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Abstract

Standard tests designed to identify mutual funds with non-zero alphas are prob-

lematic, in that they do not adequately account for the presence of lucky funds.

Lucky funds have significant estimated alphas, while their true alphas are equal

to zero. To address this issue, this paper quantifies the impact of luck with new

measures built on the False Discovery Rate (FDR). These FDR measures provide

a simple way to compute the proportion of funds with genuine positive or negative

performance as well as their location in the cross-sectional alpha distribution. Using

a large cross-section of U.S. domestic-equity funds, we find that about one fifth of

the funds in the population truly yield negative alphas. These funds are dispersed

in the left tail of the alpha distribution. We also find a small proportion of funds

with truly positive performance, which are concentrated in the extreme right tail of

the alpha distribution.
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Executive Summary

Over $4 trillion is currently managed by equity mutual funds in the U.S., with roughly

90 percent invested in actively managed accounts. These mutual funds hold over 25

percent of the outstanding equity value of the average U.S. common stock. This high

level of ownership makes it very unlikely that the equity fund industry as a whole is able

to outperform the market by a large margin. However, several recent papers show some

evidence of manager skills among subgroups of funds (see, for example, Gruber (1996)).

To detect funds with positive or negative performance, the standard approach in the

academic literature (e.g., Jensen (1968), Ferson and Schadt (1996), Ferson and Qian

(2004)) can be described as follows. The presence of differential performance (positive

or negative alphas) is tested for each of theM funds in the population. Then, a conven-

tional significance level is set (e.g., 5 percent) and all funds with p-values smaller than

this level are said to have significant estimated alphas. Finally, these significant alphas

are counted in order to provide an estimate of the number of funds with differential

performance.

As with every hypothesis test, inference based on alpha estimates can lead to the de-

tection of a lucky fund, namely a fund with a significant estimated alpha, while its true

alpha is equal to zero. The difficulty raised by the standard approach is that it implies a

multiple hypothesis test since the null hypothesis of no performance is not tested once,

but M times. Accounting for the presence of luck in a multiple testing framework is

much more complex, because luck cannot be measured by the significance level applied

to each fund. Specifically, if this level is set to 5 percent, the probability of finding at

least one lucky fund among the M funds is much higher than 5 percent—that is, even if

all funds have true alphas of zero, we would still expect that some of the M funds will

exhibit positive and significant alpha estimates purely through luck.

To quantify the impact of luck on mutual fund performance, we use the False Dis-

covery Rate (FDR) introduced by Benjamini and Hochberg (1995) in the statistical

literature. The FDR measures the proportion of lucky funds among the funds with sig-

nificant estimated alphas. We extend this methodology by developing a new approach

which allows us to separately compute the FDR among funds with significant positive

estimated alphas (called hereafter the best funds) and funds with significant negative

estimated alphas (called hereafter the worst funds). A main virtue of the FDR and

these new measures is that they are very easy to compute from estimated p-values of



fund alphas, and are, therefore, very simple extensions of the standard approach. The

contributions brought by our approach are threefold. First, we account for luck by mea-

suring the proportion of lucky funds at different significant levels. Second, we examine

how the FDR varies as the significant level rises. This indicates whether funds with

genuine differential performance are concentrated or more dispersed in the tails of the

cross-sectional alpha distribution. Third, we provide explicit estimates of the proportion

of funds in the population which have truly positive and negative alphas (as opposed to

significant only).

Our results based on 1’472 U.S. open-end equity funds between 1975 and 2002 clearly

show that the impact of luck on performance is substantial. First, our estimators of

the number of funds with differential, positive and negative performance is much lower

than those obtained with the standard approach. It implies that our judgement on

performance across the different investment categories can substantially differ from the

one implied by the standard approach. Second, we find that luck has a stronger impact

on the performance of the best rather than the worst funds. Across the four invest-

ment categories, the FDR among the worst funds is always inferior to 50 percent and

increases slowly as the significant level rises. It means that the majority of worst funds

truly yield negative alphas and that the latter are largely spread in the left tail of the

alpha distribution. The FDR among the best funds is generally much higher than the

FDR among the worst funds. For All and G funds, the FDR is always higher than 50

percent, while it amounts to 100 percent for the GI funds. The only exception comes

from the AG funds. Its low FDR reveals that a sizable proportion of AG funds produce

a positive performance.

Our results have important implications for the performance of the mutual fund in-

dustry. From an overall perspective, we observe more frequently funds with negative

rather than positive performance. However, the performance of the industry as a whole

is not so bad because about 80 percent of the funds produce zero alphas. In fact, the

negative average performance documented in the previous literature is not due to the

majority of funds but is only caused by one fifth of the funds.



1 Introduction

Over $4 trillion is currently managed by equity mutual funds in the U.S., with roughly

90 percent invested in actively managed accounts. These mutual funds hold over 25

percent of the outstanding equity value of the average U.S. common stock. This high

level of ownership makes it very unlikely that the equity fund industry as a whole is able

to outperform the market by a large margin. However, several recent papers show some

evidence of manager skills among subgroups of funds (see, for example, Gruber (1996)).

To detect funds with positive or negative performance, the standard approach in the

academic literature (e.g., Jensen (1968), Ferson and Schadt (1996), Ferson and Qian

(2004)) can be described as follows. The presence of differential performance (positive

or negative alphas) is tested for each of the M funds in the population. Then, a con-

ventional significance level γ is set (e.g., 5 percent) and all funds with p-values smaller

than γ are said to have significant estimated alphas. Finally, these significant alphas

are counted in order to provide an estimate of the number of funds with differential

performance.

As with every hypothesis test, inference based on alpha estimates can lead to the de-

tection of a lucky fund, namely a fund with a significant estimated alpha, while its true

alpha is equal to zero. When a single performance test is run on the estimated alpha

of one fund (or one portfolio of funds1), luck is easily controlled by setting the signif-

icance level γ (or alternatively the Size of the test). For instance, if γ is set to 0.05,

the probability of finding one lucky fund under the hypothesis that its alpha is zero

amounts to 0.05, by construction. The difficulty raised by the standard approach is that

it implies a multiple hypothesis test since the null hypothesis of no performance is not

tested once, but M times. Accounting for luck in a multiple testing framework is much

more complex, because luck cannot be measured by γ. Specifically, if γ is set to 0.05

for each individual test, the probability of finding at least one lucky fund among the M

funds is much higher than 0.05—that is, even if all funds have true alphas of zero, we

would still expect that some of the M funds will exhibit positive and significant alpha

estimates purely through luck2.

