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Portfolio Optimization with Concave Transaction

Costs∗

Andriy Demchuk
University of Lausanne and FAME

Abstract

In this paper we study the optimal portfolio management for the
constant relative-risk averse investor who maximizes an expected util-
ity of his terminal wealth and who faces transaction costs during his
trades. In our model the investor�s portfolio consists of one risky and
one risk-free asset, and we assume that the transaction cost is a con-
cave function of the traded volume of the risky asset. We Þnd that
under such transaction cost formulation the optimal trading strategies
and boundaries of the no-transaction region are different than those
when transaction costs are proportional, i.e. when they are linear in
the traded volume. When transaction costs are concave, we show that
the no-transaction region is narrower than when transaction costs are
proportional, and it is not a positive cone. Under our transaction cost
formulation, when the investor�s wealth is relatively high, the opti-
mal trading strategy consists in bringing the post-trade portfolio posi-
tion inside the no-transaction region, whereas proportional transaction
costs induce the investor trading to the boundary of the no-transaction
region. We also examine the impact of the risky asset volatility and
the risk aversion parameter on the shape of the no-transaction region.
When comparing different transaction cost structures, we show that
the Þnancial securities' market tends to be more liquid with concave
transaction costs than with alternative cost speciÞcations.
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1 Introduction

In this paper we study the optimal portfolio management problem for a
constant relative risk-averse investor who maximizes his expected utility of
terminal wealth. In our model the investor�s portfolio consists of one risky
and one risk-free asset. Whenever the investor rebalances his portfolio in
favor of one or the other asset class, he faces transaction costs. Transaction
costs are assumed to be proportional to the volume of the risky asset traded.
The proportionality rate, or the transaction cost rate, is assumed to depend
on the traded volume of the risky asset.

This asset allocation problem is a variant of classical consumption - in-
vestment problem in modern Þnance. However, transaction costs add con-
siderable complexity in the portfolio optimization problem. In the absence
of transaction costs, Merton (1971) obtained the closed-form solution for
the optimal portfolio holdings for a constant relative risk-averse investor.
Namely, if the price of the risky asset (stock) follows a geometric Brown-
ian motion and the risk-free asset instantaneously yields a constant rate of
return r, then the optimal fraction of wealth to be invested in the stock is
independent from time and is equal to:

ωM =
1

γ

µ− r
σ2

where γ is the relative risk aversion parameter, µ is the expected return on
the stock and σ is the volatility of the stock returns. This solution implies
that the investor should continuously rebalance his portfolio such that the
fraction of his current wealth invested in the stock is equal to ωM . In the
risky wealth - risk-free wealth space, the latter condition means that the
portfolio holdings should always be located on the so-called Merton line, i.e.

Risky wealtht
Risk-free wealtht

=
ωM

1− ωM
This kind of adjustments can be accomplished in the absence of transaction
costs. But when there are transaction costs (TC), the continuous trading
would lead to ruin in a very short period of time. Therefore, there must be
time intervals when the investor does not trade. It is said that his portfolio
position belongs to the no-transaction (NT-) region during such time inter-
vals. The identiÞcation of the no-transaction region as well as of optimal
trading volumes was in fact the subject of a large body of literature devoted
to the optimal portfolio management when there are transaction costs1.

1A brief review of the transaction costs models is presented in section 2.

2



In this paper, we study the optimal portfolio management for the con-
stant relative-risk averse investor who maximizes an expected utility of his
terminal wealth and who faces transaction costs during his trades in a dis-
crete time framework. In our model the investor�s portfolio consists of one
risky and one risk-free asset, and we assume that the transaction cost is
a concave function of the traded volume of the risky asset. The concav-
ity of transaction costs is modeled in the following way: We assume that
the investor pays a higher fraction2 of the traded amount of the risky as-
set as a transaction cost (TC) if this amount is below some exogenously
speciÞed level, and he pays a lower fraction as a TC for the amount which
exceeds this level. In other words, the transaction cost rate is assumed to
be a decreasing step function of the trading volume of the risky asset. We
assume that the investor pays a Þxed fraction δ1 of the traded volume of
the risky asset as the transaction cost if the absolute value of the trade
does not exceed a certain level which we denote by λ. But, if the investor
trades more than λ, then he receives a transaction cost rate discount and
pays a lower fraction δ2 for the trading volume which exceeds λ. We should
notice that this cost structure can be considered as a combination of the
following two structures: proportional transaction costs when the trade is
�low� and proportional transaction costs with a Þxed component when the
trade is �high�. However, the investor has an option to choose the appro-
priate cost structure trough the trading volume of the risky asset. We Þnd
that under such transaction cost structure the investor�s optimal trading
policy can differ signiÞcantly from the one when the transaction cost rate
is constant and independent from the trading volume. Namely, the bound-
aries of the no-transaction region are different than those when transaction
costs are proportional, i.e. when they are linear in the trading volume.
When transaction costs are concave, we show that the no-transaction region
is narrower than when transaction costs are proportional, and it is not a
positive cone. Under our transaction cost formulation, when the investor�s
wealth is relatively high, the optimal trading strategy consists in bringing
the post-trade portfolio position inside the no-transaction region, whereas
proportional transaction costs induce the investor trading to the boundary
of the no-transaction region. We also examine numerically the impact of
the risky asset volatility and the risk aversion parameter on the shape of the
no-transaction region. We show that the no-transaction region shifts down
in the riskless-risky asset space when the risky asset volatility increases or
when the relative risk aversion parameter increases. We also show that the

2We call this fraction as a transaction cost rate.
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no-transaction region widens as time to maturity declines. When comparing
different transaction cost structures, we show that the Þnancial securities�
market tends to be more liquid with concave transaction costs than with
alternative cost speciÞcations.

The rest of the paper is organized as follows. In section 2, we provide a
literature review of the transaction costs models. In section 3, we describe
the economy and the objective function of the investor. We also discuss the
shape of the transaction cost function. In section 4, we present the results of
portfolio optimization problem when transaction costs are proportional. In
section 5, we introduce concave transaction costs and discuss some features
of the value function. In section 6, we present numerical results and section
7 concludes the paper.

2 Literature review

In general, all the studies on portfolio optimization with transaction costs
differ from each other either through the modelling of transaction costs
structure or with respect to the objective function of investors. We would
like to stress the attention on the Þst source of difference since it is directly
related to the subject of the given paper. Structures of transaction costs
have been modelled in several distinct ways.

Under a Þrst approach, the investor has to pay a Þxed fraction of his
current wealth at the time of the transaction. This is the so-called portfo-
lio management fee approach. The investigation of models with such cost
structure was done, for example, by Morton and Pliska (1995), Cadenillas
and Pliska (1996), Atkinson and Willmot (1995). The main result of these
studies is that as soon as the portfolio position leaves the no-transaction re-
gion, the investor trades in order to bring the portfolio back to the optimal
interior point of the no-transaction region, and the latter is a positive cone.

