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a b s t r a c t

In this paper we introduce and analyze a new augmentedmixed finite element method for
linear elasticity problems in 3D. Our approach is an extension of a technique developed
recently for plane elasticity, which is based on the introduction of consistent terms of
Galerkin least-squares type. We consider non-homogeneous and homogeneous Dirichlet
boundary conditions and prove that the resulting augmented variational formulations
lead to strongly coercive bilinear forms. In this way, the associated Galerkin schemes
become well posed for arbitrary choices of the corresponding finite element subspaces. In
particular, Raviart–Thomas spaces of order 0 for the stress tensor, continuous piecewise
linear elements for the displacement, and piecewise constants for the rotation can
be utilized. Moreover, we show that in this case the number of unknowns behaves
approximately as 9.5 times the number of elements (tetrahedrons) of the triangulation,
which is cheaper, by a factor of 3, than the classical PEERS in 3D. Several numerical results
illustrating the good performance of the augmented schemes are provided.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The analysis of a new augmented mixed finite element method for plane linear elasticity with homogeneous Dirichlet
boundary conditionswas presented in [1]. The approach there is based on the introduction of the Galerkin least-squares type
terms arising from the constitutive and equilibrium equations, and from the relation defining the rotation in terms of the
displacement, all of them multiplied by suitably chosen stabilization parameters. In this way, the augmented formulation
becomes strongly coercive, and hence arbitrary finite element subspaces can be considered to define the associated discrete
scheme. In particular, Raviart–Thomas spaces of order 0 for the stress tensor, continuous piecewise linear elements for the
displacement, and piecewise constants for the rotation, which are known to yield a non-feasible choice for the usual mixed
formulation, constitute the lowest order susbspaces that can be used in the augmented method. Furthermore, if we assume
uniform refinements, the total number of unknowns behaves in this case approximately as 5 times the number of triangles
of each triangulation. This is certainly cheaper than employing the well-known PEERS (see [2]) in the usual non-augmented
formulation, where the corresponding factor becomes 7.5.
Now, a residual based a posteriori error analysis yielding a reliable and efficient estimator for the augmented method

from [1], is provided in [3], which confirms that this approach is also suitable for adaptive computations. It is worth
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mentioning that the analysis in [1,3] requires the application of the first Korn inequality (see, e.g. Theorem 10.1 in [4]),
and therefore only homogeneous Dirichlet boundary conditions were considered there. Nevertheless, the corresponding
extension to plane linear elasticity with non-homogeneous Dirichlet boundary conditions was performed recently in [5].
The introduction of an additional consistent term and the application of a slight modification of the classical Korn inequality
are the main novelties of the analysis in [5].
According to the above, the purpose of this paper is to extend the results from [1,5] to 3D linear elasticity problems, while

keeping the same advantages of the 2D case in the resulting augmented formulation. In particular, we observe that if we
employ Raviart–Thomas spaces of order 0 for the stress tensor, continuous piecewise linear elements for the displacement,
andpiecewise constants for the rotation, then the total number of unknowns behaves approximately as 9.5 times the number
of tetrahedrons of the triangulation. This factor increases to 12.5 when the 3D PEERS (see, e.g., Definition 3.1 in [6]) is used
in the non-augmented formulation, which confirms that the augmented mixed finite element scheme is also cheaper than
PEERS in 3D. The rest of this paper is organized as follows. In Section 2we describe the 3D linear elasticity problemwith non-
homogeneousDirichlet boundary conditions, and establish its dual-mixed variational formulation. In Section 3wedefine the
augmented dual-mixed variational formulation and show that it is well posed. The analysis here includes the application of
a modified Korn inequality. As a consequence, the choice of some stabilization parameters depend on an unknown constant
appearing in this inequality, whereas the rest of them are determined explicitly by the bounded Lamé constant. Then, in
Section 4 we introduce the augmented mixed finite element scheme and show that the specific finite element subspace
mentioned above does yield the announced factor 9.5. A priori error estimates and rates of convergence are also given here.
In Section 5 we consider the case of homogeneous Dirichlet boundary conditions and simplify accordingly the analysis from
Sections 3 and 4. In particular, we prove in this case that all the stabilization parameters can be computed explicitly. Next,
several numerical results illustrating the good performance of the augmented scheme are reported in Section 6. Finally, a
proof of the above-mentioned modified Korn inequality is given in the Appendix.
We end this section by introducing some notations to be used throughout the paper. For each Hilbert space U , we let

U3 and U3×3 be, respectively, the space of vectors and square matrices of order 3 with entries in U . In addition, given
τ := (τij), ζ := (ζij) ∈ R3×3, we define the transpose tensor τt

:= (τji) , the trace tr(τ) :=
∑3
i=1 τii,, the tensor product

τ : ζ :=
∑3
i,j=1 τij ζij, and the deviator τ

d
:= τ − 1

3 tr(τ) I, where I is the identity matrix of R
3×3. Also, in what follows we

utilize the standard terminology for Sobolev spaces and norms, employ 0 to denote a generic null vector, and use C , with
or without subscripts, bars, tildes or hats, to denote generic constants independent of the discretization parameters, which
may take different values at different places.

2. The model problem

LetΩ be a simply connected domain in R3 with polyhedric boundary Γ := ∂Ω . We are interested in determining the
small displacement u and the stress tensor σ of an isotropic linear elastic material occupying the regionΩ . In other words,
given a volume force f ∈ [L2(Ω)]3 and a Dirichlet datum g ∈ [H1/2(Γ )]3, we seek a symmetric tensor field σ and a vector
field u such that

div(σ) = −f inΩ, e(u) =
1
2
(∇u+ (∇u)t) inΩ,

σ = Ce(u) inΩ, and u = g onΓ .
(2.1)

Hereafter, div stands for the usual divergence operator div acting along each row of the tensor and e is the infinitesimal
strain tensor. The first and second equations of (2.1) correspond, respectively, to the equilibriumof forces inΩ and the linear
geometric compatibility in the solid between strains and displacements. The third equation is the constitutive Hooke’s law
given by

Cζ := λtr(ζ)I+ 2µζ ∀ ζ ∈ [L2(Ω)]3, (2.2)

where λ,µ > 0 are the Lamé elastic constants of the solid. Then, it is easy to see from (2.2) that the inverse of the elasticity
operator C reduces to

C−1ζ :=
1
2µ

ζ −
λ

2µ (3 λ+ 2µ)
tr(ζ)I. (2.3)

We now follow the classical stress–displacement–rotation formulation (see [2,7]). In fact, imposing weakly the symmetry
of σ through the introduction of the rotation γ := 1

2 (∇u − (∇u)
t) as a further unknown, multiplying by test functions,

and then integrating the equilibrium equation and the relation ∇u − γ = e(u) = C−1σ (see (2.3)), we end up with the
following dual-mixed variational formulation of (2.1)–(2.2): Find (σ, (u, γ)) ∈ H × Q such that

a(σ, τ)+ b(τ, (u, γ)) = 〈τ ν, g〉 ∀ τ ∈ H,

b(σ, (v, η)) = −
∫
Ω

f · v ∀ (v, η) ∈ Q , (2.4)
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where 〈·, ·〉 stands for the duality pairing of [H−1/2(Γ )]3 and [H1/2(Γ )]3 with respect to the [L2(Γ )]3-inner product,

H = H(div; Ω) :=
{
τ ∈ [L2(Ω)]3×3 : div(τ) ∈ [L2(Ω)]3

}
,

Q := [L2(Ω)]3 × [L2(Ω)]3×3asym, [L
2(Ω)]3×3asym :=

{
η ∈ [L2(Ω)]3×3 : η+ ηt = 0

}
,

and the bilinear forms a : H × H → R and b : H × Q → R are defined by

a(ζ, τ) :=
∫
Ω

C−1ζ : τ =
1
2µ

∫
Ω

ζ : τ −
λ

2µ (3 λ+ 2µ)