1For instance, testing the average performance of the mutual fund industry boils down to a single test
on the alpha of the equally-weighted portfolio of all funds in the population (see, for instance, Lehman
and Modest (1987) or Elton et al. (1993)).

2This issue is clearly stated in Grinblatt and Titman (1995): "While some funds achieved positive
abnormal returns, it is difficult to ascertain the implications of this for the efficient market hypothesis
because of multiple comparison being made. That is, even if no superior management ability existed,
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The standard approach, therefore, cannot properly measure the odds of observing a

group of funds having genuine positive alphas. For example, suppose that 20 out of 200

funds have positive estimated alphas at a given significance level γ. Obviously, the true

performance of these 20 funds depends on the proportion of lucky funds. For instance,

if the latter is equal to 100%, all 20 funds produce, in reality, zero alphas. Another

problem with the standard approach is that it assumes that an observed increase in the

number of significant funds as γ rises is only due to the detection of new funds with

differential performance. However, part of this increase can be due to the inclusion of

new lucky funds. As a consequence, the standard approach does not provide guidance

on the location of funds with differential performance in the tails of the cross-sectional

alpha distribution. For instance, suppose that the number of funds with negative es-

timated alphas increases by 50 as γ passes from 0.05 to 0.15. If all these 50 funds are

lucky, we would conclude that the few funds with negative performance are located in

the extreme left tail. On the contrary, if none of them is lucky, we would say that the

funds with negative performance are more dispersed throughout the left tail.

This paper addresses all these issues by measuring the impact of luck on mutual fund per-

formance. Specifically, we use the False Discovery Rate (FDR) introduced by Benjamini

and Hochberg (1995) in the statistical literature—the FDR measures the proportion of

lucky funds among the significant funds. We extend this methodology by developing

a new approach which allows us to separately compute the FDR among funds with

significant positive estimated alphas (called hereafter the best funds) and funds with

significant negative estimated alphas (called hereafter the worst funds). A main virtue

of the FDR and these new measures is that they are very easy to compute from esti-

mated p-values of fund alphas, and are, therefore, very simple extensions of the standard

approach. The contributions brought by our approach are threefold. First, we account

for luck by measuring the proportion of lucky funds at different significant levels γ.

Second, we examine how the FDR varies as γ rises. This indicates whether funds with

genuine differential performance are concentrated or more dispersed in the tails of the

cross-sectional alpha distribution. Third, we provide explicit estimates of the proportion

of funds in the population which have truly positive and negative alphas (as opposed to

significant only).

Other methods have dealt with multiple testing in mutual fund performance. Grin-

we would expect some funds to achieve superior risk-adjusted returns by chance."
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blatt and Titman (1989, 1993) jointly test the restriction that the alphas of all funds are

equal to zero (i.e. α1 = ... = αM = 0) . However, this method can only tell us whether

there is at least one fund with a non-zero alpha. The second approach consists in de-

tecting a number of significant funds such that the FamilyWise Error Rate (FWER)

is controlled at a given level (usually 0.01, 0.05 or 0.10). The FWER is defined as

the probability of yielding at least one lucky fund among the M tested funds (Romano

and Wolf (2005)). A famous illustration of this approach is the conservative Bonferroni

method (Ferson and Schadt (1996)). This method explictly accounts for the presence of

luck to determine how many funds should be rejected. But contrary to the FDR, it is

not designed to measure the proportion of lucky funds among a given set of significant

funds. Our approach can also be contrasted with the recent work by Kosowski et al.

(2005). They use a bootstrap technique in order to test the significance of individual

funds corresponding to various quantiles of the cross-section of estimated alphas (e.g.

the top fund, the fund at the 10% quantile...). Since they do not address the issue of

multiple testing, they do not quantify the relative importance of lucky funds among the

significant ones.

Our empirical results are based on monthly returns of 1,472 U.S. open-end, domes-

tic equity mutual funds existing at any time between 1975 and 2002. We investigate

the performance of the entire cross-section of mutual funds, as well as the cross-section

of each of three investment-objective categories, growth, aggressive-growth, and growth

and income.

We first show that the impact of luck on performance is substantial. Specifically, we

find that our estimators of the number of mutual funds with positive or negative per-

formance is much lower than those obtained with the standard approach (only based

on significant funds). These differences are informative, since they lead to a completely

different assessment of mutual fund performance. For instance, while the standard ap-

proach concludes that 7.7% of the growth and income funds generate positive alphas

(at γ = 0.2), we find that all of them are purely lucky. Finding 7.7% instead of 0% is

clearly a false discovery!

Second, we find that luck has a stronger impact on the right versus the left tail of

the estimated alpha distribution. Across all four categories of funds, the FDR among

the worst funds is always lower than 50%, meaning that the majority of worst funds

truly yield negative alphas. Moreover, the FDR among the worst funds increases slowly
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as γ rises, because part of the new significant funds deliver truly negative alphas. As

a result, the funds with true negative performance are dispersed in the left tail of the

cross-sectional estimated alpha distribution. Although the FDR among the best funds

varies across the different investment categories, it is generally much higher than the

FDR among the worst funds. For the universe of funds and for growth funds, the FDR

is always higher than 50% and increases quickly as γ rises. This indicates that there

are only a few funds with truly positive performance, and that they are concentrated

in the extreme right tail. On the contrary, the low level of the FDR among right-tail

aggressive-growth funds reveals that many funds produce truly positive performance,

while growth and income funds exhibit no truly positive alphas.

Third, we find that after accounting for luck, the percentage of funds with negative

alphas in the population is approximately equal to 20% across all categories, while the

proportion of funds with positive performance is much lower (it amounts to 1.9% of all

funds in the population). It implies that the performance of the industry as a whole is

not so bad because about 80% of the funds generate a performance sufficiently high to

cover their expenses. The negative average performance documented in past studies is

not due to the majority of funds but is caused by 20% of the funds.

The remainder of the paper is as follows. The next section defines the standard ap-

proach and the notion of luck. Then, we define the FDR and explain our new method-

ology which allows us to compute the FDR among the best and worst funds separately.

Section 3 presents the performance measures, the estimation technique to compute the

p-values as well as the mutual fund data. Section 4 contains the empirical analysis of

the impact of luck on performance across the four investment categories. Section 5 con-

cludes. An appendix gathers proofs and results of a Monte-Carlo study on the accuracy

of our new measures of luck.

