations, and
find there exists a standard routine to resolve the pricing problem in the LQJD setting.
Finally, we prove that an LQJD model can be converted to an AJD model by introducing
a vector of pseudo factors. The notion is quite intuitive, but has never been demonstrated
rigorously before. This result proves to be very strong, for researchers have always taken
affine and quadratic models as two separate classes, whereas we show that the set of the
quadratic models that is absolutely distinct from the affine ones is actually empty in terms
of asset pricing by transform analysis.

Unlike previous research on quadratic models, all of them oriented towards the modelling
of the term structure of interest rates, we consider the issue of multifactor stochastic volatil-
ity. Our calibration exercise reveals that incorporating nonlinearity into the instantaneous
volatility process significantly improves goodness-of-fit over affine multifactor stochastic
volatility models with the same number of factors.

Since our model is very flexible, selecting an appropriate one for the modelling of various
stochastic processes in finance will be of great concern. We leave this issue, as well as further
econometric analysis of the performance of LQJD modelling, for future research.

Appendix A. Identification restrictions and ODEs

This first appendix gives details about the derivation of the identification restrictions under-
lying the LQJD modelling as well as the computation leading to the ODEs of Proposition 1
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(ODEs of Proposition 2 can be computed along similar lines). They both rely on the PIDE
of Lemma 1:

R = ġ1 + µ
>5x g1 +

1

2
tr
h³
5xxg1 +5xg1 (5xg1)

>
´
Ω
i
+ λ [θ1 (l1)− 1] ,

where all terms should be LQ in x.

A.1 Justification of identification restrictions

The right hand side of the above PIDE contains the following two quantities:
(i) µ>5x g1, and
(ii) tr

£5xg1 5x g
>
1 Ω
¤
, where

g1 =
1

2
x>Λ1x+ b>1 x+ c1

=
1

2
x̄>A1x̄+ k>1 x̄+ l

>
1 x¯
+ c1.

The first, resp. second, one depends on µ, resp. Ω, and will need to be LQ in x to achieve
identification. We start by making no assumptions on µ and Ω.

First, we stack µ as:

µ =


1
2 x̄
>Aµ1 x̄+ k

>
µ1
x̄+ l>µ1x¯

+ cµ1
...

1
2 x̄
>Aµn x̄+ k

>
µn
x̄+ l>µnx¯

+ cµn


n×1

.

Let:

A =

 Aµ1
...
Aµn


mn×m

, K =

 k>µ1
...
k>µn


n×m

, L =

 l>µ1
...
l>µn


n×(n−m)

, C =

 cµ1
...
cµn


n×1

,

then µ can be compactly written as:

µ =
1

2

³
In ⊗ x̄>

´
Ax̄+Kx̄+ Lx

¯
+ C.

Now:

2µ>5x g1 =
h³
In ⊗ x̄>

´
Ax̄+Kx̄+ Lx

¯
+ C

i>
(Λ1x+ b1)

=
h³
In ⊗ x̄>

´
Ax̄+Kx̄+ Lx

¯
+ C

i> ·µ A1x̄
0

¶
+

µ
k1
l1

¶¸
.

For it to be LQ in x, we must have:

(A.1)
h³
In ⊗ x̄>

´
Ax̄
i>µ A1x̄

0

¶
= 0,
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which leads to Aµi ≡ 0, for all i = 1, 2, · · · ,m. This justifies Assumption 2.
Similarly, we write Ω as:

Ω =
1

2

³
In ⊗ x̄>

´
A (In ⊗ x̄) + K (In ⊗ x̄) + L (In ⊗ x¯) + C.

For tr
£5xg15x g

>
1 Ω
¤
to be LQ in x, we must have:

(Λ1x)
>
h³
In ⊗ x̄>

´
A (In ⊗ x̄) + K (In ⊗ x̄) + L (In ⊗ x¯)

i
(Λ1x) = 0,

or individually,

x>Λ>1
³
In ⊗ x̄>

´
A (In ⊗ x̄)Λ1x = 0,(A.2)

x>Λ>1 K (In ⊗ x̄)Λ1x = 0,(A.3)

x>Λ>1 L (In ⊗ x¯)Λ1x = 0,(A.4)

which justify Assumptions 3, 4, and 5, respectively.

Assumptions 6, 7 and 8 are there to rule out possible appearance of x
1
2 in the process

of identifying ODEs.