∫
Ω

tr(ζ) tr(τ) (2.5)

and

b(τ, (v, η)) :=
∫
Ω

v · div(τ)+
∫
Ω

η : τ, (2.6)

for all ζ, τ ∈ H and for all (v, η) ∈ Q . It follows easily from (2.5) and (2.6) that for any (τ, (v, η), c) ∈ [L2(Ω)]3×3×Q ×R
there holds

a(c I, τ) =
c

(3 λ+ 2µ)

∫
Ω

tr(τ) and b(c I, (v, η)) = 0. (2.7)

Also, it is important to observe that a can be rewritten as

a(ζ, τ) =
1
2µ

∫
Ω

ζd : τd
+

1
3 (3 λ+ 2µ)

∫
Ω

tr(ζ) tr(τ), (2.8)

which implies that

a(τ, τ) ≥
1
2µ
‖τd
‖
2
[L2(Ω)]3×3 ∀ τ ∈ [L2(Ω)]3×3. (2.9)

We now define H0 :=
{
τ ∈ H :

∫
Ω
tr(τ) = 0

}
and note that H = H0 ⊕ R I, that is for any τ ∈ H there exist unique τ0 ∈ H0

and d := 1
3|Ω|

∫
Ω
tr(τ) ∈ R such that τ = τ0 + d I. In particular, we obtain from (2.1) and (2.2) that

tr(σ) = (3 λ+ 2µ) tr e(u) = (3 λ+ 2µ) div(u),

which yields σ = σ0 + c I, with σ0 ∈ H0 and the constant c given explicitly by

c :=
1
3 |Ω|

∫
Ω

tr(σ) =
(3 λ+ 2µ)
3 |Ω|

∫
Γ

g · ν. (2.10)

In this way, replacing σ by the expression σ0 + c I in (2.4), applying the identities given in (2.7), and denoting from now on
the remaining unknown σ0 ∈ H0 simply by σ, we find that the dual-mixed variational formulation of (2.1) reduces to: Find
(σ, (u, γ)) ∈ H0 × Q such that

a(σ, τ)+ b(τ, (u, γ)) = 〈τ ν, g〉 ∀ τ ∈ H0,

b(σ, (v, η)) = −
∫
Ω

f · v ∀ (v, η) ∈ Q . (2.11)

Furthermore, according to the new meaning of σ, we deduce from (2.10) and (2.3) that the constitutive equation in (2.1)
now becomes

e(u)− C−1(σ) =

{
1
3 |Ω|

∫
Γ

g · ν
}

I inΩ, (2.12)

whereas the equilibrium equation remains the same, that is div (σ) = − f inΩ .
We end this section by remarking that the well-posedness of (2.11), whose proof follows from the classical

Babuška–Brezzi theory (see, e.g. [8]), yields a continuous dependence result independently of the Lamé constant λ. We
refer to [2] or [9] for details (see also Section 2.1 in [1]). We only recall here for later use the following result concerning H0,
which is fundamental in that proof.

Lemma 2.1. There exists c1 > 0, depending only onΩ , such that

c1 ‖τ‖2[L2(Ω)]3×3 ≤ ‖τ
d
‖
2
[L2(Ω)]3×3 + ‖div(τ)‖

2
[L2(Ω)]3 ∀ τ ∈ H0. (2.13)

Proof. It is a analogous to the corresponding proof for the 2D case (see Lemma 3.1 in [10] or Proposition 3.1 of Chapter IV
in [8]). �
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3. The augmented dual-mixed variational formulation

In this section we follow the original approach from [1] and enrich the dual-mixed variational formulation (2.11) with
Galerkin least-squares type terms arising from the constitutive and equilibrium equations, and from the relation defining
the rotation as a function of the displacement. Recall that the constitutive equation is given now by (2.12). Furthermore,
in order to deal with the non-homogeneous Dirichlet boundary condition, we proceed as in [5] and introduce a consistent
boundary term. In other words, we first subtract the second from the first equation of (2.11) and then add

κ1

∫
Ω

(
e(u)− C−1 σ

)
:
(
e(v)+ C−1 τ

)
= κ1

{
1
3 |Ω|

∫
Γ

g · ν
} ∫

Ω

I :
(
e(v)+ C−1 τ

)
,

κ2

∫
Ω

div(σ) · div(τ) = −κ2
∫
Ω

f · div(τ),

κ3

∫
Ω

(
γ −

1
2
(∇u− (∇u)t)

)
:

(
η+

1
2
(∇v− (∇v)t)

)
= 0,

and

κ4

∫
Γ

u · v = κ4
∫
Γ

g · v,

for all (τ, v, η) ∈ H0 × [H1(Ω)]3 × [L2(Ω)]3×3asym, where (κ1, κ2, κ3, κ4) is a vector of positive constants, also named
stabilization parameters, to be specified later on, independently of the Lamé constant λ. It is important to observe here
that the above terms require now the displacement u to live in [H1(Ω)]3. In addition, it follows easily from (2.3) that

tr
(
C−1 τ

)
=

1
(3 λ+ 2µ)

tr(τ) ∀ τ ∈ H,

and hence for each τ ∈ H0 there holds∫
Ω

I :
(
e(v)+ C−1 τ

)
=

∫
Ω

tr
(
e(v)+ C−1 τ

)
=

∫
Ω

div(v) =
∫
Γ

v · ν.

In this way, instead of (2.11) we propose the following augmented dual-mixed variational formulation: Find (σ,u, γ) ∈
H0 := H0 × [H1(Ω)]3 × [L2(Ω)]3×3asym such that

A((σ,u, γ), (τ, v, η)) = F(τ, v, η) ∀ (τ, v, η) ∈ H0, (3.1)

where the bilinear form A : H0 × H0 → R and the functional F : H0 → R are defined by

A((σ,u, γ), (τ, v, η)) :=
∫
Ω

C−1σ : τ +

∫
Ω

u · div(τ)+
∫
Ω

γ : τ −

∫
Ω

v · div(σ)−
∫
Ω

η : σ

+ κ1

∫
Ω

(
e(u)− C−1 σ

)
:
(
e(v)+ C−1 τ

)
+ κ2

∫
Ω

div(σ) · div(τ)

+ κ3

∫
Ω

(
γ −

1
2
(∇u− (∇u)t)

)
:

(
η+

1
2
(∇v− (∇v)t)

)
+ κ4

∫
Γ

u · v, (3.2)

and

F(τ, v, η) :=
∫
Ω

f · (v− κ2 div(τ))+ 〈τ ν, g〉 + κ4
∫
Γ

g · v+ κ1 cg
∫
Γ

v · ν, (3.3)

with

cg :=
{
1
3 |Ω|

∫
Γ

g · ν
}
.

In what follows we proceed as in [1,5] and derive sufficient conditions on the parameters κ1, κ2, κ3, and κ4, ensuring that A
becomes strongly coercive and bounded in H0, with constants independent of λ, with respect to the norm ‖ · ‖H0 defined by

‖(τ, v, η)‖H0 :=
{
‖τ‖2H(div;Ω) + ‖v‖

2
[H1(Ω)]3 + ‖η‖

2
[L2(Ω)]3×3

}1/2
∀ (τ, v, η) ∈ H0. (3.4)

For this purpose, we need a slight modification of the classical Korn inequality, which establishes the existence of a constant
κ0 > 0 such that

‖e(v)‖2
[L2(Ω)]3×3 + ‖v‖

2
[L2(Γ )]3 ≥ κ0‖v‖

2
[H1(Ω)]3 ∀ v ∈ [H

1(Ω)]3. (3.5)
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The proof of (3.5) follows similar compactness arguments to those employed in the demonstration of the first Korn inequality
(see, e.g. Theorem 9.2.16 in [11] or Theorem 2.2 in [12]). For the sake of completeness, in the Appendix of this paper we
provide a proof of (3.5) that makes use of the Peetre–Tartar Lemma (cf. Theorem 2.1 in Chapter I of [13]).
Now, let us first notice that∫

Ω

(
e(v)− C−1 τ

)
:
(
e(v)+ C−1 τ

)
= ‖e(v)‖2

[L2(Ω)]3×3 − ‖C
−1 τ‖2

[L2(Ω)]3×3 ,

and ∫
Ω

(
η−

1
2
(∇v− (∇v)t)

)
:

(
η+

1
2
(∇v− (∇v)t)

)
= ‖η‖2

[L2(Ω)]3×3 + ‖e(v)‖
2
[L2(Ω)]3×3 − |v|

2
[H1(Ω)]3 .