2 Measuring the Impact of Luck On Mutual Fund Perfor-
mance

2.1 The Standard Approach to Performance Testing

2.1.1 Testing the Performance of Individual Funds

Let us assume that the mutual fund universe is composed of M individual funds. The

performance of each fund i (i = 1, ...,M) is measured by its alpha computed with

4



a given asset pricing model. The null hypothesis H0 that the fund i achieves no

performance (αi = 0) and the alternative HA that it delivers differential performance

(αi > 0 or αi < 0) are defined as:

H0 : αi = 0, HA : αi > 0 or αi < 0. (1)

To detect the funds with positive or negative alphas, the standard approach developed

in the literature (Jensen (1968), Ferson and Schadt (1996), Ferson and Qian (2004)) can

be described as follows. First, the null hypothesis H0 is tested for each fund i. To this

end, a significance level γ is set (usually 0.05 or 0.10). All funds with estimated p-values

smaller than γ share significant estimated alphas (i.e. H0 is rejected). Second, the

number of significant funds are counted in order to provide an estimator of the number

of funds with differential performance.

2.1.2 The Definition of Luck

Given the finite amount of data, it is impossible to know with certainty whether the

alpha of a fund is different from zero. Therefore, the inference of the fund alpha is sub-

ject to luck. In this paper, we define a fund as lucky if its estimated alpha is significant

whereas its true alpha is equal to zero. In our definition, the sign of the estimated alpha

is not relevant. All that matters is that this fund is significant while its true alpha is

equal to zero.

In the usual case where a single test is performed on the alpha of one fund (or one

portfolio of funds), luck is controlled by setting the significance level γ (or equivalently

the Size of the test). The standard approach differs from this framework because it boils

down to running a multiple hypothesis test instead of a single one. The null hypothesis

H0 of no performance is tested for each of the M funds in the population. In a multiple

testing framework, luck refers to the number (or the proportion) of lucky funds among

the significant funds that are discovered. Accounting for luck in this situation is more

complex. For instance, if γ is set to 0.10 for each individual test, the probability of

finding at least one lucky fund among the M funds (also called the compound type I

error) is much higher than 0.10. Even if all funds have zero alphas, we still expect some

of the M funds to be significant only by pure luck.

To avoid any possible confusion, we stress that our definition of luck is very different

from the one used by Kosowski et al. (2005). Their objective is to test the significance

5



of the alpha of individual funds located at various quantiles of the cross-section of esti-

mated alphas (e.g. the top fund, the fund corresponding to the 10% quantile...). Since

such a fund is determined according to a pre-ranking of all fund alphas, a correct infer-

ence about its alpha must take into account the entire cross-section of the fund alphas3.

In this context, they advocate to use a bootstrap procedure, and conclude that they

account for luck in the sense that they correctly compute the p-values of the individual

funds4. This definition of luck is not related to the issue of multiple testing investigated

in this paper. In fact, we would face a similar multiple testing problem in their setting

if we wanted to know how many individual funds corresponding to the various quantiles

of the cross-section of estimated alphas truly yield non-zero alphas.

2.1.3 The Drawback of the Standard Approach

To understand how luck spuriously affects the results obtained by the standard approach,

Table 1 classifies the four possible outcomes of the multiple test. F (γ) denotes the

number of lucky funds. T (γ) stands for the number of significant funds which truly

yield differential performance. Adding F (γ) and T (γ) , the total number of significant

funds amounts to R (γ). All these quantities depend on the chosen significance level γ.

Please Insert Table 1 here

The major drawback of the standard approach is that it cannot assess the impact of luck

on performance because it cannot distinguish between luck and differential performance.

Indeed, the standard approach measures differential performance by the R (γ) significant

funds. However, F (γ) among these R (γ) funds are simply lucky. Therefore, a correct

measurement of the funds with differential performance is given by T (γ) = R (γ) −
F (γ) . Obviously, the standard approach tends to overestimate the number of funds with

differential performance. Besides, as γ gets higher, the test of differential performance

becomes less stringent, thus increasing both the number of significant funds R (γ) , and

the number of lucky funds F (γ). However, the standard approach implicitly assumes

that the observed increase in R (γ) is only due to the detection of new funds with

3Consider the alpha of the best fund denoted by αtopi . Expressing the null and the alternative
hypotheses as H0 : α

top
i =maxi=1,...,M {αi} 6 0 and HA : α

top
i =maxi=1,...,M {αi} > 0 makes it clear

that the distribution of the test statistic depends on the joint distribution of the alphas of all funds in
the population. Note that the test statistic in our setting does not depend on the joint alpha distribution
because of the form of the null and alternative hypotheses (see Equation (1)).

4This is summarized in the second page of their paper: "When outlier funds are selected from such
an ex-post ranking of a large cross-section, the separation of luck from skill becomes extremely sensitive
to the assumed distribution of the joint distribution from which the alphas are drawn".

6



differential performance. Therefore, it cannot capture the proportion of the rise in R (γ)

due to the inclusion of lucky funds. To address all these issues, we propose to use the

False Discovery Rate.

2.2 The False Discovery Rate (FDR)

2.2.1 The FDR among the Significant Funds

The FDR introduced in the statistical literature by Benjamini and Hochberg (1995) is

defined in our setting as the expected proportion of lucky funds5 among the significant

funds at the significance level γ. It is written as6:

FDR (γ) = E

µ
F (γ)

R (γ)

¯̄̄̄
R (γ) > 0

¶
. (2)

From Equation (2), it is easy to understand why the FDR is a straightforward extension

of the standard approach. The FDR simply quantifies the proportion of lucky funds

among the R (γ) discovered by the standard approach in the first place. The FDR is

a direct measure of luck since it increases as the number of lucky funds rises. Stated

differently, the FDR takes into account the compound type I error stemming from the

fact that the null hypothesis H0 is not tested once but M times. To identify the factors

which determine the FDR, we can write the latter as (see Storey (2003)):

FDR (γ) =
π0 · prob(pi < γ |H0 )

π0 · prob(pi < γ |H0 ) + πA · prob(pi < γ |HA )

=
π0 · Size (γ)

π0 · Size (γ) + πA · Power (γ)
=

π0 · γ
π0 · γ + (1− π0) · Power (γ)

, (3)

where π0 and πA = 1−π0 represent the proportion of funds with no performance (αi = 0)
and differential performance (αi > 0 or αi < 0) , respectively. The Size stands for the

probability of picking up a lucky fund under the null hypothesis H0 (i.e. αi = 0). In

statistical terms, the Size corresponds to the probability of committing a type I error.