Assumption 9 on the jump components is justified as follows. Note that the ODEs are
identified by imposing DΦt = 0, where the infinitesimal operator D is defined in (3.3) and
Φt is exponential-LQ in the state vector as in (3.5). The last component in DΦt is:

λ (x, t)

Z
D
[Φt (x+ y)− Φt (x)]Π (x, dy)

= Φt (x)λ (x, t)

Z
D
exp

µ
1

2
x>Λy +

1

2
y>Λx+

1

2
y>Λy + b>y

¶
Π (x, dy)

Since Φt (x) can be cancelled throughout DΦt = 0, and since we want the remaining terms
all be LQ functions for identification, it is necessary that the integral term in the above
equation be independent of x. Given the structure of Λ imposed by Assumption 1, the
minimal restriction on y is then Assumption 9, namely its first m entries are zeros.

A.2 Obtaining the ODEs: details of computations

Now that the identification restrictions have been derived, we may use them and derive the
ODEs of Proposition 1. We proceed term by term and put g = gi, i = 1, 2, for notational
convenience.

A.2.1 Computation of µ>5x g

First note that:

5xg = Λx+ b =

µ
Ax̄+ k
l

¶
.
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Then:

µ>5x g =
¡
µ̄> µ>

¢µ Ax̄+ k
l

¶
= µ̄> (Ax̄+ k) + µ>l.

Knowing that:
µ̄ (x̄, t) = K̄x̄+ C̄,

and that
µ (x̄, x

¯
, t) =

1

2

³
In−m ⊗ x̄>

´
Ax̄+Kx̄+ Lx

¯
+ C,

we have:

µ̄> (Ax̄+ k) =
¡K̄x̄+ C̄¢> (Ax̄+ k)

=
1

2
x̄>
³
K̄>A+AK̄

´
x̄+

³
K̄>k +AC̄

´>
x̄+ C̄>k,(A.5)

where the quadratic coefficient in the second equality has been symmetrized, and

µ>l =

·
1

2

³
In−m ⊗ x̄>

´
Ax̄+Kx̄+ Lx

¯
+ C

¸>
l1

=
1

2
x̄>
·
1

2
A> (l ⊗ Im) + 1

2

³
l> ⊗ Im

´
A
¸
x̄+

³
K>l

´>
x̄+

³
L>l

´>
x
¯
+ C>l.(A.6)

The second equality results from the fact that, for matrices Am×n and Bn×q,

(A.7) ABd =
³
d> ⊗A

´
vec [B] =

³
A⊗b>

´
vec

h
B>
i
,

where d is q × 1. See equation (8) on page 31 of Magnus and Neudecker (1988). Taking
A = In−m, B = l1 and d = x̄ yields the result. The following computations use frequently
(A.7).

For identification purpose we would like to represent the sum of (A.5) and (A.6) in the
standard form of an LQ function with coefficients

¡
A∗ k∗ l∗ c∗

¢
. Let:

$ =
¡
A k

¢
,

we have:

(A.8)
¡
A∗ k∗

¢
=M∗

21 +M
∗
22$ −$M∗

11 −$M∗
12$,

where:

M∗
21 =

¡
1
2A> (l ⊗ Im) + 1

2

¡
l> ⊗ Im

¢A K>l ¢ ,
M∗
22 = K>,

M∗
11 = −

µ
M∗>
22 C̄
0 0

¶
,

M∗
12 = 0.
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Identification of the remaining coefficients is straightforward:

(A.9)
¡
l∗ c∗

¢
=
¡ L>l b>C ¢

where

b =

µ
k
l

¶
, Cµ =

µ C̄
C
¶
.

A.2.2 Computation of tr
h
5xg5x (g1)

>Ω
i

Note that:

5xg5x (g1)
> =

µ
Ax̄+ k
l

¶¡
x̄>A1 + k>1 l>1

¢
=

µ
Ax̄x̄>A1 +Ax̄k>1 + kx̄>A1 + kk>1 Ax̄l>1 + kl>1

lx̄>A1 + lk>1 ll>1

¶
,

and

Ω =

µ
Ω̄ Ω̃

Ω̃> Ω

¶
,

where Ω̄ = σ̄σ̄> is constant, and Ω̃ and Ω are given by (2.12) and (2.11), respectively.
Hence:

tr
h
5xg0 5x (g1)

>Ω
i
= Θ1 +Θ2 +Θ3 +Θ4,

where, by property of the tr operator as well as (??),

Θ1 = tr
h³
Ax̄x̄>A1 +Ax̄k>1 + kx̄

>A1 + kk>1
´
Ω̄
i

=
1

2
x̄>
¡
AΩ̄A1 +A1Ω̄A

¢
x̄+

¡
AΩ̄k1 +A1Ω̄k

¢> x̄+ k>1 Ω̄k,
Θ2 = tr

h³
Ax̄l>1 + kl

>
1

´
Ω̃>
i

=
1

2
x̄>
h³
l>1 ⊗ Im

´
K̃>A+AK̃ (l1 ⊗ Im)

i
x̄+

h
AC̃l1 + (l1 ⊗ Im) K̃>k

i>
x̄+ k>C̃l1,

Θ3 = tr
h³
lx̄>A1 + lk>1

´
Ω̃
i

=
1

2
x̄>
h³
l> ⊗ Im

´
K̃>A1 +A1K̃> (l ⊗ Im)

i
x̄+

h
A1C̃l + (l ⊗ Im) K̃>k1

i>
x̄+ k>1 C̃l,

Θ4 = tr
h³
ll>1
´
Ω
i

=
1

2
x̄>
³
l>1 ⊗ Im

´
A (l ⊗ Im) x̄+

h³
l> ⊗ Im

´
K>l1

i>
x̄+

h³
l> ⊗ Im

´
L>l1

i>
x
¯
+ l>1 Cl.