Next, using (2.5) and the inverse relation (2.3), we find that∫
Ω

C−1τ : τ − κ1 ‖C−1τ ‖2
[L2(Ω)]3×3 =

1
2µ

{
‖τ‖2
[L2(Ω)]3×3 −

λ

(3 λ+ 2µ)

∫
Ω

tr2(τ)
}

−
κ1

4µ2

{
‖τ‖2
[L2(Ω)]3×3 − 2

(
λ

3 λ+ 2µ

)∫
Ω

tr2(τ)+ 3
(

λ

3 λ+ 2µ

)2 ∫
Ω

tr2(τ)

}

=
1
2µ

(
1−

κ1

2µ

)
‖τd
‖
2
[L2(Ω)]3×3 +

1
3 (3 λ+ 2µ)

(
1−

κ1

(3 λ+ 2µ)

)∫
Ω

tr2(τ).

In this way, according to the definition of A (cf. (3.2)) and the above identities, we can write

A((τ, v, η), (τ, v, η)) =
1
2µ

(
1−

κ1

2µ

)
‖τd
‖
2
[L2(Ω)]3×3 +

1
3 (3 λ+ 2µ)

(
1−

κ1

(3 λ+ 2µ)

)∫
Ω

tr2(τ)

+ κ2 ‖div(τ)‖2[L2(Ω)]3 + (κ1 + κ3) ‖e(v)‖
2
[L2(Ω)]3×3 − κ3 |v|

2
[H1(Ω)]3

+ κ4 ‖v‖2[L2(Γ )]3 + κ3 ‖η‖
2
[L2(Ω)]3×3 ∀ (τ, v, η) ∈ H0. (3.6)

Hence, choosing the parameter κ1 so that 0 < κ1 < 2µ, which guarantees that 1 −
κ1
2µ > 0 and 1 − κ1

(3 λ+2µ) > 0, and
applying the estimates (2.13) (cf. Lemma 2.1) and (3.5), we deduce that

A((τ, v, η), (τ, v, η)) ≥ α2 ‖τ‖
2
H(div;Ω) + (α3 κ0 − κ3) ‖v‖

2
[H1(Ω)]3 + κ3 ‖η‖

2
[L2(Ω)]3×3 (3.7)

for all (τ, v, η) ∈ H0, where

α2 := min
{
α1 c1,

κ2

2

}
, α1 := min

{
1
2µ

(
1−

κ1

2µ

)
,
κ2

2

}
, and α3 := min{κ1 + κ3, κ4}.

We remark here that the introduction of the equation κ4
∫
Γ
u · v = κ4

∫
Γ
g · v ∀ v ∈ [H1(Ω)]3 in the augmented

formulation (3.1), allows us to employ the inequality (3.5) in (3.6), which yields the term ‖v‖2
[H1(Ω)]3

in the estimate (3.7).
Next, we note that the only restriction on the parameters κ2 and κ4 is that both be positive. In particular, following [1,5],

we can take κ2 = 1
µ

(
1− κ1

2µ

)
, whence α1 =

κ2
2 and α2 =

κ2
2 min{c1, 1}. Also, we take for simplicity κ4 ≥ κ1 + κ3 so that

α3 becomes κ1 + κ3 and, in this way, the choice of κ3 is determined by the value of κ0. More precisely, if κ0 ≥ 1 it suffices
to take any κ3 > 0, whereas if κ0 < 1 we choose κ3 so that 0 < κ3 <

(
κ0
1−κ0

)
κ1.

On the other hand, it is easy to see that A is bounded with a constant depending only on µ and the parameters κ1, κ2, κ3,
and κ4.
We have thus shown the following result, which is the 3D analogue of Theorem 3.3 in [5].

Theorem 3.1. Assume that (κ1, κ2, κ3, κ4) is independent of λ and such that 0 < κ1 < 2µ, 0 < κ2, 0 < κ3 <
(

κ0
1−κ0

)
κ1 (if

κ0 < 1) or κ3 > 0 (if κ0 ≥ 1), and κ4 ≥ κ1 + κ3. Then, there exist positive constants M, α, independent of λ, such that

| A((σ,u, γ), (τ, v, η))| ≤ M ‖(σ,u, γ)‖H0 ‖(τ, v, η)‖H0 ,

and

A((τ, v, η), (τ, v, η)) ≥ α ‖(τ, v, η)‖2H0

for all (σ,u, γ), (τ, v, η) ∈ H0. In particular, taking κ1 = C1 µ, with any C1 ∈ ]0, 2[, κ2 = 1
µ

(
1− κ1

2µ

)
, κ3 = C3 κ1, with

any C3 ∈ ]0,
κ0
1−κ0
[ if κ0 < 1, or κ3 = κ1 if κ0 ≥ 1, and κ4 = κ1 + κ3, yields M and α depending only on µ, 1µ , κ0, and c1.

Weobserve here, as announced in Section 1, that the stabilization parameters κ3 and κ4 depend on the unknown constant
κ0, whereas κ1 and κ2 are determined explicitly by the Lamé constant µ.
On the other hand, it is clear that the linear functional F (see (3.3)) is bounded independently of λ. Hence, the well-

posedness of (3.1) follows as a simple consequence of Theorem 3.1 and the well-known Lax–Milgram Lemma.
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Theorem 3.2. Assume the same hypotheses of Theorem 3.1. Then the augmented variational formulation (3.1) has a unique
solution (σ,u, γ) ∈ H0, and there exists a positive constant C, depending only on µ, c1, κ0, κ1, κ2, and κ4, such that

‖(σ,u, γ)‖H0 ≤
1
α
‖F‖ ≤ C

{
‖f‖[L2(Ω)]3 + ‖g‖[H1/2(Γ )]3

}
.

4. The augmented mixed finite element method

Given an arbitrary finite element subspace H0,h ⊆ H0, the Galerkin scheme associated with (3.1) reads: Find
(σh,uh, γh) ∈ H0,h such that

A((σh,uh, γh), (τh, vh, ηh)) = F(τh, vh, ηh) ∀ (τh, vh, ηh) ∈ H0,h, (4.1)

where A and F are defined by (3.2) and (3.3), respectively. Inwhat followswe assume that (3.1) and (4.1) are definedwith the
same parameters κ1, κ2, κ3, and κ4 satisfying the assumptions of Theorem 3.1. Since A is bounded and strongly coercive on
the whole space H0 (cf. Theorem 3.1), (4.1) is uniquely solvable. Moreover, there exist positive constants C, C̃ , independent
of λ and h, such that

‖(σh,uh, γh)‖H0 ≤ C sup
(τh,vh,ηh)∈H0,h
(τh,vh,ηh)6=0

| F(τh, vh, ηh) |
‖(τh, vh, ηh)‖H0

≤ C
{
‖f‖[L2(Ω)]3 + ‖g‖[H1/2(Γ )]3

}
and

‖(σ,u, γ)− (σh,uh, γh)‖H0 ≤ C̃ inf
(τh,vh,ηh)∈H0,h

‖(σ,u, γ)− (τh, vh, ηh)‖H0 . (4.2)

In order to define an explicit finite element subspace H0,h of H0, we now let {Th}h>0 be a regular family of triangulations of
the polyhedric domain Ω̄ by tetrahedrons T of diameter hT such that h := max{hT : T ∈ Th}. Given a non-negative integer
k and T ∈ Th, Pk(T ) stands for the space of polynomials in three variables defined in T of degree ≤ k. In addition, for each
T ∈ Th we let RT0(T ) be the local Raviart–Thomas space of order 0, that is

RT0(T ) := span

{(1
0
0

)
,

(0
1
0

)
,

(0
0
1

)
,

(x1
x2
x3

)}
⊆ [P1(T )]3.