The Power gives the probability of finding a fund with differential performance under

5The term false discovery is the statistical analogue of lucky fund. When someone finds a fund
with a significant estimated alpha, he thinks he has made a discovery, namely a fund with differential
performance. However, if this fund has in reality an alpha equal to zero (i.e. a lucky fund), it turns out
be a false discovery.

6Strictly speaking, our definition corresponds to the positive False Discovery Rate (pFDR). The

FDR is defined as E F (γ)
R(γ)

R (γ) > 0 · prob(R (γ) > 0). As the number of funds M in our database is

large, the distinction between FDR and the pFDR becomes irrelevant as prob(R (γ) > 0) tends to one
(see Storey (2002) for a discussion).

7



the alternative hypothesis HA (i.e. αi 6= 0). It is equal to one minus the probability of
making a type II error.

Equation (3) states that the FDR is a function of π0 and the significance level γ. The

FDR is positively related to π0. If π0 is high, there are only few funds with differential

performance in the population. It implies that most significant funds are in fact lucky

funds. The relation between γ and the FDR depends on the ratio Size(γ)
Power(γ) . A higher γ

increases the Size and thus the probability of picking up lucky funds. However, a higher

γ also increases the Power and thus the probability of finding funds with differential

performance. Since both the Size on the Power are driven up as γ rises, the effect on

the FDR depends on the distribution of the estimated alpha under H0 and HA.

2.2.2 The FDR among the Best and Worst Funds

Funds with differential performance are either characterized by positive or negative

alphas. To determine the source of differential performance, the standard approach par-

titions the R (γ) significant funds in two groups according to the sign of their estimated

alphas. The first group contains the R+ (γ) funds with positive estimated alphas. We

refer to them as the best funds. Similarly, the second group is formed with the R− (γ)

funds with negative estimated alphas. We call them the worst funds. At a second step,

R+ (γ) and R− (γ) are used as estimators of the number of funds with positive alphas

and negative performance, respectively.

Unfortunately, these estimators are flawed like the estimator R (γ) because they do

not account for the presence of luck. Among the R+ (γ) best funds, F+ (γ) of them

do not have a true positive alpha, but are simply lucky. Similarly, F− (γ) among the

R− (γ) worst funds do not yield a true negative performance, but are lucky. As a result,

the impact of luck on the performance of the best and worst funds can be very different

according to the proportion of lucky funds among these two groups.

To measure the relative importance of F+ (γ) and F− (γ), we develop a new method-

ology which allows us to compute separately the FDR among the best funds and the

FDR among the worst funds. Suppose that at a given significance level γ, F (γ) among

the R (γ) significant ones are lucky funds. Since the test of the null hypothesis H0 of

no performance is a two-sided test with equal-tailed confidence level, γ/2, we expect

that half of these lucky funds have positive estimated alphas and half of them negative

8



estimated alphas7. Because lucky funds are by definition drawn from H0, this result is

independent of the proportion of funds with positive and negative alphas in the popu-

lation. We can therefore divide F (γ) into two equal components, F+ (γ) and F− (γ) ,

which denote the number of lucky funds among the best and worst funds, respectively.

By analogy with the definition of the FDR, we suggest to define the FDR among the

best and worst funds (denoted by FDR+ (γ) and FDR− (γ)) as:

FDR+ (γ) = E

µ
F+ (γ)

R+ (γ)

¯̄̄̄
R+ (γ) > 0

¶
= E

Ã
1
2 · F (γ)
R+ (γ)

¯̄̄̄
¯R+ (γ) > 0

!
, (4)

FDR− (γ) = E

µ
F− (γ)

R− (γ)

¯̄̄̄
R− (γ) > 0

¶
= E

Ã
1
2 · F (γ)
R− (γ)

¯̄̄̄
¯R− (γ) > 0

!
. (5)

These measures are new, and are especially designed to deal with quantifying separately

the proportion of lucky funds in the right tail of the cross-sectional alpha distribution

and the proportion of lucky funds in the left tail of the cross-sectional alpha distribution.

2.3 Estimation Procedure

As we have previously mentioned, the estimation of the FDR is staightforward. All

that is required is the estimated p-values bpi of each fund i (i = 1, ...,M). We use the

following estimator of the FDR proposed by Storey (2002) and Storey and Tibshirani

(2003):

\FDRλ (γ) =
M · bπ0 (λ) · γ
#{bpi < γ} =

bF (γ)bR (γ) , (6)

where bF (γ) denotes the estimated number of lucky funds. It is computed asM ·bπ0 (λ)·γ,
where bπ0 (λ) is the estimated proportion of funds with zero alphas in the total popu-
lation of M funds. It depends on the parameter λ defined below. bR (γ) stands for the
observed number of significant funds at the significance level γ, and is equal to funds

with a p-value bpi inferior to γ.
All that is needed to get \FDRλ (γ) is an estimator of π0 computed from the fund

estimated p-values. The intuition is the following. Under H0, the p-values are known to

be uniformly distributed over the interval [0, 1] 8. On the contrary, the p-values under

7Technically speaking, the p-values associated with the F (γ) funds with zero alphas are uniformly
distributed on [0, γ] . Therefore, we expect half of them to end up in the right tail of the cross-sectional
alpha distribution and half of them in the left tail.

8This feature is crucial to correctly estimate π0. This method cannot be used in one-sided tests
because the p-values are not necessarily uniformly distributed under H0. In one-sided tests, the null is
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HA are extremely small because they are associated with extreme positive or negative

estimated alphas. We can exploit this information to compute bπ0 without specifying
the exact distribution of the p-values under HA. As an illustration, Figure 1 represents

an histogram of the estimated p−values from a set of Monte-Carlo simulated data (the

details of the design are given in the Appendix). Consistently with the size of our

database, we set M = 10472. We assume that 80% of the funds have an alpha equal to

zero. The remaining funds divides themselves equally into funds with annual alphas of

+5% and -5%.