Again, we wish to represent the above in the standard form of an LQ function with
coefficients

¡
A∗∗ k∗∗ l∗∗ c∗∗

¢
. Let:

$i =
¡
Ai ki

¢
,
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then: ¡
A∗∗ k∗∗

¢
= M∗∗

21 (l, l1)

+M∗∗
22 (l)$1 −$1M∗∗

11 (l)−$0M∗∗
12$1

+M∗∗
22 (l1)$0 −$0M∗∗

11 (l1)−$1M∗∗
12$0,(A.10)

where

M∗∗
21 (l, l1) =

¡ ¡
l>1 ⊗ Im

¢
A (l ⊗ Im)

¡
l> ⊗ Im

¢
K>l1

¢
,

M∗∗
22 (li) =

³
l>i ⊗ Im

´
K̃>,

M∗∗
11 (li) = −

µ
M∗∗
22 (li)

> C̃li
0 0

¶
,

M∗∗
12 = −

µ
Ω̄
0

¶
.

The remaining terms are:

(A.11)
¡
l∗∗ c∗∗

¢
=
¡ ¡
l> ⊗ In−m

¢
L>l1 b>Cb1

¢
,

where

bi =

µ
ki
li

¶
, C =

µ
Ω̄ C̃

C̃> C

¶
.

A.2.3 Identifying ODEs in Proposition 1

One can now easily identify the ODEs using (A.8), (A.9), (A.10) and (A.11). For Proposition
1, setting g = g1 in the above equations yields:

M21 =

Ã
1
2

h
A> (l1 ⊗ Im) +

¡A> (l1 ⊗ Im)¢> + ¡l>1 ⊗ Im¢A (l1 ⊗ Im)i+ [θ1 (l1)− 1] Aλ −AR
l>1
¡K+ 1

2K (l1 ⊗ Im)
¢
+ [θ1 (l1)− 1] k>λ − k>R

!>
,

M22 =
h
K̄+ K̃ (l1 ⊗ Im)

i>
,

M11 = −
µ
(Ms

22)
> C̄ + C̃l1

0 0

¶
,

M12 = −
µ
Ω̄
0

¶
.

Appendix B. The structure of the augmented state vector

This second appendix explains how we can rewrite any LQJD model as an AJD model
with an augmented state vector. As already mentioned, this rewriting can be done in an
automatic way through use of matrix algebra, which also means that the procedure can be
easily implemented in a symbolic calculus package. Before deriving the dynamics of the
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augmented state vector, we first introduce a special matrix that helps to extract distinct
entries from a symmetric matrix.

B.1 The duplication matrix

For a symmetric m × m matrix A, let v [A] denote the N × 1 ¡N = 1
2m (m+ 1)

¢
vector

obtained from vec [A] by eliminating the supradiagonal entries of A. For example, for

A =

µ
a11 a12
a21 a22

¶
,

we have:

v [A] =

 a11
a21
a22

 .
It turns out that there uniquely exists an m2 ×N matrix Dm such that:

(B.1) Dmv [A] = vec [A] .

The matrix Dm is called the duplication matrix in linear algebra, and is easy to build from
the algorithm described in Magnus and Neudecker (1988). Its Moore-Penrose (MP) inverse
is:

(B.2) D+m =
³
D>mDm

´−1
D>m.

Then

(B.3) v [A] = D+mvec [A] .

The following properties of the duplication matrix prove to be useful in the following com-
putations:

KmmDm = Dm,(B.4)

D+mDm = IN2 ,(B.5)

DmD
+
m =

1

2
(Im2 +Kmm) ,(B.6)

DmD
+
m (b⊗A) =

1

2
(b⊗A+A⊗ b) ,(B.7)

where b is a vector, and Kmn is the communication matrix that permutes the vectorization
of an m× n matrix A to the vectorization of its transpose. That is,

Kmnvec [A] = vec
h
A>
i
.

See Theorems 5 and 12 on pages 33 and 49, respectively, of Magnus and Neudecker (1988).
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All quadratic forms X̄>AX̄ can now be written in terms of Z = v
h
X̄X̄>

i
:

X̄>AX̄ = vec [A]> vec
h
X̄X̄>

i
(B.8)

= vec [A]>DmZ.