Then, we define

Hσ
h := {τh ∈ H(div;Ω) : τh,i|T ∈ RT0(T ) ∀ i ∈ {1, 2, 3}, ∀ T ∈ Th}, (4.3)

where τh,i denotes the ith row of τh,

Hσ
0,h :=

{
τh ∈ Hσ

h :

∫
Ω

tr(τh) = 0
}
, (4.4)

Hu
h := {vh ∈ [C(Ω̄)]

3
: vh|T ∈ [P1(T )]3 ∀ T ∈ Th}, (4.5)

Hγ
h := {ηh ∈ [L

2(Ω)]3×3asym : ηh|T ∈ [P0(T )]
3×3
∀ T ∈ Th}, (4.6)

and

H0,h := Hσ
0,h × H

u
h × H

γ
h . (4.7)

It is well known that H0,h is the finite element subspace of H0 := H0 × [H1(Ω)]3 × [L2(Ω)]3×3asym of lowest order. Moreover,
we claim that the number of degrees of freedom defining H0,h behaves approximately as 9.5 times the total number of
tetrahedrons of Th. In fact, let us assume for simplicity that the triangulation is obtained by refining cubes, as illustrated
in Fig. 4.1 below. We see there that each cube is subdivided into the following 6 tetrahedrons (defined in terms of the
corresponding vertices): ABDF, ADEF, EDFH, BCDF, CDFG, and DFGH. In addition, we observe that each vertex belongs to
either 2 or 6 tetrahedrons in the cube, as indicated by the number between parentheses. Then, repeating this subdivision
procedure in all the cubes defining the triangulation, as illustrated in Fig. 4.2 below where we display separately the four
cubes sharing a common edge GC, we deduce that each interior vertex of the triangulation Th belongs to 24 tetrahedrons.
In fact, it is clear from this figure that the vertices G and C each belong to 12 tetrahedrons lying in the region delimited by
those 4 cubes. However, if we assume that G and C are interior vertices of Th, then there must be another 4 cubes above G
and another 4 cubes below C, thus making the total of 24 tetrahedrons for each one of them. According to this, the degrees
of freedom defining Hu

h are given, approximately, by:(
3× 4
24

)
× m = 0.5 × m,
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Fig. 4.1. Subdivision of a cube into 6 tetrahedrons.

Fig. 4.2. Four cubes sharing the common edge GC.

wherem is the total number of tetrahedrons of Th. Here, the expression ‘‘approximately’’ means that we are not considering
the vertices lying on the boundary Γ , whose amount, however, is negligible with respect to the total number of vertices in
the triangulation, as the later becomes finer.
Now, it is well known that each tensor in [RT0(T )t]3 is uniquely determined by its normal components on the 4 faces

of T . Hence, since each interior face of Th belongs to 2 tetrahedrons of Th, we find that the degrees of freedom defining Hσ
0,h

are given, approximately, by:(
3 × 4
2

)
× m = 6 × m.

Finally, it is straightforward to see that the degrees of freedom defining Hγ
h are given by 3 × m, and hence the number of

unknowns of the augmented scheme (4.1) with H0,h given by (4.7), does in fact behave approximately as 9.5 × m.
Following a similar analysis one can easily show that the degrees of freedom defining the classical PEERS in 3D (see,

e.g., Definition 3.1 in [6]) behaves approximately as 12.5 × m. Certainly, one could use static condensation to eliminate
the 3 local degrees of freedom associated with the bubble function of each tetrahedron. However, this reduction by a factor
of 3 also holds in the augmented formulation when the subspace H0,h (cf. (4.7)) is employed since then one can use static
condensation to eliminate the rotation γh.
On the other hand, inwhat followswe compare and relate our augmented schemewith themixed finite elementmethods

that have emerged recently from the finite element exterior calculus (see, e.g. [14–16]). We begin by mentioning that the
finite element subspaces of the Arnold–Falk–Winther (AFW) family described in [15] are all stable for the original dual-
mixed formulation with weakly imposed symmetry (cf. (2.4) and (2.11)). In particular the lowest order member of this
family is defined by

Xh := Xσ
h × X

u
h × X

γ
h ,

where

Xσ
h := {τh ∈ H(div;Ω) : τh,i|T ∈ [P1(T )]

3
∀ i ∈ {1, 2, 3}, ∀ T ∈ Th}, (4.8)
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Xu
h := {vh ∈ [L

2(Ω)]3 : vh|T ∈ [P0(T )]3 ∀ T ∈ Th}, (4.9)

and

Xγ
h := {ηh ∈ [L

2(Ω)]3×3asym : ηh|T ∈ [P0(T )]
3×3
∀ T ∈ Th}. (4.10)

In other words, Xσ
h may be interpreted as the product of three copies of the Nédélec subspace of the second kind of

degree 1 (cf. [17]), and Xu
h and X

γ
h are the usual subspaces of [L

2(Ω)]3 and [L2(Ω)]3×3asym, respectively, of piecewise constant
polynomials. Note that Hσ

h (cf. (4.3)) is strictly contained in X
σ
h , and H

γ
h (cf. (4.6)) coincides with X

γ
h . Also, X

u
h , being given

by piecewise constants, is clearly simpler than Hu
h , but the latter yields continuous approximations of the displacements,

which, from a physical point of view, may be considered as an advantage. Now, with respect to the number of unknowns
involved, we know from [15] (see also [16]) that Xσ

h has 36 local degrees of freedom (9 per face of each tetrahedron), and
hence the number of degrees of freedom defining Xσ

h is given, approximately, by(
36
2

)
× m = 18 × m.

This number reduces to 12×mwhen the corresponding AFW reduced element (see [15,16]) is employed. In this way, since
Xu
h and X

γ
h are determined by 3×m degrees of freedom each, we deduce that the number of unknowns of the mixed finite

element scheme arising from the formulation (2.11) and the finite element subspace Xh, behaves approximately as 18×m
(almost twice 9.5 × m, the number of unknowns of the augmented scheme (4.1) with (4.7)). Still, if we do not count the
unknowns that can be eliminated by static condensation in each case, thenwewould have to compare 12× mwith 6.5×m,
respectively.
We now recall the approximation properties of Hσ

0,h, H
u
h , and H

γ
h (see, e.g., [8,18]):

(APσh,0) For each τ ∈ [H1(Ω)]3×3 ∩ H0 with div(τ) ∈ [H1(Ω)]3 there exists τh ∈ Hσ
0,h such that

‖τ − τh‖H(div;Ω) ≤ C h
{
‖τ‖[H1(Ω)]3×3 + ‖div(τ)‖[H1(Ω)]3

}
.

(APuh) For each v ∈ [H
2(Ω)]3 there exists vh ∈ Hu

h such that

‖v− vh‖[H1(Ω)]3 ≤ C h ‖v‖[H2(Ω)]3 .

(APγh ) For each η ∈ [H1(Ω)]3×3asym there exists ηh ∈ H
γ
h such that

‖η− ηh‖[L2(Ω)]3×3 ≤ C h ‖η‖[H1(Ω)]3×3 .

Then, as a consequence of the Cea estimate (4.2), the above approximation properties, and the interpolation theorems in
the corresponding function spaces, we can establish the 3D analogue of Theorem 4.2 in [5] as follows.

Theorem 4.1. Let (σ,u, γ) ∈ H0 and (σh,uh, γh) ∈ H0,h := Hσ
0,h × H

u
h × H

γ
h be the unique solutions of the continuous

and discrete augmented mixed formulations (3.1) and (4.1), respectively. Assume that σ ∈ [Hs(Ω)]3×3, div(σ) ∈ [Hs(Ω)]3,
u ∈ [Hs+1(Ω)]3, and γ ∈ [Hs(Ω)]3×3, for some s ∈ (0, 1]. Then there exists C > 0, independent of λ and h, such that

‖(σ,u, γ)− (σh,uh, γh)‖H0 ≤ C h
s {
‖σ‖[Hs(Ω)]3×3 + ‖div(σ)‖[Hs(Ω)]3 + ‖u‖[Hs+1(Ω)]3 + ‖γ‖[Hs(Ω)]3×3

}
.