Please insert Figure 1 here

The high concentration of p-values near zero is due to the existence of 20% of the funds

with differential performance. On the contrary, the histogram is fairly flat between 0.3

and 1. In this region, the p-values are mostly drawn from the uniform distribution under

H0. Therefore, by taking a sufficiently high threshold λ (for instance 0.5), we can exploit

the density beyond λ to obtain an estimate of the proportion π0 of non-performing funds:

bπ0 (λ) = #{bpi > λ}
(1− λ) ·M =

cW (λ)

(1− λ) ·M , (7)

where cW (λ) denotes the number of estimated p-values superior to λ. The simplest way

to define the parameter λ consists in eye-balling the histogram of p-values illustrated in

Figure 1. In this paper, we use a more rigorous bootstrap procedure proposed by Storey

(2002) and Storey, Taylor and Siegmund (2004). The latter is data-driven and chooses

λ such that the mean-squared error of bπ0 (λ) is minimized (see the Appendix for further
details on the methodology).

An important property of\FDRλ (γ) is that it yields a conservative estimate of FDR (γ) ,

meaning that lim
M→∞

\FDRλ (γ)−FDR (γ) ≥ 0 with probability one for all γ. This result
is robust to the presence of many forms of dependence in the estimated p-values such as

dependence in finite blocks or ergodic dependence (Storey, Taylor and Siegmund (2004)).

Using a similar approach, we suggest to compute the empirical counterparts of the

tested under the least favorable configuration (LFC). For instance, consider the following null hypothesis
H0 : αi ≤ 0 against HA : αi > 0. Under the LFC, H0 : αi ≤ 0 is replaced with H0 : αi = 0. Therefore,
all funds with αi ≤ 0 have inflated p-values which are close to one.
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new measures FDR+ (γ) and FDR− (γ) defined in Equations (4) and (5) with:

\FDR
+

λ (γ) =
1
2 ·M · bπ0 (λ) · γ
#{bp+i < γ}

=
bF+ (γ)bR+ (γ) , (8)

\FDR
−
λ (γ) =

1
2 ·M · bπ0 (λ) · γ
#{bp−i < γ}

=
bF− (γ)bR− (γ) , (9)

where bp+i and bp−i correspond to the p-values of the best and worst funds, bF+ (γ) andbF− (γ) denote the estimated number of false discoveries among the best and worst
funds, and bR+ (γ) and bR− (γ) stand for the observed number of best and worst funds.
By combining Equations (6), (8) and (9), we have:

\FDRλ (γ) = w ·\FDR
+

λ (γ) + (1− w)\·FDR
−
λ (γ) , (10)

where w = bR+ (γ) / bR (γ) . Therefore, the estimated FDR among the significant funds is

a weighted average of the estimated FDR among the best and worst funds, where the

respective weights are given by the ratio of the number of best and worst funds on the

number of significant funds.

To examine the performance of the estimators bπ0 (λ), \FDRλ (γ) , as well as the new

measures \FDR
+

λ (γ) , and \FDR
−
λ (γ) in our performance analysis setting, we have run

Monte-Carlo simulations which match the empirical characteristics of our data. The

results are presented in the Appendix. They show that all of these estimators are very

close to the true values independently of the choice of the true parameters, the signifi-

cance level γ, and the procedure used to choose the value of λ. Therefore, the estimation

methodology can be thought as remarkably accurate.

3 Performance Measurement and Data Description

3.1 Asset Pricing Models

To compute the fund alphas, our baseline asset pricing model is the four-factor Carhart

model (1997):

ri,t = αi + bi · rm,t + si · rsmb,t + hi · rhml,t +mi · rmom,t + εi,t, (11)

where ri,t is the month t excess return of fund i over the riskfree rate (proxied by the

monthly T-bill rate). rm,t is the month t excess return on the value-weighted market
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portfolio, whereas rsmb,t, rhml,t, and rmom,t are the month t returns on zero-investment

factor-mimicking portfolios for size, book-to-market and momentum. εit stands for the

residual term. Adding momentum to the three-factor Fama-French model (1996) allows

to control for the momentum strategies followed by many funds, especially Growth and

Aggressive Growth funds (Grinblatt, Titman and Wermers (1995)).

We also implement a conditional Carhart model to account for the time-variation of

factor exposures (Ferson and Schadt (1996)). This conditional model is similar to the

model proposed by Kosowski et al. (2005), and is written as:

ri,t = αi + bi · rm,t + si · rsmb,t + hi · rhml,t +mi · rmom,t +B
0
(zt−1 · rm,t) + εi,t, (12)

where zt−1 denotes the J × 1 vector of centered predictive variables, and B is the J × 1
vector of coefficients. Four predictive variables are considered. The first one is the

one-month T-bill interest rate. The second one is the dividend yield of the CRSP value-

weighted NYSE and AMEX stock index. The third one is the term spread proxied by

the difference between the yield of a 10-year T-bond and the three-month T-bill inter-

est rate. The fourth one is the default spread proxied by the yield difference between

BAA-rated and AAA-rated corporate bonds.

We have also computed the fund alphas using the CAPM and the Fama-French model

as well as conditional versions of these models. For sake of brevity, these results are

summarized in the last subsection of the empirical analysis.

3.2 Estimation of the p-values

Kosowski et al. (2005) finds that the distribution of fund estimated alphas in finite

samples is non-normal for approximately half of the funds. This finding calls for a

bootstrap procedure (instead of asymptotic theory) to compute each fund estimated

p-value bpi. From bootstrap theory on higher order improvements, we know that the

bootstrap is expected to yield better results when applied to asymptotic pivots9. We

know that the fund t−stat bti is asymptotically pivotal. For this reason, we use the
t-stat instead of the estimated alpha to compute the p-values under the null H0 of no

9A test statistic is asymptotically pivotal if its asymptotic distribution does not depend on unknown
population parameters. Pivotal test statistics have lower coverage errors and have more power than
non-pivotal statistics (Davison and Hinkley (1997), Horowitz (2001), Romano and Wolf (2005)).
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performance. The t-stat bti is defined as
bti = bαibσαi , (13)

where bαi is the fund estimated alpha and bσαi denotes a consistent estimator of the
asymptotic standard deviation of bαi based on the Newey-West procedure (1987). As
shown in Equation (13), another advantage of the t-stat is that it reduces the presence

of extreme observations due to volatile funds because the estimated alpha is scaled by

its standard deviation.

The bootstrap consists in approximating the distribution of
¡bti − ti

¢
by the distribution

of
¡bt∗i − bti¢, where ti is the fund t−stat and bt∗i the bootstrapped t−stat. To compute the

distribution of
¡bt∗i − bti¢ for each fund i (i = 1, ...,M) , we use a parametric bootstrap

procedure based on residual resampling10. Since our procedure is similar to the one

implemented by Kosowski et al. (2005), we refer to them for further details beyond the

following brief description.