In a second approach, the transaction costs are assumed to be propor-
tional to the trading volume of the risky assets, where the proportionality
rate is constant and less than one. Under this cost formulation, the optimal
consumption-investment policy has been studied by many authors in the
continuous as well as the discrete time framework. Constantinides (1979)
considers a discrete-time version of the proportional transaction cost model
when there are one risky and one risk-free asset in the economy. He Þnds that
the no-transaction region is a positive cone and the optimal investment pol-
icy is �simple�, that is characterized by two reßecting barriers a and b (a 5 b)
such that the investor does not trade when the ratio of his risky wealth to
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the riskless wealth belongs to the interval [a, b] and trades to the nearest
boundary in the opposite case. In the continuous-time framework, when the
price of the risky asset follows a geometric Brownian motion, Constantinides
(1986), Davis and Norman (1990), and Dumas and Luciano (1991) inves-
tigate the problem for the investor maximizing his expected utility of the
future consumption stream, whereas Assaf, Taksar and Klass (1983) study
optimal trading strategies for investors maximizing the asymptotic growth
rate of the portfolio value. These studies prove that the optimal investment
policy is �simple� as well, that is, there are no trades when the portfo-
lio position lies within the no-transaction region, and inÞnitesimal trades
when the position reaches the boundary of the no-transaction region. In the
later case the continuous rebalancing is optimal during some time intervals.
Genotte and Jung (1994) solve numerically the discrete-time model with
proportional transaction costs and analyze optimal trading strategies for a
CRRA investor with a Þnite horizon. Boyle and Lin (1997) consider the
model with two securities in the discrete time framework when the investor
maximizes his expected utility of Þnal wealth. For the power utility function
case they derive the explicit analytical solutions for the boundaries of the
no-transaction region and for the optimal trading volumes. Since their pa-
per is of particular interest for our investigation, we present its main results
in Section 3.

There is also a number of papers that include the Þxed cost component
in the structure of transaction costs. Eastham and Hasting (1988) study a
Þnite horizon problem when the investor derives utility from consumption.
They show that with a Þxed cost component in transaction costs, the op-
timal trading strategies allow for a Þnite number of trades on Þnite time
intervals. Øksendal and Sulem (1999) and Zakamouline (2002) study opti-
mal portfolio selection with both Þxed and proportional transaction costs.
Their results indicate that the boundaries of the no-transaction region are
wealth-dependent, and the optimal trading strategies consist in bringing the
post-trade portfolio position inside the NT-region. Korn (1998) adds a Þxed
cost component to the proportional transaction cost and applies a formal
optimal stopping approach and an approach using quasi-variational inequal-
ities to solve the consumption-investment problem. Duffie and Sun (1990)
combine three different approaches we have mentioned above to model trans-
action costs. Namely, at the time of the transaction the investor has to pay
a Þxed fraction of the portfolio value plus a proportional cost for withdrawal
of cash for consumption plus a Þxed cost as the transaction cost. They argue
that a Þxed cost component inßuences the solution signiÞcantly. When a
Þxed component is equal to zero, it is optimal to transact at Þxed deter-
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ministic intervals of time. In the opposite case, the length of trading time
intervals depends on the total wealth at the beginning of each interval.

Konno andWijyanayake (2001) study the portfolio optimization problem
under concave transaction costs and the minimal transaction volume con-
straints. The authors propose an algorithm for calculating a globally optimal
solution of a portfolio construction/rebalancing problem for an investor who
minimizes portfolio risk for a given level of the expected return. In the pa-
per, the authors consider the absolute deviation of portfolio returns as a
measure of risk, and thus reduce the problem to the one of linear optimiza-
tion. They report that the proposed algorithm is very efficient with respect
to the computation time. However, in their paper, Konno and Wijyanayake
concentrate solely on the efficiency of the algorithm and do not study, on
the contrary to our paper, optimal trading strategies and the boundaries of
the no-transaction region. As we discuss in Section 6, the computation time
becomes a real problem when we try to solve our dynamic programming
problem in the multi-period setting. Unfortunately, we cannot apply the
algorithm proposed by Konno and Wijyanayake since the objective function
in our paper is not linear, but, as we show in Section 5, it is piece-wise
concave and not differentiable everywhere. Also, due to that fact that we
cannot obtain an explicit analytical formula for the value function, the iden-
tiÞcation of the no-transaction region and of the optimal trading strategies
requires to solve the optimization problem at each discretization point of
a sub-set of possible portfolio allocations. Therefore, even if the algorithm
we build is computationally very efficient for the last period optimization
problem, the computational time becomes already an issue when we try to
solve the dynamic programming problem for two periods.

All modelling approaches described above (except the last one) have one
common feature. Namely, the transaction cost rate, which is the fraction
of either a total portfolio value or a trading volume the investor has to pay
as a transaction cost, was assumed to be a Þxed constant for any value of
the trading volume. In this paper we study how the deviation from linear
to concave transaction costs affects the optimal trading strategies of the
constant relative risk-averse investor.

3 The Economy

We consider the economy in which there are two assets available for the
investment: one risky asset Y which pays no dividends and one risk-free
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asset X. We assume that the investor has a power utility function

U(W ) =
W γ

γ
, γ < 1 (0)

and his investment horizon is Þnite and is equal to T 3. We also assume
that the investor observes the prices of the assets only at discrete times
t = 0, 1, ..., T, and, as a consequence, he can trade only at these times. Put
differently, we assume that it is too costly for the investor to monitor the
prices of the assets continuously in time, and thus he revises his portfolio
positions periodically at some discrete times (for example, once a day, or
once a month, or once a year). We assume that the price of the risky asset
evolves as:

Yt+1
Yt

= µt, t = 0, 1, ..., T − 1 (1)

where Yt is the price of the risky asset at time t and µt is its total rate of
return over the period (t, t+ 1), and {µt}t=0,...,T−1 are assumed to be i.i.d.
discrete random variables with a Þnite number of states {wi}ni=1 which can
occur with probabilities {pi}ni=1 respectively. Therefore, under the above
assumption the price of the risky asset {Yt}t=1,...,T is a Markov chain. The
price of the riskless asset is supposed to grow at a constant rate r, that is:

Xt+1
Xt

= r, t = 0, 1, ..., T − 1. (2)

The portfolio position of the investor at time t is denoted by the vector
(xt, yt), where xt and yt are the dollar values of the holdings in the riskless
and the risky asset respectively. We assume that at time t = 0 the investor
starts his business being endowed with x0 ≥ 0 and y0 ≥ 0. It is also
assumed that whenever the investor buys or sells the risky asset he pays
the transaction cost TC at the expense of riskless asset. For instance, if at
time t he decides to buy or sell the amount vt of the risky asset