Finally, in order to deal with the mean value condition required by the traces of the elements in Hσ
0,h, we proceed as in [1,

5] and replace (4.1) by the modified discrete scheme: Find (σh,uh, γh, ρh) ∈ Hσ
h × H

u
h × H

γ
h × R such that

A((σh,uh, γh), (τh, vh, ηh))+ ρh
∫
Ω

tr(τh) = F(τh, vh, ηh),

χh

∫
Ω

tr(σh) = 0,
(4.11)

for all (τh, vh, ηh, χh) ∈ Hσ
h × H

u
h × H

γ
h × R. The equivalence between (4.1) and (4.11) can be established analogously as

Theorem 4.3 in [5]. We omit further details.

5. The case of homogeneous Dirichlet boundary conditions

In this section we assume that the Dirichlet datum g = 0. It follows from our analysis in Section 2 that the original stress
tensor σ belongs to H0. In addition, since the displacement u lives now in [H10 (Ω)]

3, we do not require the modified Korn
inequality (3.5). Instead of it, we use the first Korn inequality (see, e.g. Theorem 10.1 in [4]), which establishes that

‖e(v)‖2
[L2(Ω)]3×3 ≥

1
2
|v|2
[H1(Ω)]3 ∀ v ∈ [H

1
0 (Ω)]

3. (5.1)
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Consequently, there is no need of introducing the boundary consistent term, and hence our augmented dual-mixed
variational formulation reduces to: Find (σ,u, γ) ∈ H̃0 := H0 × [H10 (Ω)]

3
× [L2(Ω)]3×3asym such that

Ã((σ,u, γ), (τ, v, η)) = F̃(τ, v, η) ∀ (τ, v, η) ∈ H̃0, (5.2)

where the bilinear form Ã : H̃0 × H̃0 → R and the linear functional F̃ : H̃0 → R are defined by

Ã((σ,u, γ), (τ, v, η)) :=
∫
Ω

C−1σ : τ +

∫
Ω

u · div(τ)+
∫
Ω

γ : τ −

∫
Ω

v · div(σ)−
∫
Ω

η : σ

+ κ1

∫
Ω

(
e(u)− C−1 σ

)
:
(
e(v)+ C−1 τ

)
+ κ2

∫
Ω

div(σ) · div(τ)

+ κ3

∫
Ω

(
γ −

1
2
(∇u− (∇u)t)

)
:

(
η+

1
2
(∇v− (∇v)t)

)
, (5.3)

and

F̃(τ, v, η) :=
∫
Ω

f · (v− κ2 div(τ)) . (5.4)

In this way, following the same procedure of Section 3, we can replace our previous Theorem 3.1 by the following result,
which is the 3D analogue of Theorem 3.1 in [1]. Note, as announced in Section 1, that all the stabilization parameters are
determined explicitly by the Lamé constant µ.

Theorem 5.1. Assume that (κ1, κ2, κ3) is independent of λ and such that 0 < κ1 < 2µ, 0 < κ2, and 0 < κ3 < κ1. Then, there
exist positive constants M, α, independent of λ, such that

| Ã((σ,u, γ), (τ, v, η))| ≤ M ‖(σ,u, γ)‖H̃0 ‖(τ, v, η)‖H̃0 ,

and

Ã((τ, v, η), (τ, v, η)) ≥ α‖(τ, v, η)‖2H̃0

for all (σ,u, γ), (τ, v, η) ∈ H̃0, where

‖(τ, v, η)‖H̃0 :=
{
‖τ‖2H(div;Ω) + |v|

2
[H1(Ω)]3 + ‖η‖

2
[L2(Ω)]3×3

}1/2
∀ (τ, v, η) ∈ H̃0.

In particular, taking κ1 = C1 µ, κ2 = 1
µ

(
1− κ1

2µ

)
, and κ3 = C3 κ1, with any C1 ∈ ]0, 2[ and any C3 ∈ ]0, 1[, yields M and α

depending only on µ, 1
µ
, and c1.

Next, given an arbitrary finite element subspace H̃0,h ⊆ H̃0, the Galerkin scheme associated with (5.2) reads: Find
(σh,uh, γh) ∈ H̃0,h such that

Ã((σh,uh, γh), (τh, vh, ηh)) = F̃(τh, vh, ηh) ∀ (τh, vh, ηh) ∈ H̃0,h. (5.5)
In particular, we consider

H̃0,h := Hσ
0,h × H

u
0,h × H

γ
h , (5.6)

where Hσ
0,h and H

γ
h are defined by (4.4) and (4.6), respectively, and

Hu
0,h := {vh ∈ H

u
h : vh = 0 onΓ }. (5.7)

The rest of the analysis, including the well-posedness of (5.2) and (5.5), the corresponding a priori error estimates, and the
rates of convergences, follows exactly as in Sections 3 and 4. We omit further details.

6. Numerical results

In this sectionwe present several examples illustrating the performance of the augmentedmixed finite element schemes
(4.1) and (5.5), with H0,h and H̃0,h given by (4.7) and (5.6), respectively, on a finite sequence of uniform meshes of the
domain Ω . In what follows, N stands for the total number of degrees of freedom of the discrete schemes, which behaves
approximately as 9.5 × m, wherem is the number of tetrahedrons of each triangulation Also, the individual and total errors
are denoted by

e(σ) := ‖σ − σh‖H(div;Ω), e0(σ) := ‖σ − σh‖[L2(Ω)]3×3 , e(u) := ‖u− uh‖[H1(Ω)]3 ,

e(γ) := ‖γ − γh‖[L2(Ω)]3×3 , and e(σ,u, γ) :=
{
[e(σ)]2 + [e(u)]2 + [e(γ)]2

}1/2
.

In addition, we let r(σ), r0(σ), r(u), r(γ) and r(σ,u, γ) be the corresponding experimental rates of convergence, which are
given by
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r(σ) :=
log(e(σ)/e′(σ))
log(h/h′)

, r0(σ) :=
log(e0(σ)/e′0(σ))
log(h/h′)

, r(u) :=
log(e(u)/e′(u))
log(h/h′)

,

r(γ) :=
log(e(γ)/e′(γ))
log(h/h′)

, and r(σ,u, γ) :=
log(e(σ,u, γ)/e′(σ,u, γ))

log(h/h′)
,

where h and h′ denote two consecutive meshsizes with corresponding errors e and e′.
Next, we recall that given the Young modulus E and the Poisson ratio ν of an isotropic linear elastic solid, the

corresponding Lamé parameters are defined as

µ :=
E

2(1+ ν)
and λ :=

E ν
(1+ ν) (1− 2 ν)

.

In the examples we fix E = 1 and take ν ∈ {0.3000, 0.4900, 0.4999}, which gives the following values of µ and λ:

ν µ λ

0.3000 0.3846 0.5769
0.4900 0.3356 16.4430
0.4999 0.3333 1666.4444

Certainly, the cases ν = 0.4900 and ν = 0.4999 correspond to materials showing nearly incompressible behaviours.
The numerical results given below were obtained in a Pentium Xeon computer with dual processors, usingMatlab codes.

The Galerkin schemes (4.1) and (5.5) are implemented in these codes following Section 4.3 in [1], and they are solved by a
direct method. The individual errors are computed on each tetrahedron using a Gaussian quadrature rule.