B.2 The dynamics of the pseudo state vector Z

Applying Ito’s lemma to Z = v
³
X̄X̄>

´
yields:

(B.9) dZt = v
h
X̄t
¡
dX̄t

¢>
+
¡
dX̄t

¢
X̄>t + Ω̄dt

i
.

The dynamics of X̄ is given by (2.6). We have:

(B.10) dZt = µZ
¡
Zt, X̄t

¢
dt+ σZ

¡
X̄t
¢
dWt,

where:

µZ = D+m

h¡K̄⊗ Im + Im ⊗ K̄¢ vec hX̄tX̄>t i+ ¡C̄ ⊗ Im + Im ⊗ C̄¢ X̄t + vec £Ω̄¤i ,
σZ = D+m

£
σ̄ ⊗ X̄t + X̄t ⊗ σ̄

¤
.

We want to represent µZ and ΩZ = σZσ
>
Z in (affine) terms of Zt and X̄t:

µZ = QZZt +KZX̄t + CZ ,(B.11)

ΩZ = QZ (IN ⊗ Zt) + KZ
¡
IN ⊗ X̄t

¢
+ CZ ,(B.12)

From the properties (B.4)-(B.7) of the duplication matrix as well as (B.3) we get:

D+m
¡K̄⊗ Im + Im ⊗ K̄¢ vec hX̄tX̄>t i = 2D+m

¡K̄⊗ Im¢DmZt,
D+m

¡C̄ ⊗ Im + Im ⊗ C̄¢ X̄t = 2D+m
¡C̄ ⊗ Im¢ X̄t,

Hence:

QZ = 2D+m
¡K̄⊗ Im¢Dm,(B.13)

KZ = 2D+m
¡C̄ ⊗ Im¢ ,(B.14)

CZ = v
£
Ω̄
¤
.(B.15)

Similarly,
D+m

£
σ̄ ⊗ X̄t + X̄t ⊗ σ̄

¤
= 2D+m

¡
σ̄ ⊗ X̄t

¢
.

Hence

(B.16) ΩZ
¡
X̄t
¢
= 4D+m

³
Ω̄⊗ X̄tX̄>t

´
D+>m .

Obviously, KZ = 0 and CZ = 0. It is, however, difficult to visualize QZ . Nevertheless, for
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our identification purpose it suffices to know that, for any m× 1 vector γ,

(B.17) QZ

³
IN ⊗ v

h
γγ>

i´
= ΩZ (γ) .

For identifying QZ , one may then choose γ to be, say, a vector of ones.

B.3 The augmented drift matrix µa

Apparently:

(B.18) µa =

 µZ
µ̄
µ

 ,
where µZ , µ̄ and µ are given by (B.11), (2.8) and (2.10), respectively. We need to rewrite
the quadratic form in µ in terms of Z. Recall that:

A =

 A1
...

An−m

 .
Then the quadratic form in µ can be reformulated:

1

2

³
In−m ⊗ X̄>t

´
AX̄t =

1

2

 X̄>t A1X̄t
...

X̄>t An−mX̄t


= QZ,

where

(B.19) Q = 1

2

 vec [A1]
>

...
vec

£
An−m

¤>
Dm.

It is actually easy to see that, for an arbitrary m× 1 vector γ,

(B.20) Qv
h
γγ>

i
=
1

2

³
In−m ⊗ γ>

´
Aγ.

Summarizing, we have:

(B.21) µa = K1X
a +K0,
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where:

K1 =

 QZ KZ 0
0 K̄ 0
Q K L

 ,(B.22)

K0 =

 CZ
C̄
C

 .(B.23)

B.4 The augmented covariance matrix Ωa

First partition Ωa as follows:

(B.24) Ωa =

 ΩZ Ω̄Z ΩZ
Ω̄>Z Ω̄ Ω̃

Ω>Z Ω̃> Ω

 .
The matrices ΩZ , Ω̄, Ω and Ω̃ are known, but with Ω to be re-written in (affine) terms of
the augmented state vector Xa:

Ω =
1

2

³
In−m ⊗ X̄>

´
A
¡
In−m ⊗ X̄

¢
+ K

¡
In−m ⊗ X̄

¢
+ L (In−m ⊗X¯ ) + C(B.25)

= Q (In−m ⊗ Zt) + K
¡
In−m ⊗ X̄

¢
+ L (In−m ⊗X¯ ) + C,

whereQ is determined as follows. Recall that the (i, j)th term of 12

³
In−m ⊗ X̄>

´
A
¡
In−m ⊗ X̄

¢
is 12X̄

>AijX̄, which equals
1
2vec

£
Aij
¤>
DmZ. Q is then:

(B.26) Q =
1

2


vec [A11]

>Dm · · · vec
£
A1,n−m

¤>
Dm

...
. . .