4, then the
post-trade holdings are:

yt+ = yt + vt (3)

xt+ = xt − vt − TCt
We have mentioned in the Introduction that there are different ap-

proaches to model transaction costs, but at this stage we do not specify

3The case γ = 0 corresponds to the logarithmic utility function: U(W ) = lnW .
4Here and in the rest of the paper vt represents the dollar amount of the traded risky

asset, i.e. number of stocks multiplied by the stock price.
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the nature of TCt. We develop this issue in the sections below. In the for-
mula above a positive (negative) value of vt means that the investor buys
(sells) the risky asset. To make things simple, in the model we assume that
the transaction cost does not depend on the direction of trade: the investor
pays the same transaction cost if he buys or sells the same volume of the
risky asset5. Given the price dynamics of the risky and the risk-free assets
(1)-(2), the portfolio position at time t+ 1 is then

yt+1 = yt+µt = (yt + vt)µt (4)

xt+1 = xt+r = (xt − vt − TCt)r

In addition to that, we assume that short-selling of the risky asset and
borrowing cash are not allowed. This restriction implies that at any point
of time the trading volume of the risky asset vt should be such that

yt+ ≥ 0 and xt+ ≥ 0 t = 0, 1, ..., T − 1 (5)

In the given economy the problem of the investor is to choose an optimal
trading strategy (v0, v1, ..., vT−1) in order to maximize his expected utility
of terminal wealth, i.e.

J(0, x0, y0) := Max
{v0,v1,...,vT−1}

E0[U(xT + yT )] (6)

where x0, and y0 are the initial holdings in the risk-free and the risky asset re-
spectively, E0 denotes time zero unconditional expectation, and J(0, x0, y0)
is the initial value function of the investor.6

The portfolio optimization problem (6) can be solved by applying a dy-
namic programming technique. Therefore, we deÞne the value function in a
recursive way, i.e.

J(t, xt, yt) = Max
vt
Et[Jt+1(t+ 1, xt+1, yt+1)], t = 0, 1, ...T − 1 (7)

5One can also consider the asymmetric cost structure, but this will no change our
results qualitatively.

6Notice that the maximization problem (6) is based on the fact that at terminal date T
the investor derives utility from the total portfolio capitalization at that time T. One can
however consider the problem when the utility is derived from the portfolio liquidation
value:

Max E0[U(xT + yT − TCT )]
where TCT is the transaction cost associated with the selling of the value yT of the risky
stock.

8



with a terminal condition

J(T, xT , yT ) = U(xT + yT ) =
1

γ
(xT + yT )

γ (7.1)

where yt+1 and xt+1 are given by (4), and Et denotes time t conditional
expectation. Notice, that due to the Markovian property of the stock price
evolution, the time t conditional expectation is based only on the current
portfolio holdings xt and yt. In the maximization problem at hand, vt is
a control parameter, and thus, as proposed by Boyle and Lin (1997), it is
convenient to introduce the following function:

ϕ(t, xt, yt, vt) = EtJ(t+ 1, xt+1, yt+1) (8)

Thus, the value function (7) can be rewritten as

J(t, xt, yt) = Max
vt

ϕ(t, xt, yt, vt) (9)

Therefore, due to the dynamic programming principle, the maximization
problem (6) is reduced to the searching for the optimum of the function
ϕ(t, xt, yt, vt) with respect to the trading volume vt at every date t =
0, 1, ..., T − 1. Along with the determination of optimal trading volumes at
each point of time t, we are interested in the identiÞcation of those portfolio
positions (xt, yt) from which it is optimal not to trade. It is said, that in the
latter case portfolio belongs to the no-transaction region (or continuation
region, since the investor continues to hold his portfolio without changes).
Formally, the no-transaction region can be deÞned in the following way: at
time t, portfolio position (xt, yt) belongs to the NT (continuation) region if
and only if vt = 0 is the solution to the optimization problem (9). Put it
differently, the continuation region Gt is

Gt = {(xt, yt) : ϕ(t, xt, yt, vt) 5 ϕ(t, xt, yt, 0) for all vt such that (5) holds}.

Clearly, the shape of the no-transaction region, as well as of the optimal
trading strategies depend on the structure of transaction costs. For ex-
ample, when transaction costs are proportional, the boundaries of the no-
transaction region depend only on time, but not on the investor�s wealth.
On the other hand, the presence of a Þxed component in transaction costs
results in the dependence of the boundaries on the investor�s wealth. In the
following sections, we discuss this dependency in more details.

9



3.1 Transaction costs

Very generally, transaction costs are considered as comprising of two parts,
an asset exchange or brokerage fee and a liquidity or marketability cost.
The transaction cost associated with the transaction volume is depicted in
Fig.1. Up to a certain level of the transaction volume (point A on Fig.1)
the transaction cost is a concave function of the transaction volume. This
is because the unit transaction cost, e.g. unit brokerage fee, is relatively
large when the transaction volume is small and it gradually decreases as the
transaction volume increases. The extract from the transaction fees charged
by the New York Stock Exchange (Table 1) and prices for securities trading
with UBS e-banking via Internet (Table 2) support the concavity of the
transaction cost function.

However, beyond point A (Fig.1), the unit transaction cost may increase
due to the �illiquidity� effect. That is, if for a certain security the transaction
order is high, then there can be not enough supply (demand) of this security,
and thus the unit transaction cost will increase (the transaction cost function
becomes convex).

Fig. 1. Transaction cost function.

In the paper we assume that transaction volume is always �moderate�
and does not go beyond this critical point. Let us notice that in a single-
agent economy it is problematic to model the mentioned �illiquidity� effect
for the following reason. No rational investor will trade beyond point A
because he can always split his order into smaller ones to reduce transaction
costs. To model the �illiquidity� effect one would need to introduce another
agent, let say a market maker, who would be able to recognize split orders.
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Such a modelling is not considered in the paper. Therefore, in our model
the transaction cost function is assumed to be concave.

Table 1. Transaction fees charged by the New York Stock Exchange

(an extract for equity transactions for the year 2003).