6.1. Non-homogeneous Dirichlet boundary conditions

In what follows we present three examples illustrating the performance of (4.1) with H0,h given by (4.7). According
to Theorem 3.1, we consider κ1 = C1 µ, κ2 = 1

µ

(
1− κ1

2µ

)
, κ3 = C3 κ1, and κ4 = κ1 + κ3, with any C1 ∈ ]0, 2[ and

C3 ∈ ]0,
κ0
1−κ0
[. In particular, we take C1 = 1 and C3 ∈ { 18 ,

1
4 }, which yield, respectively,

(κ1, κ2, κ3, κ4) =

(
µ,

1
2µ

,
µ

8
,
9µ
8

)
and (κ1, κ2, κ3, κ4) =

(
µ,

1
2µ

,
µ

4
,
5µ
4

)
. (6.1)

Certainly, since κ0 is unknown, we have assumed here that 14 <
κ0
1−κ0
. As we observe in the tables below, these choices of C3

work fine. Otherwise, we would have to decrease this constant.
We take the domainΩ either as the unit cube ]0, 1[3 or the L-shaped domain

] − 1/2, 1/2[× ]0, 1[× ] − 1/2, 1/2[−
{
]0, 1/2[× ]0, 1[× ]0, 1/2[

}
,

and choose the datum f so that the Poisson ratio ν and the exact solution u := (u1, u2, u3)t of each example are given as
follows:

Example Ω ν u(x1, x2, x3)

1 Unit cube 0.4900 (x21 + 1)(x
2
2 + 1)(x

2
3 + 1)e

x1+x2+x3

11
1


2 L-shaped 0.4999 A

r3

 (x1 − 0.25)2

(x1 − 0.25)(x2 − 0.5)
(x1 − 0.25)(x3 − 0.25)

+ B
r

10
0


3 L-shaped 0.3000 r5/3 sin((2θ − π)/3) ex2

11
1


where r =

√
(x1 − 0.25)2 + (x2 − 0.5)2 + (x3 − 0.25)2, A = 1

16πµ(1−ν) , and B =
(3−4ν)

16πµ(1−ν) in Example 2, whereas

r =
√
x21 + x

2
3 and θ = arctan

(
x3
x1

)
in Example 3. Note that the solution of Example 2 is the Kelvin fundamental solution at

x0 := (0.25, 0.5, 0.25)t, which is a smooth function since x0 lies outside the domain. Also, we observe that the solution of
Example 3 is singular at x1 = x3 = 0. In fact, because of the power of r , we find that div(σ) belongs to [H2/3(Ω)]3, whence
Theorem 4.1 yields an a priori rate of convergence of O(h2/3).
The meshsizes h, the number of unknowns N , and the number of tetrahedrons m of the uniform meshes employed in

the simulations are displayed in Table 6.1. We see here that the ratios N/m form a decreasing sequence approaching 9.5,
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Table 6.1
Ratios between number of unknowns and number of elements for Examples 1, 2, and 3.

Example 1 Examples 2 and 3
Mesh h N m N/m h N m N/m

1 0.5000 585 48 12.188 0.5000 462 36 12.833
2 0.3333 1812 162 11.185 0.2500 3171 288 11.010
3 0.2500 4119 384 10.727 0.1666 10182 972 10.475
4 0.2000 7848 750 10.464 0.1250 23547 2304 10.220
5 0.1667 13341 1296 10.294 0.1000 45318 4500 10.071
6 0.1428 20940 2058 10.175 0.0833 77547 7776 9.973
7 0.1250 30987 3072 10.087 0.0714 122286 12348 9.903
8 0.1111 43824 4374 10.019 0.0625 181587 18432 9.852
9 0.1000 59793 6000 9.966
10 0.0909 79236 7986 9.921
11 0.0833 102495 10368 9.886
12 0.0769 129912 13182 9.856

Table 6.2

Individual and total errors, and experimental rates of convergence of Example 1 with (κ1, κ2, κ3, κ4) =
(
µ, 1

2µ ,
µ

8 ,
9µ
8

)
and (κ1, κ2, κ3, κ4) =(

µ, 1
2µ ,

µ

4 ,
5µ
4

)
.

N e(σ) r(σ) e(u) r(u) e(γ) r(γ) e(σ,u, γ) r(σ,u, γ)

585 2.296E+03 – 5.164E+02 – 3.061E+02 – 2.373E+03 –
1812 1.579E+03 0.924 3.723E+02 0.807 3.620E+02 – 1.662E+03 0.879
4119 1.203E+03 0.945 3.048E+02 0.695 4.025E+02 – 1.305E+03 0.841
7848 9.709E+02 0.961 2.566E+02 0.770 4.177E+02 – 1.088E+03 0.815
13341 8.125E+02 0.976 2.191E+02 0.867 4.170E+02 0.010 9.392E+02 0.805
20940 6.975E+02 0.990 1.891E+02 0.958 4.073E+02 0.152 8.295E+02 0.805
30987 6.102E+02 1.001 1.646E+02 1.036 3.930E+02 0.266 7.443E+02 0.812
43824 5.418E+02 1.010 1.446E+02 1.102 3.767E+02 0.359 6.755E+02 0.822
59793 4.868E+02 1.016 1.280E+02 1.157 3.599E+02 0.435 6.188E+02 0.833
79236 4.417E+02 1.020 1.141E+02 1.204 3.432E+02 0.497 5.709E+02 0.845
102495 4.041E+02 1.023 1.024E+02 1.244 3.272E+02 0.549 5.299E+02 0.855
129912 3.722E+02 1.025 9.245E+01 1.278 3.121E+02 0.593 4.945E+02 0.865

585 2.293E+03 – 5.169E+02 – 2.396E+02 – 2.362E+03 –
1812 1.569E+03 0.935 3.657E+02 0.854 2.722E+02 – 1.634E+03 0.909
4119 1.189E+03 0.965 2.886E+02 0.823 2.843E+02 – 1.256E+03 0.915
7848 9.549E+02 0.983 2.355E+02 0.912 2.796E+02 0.075 1.022E+03 0.922
13341 7.965E+02 0.995 1.965E+02 0.993 2.675E+02 0.244 8.628E+02 0.931
20940 6.823E+02 1.003 1.669E+02 1.060 2.526E+02 0.370 7.465E+02 0.940
30987 5.964E+02 1.009 1.438E+02 1.113 2.374E+02 0.466 6.578E+02 0.947
43824 5.294E+02 1.012 1.255E+02 1.155 2.228E+02 0.540 5.879E+02 0.954
59793 4.757E+02 1.014 1.107E+02 1.190 2.091E+02 0.599 5.313E+02 0.960
79236 4.319E+02 1.015 9.859E+01 1.218 1.966E+02 0.647 4.847E+02 0.965
102495 3.954E+02 1.015 8.850E+01 1.241 1.853E+02 0.685 4.455E+02 0.969
129912 3.645E+02 1.015 8.000E+01 1.260 1.749E+02 0.718 4.121E+02 0.972

which is coherent with the behaviour derived in Section 4. Then, in Tables 6.2–6.4 we present the individual and total
errors, and the experimental rates of convergence for Examples 1, 2, and 3. We observe that the order O(h) provided by
Theorem 4.1 (when s = 1) is attained asymptotically in Examples 1 and 2. However, we notice that the rate of convergence
of e(γ) approaches 1 more slowly than the rates of convergence of the other errors. In particular, this influences the
global rate of convergence in Example 2, which approaches 1 very slowly, as well. Anyway, this behaviour improves when
(κ1, κ2, κ3, κ4) =

(
µ, 12µ ,

µ

4 ,
5µ
4

)
. On the other hand, the global rate of convergence in Example 3, which is determined by

the dominant error e(σ), does not approach 1 and, because of the singularity of the solution, stays around 2/3, as predicted.
Nevertheless, the partial error e0(σ) is not affected by the lack of regularity of the solution and it shows a rate of convergence
of orderO(h). Certainly, the low rate of convergence of e(σ) in this examplemotivates the future development of a posteriori
error estimates and the corresponding adaptive algorithms, as done for the 2D case in [3]. Next, we realize that in Example
1 the rate of convergence of e(u) is somewhat larger than 1, which, however, seems a special behaviour of this particular
solution u.

6.2. Homogeneous Dirichlet boundary conditions

We now present two examples illustrating the performance of (5.5) with H̃0,h given by (5.6). The mean value condition
required by the traces of the elements in Hσ

0,h is also imposed here as in (4.11). According to Theorem 5.1, we consider
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Table 6.3

Individual and total errors, and experimental rates of convergence of Example 2 with (κ1, κ2, κ3, κ4) =
(
µ, 1

2µ ,
µ

8 ,
9µ
8

)
and (κ1, κ2, κ3, κ4) =(

µ, 1
2µ ,

µ

4 ,
5µ
4

)
.