...
vec

£
An−m,1

¤>
Dm · · · vec

£
An−m,n−m

¤>
Dm

 .
However, for our reformulation purpose, it suffices to observe that, for any m× 1 vector γ,

(B.27) Q
³
In−m ⊗ v

h
γγ>

i´
=
1

2

³
In−m ⊗ γ>

´
A (In−m ⊗ γ) .

What remains are the covariance matrices Ω̄Z and ΩZ , which can be determined to be:

Ω̄Z = 2D+m
¡
σ̄ ⊗ X̄t

¢
σ̄>(B.28)

= 2D+m
¡
Ω̄⊗ X̄t

¢
,

and

ΩZ = 2D+m
¡
σ̄ ⊗ X̄t

¢
σ>(B.29)

= 2D+m

³
Ω̃⊗ X̄t

´
.
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Using (2.12) for Ω̃, we have:

ΩZ = 2D+m

h
K̃
¡
In−m ⊗ X̄t

¢
+ C̃

i
⊗ X̄t(B.30)

= QZ (In−m ⊗ Zt) + KZ
¡
In−m ⊗ X̄t

¢
,

where

(B.31) KZ = 2D
+
m

³
C̃⊗ Im

´
,

and QZ is determined as follows. Note that the (i, j)
th term of K̃

¡
In−m ⊗ X̄t

¢
is K̃ijX̄t,

which is a scalar. Multiplying it by X̄ yields:³
K̃ijX̄t

´
X̄t =

³
X̄tX̄

>
t

´
K̃>ij ,

which is a vector. Therefore it does not change anything if we apply the vec operator to
it. By the property of the vec operator (see also Theorem 2 on page 30 of Magnus and
Neudecker (1988)), we have:³

X̄tX̄
>
t

´
K̃>ij =

³
K̃ij ⊗ In−m

´
DmZ.

Letting QZ be the following yields the result:

(B.32) QZ = 2D
+
m


³
K̃11 ⊗ In−m

´
Dm · · ·

³
K̃1,n−m ⊗ In−m

´
Dm

...
. . .

...³
K̃m2,1 ⊗ In−m

´
Dm · · ·

³
K̃m2,n−m ⊗ In−m

´
Dm

 .
However, like (B.27), it actually suffices to know that, for any m× 1 vector γ,

(B.33) QZ

³
In−m ⊗ v

h
γγ>

i´
= 2D+m

h
K̃ (In−m ⊗ γ)

i
⊗ γ.

We can finally represent the augmented covariance matrix in terms of Xa as:

(B.34) Ωa = H1 (IN+n ⊗Xa) +H0.

It is easy to determine H0:

(B.35) H0 =

 0 0 0

0 σ̄σ̄> C̃

0 C̃> C

 .
Writing out H1 explicitly is difficult, but computing H1 (IN+n ⊗ γ) is straightforward for
any (N + n) × 1 vector γ. The trick to compute this last expression is to partition γ into
three blocks:

(B.36) γ =

 γZ
γX̄
γX
¯

 ,
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with dimensions N×1, m×1, and (n−m)×1, respectively. H1 (IN+n ⊗ γ) is then obtained
by replacing everywhere Z by γZ , X̄ by γX̄, and X¯

by γX
¯
in H1 (IN+n ⊗Xa). Now, if we

wish to compute H1, we only need to take γ equal to a vector of ones.

Appendix C. Proof of Proposition 3

In this section we prove Proposition 3, which states the equivalence relationship between
LQJD and AJD classes in terms of their transforms. We aim to check that coefficient
matrices in the two classes of models satisfy the same system of ODEs. Given that they
also have the same initial conditions, the identification procedures are identical and therefore
the two classes are equivalent. We only proceed with the ODEs of the standard transform.
The results can also be shown to hold for the extended transform.

Proof. Note that the coefficient matrices to be identified in the LQJD model are¡
A k l c

¢
. Their counterparts in the LQJD-transformed AJD model are

¡
β α

¢
,

where α = c and

(C.1) β =

 βA
βk
βl

 ,
with

βA =
1

2
D>mvec [A] ,(C.2)

βk = k,(C.3)

βl = l.(C.4)

We will show that the system of ODEs obtained for
¡
β α

¢
using the AJD procedure is

identical to the one for
¡
A k l c

¢
.

First note that, since the specifications of the jumps and the discount rate are the same
in the LQJD model and its AJD transformation, they can be neglected without invalidating
the arguments of the proof.