NYSE: Regular Session Trading

Equity Transactions

Per Share Charge � per transaction

System orders under 2,100 Shares(4) No Charge

Floor Executed Trades and System Trades greater than 2,099 Shares

First 5,000 Shares $0.0023

5,001 to 690,000 Shares $0.0001

Subsequent Shares No Charge

Table 2. Prices for securities trading with UBS e-banking via Internet
   Stock Exchange Transactions 

   Bonds, 
Eurobonds, 

Notes 

SWX, 
virt-x 
(SMI) 

virt-x (EU) 
Germany, GB, 

USA, Italy, 
Canada 

Rest of 
Europe

Asia and 
other 

countries 
 

  
Minimum prices 
(per order)  CHF 35 CHF 35 CHF 75 CHF 100 CHF 110  

          
Trade value in 
CHF        

up to 10 000 0,70% 0,95% 1,50% 1,70% 1,90%  
up to 15 000 0,70% 0,95% 1,50% 1,70% 1,90%  
up to 25 000 0,70% 0,95% 1,50% 1,70% 1,90%  
up to 50 000 0,65% 0,85% 1,45% 1,60% 1,80%  
up to 100 000 0,55% 0,80% 1,35% 1,50% 1,70%  
up to 200 000 0,40% 0,65% 1,25% 1,40% 1,60%  
up to 300 000 0,40% 0,50% 1,15% 1,20% 1,55%  
up to 400 000 0,40% 0,40% 1,15% 1,15% 1,35%  
up to 1 000 000 0,30% 0,30% 0,95% 0,95% 1,15%  
from 1 000 001 

  

0,20% 0,20% 0,75% 0,75% 0,95%  
 

The assumption usually made in the TC models is that transaction costs
are proportional in purchases and sales of the risky security. That is, the
transaction cost function is assumed to be liner. As we already mentioned
in section 2, this assumption allowed many authors to obtain analytical
solutions of the optimal trading strategies and of the no-transaction region.
In the following section we present the main results of the study of Boyle
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and Lin (1997), who consider proportional transaction costs. We present this
study since we use a similar economy setting. Then, in section 5, we present
our modelling of the transaction cost function. Namely, we intend to capture
the concavity of the transaction cost function by a linear approximation.

4 Proportional Transaction Costs

Boyle and Lin (1997) solve the investment problem in the economy described
above when there are proportional transaction costs. Namely, the transac-
tion cost paid at any trading time t is proportional to the trading volume
vt of the risky asset and is equal to

TCt = δ|vt| t = 0, 1, ..., T − 1 (10)

where 0 < δ < 1 is the transaction cost rate and it is assumed to be invariant
with respect to the trading volume. In this framework, the dynamics of the
investor�s portfolio holdings is:

yt+1 = (yt + vt)µt (11)

xt+1 = (xt − vt − δ|vt| )r

Therefore, the objective of the investor is to deÞne the optimal trading
strategy {v0,v1,..., vT−1} such that his expected utility derived from termi-
nal wealth will be maximized (6). The imposed no-short selling and no
borrowing condition (5) implies

−yt 5 vt 5 xt
1 + δ

t = 0, 1, ..., T − 1. (12)

Boyle and Lin solve this portfolio optimization problem by applying
a dynamic programming technique. The value function and the terminal
condition are deÞned by equations (7) and (7.1) respectively. Namely7:

JP (t, xt, yt) = Max
vt
Et[J

P (t+ 1, xt+1, yt+1)], t = 0, 1, ...T − 1

and

JP (T, xT , yT ) = U(xT + yT ) =
1

γ
(xT + yT )

γ

7Below we use supperscript P to denote that functions refer to the case of proportional
transaction costs.
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where yt+1 and xt+1 are given by (11). For the convenience of the analysis,
they introduce function:

ϕP (t, xt, yt, vt) = EtJ
P (t+ 1, xt+1, yt+1) (13)

Thus, the value function JP can be rewritten as

JP (t, xt, yt) = Max
vt

ϕP (t, xt, yt, vt) (14)

Using the deÞnition of the no-transaction region presented in the previ-
ous section, we write:

GPt = {(xt, yt) : ϕP (t, xt, yt, vt) 5 ϕP (t, xt, yt, 0) for all vt satisfying (12)}.

Below, we present the main results of the study of Boyle and Lin (1997):
1. Since U(W ), deÞned by (0), is concave, differentiable and homo-

geneous function of degree γ, then JP (t, xt, yt) is also concave, differen-
tiable and homogeneous function of the same degree. As a consequence,
ϕP (t, xt, yt, vt) is concave with respect to vt and is homogeneous of degree
γ with respect to all its variables. Concavity and homogeneity are crucial
properties of the function ϕP which enable the authors to obtain the ex-
plicit analytical solutions for the optimal trading volumes vt as well as for
the bounds of the no-transaction region.

2. There exist at and bt, such that at 5 bt and the no-transaction region
at time t can be described as

GPt = {(xt, yt) : at 5 yt/xt 5 bt}
It implies that the no-transaction region is a positive cone. This result is

in line with all previous studies with proportional transaction costs. How-
ever, as we show later, this shape of the no-transaction region will not be
preserved when transaction costs are concave.

3. At time t, portfolio (xt, yt) belongs to the no-transaction region if and
only if the function ϕ(t, xt, yt, vt) attains its maximum at v∗t = 0, and thus
the bounds of the no-transaction region can be deÞned in the following way:

at = min

½
yt
xt
:
∂ϕP−(t, xt, yt, 0)

∂vt
≥ 0, ∂ϕ

P+(t, xt, yt, 0)

∂vt
5 0

¾
(15)

bt = max

½
yt
xt
:
∂ϕP−(t, xt, yt, 0)

∂vt
≥ 0, ∂ϕ

P+(t, xt, yt, 0)

∂vt
5 0

¾
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where −(+) indicate the left hand side (right hand side, respectively) deriva-
tive. The above formulas for the boundaries of the no-transaction region are
due to the global concavity of function ϕP with respect to the trading volume
vt.

4. If at time t portfolio (xt, yt) lies outside the no-transaction region,
then the optimal transaction value is

vt =

(
vt+ =

xtat − yt
1+(1+δ)at

if yt
xt
< at

vt− =
xtbt − yt
1+(1−δ)bt if yt

xt
> bt

(16)

This value brings the post trade portfolio position to the nearest boundary
of the no-transaction region, that is

yt+

xt+
=

½
at if yt

xt
< at

bt if yt
xt
> bt

5. The value function is a piece-wise linear utility function with respect
to U, that is there exists a certain sequence of increasing numbers q0, q1,..., qs
such that

JP (t, x, y) =
nX
i=1

U(αijxt + βijyt)pi

where index j indicates that the ratio yt/xt belongs to the interval [qj , qj+1),
j = 0, ....s − 1, and pi is the probability of the state wi. The piece-wise
linearity property of the value function was obtained due to its homogeneity.

The piece-wise linearity allows us to deÞne the indirect utility function
JP (t, xt, yt) for any t, an thus from formula (13) we obtain the expression for
the function ϕP (t, xt, yt, vt). Then, formulas (15) and (16) yield analytical
solutions for the boundaries of the no-transaction region and the optimal
trading volumes, respectively.

In the following section we show that many of the �nice� features of
the function ϕ(t, xt, yt, vt), in particular its global homogeneity and global
concavity, are not preserved when transaction costs become concave. There-
fore, we cannot solve our portfolio optimization problem analytically, but
we solve it numerically.