For each bootstrap iteration q (q = 1, ..., Q) , we draw with replacement from the esti-

mated residuals {bεi,t}. From the resampled residuals {bε∗qi,t}, we create a new time-series
of monthly excess return {r∗qi,t} by imposing that αi is equal to zero. By regressing r

∗q
i,t on

the factors, we compute bα∗qi and bσ∗qαi to obtain the bootstrap t-stat bt∗qi . This procedure

is repeated Q times, where Q is set to 1’000. Since we use a two-sided, equal-tailed test,

the bootstrapped p-value bpi of the fund i is computed as follows:

bpi = 2 ·min
⎛⎝ 1

Q

QX
q=1

I{bt∗qi > bti}, 1
Q

QX
q=1

I{bt∗qi < bti}
⎞⎠ (14)

3.3 Mutual Fund Data

We measure the performance of U.S. open-end, domestic equity funds on a monthly

basis. We use monthly net return data provided by the Center for Research in Secu-

rity Prices (CRSP) between January 1975 and December 200211. The CRSP database
10To know whether this approach is appropriate, we have checked for the presence of autocorrelation

(with Ljung-Box test), heteroscedasticity (with White test) and Arch effects (with Engle test) in the fund
residuals. We have found that only few funds presented some of these features. We have also implemented
a block bootstrap methodology with a block length equal to T

1
5 (proposed by Hall, Horowitz and Jing

(1995)), where T denotes the length of the fund return time-series. The results remain unchanged.
11 If the fund proposes different shareclasses, the fund net return is computed by weighting the net

return of each shareclass by its total net asset value at the beginning of each month.
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is matched with the CDA database (from Thomson Financial) in order to obtain the

fund investment objectives. We require that each fund has at least 60 monthly return

observations to estimate its alpha and t-stat. We refer to Wermers (2000) for a precise

description of these two databases (as well as the matching technique).

Our final fund universe (denoted by All) is composed of 1’472 funds that exist for at

least 60 months between 1975 and 2002. Funds are then classified into three investment

categories: Growth funds (G), Aggressive Growth funds (AG), and Growth and Income

funds (GI). A fund is included in a given investment category if its investment objective

corresponds to the investment category for at least 60 months. While there are some

Balanced and Income funds among the All funds, we do not consider this investment

category separately because there are not enough funds to accurately estimate the FDR.

The category of G funds is the biggest one with 1’025 funds, while the categories of AG

and GI funds contain 234 and 310 funds, respectively.

Table 2 shows the average mutual fund performance across the four investment cate-

gories (All, G, AG, GI). For each investment category, we estimate the alpha (expressed

in percent per year) and factor exposures of an equally-weighted portfolio including all

funds existing at a given point in time. Panel A and B show the results produced by

the unconditional and conditional Carhart models, respectively.

Please insert Table 2 here

The average estimated alpha is always negative. Similarly to Daniel et al. (1997),

AG funds have significant positive momentum and negative book-to-market exposures,

whereas it is the oppostive for GI funds. Introducing time-varying market betas does

not greatly modify the results shown in Panel A. Since the empirical analysis of the

FDR based on the two models is extremely close, the analysis presented in the next

Section is based on the unconditional Carhart model.

4 Empirical Analysis

4.1 Illustrating the Drawbacks of the Standard Approach

We begin our empirical analysis by applying the standard approach to our mutual fund

database at different significant levels γ (γ = 0.05, 0.10, 0.15 and 0.20). The results

across the four investment categories are given in Panels A, B, C, and D of Table 3.
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The left part of each Panel displays the number of significant funds bR, the number of
best funds bR+, and the number of worst funds bR−. The right part of each Panel shows
the proportion of significant funds bR/M , the proportion of best funds bR+/M, and the

proportion of worst funds bR−/M.

Please insert Table 3 here

Three main comments stem from the analysis of Table 3. First, by comparing bR+ andbR− at different significance levels γ, we observe a predominance of the worst funds over
the best ones across the four investment categories. This finding is also documented

by Jensen (1968) who finds a large proportion of funds with significant negative alphas.

Ferson and Schadt (1996) reach the same conclusion with unconditional models12. Sec-

ond, the percentage of significant funds varies across the various investment categories.

The percentage bR/M is generally higher for AG and GI funds than for All and G funds.

However, the number of significant fund bR is logically always higher for All and G than

for AG and GI because of the larger size of the first two categories. Third, as γ rises,bR, bR+, and bR− increase significantly.
These results suggest that some funds across the four investment categories do gen-

erate differential performance. A majority of these funds seem to produce negative

alphas, but a non-negligible proportion appear to generate positive alphas. However,

these statements are inaccurate because they are based on estimators, bR, bR+ and bR−,
which do not account for luck. Therefore, it is impossible to correctly measure the pres-

ence of genuine differential, positive and negative performance. For instance, we find

that 83 All funds have positive estimated alphas at γ = 0.10. But do all these funds

generate a positive performance or are many of them simply lucky?

Second, the standard approach provides no information about the location of funds

with differential performance in the tails of the cross-sectional alpha distribution. To

take a concrete example, we observe that the number of the worst G funds increases by

87 as γ rises from 0.05 to 0.15. If these 85 funds are all lucky funds, we know that the few

funds with negative performance have p-values inferior to 0.05. We would conclude that

these funds are located at the extreme left tail of the distribution and are more likely
12However, they show that the percentages of worst and best funds become similar when conditional

models are used. Contrary to them, we do not find striking differences between unconditional and
conditional models. This can be due to the fact that our mutual fund data and asset pricing models are
different and that the p−values are computed with bootstrap techniques instead of standard asymptotic
theory.
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to generate highly negative alphas. On the contrary, if none of the 87 funds are lucky,

we would say that the funds with negative performance are largely spread in the left tail.

Finally, we cannot compare the performance between the different investment cate-

gories. At γ = 0.20, we observe that the percentage of best funds is similar across the

G and GI funds. However, if the GI funds turn out to contain more lucky funds than

the G funds, the real performance of the G funds can be much higher than the one of

GI funds. In order to answer these questions, we need to determine the proportion of

lucky funds with the FDR.