The ODEs satisfied by α and β without the jumps and the discount rate are obtained
by directly applying (2.5) and (2.6) of Duffie, Pan and Singleton (2000):

d

dτ
α = K>

0 β +
1

2
β>H0β,(C.5)

d

dτ
β = K>

1 β +
1

2

³
β> ⊗ IN+n

´
H>
1 β.(C.6)

1. Using (B.23) for K0 and (B.35) for H0, we have:

d

dτ
α = C>Z βA +

¡ C̄> C> ¢µ βk
βl

¶
+
1

2

¡
β>k β>l

¢µ σ̄σ̄> C̃

C̃> C

¶µ
βk
βl

¶
.

We only need to show that C>Z βu = 1
2tr
£
AΩ̄
¤
, for the remaining terms of dα/dτ are in

exact conformity with corresponding terms in dc/dτ . Using (B.15) for CZ and (C.2)
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for βA as well as (B.3) yields:

C>Z βA =
1

2
v
£
Ω̄
¤>
D>mvec [A]

=
1

2
vec

£
Ω̄
¤> ¡

DmD
+
m

¢>
vec [A] .

Since DmD+m =
1
2 (Im2 +Km) by (B.6) and Ω̄ is symmetric,

DmD
+
mvec

£
Ω̄
¤
= vec

£
Ω̄
¤
.

Given that Ω̄ and A are symmetric matrices of the same order, by property of the
trace operator:

tr
£
AΩ̄
¤
= vec

£
Ω̄
¤>
vec [A] .

Therefore:
C>Z βu =

1

2
tr
£
AΩ̄
¤
.

2. To ease identification of the individual ODEs of the system dβ/dτ , we introduce the
canonocal vector (N + n)×1 vector εi whose ith component is one and zero elsewhere.
Obviously,

d

dτ
βi = ε>i

d

dτ
β.

From (C.6), we get:

d

dτ
βi = ε>i K

>
1 β +

1

2
β> [H1 (IN+n ⊗ εi)]

> β.

The first term of the right hand side can be computed explicitly:

K>
1 β =

 Q>ZβA +Q>βl
K>ZβA + K̄>βk +K>βl

L>βl

 .
The second term H1 (IN+n ⊗ εi) can also be computed using the trick described in
the ending paragraph of Appendix B. We only need to partition εi conformably with
β:

εi =

 εA
εk
εl


i

• For identifying dβl/dτ , note that i ∈ [N +m+ 1, N + n] so that εA = 0 and
εk = 0. Thus:

H1 (IN+n ⊗ εi) =

 0 0 0
0 0 0
0 0 L (In−m ⊗ εl)

 .
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This immediately leads to:

d

dτ
βl = L>βl +

1

2

³
β>l ⊗ In−m

´
Lβl,

which is also the ODE system satisfied by l.

• For dβk/dτ , i ∈ [N + 1, N +m] so that εA = 0 and εl = 0. Thus:

H1 (IN+n ⊗ εi) =


0 2D+m

¡
Ω̄⊗ εk

¢
KZ (In−m ⊗ εk)£

2D+m
¡
Ω̄⊗ εk

¢¤>
0 K̃ (In−m ⊗ εk)

[KZ (In−m ⊗ εk)]
>

h
K̃ (In−m ⊗ εk)

i>
K (In−m ⊗ εk)

 ,
and

1

2
β> [H1 (IN+n ⊗ εi)]

> β = (i) + (ii) + (iii) + (iv) ,

where:

— By (A.7),

(i) =
1

2
β>l [K (In−m ⊗ εk)]

> βl

=
1

2
ε>k
³
β>l ⊗ Im

´
K>βl.

—

(ii) = β>A
£
2D+m

¡
Ω̄⊗ εk

¢¤
βk

= vec [A]>DmD+m
¡
Ω̄⊗ εk

¢
βk

=
1

2

h³
Ω̄⊗ ε>k

´
vec [A] +

³
ε>k ⊗ Ω̄

´
vec [A]

i>
βk

= ε>k AΩ̄βk.

The second equality is by (C.2), the third by (B.6) and the property of the
communication matrix, and the fourth by (A.7).

—

(iii) = β>A [KZ (In−m ⊗ εk)]βl

= ε>k AC̃βl.

The result is obtained by using (C.2) for βA, (B.31) for KZ , and the same
procedure as in (ii).

— Similarly,

(iv) = β>l
h
K̃ (In−m ⊗ εk)

i>
βk

= ε>k
³
β>l ⊗ Im

´
K̃>βk.
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Finally, note that, by (B.14), (C.2),

K>ZβA = AC̄.