5 Non-constant transaction cost rate

We propose a model that uses a transaction costs structure which has not
been sufficiently explored in the existing literature. Namely, we assume that
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the transaction cost function is concave in the trading volume of the risky
asset8. The justiÞcation of this modelling approach was already presented
in section 3. We intend to capture the concavity of transaction costs by a
piece-wise linear approximation.

We assume that during his trades the investor pays transaction costs
which depend on the trading volume. That is, if the absolute value of
the trading volume of the risky asset vt is below a certain level, which we
denote by λ, the investor pays δ1|vt| as a transaction cost. For trading
volumes which are above λ, the investor receives a discount with respect to
the transaction cost rate and pays lower fraction δ2 of the trading volume
which exceeds λ (Fig.2).

Fig. 2. Transaction cost function

We would like to notice that with a concave structure of transaction costs
the investor has no incentives to split his orders because of non-increasing
marginal transaction cost rate. In fact, the way we model transaction costs
implies that the transaction cost rate is a decreasing step function. To
formalize this modelling of the transaction costs, we write:

TCt =

½
δ1|vt| if |vt| 5 λ
δ1λ+ δ2(|vt|− λ) if |vt| > λ δ1 > δ2 (17)

8As we mentioned in section 2, Konno and Wijyanayake (2001) study the portfolio
optimization problem under concave transaction costs. However, their results do not
provide any inside into the optimal trading strategies of the investor who faces concave
transaction costs.
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or equivalently

TCt = δ1|vt|− (δ1 − δ2) max(|vt|− λ, 0). (18)

Analyzing the transaction cost speciÞcation provided by (17), we ob-
serve that the transaction costs are proportional when the trading volume is
�low� (|vt| 5 λ), and they are proportional with a Þxed component (the Þxed
component equals to(δ1 − δ2)λ) when the trading volume is high (|vt| > λ).
For these two cost speciÞcations, the optimal trading strategies and the
shapes of the no-transaction region are well known. In the previous section
we presented the main results obtained by Boyle and Lin (1997) for the
proportional transaction costs model. Zakamouline (2002) and Øksendal
and Sulem (1999) study the optimal portfolio problem having both Þxed
and proportional transaction costs. They show that the boundaries of the
no-transaction region depend on the investor�s current wealth and that the
optimal trading strategies consist in bringing the post-trade portfolio posi-
tion strictly inside the no-transaction region if the initial portfolio position
is outside the NT-region.

In our transaction costs framework, we study the effect of the transaction
cost rate discount on the optimal trading strategies and to compare the
results with the ones when transaction costs are proportional and when the
Þxed component is added to proportional transaction costs. Also, under
given transaction cost structure (17) or (18), we want to identify the no-
transaction region.

We consider the same optimization problem (6) and apply the dynamic
programming technique. The investor�s value function is deÞned as

J(T, xT , yT ) = U(xT + yT ) =
(xT + yT )

γ

γ
, γ < 1

and

J(t, xt, yt) = Max
vt

Et[J(t+ 1, xt+1, yt+1)] t = 0, 1, ..., T − 1,

where, according to out modelling of transaction costs (18),

yt+1 = (yt + vt)µ (19)

xt+1 = (xt − vt − δ1|vt|+ (δ1 − δ2)max (|vt|− λ, 0) )r

Therefore, we look for the optimal trading strategies {v0,v1, ..., vT−1} such
that at any point of time the no-short selling and no-borrowing conditions
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are satisÞed9. That is, in our framework condition (5) can be rewritten as

−yt 5 vt 5 ub(xt) =
(

xt
1+δ1

if xt
1+δ1

5 λ
xt−λ(δ1−δ2)

1+δ2
otherwise

(20)

We will call the strategies which satisfy this inequality as admissible and
ub(xt) stands for the upper boundary of the interval.

As we discussed in section 3, the application of the dynamic program-
ming allows us to reduce the problem to a static optimization. As Boyle
and Lin (1997), we introduce the following function

ϕ(t, xt, yt, vt) = Et[J(t+ 1, xt+1, yt+1)]

and thus the value function can be expressed as

J(t, xt, yt) = Max
vt

ϕ(t, xt, yt, vt)

where function ϕ(t, xt, yt, vt) is maximized over the interval of admissible
trading strategies.

We should notice that the problem at hand is much more complicated
than one described in the section above and solved analytically by Boyle
and Lin (1997). For example, and what is signiÞcant, we loose the global
concavity property of the function ϕt(xt, yt, vt)

10, and hence the boundaries
of the no-transaction region cannot be deÞned like in (15) in general. Also,
ϕt(xt, yt, vt) is not homogeneous with respect to its variables

11, thus we do
not expect from the no-transaction region to be a positive cone in general.12

9The no-short selling constraints can be relaxed. Since we solve our problem numeri-
cally, this relaxation will require much more computational time because one will have to
solve the optimization problem on sufficiently large intervals of possible trading strategies
for each possible portfolio allocation. Moreover, one will have to extend the discretization
of the possible portfolio allocations from the subset of R2

+ to the subset of {(x, y) ∈ R2 :
x+ y ≥ 0}.
10One can easily show that function ϕt(xt, yt, vt) is not concave with respect to the

trading volume vt at points ±λ.
11By examining (19), one can see that xt+1 is not homogeneous with respect to xt and

vt. Therefore, function ϕT−1(xT−1, yT−1, vT−1)

ϕT−1(xT−1, yT−1, vT−1) = ET−1[JT (xT , yT )] = ET−1[U(xT + yT )]

is not homogeneous. Moving backwards, one can show that the result holds for any time
t.
12In fact, homogeneity of ϕt(xt, yt, vt) garantees that the no-transaction region is a pos-

itive cone. Indeed, if portfolio (xt, yt) lies on the boundary of the NT-region, i.e. v
∗
t = 0

maximizes ϕt(xt, yt, vt), then for any φ > 0 we obtain that the portfolio (φxt,φyt) is also lo-
cated on the boundary of the NT-region, because φv∗t = 0 will maximize ϕt(φxt,φyt,φvt).
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By now, we could not Þnd the way to deÞne the boundaries of the no-
transaction region as well as optimal trading volumes by explicit analytical
formulas in general. However, for the last period optimization problem some
analytical results can be obtained. At the beginning of this section we men-
tioned that the transaction costs structure we consider can be decomposed
into pure proportional transaction costs for small trading volumes and pro-
portional with a Þxed component for bigger trading volumes. Therefore,
function ϕ(T − 1, xT−1, yT−1, vT−1) can be presented as:

ϕ(T − 1, xT−1, yT−1, vT−1) =
½
ϕP (T − 1, xT−1, yT−1, vT−1) |vt| 5 λ
ϕFP (T − 1, xT−1, yT−1, vT−1) |vt| > λ

where ϕP (T−1, xT−1, yT−1, vT−1) corresponds to the case with pure propor-
tional TC (the transaction cost rate is equal to δ1) and is deÞned by (13),
and ϕFP (T − 1, xT−1, yT−1, vT−1) corresponds to the case when the Þxed
component (δ1 − δ2)λ is added to the proportional TC (with the TC-rate
δ2), i.e.