N e(σ) r(σ) e(u) r(u) e(γ) r(γ) e(σ,u, γ) r(σ,u, γ)

462 3.771E−01 – 4.772E−01 – 1.775E−01 – 6.335E−01 –
3171 2.760E−01 0.450 3.588E−01 0.411 2.525E−01 – 5.183E−01 0.290
10182 2.081E−01 0.696 2.790E−01 0.620 2.718E−01 – 4.416E−01 0.395
23547 1.619E−01 0.874 2.247E−01 0.753 2.623E−01 0.123 3.814E−01 0.509
45318 1.300E−01 0.981 1.866E−01 0.832 2.447E−01 0.312 3.341E−01 0.594
77547 1.075E−01 1.044 1.588E−01 0.886 2.258E−01 0.440 2.962E−01 0.659
122286 9.102E−02 1.080 1.377E−01 0.925 2.081E−01 0.532 2.656E−01 0.709
181587 7.857E−02 1.102 1.212E−01 0.953 1.920E−01 0.601 2.403E−01 0.749

462 3.722E−01 – 4.827E−01 – 1.633E−01 – 6.310E−01 –
3171 2.546E−01 0.548 3.579E−01 0.432 1.876E−01 – 4.775E−01 0.402
10182 1.836E−01 0.806 2.768E−01 0.633 1.788E−01 0.118 3.772E−01 0.581
23547 1.396E−01 0.952 2.221E−01 0.765 1.605E−01 0.374 3.076E−01 0.710
45318 1.112E−01 1.019 1.840E−01 0.843 1.429E−01 0.523 2.582E−01 0.785
77547 9.191E−02 1.047 1.564E−01 0.894 1.276E−01 0.620 2.218E−01 0.834
122286 7.808E−02 1.057 1.355E−01 0.929 1.147E−01 0.690 1.940E−01 0.869
181587 6.778E−02 1.059 1.193E−01 0.956 1.039E−01 0.742 1.721E−01 0.896

Table 6.4

Individual errors and experimental rates of convergence of Example 3 with (κ1, κ2, κ3, κ4) =
(
µ, 1

2µ ,
µ

8 ,
9µ
8

)
and (κ1, κ2, κ3, κ4) =

(
µ, 1

2µ ,
µ

4 ,
5µ
4

)
.

N e(σ) r(σ) e(u) r(u) e(γ) r(γ) e0(σ) r0(σ)

462 1.278E−00 – 7.401E−01 – 5.046E−01 – 4.979E−01 –
3171 8.601E−01 0.571 4.141E−01 0.838 3.560E−01 0.503 2.914E−01 0.773
10182 6.693E−01 0.619 2.856E−01 0.916 2.993E−01 0.428 2.016E−01 0.909
23547 5.578E−01 0.634 2.166E−01 0.961 2.563E−01 0.538 1.525E−01 0.969
45318 4.835E−01 0.640 1.739E−01 0.985 2.220E−01 0.644 1.221E−01 0.996
77547 4.300E−01 0.644 1.450E−01 0.998 1.946E−01 0.722 1.017E−01 1.007
122286 3.893E−01 0.646 1.242E−01 1.005 1.727E−01 0.777 8.697E−02 1.012
181587 3.570E−01 0.647 1.085E−01 1.009 1.548E−01 0.818 7.595E−02 1.014

462 1.275E−00 – 7.505E−01 – 3.576E−01 – 4.913E−01 –
3171 8.565E−01 0.574 4.156E−01 0.853 2.437E−01 0.553 2.806E−01 0.808
10182 6.667E−01 0.618 2.865E−01 0.917 1.894E−01 0.622 1.928E−01 0.925
23547 5.560E−01 0.631 2.176E−01 0.957 1.540E−01 0.720 1.460E−01 0.967
45318 4.823E−01 0.637 1.749E−01 0.978 1.290E−01 0.792 1.172E−01 0.984
77547 4.291E−01 0.641 1.460E−01 0.990 1.107E−01 0.840 9.782E−02 0.992
122286 3.886E−01 0.644 1.252E−01 0.997 9.675E−02 0.874 8.390E−02 0.996
181587 3.565E−01 0.646 1.095E−01 1.002 8.581E−02 0.899 7.343E−02 0.998

Table 6.5
Ratio between number of unknowns and number of elements for Examples 4 and 5.

Mesh h N m N/m

1 0.5000 507 48 10.562
2 0.3333 1644 162 10.148
3 0.2500 3825 384 9.960
4 0.2000 7392 750 9.856
5 0.1667 12687 1296 9.789
6 0.1428 20052 2058 9.743
7 0.1250 29829 3072 9.709
8 0.1111 42360 4374 9.684
9 0.1000 57987 6000 9.664
10 0.0909 77052 7986 9.648
11 0.0833 99897 10368 9.635
12 0.0769 126864 13182 9.624

κ1 = C1 µ, κ2 = 1
µ
(1 − κ1

2µ ) and κ3 = C3 κ1, with any C1 ∈ (0, 2) and C3 ∈ (0, 1). In particular, we take (C1, C3) = (1,
1
2 )

and (C1, C3) = ( 32 ,
2
3 ), which yield, respectively,

(κ1, κ2, κ3) =

(
µ,

1
2µ

,
µ

2

)
and (κ1, κ2, κ3) =

(
3µ
2
,
1
4µ

,µ

)
. (6.2)
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Table 6.6
Individual and total errors, and experimental rates of convergence of Example 4 with (κ1, κ2, κ3) = (µ, 12µ ,

µ

2 ) and (κ1, κ2, κ3) = (
3µ
2 ,

1
4µ , µ).

N e(σ) r(σ) e(u) r(u) e(γ) r(γ) e(σ,u, γ) r(σ,u, γ)

507 6.112E−01 – 4.609E−02 – 4.686E−02 – 6.148E−01 –
1644 5.337E−01 0.334 6.288E−02 – 3.337E−02 0.836 5.384E−01 0.327
3825 4.389E−01 0.679 4.619E−02 1.072 3.306E−02 0.032 4.426E−01 0.681
7392 3.687E−01 0.781 3.405E−02 1.366 3.213E−02 0.127 3.717E−01 0.782
12687 3.161E−01 0.843 2.581E−02 1.519 3.057E−02 0.272 3.186E−01 0.844
20052 2.758E−01 0.884 2.017E−02 1.598 2.876E−02 0.395 2.780E−01 0.884
29829 2.442E−01 0.911 1.618E−02 1.650 2.693E−02 0.494 2.462E−01 0.910
42360 2.188E−01 0.931 1.326E−02 1.689 2.517E−02 0.572 2.206E−01 0.929
57987 1.981E−01 0.944 1.106E−02 1.723 2.354E−02 0.635 1.998E−01 0.943
77052 1.808E−01 0.954 9.360E−03 1.752 2.205E−02 0.685 1.824E−01 0.953
99897 1.663E−01 0.962 8.019E−03 1.777 2.070E−02 0.727 1.678E−01 0.960
126864 1.539E−01 0.968 6.943E−03 1.799 1.947E−02 0.761 1.553E−01 0.966

507 6.112E−01 – 1.862E−02 – 2.355E−02 – 6.120E−01 –
1644 5.337E−01 0.334 2.695E−02 – 1.774E−02 – 5.346E−01 0.333
3825 4.387E−01 0.680 2.130E−02 0.818 1.792E−02 – 4.396E−01 0.680
7392 3.685E−01 0.782 1.617E−02 1.234 1.735E−02 0.146 3.692E−01 0.782
12687 3.159E−01 0.844 1.242E−02 1.443 1.637E−02 0.316 3.165E−01 0.844
20052 2.756E−01 0.885 9.779E−03 1.555 1.528E−02 0.448 2.762E−01 0.884
29829 2.440E−01 0.911 7.868E−03 1.628 1.420E−02 0.549 2.445E−01 0.911
42360 2.186E−01 0.930 6.452E−03 1.683 1.318E−02 0.627 2.191E−01 0.930
57987 1.979E−01 0.944 5.379E−03 1.727 1.226E−02 0.688 1.984E−01 0.944
77052 1.807E−01 0.954 4.547E−03 1.762 1.143E−02 0.736 1.811E−01 0.953
99897 1.662E−01 0.961 3.890E−03 1.792 1.068E−02 0.774 1.666E−01 0.961
126864 1.538E−01 0.967 3.364E−03 1.816 1.002E−02 0.805 1.542E−01 0.967

Table 6.7
Individual and total errors, and experimental rates of convergence of Example 5 with (κ1, κ2, κ3) = (µ, 12µ ,

µ

2 ) and (κ1, κ2, κ3) = (
3µ
2 ,

1
4µ , µ).