Gathering results:

d

dτ
βk = AC̄ + K̄>βk +K>βl +

1

2

³
β>l ⊗ Im

´
K>βl +AΩ̄βk +AC̃βl +

³
β>l ⊗ Im

´
K̃>βk,

which is identical to d
dτ k

• For dβA/dτ , i ∈ [1, N ] so that εk = 0 and εl = 0. Thus:

H1 (IN+n ⊗ εi) =

 QZ (IN ⊗ εA) 0 QZ (In−m ⊗ εA)
0 0 0

[QZ (In−m ⊗ εA)]
> 0 Q (In−m ⊗ εA)

 .
The system of ODEs satisfied by βA is:

d

dτ
βA = Θ1 +Θ2 +Θ3 +Θ4 +Θ5,

where:

Θ1 = Q>βl,
Θ2 = Q>ZβA,
Θ3 =

³
IN ⊗ β>l

´
Q>ZβA,

Θ4 =
1

2

³
IN ⊗ β>l

´
Q>βl,

Θ5 =
1

2

³
IN ⊗ β>A

´
Q>ZβA.

The system of ODEs satisfied by A can be obtained from results of Appendix A:

d

dτ
A = Θ̂1 + Θ̂2 + Θ̂3 + Θ̂4 + Θ̂5,

where:

Θ̂1 =
1

2

h³
l> ⊗ Im

´
A+A> (l ⊗ Im)

i
,

Θ̂2 = K̄>A+AK̄,
Θ̂3 =

³
l> ⊗ Im

´
K̃>A+AK̃ (l ⊗ Im) ,

Θ̂4 =
1

2

³
l> ⊗ Im

´
A> (l ⊗ Im) ,

Θ̂5 = AΩ̄A.

Since βA and A are linked by (C.2), we expect the same relationship exists
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between Θi and its counterpart Θ̂i for i = 1, ..., 5, i.e.

Θi =
1

2
D>mvec

h
Θ̂i

i
.

This is indeed true, for

v
h
γγ>

i>
Θi =

1

2
v
h
γγ>

i>
D>mvec

h
Θ̂i

i
,

for any m× 1 vector γ. For instance, for i = 1,

v
h
γγ>

i>
Θ1 =

³
Qv
h
γγ>

i´>
βl

=
1

2

h³
In−m ⊗ γ>

´
Aγ
i>

βl

=
1

2
γ>A> (βl ⊗ Im) γ

=
1

2
v
h
γγ>

i>
D>mvec

h
A> (βl ⊗ Im)

i
,

by (B.20) for the second equality, (A.7) for the third, and (B.8) for the fourth.
On the other hand,

1

2
v
h
γγ>

i>
D>mvec

h
Θ̂1

i
=
1

2
v
h
γγ>

i>
D>mvec

h
A> (l ⊗ Im)

i
.

Since γ is arbitrary, we must have Θ1 = 1
2D

>
mvec

h
Θ̂1

i
. The remaining equalities

can be derived in exactly the same manner.

Thereby we have established that the ODEs obtained for
¡
A k l c

¢
by the LQJD

procedure are in total conformity with those for
¡
β α

¢
by the AJD procedure. Further-

more, they have the same set of initial conditions. Therefore, asset pricing in the LQJD
seting may be performed inside the AJD setting. Together with the fact that AJD models
form a subset of the LQJD class, we conclude that the two classes are equivalent in terms
of transform analysis.

Appendix D. Affine reformulation of the two-factor LQ sto-
chastic volatility model

For better understanding of the equivalence relationship between the LQJD and AJD
classes, we demonstrate how the LQJD dynamics can be formulated as affine dynamics
with a concrete example, namely the two-factor LQ stochastic volatility model in Section
5.

Recall that the dynamics of the state vector in the two-factor LQ stochastic volatility
model are given by (5.2) and (5.3), with constant interest rate, zero dividend rate, and
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constant jump intensity. The coefficients of the standard transform:

φs (g1) = e
−rτEt

·
exp

µ
1

2
X̄>TAX̄T + k

>X̄T + l>X¯T
+ c

¶¸
,

are
¡
$ l c

¢
where:

$ =
¡
A k

¢
=

µ
a1 a2 k1
a2 a3 k2

¶
.

By Proposition 1,
¡
$ l c

¢
satisfy the system of ODEs:

d

dτ
l = 0,

d

dτ
$ = M21 +M22$ −$M11 −$M12$,

d

dτ
c = − (r − λµ) l1 + θκ1k1 +

1

2

£
σ21
¡
a1 + k

2
1

¢
+ σ22

¡
a3 + k

2
2

¢¤
,

where:

M11 = −
 −κ1 0 θκ1 + ρ1l1

κ2 −κ2 +ρ2l2
0 0 0

 , M12 = −
 σ21 0

0 σ22
0 0

 ,
M21 = 2

µ −l1 + l21 −l1 + l21 0
−l1 + l21 −l1 + l21 0

¶
, M22 = −

 −κ1 κ2
0 −κ2
0 0

 .
To get the affine formulation of the two-factor LQ stochastic volatility model„ we need

to add the following pseudo factors to the initial state vector:

Z1 = X2
1 ,

Z2 = X2
2 ,

Z12 = X1X2.