ϕFP (T − 1, xT−1, yT−1, vT−1) = ET−1U [yT + xT ] , |vt| > λ
where

yT = (yT−1 − vT−1)µT−1
xT = (xT−1 − vT−1 − (δ1 − δ2)λ− δ2|vT−1|)r

When the wealth of the investor is relatively small at the beginning
of the last period optimization, and thus he cannot trade big volumes of
both the risky asset and the risk-free asset due to the no-short-selling and
no-borrowing constraints, then the results of the previous section fully ap-
ply. Intuitively, if the investor is precluded from trading the risky asset in
amounts which exceed the critical value λ, then only a higher transaction
cost rate applies to all admissible trades, and hence we are in the framework
of proportional transaction costs. In this case the boundaries of the no-
transaction region and the optimal trading strategies are driven by function
ϕP (T −1, xT−1, yT−1, vT−1). The following proposition formalizes the above
statement.

Proposition 1 At time t = T − 1, function ϕ(t, xt, yt, vt) ≡ ϕP (t, xt, yt, vt)
for all admissible values of vt and for all portfolio positions (xt, yt) which
belong to the quadrant [0,λ(1+δ1)]×[0,λ]. Therefore, for these portfolio posi-
tions the optimal trading strategies and the boundaries of the no-transaction
region are deÞned by (16) and (15) respectively.
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Proof. If (xT−1, yT−1) ∈ [0,λ(1 + δ1)]× [0,λ] then xT−1/(1 + δ1) 5 λ
and the no-short sale and the no- borrowing conditions (20) imply:

−λ 5 vT−1 5 λ

In this case, since the absolute value of the trading volume cannot exceed
λ, the investor is facing only higher transaction cost rate δ1. Using the fact
that functions J and JP are of the same functional form at maturity, and
are equal to the utility function, the result follows.

One can show that both functions ϕP and ϕFP are concave on the in-
tervals on which they are deÞned, but function ϕ is not concave at points
±λ, as we already said. Therefore, function ϕ is piece-wise concave, and
hence its local maximum does not need to coincide with a global maximum.
Also, due to the presence of the Þxed component, function ϕt(xt, yt, vt) is
not homogeneous, and thus the boundaries of the no-transaction region will
depend on the investor�s wealth. Another consequence of the presence of the
Þxed component (of course for big trades) is the discontinuity of the optimal
trading volume v∗t = v∗t (xt, yt). All these �unpleasant� features of function
ϕ(t, xt, yt, vt), and hence of the value function, make it difficult to handle
the problem analytically. Therefore, the rest of the analysis is conducted by
solving the portfolio optimization problem numerically.

6 Numerical simulations

In this section we apply the numerical procedure for the derivation of the
boundaries of the no-transaction region and optimal trading volumes. Since
we could not obtain analytical expressions for them, the numerical simula-
tion is an important tool to handle the problem. Moreover, a simple program
(we use MatLab 6.5) gives the numerical value for the optimal trading vol-
ume for any portfolio position in few seconds. However, the identiÞcation
of the no-transaction region requires a substantial amount of computational
time. This is because one has to make a discretization in the R2+ space, i.e.
riskless - risky wealth space, and to compute the optimal trading volume at
each point of the discretization.

By deÞnition, those points (portfolio allocations), at which the optimal
trading volume v∗ is equal to zero, belong to the no-transaction region.
Since we are interested only in the boundaries of the no-transaction region,
we build a routine which allows us to identify those boundaries.

To model the uncertainty about the stock price evolution, we assume
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that:

µ =

½
u with Probability p

d = 1/u with Probabilitry (1− p)
The simulations were done using Cox Ross Rubinstein parametrization:

u = eσ
√
h, d = e−σ

√
h, p =

eνh − d
u− d , r = e

θh

where the length of one period is h = 0.25 and ν = 0.1,σ = 0.25, θ = 0.05.
These numbers imply that the length of one period is three months, the
volatility of the risky asset�s returns is 25% (annualized) and the risk-free
rate is 5.13% (annualized). The critical transaction value is λ = 1 and the
higher transaction cost rate is δ1 = 0.01. We do not Þx the parameter of
the relative risk aversion γ and the value of the lower transaction cost rate
δ2 because we wand to study their impact on the optimization results. We
also look at the impact of the risky asset volatility σ on the location of the
no-transaction region.

A. The boundaries of the no-transaction region

We begin with the last period optimization problem. In Fig. 3, we
plot the boundaries of the no-transaction region for different values of the
transaction cost discount, i.e. different values of δ2 parameter. It turns out
that, to the contrary of the model with proportional transaction costs, the
no-transaction region is not a positive cone in general. We can see that
it remains to be a positive cone when the investor�s wealth is relatively
small, but then, at certain wealth levels, the slopes of the boundaries of
the no-transaction region change. Namely, the slope of the upper boundary,
which separates the �sell� region from the no-transaction region, decreases
(see Þgures 3a and 4a). This means that not having the transaction cost
discount, at some portfolio positions the investor would be better off by
not trading, but with a discount he prefers to sell some amount of the
risky asset. To the contrary, the slope of the lower boundary of the no-
transaction region increases when δ2 declines (see Þgures 3b and 4b). That
is, the area (portfolio allocations) from which the investor will prefer to
buy the risky asset widens. In other words, the lower the value of δ2, or
the higher the transaction cost discount, the bigger is a set of portfolio
position from which the investor will make nonzero trades, and hence the
narrower is the no-transaction region. When the investor�s wealth increases,
the boundaries of the no-transaction region quickly converge to those of
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the model of proportional transaction costs (TC rate is δ2) with the Þxed
component (δ1 − δ2)λ.

a)

b)

Fig. 3. The upper and the lower boundaries of the no-transaction region for

one period optimization problem for different values of the smaller transac-

tion cost rate. The other parameters are: λ = 1, γ = −2, δ1 = 0.01.
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a)

b)

Fig. 4. The change in the slope of the upper and the lower boundaries of

the no-transaction regions for one period optimization problem for different

values of the smaller transaction cost rate. The other parameters are: λ =
1, γ = −2, δ1 = 0.01.