N e(σ) r(σ) e(u) r(u) e(γ) r(γ) e(σ,u, γ) r(σ,u, γ)

507 8.757E+01 – 1.446E+01 – 6.759E+00 – 8.901E+01 –
1644 6.067E+01 0.904 8.706E+00 1.252 6.183E+00 0.219 6.161E+01 0.907
3825 4.620E+01 0.947 5.803E+00 1.410 5.850E+00 0.192 4.693E+01 0.945
7392 3.723E+01 0.967 4.203E+00 1.445 5.478E+00 0.294 3.787E+01 0.961
12687 3.115E+01 0.978 3.225E+00 1.453 5.095E+00 0.397 3.173E+01 0.970
20052 2.676E+01 0.985 2.573E+00 1.463 4.727E+00 0.486 2.729E+01 0.976
29829 2.344E+01 0.990 2.112E+00 1.477 4.386E+00 0.559 2.394E+01 0.981
42360 2.085E+01 0.994 1.772E+00 1.491 4.077E+00 0.620 2.132E+01 0.984
57987 1.877E+01 0.996 1.512E+00 1.504 3.799E+00 0.669 1.921E+01 0.987
77052 1.707E+01 0.997 1.309E+00 1.513 3.550E+00 0.710 1.748E+01 0.989
99897 1.565E+01 0.999 1.147E+00 1.518 3.327E+00 0.745 1.604E+01 0.991
126864 1.444E+01 0.999 1.015E+00 1.520 3.128E+00 0.773 1.481E+01 0.992

507 8.758E+01 – 7.003E+00 – 3.793E+00 – 8.794E+01 –
1644 6.061E+01 0.907 4.553E+00 1.061 3.461E+00 0.225 6.088E+01 0.906
3825 4.612E+01 0.949 3.249E+00 1.172 3.249E+00 0.220 4.634E+01 0.948
7392 3.714E+01 0.969 2.461E+00 1.244 3.012E+00 0.338 3.735E+01 0.967
12687 3.107E+01 0.980 1.948E+00 1.282 2.775E+00 0.449 3.125E+01 0.977
20052 2.668E+01 0.986 1.592E+00 1.309 2.553E+00 0.541 2.685E+01 0.983
29829 2.338E+01 0.990 1.333E+00 1.327 2.352E+00 0.614 2.353E+01 0.988
42360 2.080E+01 0.993 1.139E+00 1.338 2.173E+00 0.673 2.094E+01 0.990
57987 1.873E+01 0.994 9.890E−01 1.341 2.014E+00 0.720 1.886E+01 0.992
77052 1.703E+01 0.996 8.706E−01 1.338 1.873E+00 0.758 1.715E+01 0.994
99897 1.561E+01 0.997 7.752E−01 1.332 1.749E+00 0.788 1.573E+01 0.995
126864 1.441E+01 0.997 6.973E−01 1.323 1.639E+00 0.814 1.452E+01 0.996

WetakeΩ as theunit cube ]0, 1[3 and choose thedatum f so that the Poisson ratio ν and the exact solutionu := (u1, u2, u3)t
of each example are given as follows:

Example ν u(x1, x2, x3)

4 0.4999 x31(1− x1)
2x32(1− x2)

2x33(1− x3)
2

11
1


5 0.4900 sin(πx1) sin(πx2) sin(πx3)

11
1


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The meshsizes, the number of unknowns N , and the number of tetrahedrons m of the uniform meshes employed in the
simulations are displayed in Table 6.5. The ratios N/m also form a decreasing sequence approaching 9.5. Then, in Tables 6.6
and 6.7, we present the individual and total errors, and the experimental rates of convergence for Examples 4 and 5. The
remarks here are similar to those indicated in the non-homogeneous case. In fact, the order O(h) is also attained in both
Examples, but, as before, the rate of convergence of e(γ) approaches 1 more slowly than the other rates of convergence. In
addition, the apparent superconvergence of e(u) is also present in these examples.
We end this section by remarking that the absence of significant differences between the simulations obtained in each

case with the two sets of parameters (cf. (6.1) and (6.2)), confirms the robustness of the augmented mixed finite element
schemes proposed in this paper.

Appendix. The modified Korn inequality

In this appendix we prove the modified Korn inequality (3.5). We first introduce the space of rigid body motions in Ω ,
that is

RM(Ω) :=

{
w : Ω → R3 : w(x) = Ea+ Eb × x, Ea, Eb ∈ R3

}
.

Also, we let P : [H1(Ω)]3 → RM(Ω) be the orthogonal projector with respect to the usual norm in [H1(Ω)]3. Then, the
Korn inequality in the quotient space [H1(Ω)]3/RM(Ω) (see, e.g., Theorem 2.2 in [12]) yields the existence of C > 0 such
that

‖v− P (v)‖[H1(Ω)]3 ≤ C ‖e(v)‖[L2(Ω)]3×3 ∀ v ∈ [H
1(Ω)]3. (A.1)

We now recall one of the three statements provided by the Peetre–Tartar lemma (see, e.g. Theorem 2.1 in Chapter I of [13]),
which is applied below in the proof of Lemma A.2.

Lemma A.1. Let (E1, ‖ · ‖1), (E2, ‖ · ‖2), and (E3, ‖ · ‖3) be Banach spaces, and let A : E1 → E2 and B : E1 → E3 be bounded
linear operators such that B is compact. Assume that there exists C > 0 such that

‖v‖1 ≤ C
{
‖A(v)‖2 + ‖B(v)‖3

}
∀ v ∈ E1. (A.2)

Then the null space N(A) of A is finite dimensional, A is an isomorphism from E1/N(A) onto the range R(A) of A, and R(A) is a
closed subspace of E2, that is there exists C1 > 0 such that

dist(v,N(A)) := inf
z∈N(A)

‖v − z‖1 ≤ C1 ‖A(v)‖2 ∀ v ∈ E1. (A.3)

We are now in a position to prove the modified Korn inequality (3.5).

Lemma A.2. There exists κ0 > 0 such that

‖e(v)‖2
[L2(Ω)]3×3 + ‖v‖

2
[L2(Γ )]3 ≥ κ0 ‖v‖

2
[H1(Ω)]3 ∀ v ∈ [H

1(Ω)]3. (A.4)

Proof. In order to apply Lemma A.1 we let E1 := [H1(Ω)]3, E2 := [L2(Ω)]3×3 × [L2(Γ )]3, E3 := RM(Ω), and define the
bounded linear operators A : E1 → E2 and B : E1 → E3 as

A(v) := (e(v), v|Γ ) ∀ v ∈ [H1(Ω)]3 and B := P .

It is clear that B is bounded and compact. Then, using triangle inequality and (A.1), we find that

‖v‖[H1(Ω)]3 ≤ ‖v− P (v)‖[H1(Ω)]3 + ‖P (v)‖[H1(Ω)]3 ≤ C
{
‖e(v)‖[L2(Ω)]3×3 + ‖B(v)‖[H1(Ω)]3

}
,

which yields (A.2). In this way, noting that N(A) = {0}, the inequality (A.3) yields (A.4). �
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