4.2 Estimating the Impact of Luck on Performance

4.2.1 The Proportion of Funds with Zero Alphas

The first step to compute the FDR consists in estimating the proportion π0 of funds

with zero alphas with Equation (7). The figures shown in Table 4 indicate that 78.4%

of funds in the population have zero alphas. It implies that 21.6% of the funds generate

either positive or negative alphas. While the percentage of G funds with zero alphas is

similar to the one of All funds (80.4%), this proportion is lower for AG and GI funds

(71.5% and 75.3% respectively). These results show that although the majority of funds

are not able to beat the market, they do not yield negative risk-adjusted returns.

Please insert Table 4 here

Without referring to a FDR methodology, a few papers (Jensen (1968), Kosowski et al.

(2005)) have in fact proposed a proxy to measure the impact of luck by assuming that

π0 is equal to one. It implies that the expected number and proportion of lucky funds

at a given significance level γ are given by M · γ and γ, respectively. However, Table

4 clearly shows that bπ0 is never equal to one. Therefore, the proxy overestimates the
impact of luck because it does not account for the proportion πA of funds which truly

yield non-zero alphas. This explains the results documented in the Figure 3 of Kosowski

et al. (2005): the number of lucky funds F is higher that the number of significant funds

R, which cannot happen since R = F + T . This estimation of luck can become very

inaccurate as γ rises. For instance, the number of lucky All funds are overestimated

by 32 at γ = 0.10 and by 64 at γ = 0.20. Stated differently, the proxy assumes that

the proportion of lucky funds is equal to 10% and 20% at γ = 0.10 and 0.20, while it

amounts in reality to 7.8% and 15.6%. These approximations are even worse for AG

funds, since bπAG0 is only equal to 71.5%.
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4.2.2 The FDR of All Funds

To assess the impact of luck on mutual fund performance, we measure the proportion

of lucky funds among three sets of funds. The first one is the set of significant funds.

The second and third ones correspond to the best and worst funds. We compute the

FDR among these three groups at different significant levels γ (γ = 0.05, 0.10, 0.15 and

0.20). The results across the four investment categories are displayed in Panels A, B, C

and D of Table 5. For the set of significant funds, the left part of each Panel displays
\FDR, the number of significant funds bR, the number of lucky funds bF , and the number
of funds with differential performance bT equal to bR − bF. The right part of each Panel
shows the proportion of significant funds bR/M , the proportion of lucky funds bF/M, and

the proportion of funds with differential performance bT/M. For the set of the best (or

worst funds), the information provided is identical except that\FDR is respectively re-

placed by\FDR
+
(or\FDR

−
), bR by bR+ (or bR−), bF by bF+ (or bF−), and bT by bT+ (or bT−).

We begin our analysis with the results of All funds summarized in Panel A. At the

conventional level γ of 0.05, \FDR amounts to 37.0%, indicating that 98 out of the

156 significant funds generate differential performance. As γ rises, the number of lucky

funds bF increases more quickly than the number of funds with differential performancebT . Therefore, the FDR is equal to 54.5% at γ = 0.20, which implies that only half of

the 422 significant funds have non-zero alphas.

From Equation (10), we know that \FDR is a weighted average of \FDR
+
and \FDR

−
.

These two components can be very different from\FDR as long as these differences offset

each other. This is exactly what we observe since\FDR
+
is much higher than\FDR at

all significance levels γ. At γ = 0.05, \FDR
+
is equal to 56.3%. It means that 29 among

the 52 best All funds have in reality alphas equal to zero. As γ rises, the number of

lucky funds bF+ grows at a higher pace than the number of funds with positive alphasbT+. This increased presence of luck among the best funds leads to a sharpe increase
in \FDR

+
. On the contrary, \FDR

−
is close to \FDR. This reflects that \FDR depends

more heavily on\FDR
−
because the proportion of worst funds bR−/ bR is higher than the

proportion of best funds bR−/ bR. At γ = 0.05, \FDR
−
only amounts to 27.7%. Stated

differently, 72.3% of the worst funds truly have a negative alphas. As γ rises, the number

of funds with negative alphas bT− grows at a slightly lower rate than the lucky fundsbF−. As a result,\FDR
−
increases only slowly.

First of all, these results clearly indicate that the difference between the FDR among
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the best and worst funds is striking. It implies that luck has a much larger impact on

the performance of the best funds than the one of the worst funds. In other words, the

proportion of lucky funds is always higher among the best funds at any significance level

γ. Second, the results highlight the inaccuracy of the performance assessment under the

standard approach. The latter concludes that 9.6% of the funds are able to achieve posi-

tive alphas at γ = 0.20. However,\FDR
+
evidences a completely different picture. Only

1.7% of the funds generate positive alphas, while the remaining funds (7.9%) are purely

lucky. Moreover, our analysis confirms that there is a larger proportion of funds with

negative rather than positive performance. However, the standard approach concludes

that 19.1% of the funds have negative alphas at γ = 0.20, while our estimation is merely

11.2%.

Examining the evolution of bT+/M and bT−/M allows us to determine the location of the

funds with differential performance in the tails of the cross-sectional alpha distribution.

As γ rises, bT+/M remains constant at 1.7%. It implies that the few performing funds

are located at the extreme right tail since their p-values are below or equal to 0.05.

On the contrary, bT−/M continuously increases as γ rises. Therefore, the funds with

negative performance are not located at the extreme left tail because their p-values are

largely spread in the interval [0, 0.20] .

Please insert Table 5 here

4.2.3 The FDR of the Growth Funds

The results for G funds are summarized in Panel B of Table 5. The FDR among the

significant, best and worst G funds are similar to those observed of the All funds. This is

not surprising since approximately two thirds of the funds in the population are G funds.

Since \FDR
+
is much higher than \FDR

−
at all significance levels γ, luck has a more

pronounced impact on the best funds rather than on the worst funds. These results also

illustrate why the standard approach cannot correctly quantify the real performance of

the G funds. At γ = 0.20, the latter estimates that a non-negligible proportion of funds

(9.6%) yields positive alphas. After accounting for luck, we find that only a tiny fraction

of the G funds equal to 1.6% is capable of producing a positive performance. More-

over, the standard approach concludes that 17.9% of the funds yields negative alphas at

γ = 0.20, while our estimate of this proportion is equal to 9.9%.
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We observe that bT+/M remains constant at 1.6% as γ rises. It implies that the funds

with positive alphas are fairly concentrated in the right tail since their p-values are be-

low 0.15. Similarly to All funds, bT−/M increases continuously as γ rises. Therefore, the

funds with negative performance are largely spread in the left tail of the distribution

since their associated p-values span an interval larger than [0, 0.20] .