Those portfolio allocations at which the boundaries of the no transaction
region change their slope, that is (x∗u, y∗u) for the upper boundary and (x∗l , y

∗
l )

for the lower boundary respectively, can be deÞned as:
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(x∗u, y∗u) := Minx Max
y
{(x, y) ∈ R2+ : ϕP (T − 1, x, y, 0) =

= Max
v∈[−y,−λ]

ϕFP (T-1, x, y, v)}

(x∗l , y
∗
l ) := Minx

Min
y
{(x, y) ∈ R2+ : ϕP (T − 1, x, y, 0) =

= Max
v∈[λ,ub(x)]

ϕFP (T-1, x, y, v)}

The numerical solution of the last period optimization problem indi-
cates that when the risk-free wealth xT−1 ≤ x∗u(T − 1), then the upper
boundary of the no-transaction region is deÞned by pure proportional trans-
action cost structure (with TC rate δ1), i.e. it is driven by function ϕ

P (T −
1, xT−1, yT−1, vT−1). Therefore, for these values of the risk-free wealth, the
optimal trading volume is continuous in the vicinity of the upper boundary
of the NT region. Similarly, when xT−1 ≤ x∗l (T − 1), the lower boundary
of the NT region is also deÞned by ϕP (T − 1, xT−1, yT−1, vT−1) and the
trading volume is continuous near the lower boundary. On Fig.5 we depict
the relationship between the investor�s risky wealth and the optimal trad-
ing volume when the risk-free wealth is Þxed and equals to 1, 2.5 and 3.2.
In that example x∗u = 3.2. We can see that the optimal trading volume is
positive at the very low levels of the risky wealth, that is when the portfolio
position is below the lower boundary of the no-transaction region, then it is
equal to zero when the portfolio lies inside the no-transaction region, and
Þnally it becomes negative when the portfolio moves to the �sell� region.
Notice, that the optimal trading volume of the risky asset is a continuous
function until a certain level of the risky wealth, and then it makes a jump.
In the selling region, for a Þxed risk-free wealth x̄, this jump happens at the
maximum level of the risky wealth when

Max
v∈[−λ,0]

ϕP (T − 1, x̄, y, v) = Max
v∈[−y,−λ]

ϕFP (T − 1, x̄, y, v)}

Similarly, in the buying region the jump happens at the minimum level of
the risky wealth such that:

Max
v∈[0,λ]

ϕP (T − 1, x̄, y, v) = Max
v∈[λ,ub(x̄)]

ϕFP (T − 1, x̄, y, v)}

In Fig.6, we plot the optimal post-trade portfolio allocations, as well
as the upper boundary of the no-transaction region for Þxed values of the
risk-free wealth. As we discussed in the previous section, at low wealth
levels the investor is constrained to trade big amounts, and thus he faces

23



only the higher transaction cost rate δ1. Therefore, his optimal behavior
can be explained by proportional transaction cost models. According to
those models, the optimal post-trade portfolio allocations should lie on the
closest boundary of the no-transaction region. That is what we see on Fig.
6 when the risky wealth is low. On the contrary, at high levels of the risky
wealth, it is optimal for the investor to make trades which bring his post-
trade portfolio position inside the no-transaction region, like in the case
when the Þxed component is added to proportional transaction costs (for
instance, see Zakamouline (2002)). Such a behavior of the investor can
be explained in the following way: Optimally, the investor would wish his
portfolio to be located on the so-called Merton�s line13, which lies inside
the no-transaction region and corresponds to the zero-transaction-cost case.
However, the presence of non-zero transaction costs induces the investor to
balance costs, i.e. transaction costs, and beneÞts from being closer to the
Merton�s line. Hence, the transaction cost discount allows the investor to
get closer to the Merton�s line, and thus he trades inside the NT-region.
On the other hand, small investor cannot follow this strategy because they
will pay higher transaction cost (relative to their wealth) than big investors
(again, relative to their wealth).

Fig. 5. The relationship between the risky wealth and the optimal trading

volume of the risky asset when the value of the risk-free wealth is equal to

5. The other parameters are: λ = 1, γ = −2, δ1 = 0.01, δ2 = 0.005.
13The boundaries of the no-transaction region will converge to the Merton�s line when

the transaction cost rates approache zero.

24



Fig. 6. The upper and the lower boundaries of the no-transaction region and

the post-trade portfolio allocations. The parameters are: λ = 1, γ = −2,
δ1 = 0.01, δ2 = 0.005.

Next, we look at how the length of the optimization period affects the
no-transaction region. On Fig. 7 we plot the no-transaction region for the
one- and the two-period optimization problem and in Table 3 we present the
results for three periods optimization for Þxed values of the risk-free wealth.
We can see that the no-transaction region tends to widen as we approach
maturity. This result agrees with Þndings of Boyle and Lin (1994), Genotte
and Jung (1994) and Zakamouline (2002). Also, Panel B of Table 3 shows
that the boundaries of the no-transaction region are ßattering when the
number of periods to maturity increases.

Fig.7. The boundaries of the NT region for one- and two-period optimization

problem for λ = 1, δ1 = 0.01 , δ2 = 0.005, γ = −1.

25



Table 3.

X=1 X=5 X=10 X=15
One period

Lower Boundary 0.094 0.467 0.934 1.862
Upper boundary 2.791 12.3079 20.943 29.150

Two periods

Lower Boundary 0.327 1.651 3.291 4.956
Upper boundary 1.351 6.742 13.117 19.375

Three periods

Lower Boundary 0.426 2.130 4.259 6.388
Upper boundary 1.108 5.544 11.088 16.632

X=1 X=5 X=10 X=15
One period

Lower Boundary 0.094 0.093 0.093 0.124
Upper boundary 2.791 2.462 2.094 1.943

Two periods

Lower Boundary 0.329 0.330 0.329 0.330
Upper boundary 1.351 1.348 1.312 1.292

Three periods

Lower Boundary 0.426 0.426 0.426 0.426
Upper boundary 1.108 1.109 1.109 1.109

Panel B: for different values of the risk-free wealth the boundaries of the
no-transaction region are defined by the ratio of the risky wealth to the
corresponding risk-free wealth

Risk-free wealth

Risk-free wealth

Panel A: for different values of the risk-free wealth the boundaries of the
no-transaction region are defined by the corresponding risky wealth

Let us notice that due to substantial computational time, we restrict our
attention to only the one-, two- and three-period optimization problems.
However, the derived properties of the optimal trading strategies and the
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boundaries of the no-transaction region should hold for an arbitrarily large
number of periods. This is because our model is a combination of both
pure proportional and proportional with a Þxed component transaction costs
models, and the results of those two models hold in general.