By Ito’s lemma:

dZ1t =
¡
σ21 + 2κ1θX1t − 2κ1Z1t

¢
dt+ 2σ1X1tdW1t,

dZ2t =
¡
σ22 − 2κ2Z2t

¢
dt+ 2σ2X2tdW2t,

dZ12t = [κ1θX2t − (κ1 + κ2)Z12t] dt+ σ1X2tdW1t + σ2X1tdW2t.

Apparently, the augmented state vector belongs to the AJD class. One may now apply
results from the AJD class and check that the resulting system of ODEs is identical to the
one obtained from the LQJD class.
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Table I
Generalized Fourier Transforms of Prices of Some Financial Claims

Claim
Terminal
payoff

Price
Transform

Restrictions
on vi

Digital 1 esTIsTk  1
iv 

siv  1sT vi  0

Digital 2 ekIsTk 1
iv1 

siv  1sT vi  1

Call esT  ekIsTk 1
ivv2

siv  1sT vi  0

Put ek  esT IsTk 1
ivv2

siv  1sT vi  1

Money market 1 2v none

The table presents the generalized Fourier transforms of prices of some typical financial claims, as well as
restrictions on the imaginary part of the transform variable vi. s stands for the standard transform
discussed in Proposition 1, and  is a delta Dirac function.



Table II.
Fitted Parameter Values of Various Stochastic Volatility Models

Heston DPS Bates LQ
(Without Jumps)

s,V 0.6965 0.6944 0.6289 0.6271

s,X1 0.6965 0.6944 0.7025 0.6973

s,X2 – – 0.8946 1.0000

1 0.4257 0.4179 0.6134 0.2054

2 – 0.0000 0.0683 0.0429

1 4.3526 4.1904 5.9838 6.9470

2 – 6.3123 0.0085 0.0000

 0.0129 0.0129 0.0108 0.0823

V 0.0843 0.0831 0.0819 0.0772

Option Price MSE 0.0124 0.0123 0.0086 0.0079

MAD 0.0957 0.0956 0.0764 0.0767

Implied Vol. MSE 103 0.0750 0.0801 0.0420 0.0545

MAD 0.0043 0.0044 0.0032 0.0036

(With Jumps)
s,V 0.7831 0.7836 0.5774 0.5786

s,X1 0.7831 0.7836 0.7143 0.6741

s,X2 – – 1.0000 0.9361

1 0.1939 0.2023 0.4974 0.1857

2 – 0.0000 0.0027 0.0308

1 2.7945 3.0315 3.2436 13.8801

2 – 4.6868 0.0000 0.1000

 0.0099 0.0100 0.0091 0.1031

 0.0748 0.0682 0.1015 0.0356

J 0.1384 0.1467 0.1236 0.2191

J 0.1503 0.1526 0.0359 0.1459

V 0.0787 0.0787 0.0787 0.0735

Option Price MSE 0.0070 0.0070 0.0063 0.0036

MAD 0.0645 0.0647 0.0663 0.0484

Implied Vol. MSE 103 0.0097 0.0092 0.0195 0.0063

MAD 0.0019 0.0022 0.0022 0.0015



Table III
The MSE and MAD of Fitted ITM, ATM, and OTM Option Prices

Heston DPS Bates LQ
(Without Jumps)
MSE ITM 0.0127 0.0135 0.0097 0.0082

ATM 0.0137 0.0118 0.0073 0.0080

OTM 0.0086 0.0078 0.0063 0.0066

MAD ITM 0.1007 0.1041 0.0856 0.0772

ATM 0.0949 0.0878 0.0609 0.0792

OTM 0.0753 0.0724 0.0640 0.0695

(With Jumps)
MSE ITM 0.0082 0.0080 0.0058 0.0033

ATM 0.0065 0.0069 0.0074 0.0045

OTM 0.0026 0.0027 0.0066 0.0036

MAD ITM 0.0702 0.0704 0.0638 0.0466

ATM 0.0612 0.0629 0.0701 0.0520

OTM 0.0452 0.0413 0.0708 0.0498



Figure 1. Market implied smiles
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Figure 2. The modulus of the generalized Fourier transform of calls



Figure 3a. Implied volatility surface of the LQ model without jumps



Figure 3b. Implied volatility surface of the LQ model with jumps



Figure 4a. 17-day implied volatility smiles (without jumps)



Figure 4b. 17-day implied volatility smiles (with jumps)



Figure 5a. 318-day implied volatility smiles (without jumps)



Figure 5b. 318-day implied volatility smiles (with jumps)
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