B. Sensitivity analysis

In this sub-section we show that on average the upper boundary of the
no transaction region is more sensitive to the changes in the volatility and
the CRRA parameter than the lower boundary. This is due to the fact that
the investor�s relative risk aversion, when measured by the value function
,RRAV, is not constant and it increases with the investor�s wealth. In Þgure
8, we plot the relative risk aversion, which is deÞned as RRAVx = −yJyy

Jy for
Þxed values of the risk-free wealth. We can see that risk aversion increases
with the investor�s holdings in the risky asset. Therefore, the investor is more
risk averse near the upper boundary of the NT-region, and less risk averse
near the lower boundary. Also, the investor�s risk aversion decreases with his
risk-free wealth. Note, that when markets are frictionless, i.e. when there
are no transaction costs, no taxes, etc., the investor�s relative risk aversion,
when measured by the value function, does not depend on investor�s wealth,
and it equals to the γ (Merton (1971)). However, such a friction as the
transaction cost makes the investor�s RRA, when measured by the value
function, wealth-dependent. For example, similarly to transaction costs,
the presence of default risk also induces the RRAV to be wealth-dependent
(Chang and Sundaresan (1999)).

In Fig. 9, we present the impact of the investor�s relative risk aversion
parameter |γ| on the boundaries of the no-transaction region. As the risk
aversion increases, the no-transaction region shifts down towards the risk-
free wealth. That is, the area from which the investor optimally sells the
risky asset widens and from which he optimally buys the risky asset narrows
(Þg. 9a). In general, the upper boundary appears to be more sensitive
to changes in the risk aversion than the lower boundary (Þg. 9b). This
difference in sensitivities due to the dependance of the RRAV from the
investor�s wealth. That is, near the upper boundary the investor is wealthier,
and thus more risk averse, than near the lower boundary. We can also see
that the sensitivity of the upper boundary to changes in γ remains constant
at low wealth levels, i.e. when only proportional transaction costs drive
the investor�s trading strategies, and then it monotonically decreases with
wealth. On the other hand, the sensitivity of the lower boundary displays
different behavior. It also remains constant at low wealth levels, then, up
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to a certain wealth level, it increases, and then it decreases as wealth tends
to inÞnity. Both the sensitivity of the upper boundary and the sensitivity
of the lower boundary converge to those with pure proportional transaction
costs (δ1 = δ2 = 0.005) when the investor�s wealth tends to inÞnity.

The impact of the risky asset volatility σ on the location of the no-
transaction region (Þg. 10a) is similar to the effect of the risk aversion pa-
rameter: an increase in the volatility shifts the no-transaction region down
towards the riskless asset. This move of the no-transaction region towards
the risk-free wealth is due to the risk-aversion of the investor. Also, due
to the fact that RRAV increases with wealth, the upper boundary is more
sensitive to changes in the volatility than the lower boundary. As the in-
vestor�s wealth tend to inÞnity, the sensitivities of both boundaries tend to
those with pure proportional transaction costs (Þg. 10b).

Fig.8. The relative risk aversion when measured by the value function when

λ = 1, γ = −2, δ1 = 0.01,δ2 = 0.005.
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Fig.9a. The upper and the lower boundaries of the no-transaction region

for one period optimization problem for different values of the relative risk

aversion parameter. The other parameters are: λ = 1, δ1 = 0.01, δ2 =
0.005.

Fig.9b. The relative change in the boundaries of the NT region when γ
changes from -2 to -1.
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Fig.10a. The upper and the lower boundaries of the no-transaction region

for one period optimization problem for different values of the risky asset

volatility. The other parameters are: λ = 1, γ = −2, δ1 = 0.01,δ2 =
0.005.

Fig.10b. The relative change in the boundaries of the NT region when σ
changes from 0.25 to 0.30.
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C. Boundaries of the no transaction region and different TC
structures.

In this sub-section, we would like to compare the boundaries
of the no-transaction region for different speciÞcations of the
transaction cost structure. Namely, we consider concave transac-
tion costs, pure proportional transaction costs and proportional
transaction costs with a Þxed component. As we already men-
tioned, concave transaction costs which we consider is a combi-
nation of the last two cost structures. Moreover, in our model
the investor has an option to choose the cost structure by choos-
ing the trading volume of the risky asset. On Figure 11a and
11b we plot the upper and lower boundaries respectively for the
mentioned transaction costs speciÞcations. As we can see, un-
der concave transaction costs the no-transaction region is the
narrowest. This means that under concave transaction costs the
investor trades more often than under the other TC formulation.
For example, a shift from pure proportional to concave transac-
tion costs (with the same transaction cost rate for small trading
volumes) is beneÞcial for big investors (since they receive TC
discount) and it does nor affect small investors since they have
to pay the same rate in both cases. On the other hand, a shift
from proportional transaction costs with a Þxed component to
concave transaction costs (with the same marginal TC rate for
high trading volumes) is beneÞcial for small investors, since for
small trading volumes the proportional transaction costs are be-
low the costs with a Þxed component. In other words, concave
transaction costs make the securities market the most liquid.
This result can have implications for a design of an optimal fee
structure on a market place.
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a)

b)

Fig. 11. a)The upper and b) the lower boundaries of the no-transaction

region for different transaction cost speciÞcations.
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7 Conclusions

All studies with the proportional transaction cost structure postulate that
the no-transaction region is a positive cone and optimal trading strategies
consist of having the post-trade portfolio allocations at the nearest bound-
ary of the no-transaction region. On the other hand, studies which combine
proportional transaction cost with a Þxed component report that the no-
transaction region is wealth-dependent and the optimal trading consists in
bringing the post-trade portfolio position inside the NT region. In the paper
we show that when transaction costs are concave, that is when the trans-
action cost rate decreases with the trading volume of the risky asset, the
optimal behavior of the investor can be largely explained by the above two
models. Namely, at low wealth levels the investor face only proportional
transaction costs and trades to the nearest boundary of the NT region.
When the wealth increases, the investor prefers proportional TC with a
Þxed component to pure proportional TC, and hence his optimal trades go
mostly inside the no-transaction region.

We also show that under concave transaction costs the no-transaction
region lies inside the NT regions with the two alternative cost speciÞcations.
This means that concave transaction costs imply more frequent trading, and
therefore they make the securities� market more liquid.

One of the limitations of the paper is that we cannot obtain analytical
solutions. Therefore, we solve the problem numerically. Another limitation
is that we solve the problem only for a small number periods (maximum
three). This is due to the substantial computation time required. However,
since our model is a combination of the other two models, which are solved
for an arbitrary large number of periods, we claim that our results hold in
general.

For the further research, one can think about introducing another agent
in the model, a �market maker�, and study the impact of the �illiquidity
effect� on the optimal behavior of the investor. Also, one can think about the
optimal choice of the transaction cost rates δ1 and δ2 imposed by Þnancial
institutions or intermediaries. This is an important issue, since we show that
the investors� demand for the risky asset is sensitive to the variations in the
transaction cost rates. Moreover, imposing a convex structure of transaction
cost, a Þnancial intermediary can substantially increase trading activities.
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