4.2.4 The FDR of the Aggressive Growth Funds

Panel C of Table 5 contains the results for the AG funds. This investment category has

the highest proportion πA of funds with differential performance. At a given significance

threshold γ, a higher πA reduces the number of lucky funds and increases the number of

funds with differential performance. It is therefore not surprising to observe that\FDR

is lower than those of the All and G funds.

The most striking result comes from the low level of the FDR among the best funds.

At γ = 0.05, \FDR
+
is only equal to 23.3%, implying that only 4 out the 18 best funds

are lucky. As γ rises, the number of lucky funds bF+ increases more quickly than the
number of funds with positive alphas bT+. This contributes to increase\FDR

+
by 25.9%.

However, its level remains largely inferior to the figures documented for All and G funds.

Concerning the worst funds,\FDR
−
starts at the same level as\FDR

+
. However,\FDR

−

rises by only 16.4% as γ passes from 0.05 to 0.20.

The impact of luck on the performance of the best and worst funds is similar because

the proportions of lucky funds among these two groups is approximately equal. For this

reason, we reach the same qualitative conclusions as the standard approach, but with a

more rigorous method. Indeed, we do find a significant proportion of funds with positive

and negative alphas. However, the estimation proposed by the standard approach are

still largely inflated. While the latter finds that at γ = 0.20, 14.5% and 19.7% of the

funds yield positive and negative alphas respectively, our FDR analysis leads to per-

centages equal to 7.2% and 14.5%.

bT+/M becomes constant at γ = 0.10 is reached. It indicates that the funds with

positive performance are fairly concentrated in the right tail since their p-values are

below or equal to 0.15. Similarly to All and G funds, the increase in bT−/M is quite

strong as γ rises. Therefore, the funds with negative performance are largely spread in

the left tail of the distribution.
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4.2.5 The FDR of the Growth and Income Funds

The results for the GI funds are displayed in Panel D of Table 5. The FDR among the

significant GI funds is similar to those observed for All and G funds. However, the pat-

terns of the FDR among the best and worst funds are completely different from these

two investment categories. First,\FDR
+
is equal to 100% independently of γ. It implies

that the best funds are all lucky funds. For instance, the 24 best funds discovered at

γ = 0.20 all have zero alphas. Second, \FDR
−
starts at 24.3% and increases extremely

slowly as γ rises.

Our results unveil that the impact of luck on the performance of the best funds is ex-

tremely strong here, since no single GI fund is able to produce a positive alpha. This is

in complete contradiction with the conclusions reached by the standard approach, which

wrongly infers that a sizable proportion of 7.7% GI funds generate positive alphas at

γ = 0.20. This case exemplifies a clear false discovery in mutual fund performance anal-

ysis arising from using an approach which does not incorporate the presence of luck.

Finally, the constant increase in bT−/M reveals that the funds with negative perfor-

mance are largely spread in the left tail.

4.2.6 Comparative Analysis

To compare the impact of luck across the four investment categories, Figure 2 plots

the FDR among the best and worst funds at different significance levels γ. The solid

line represents \FDR
+
and the dashed one \FDR

−
. \FDR

−
is similar across the four

categories. Its initial value is low and its weak slope indicates that many funds with

negative performance are discovered as γ rises. It confirms that these funds are dispersed

in the left tail of the distribution. Although\FDR
+
differs significantly across the four

investment categories, it generally starts at higher levels than \FDR
−
. Moreover, it

increases more steeply as γ rises because the few funds with positive performance are

not largely dispersed in the right tail. \FDR
+
of the two smallest investment categories

yield extreme patterns. First, \FDR
+
of the GI is always equal to one, since none of

the funds is able to produce positive alphas. Second, \FDR
+
of the AG funds is low

indicating a non-negligible proportion of funds generate a positive performance.

Please insert Figure 2 here
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4.3 Implications for the Performance of the Mutual Fund Industry

Table 4 shows that a sizable proportion πA of funds in the population yields non-zero

alphas. An important financial issue is to know which proportion of funds in the pop-

ulation generate positive or negative performance. To answer this question, we must

decompose πA into the proportion π+A of funds with positive alphas and the proportion

π−A of funds with negative alphas. By definition, the proportion πA can be written as

(see Table 1):

πA = π+A + π−A =
(T+ (γ) +A+ (γ)) + (T− (γ) +A− (γ))

M
, (15)

where A+ (γ) and A− (γ) respectively denote the number of funds with positive and

negative alphas, which do not have significant p-values (i.e. they are not significant).

Decomposing πA is therefore not trivial since it depends on the unobservable quantities

A+ (γ) and A− (γ) .

To tackle this issue, we use the fact that as γ increases, the test of differential per-

formance has more power and detect more funds with differential performance. Hence,

if the tails of the t-stat distribution under HA decreases monotonically13 both T+ (γ)

and T− (γ) go up while A+ (γ) and A− (γ) go towards zero. As γ increases, T+ (γ) /M

converges to π+A, while T
− (γ) /M approaches π−A. Using this result, we suggest to take

as conservative estimates of the proportion of funds with positive and negative alphas:

bπ+A = bT+ (γ)
M

, (16)

bπ−A = bT− (γ)
M

. (17)

The simplest way to choose a sufficiently high significance level γ is to find the minimum

significance level such that either T+ (γ) or T− (γ) becomes constant14. For instance,

we observe in Table 5 that that bT+ (γ) /M remains constant among the four invest-

ment categories after a certain significance level γ is reached. In this paper, we use a

bootstrap technique which is similar to the data-driven procedure used to determinebπ0 (λ) in Section 2.3. γ is chosen such that the mean-squared error of bπ+A (γ) or bπ−A (γ)
13Note that this feature is shared by most test statistics when the sample size grows to infinity. Indeed,

standard test statistics are asymptotically distributed as a normal (or khi-square) variable under the
null and as a non-central normal (or khi-square) variable under the alternative.
14This approach is similar to the eyeballing procedure used to pick up the parameter λ to estimate

the proportion of funds with zero alphas π0 (λ) .
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is minimized. The Appendix contains further details on the methodology as well as the

performance of these estimators based on Monte-Carlo simulations. In all cases, these

estimators have a good accuracy.

The decomposition presented in Table 6 indicates that the vast majority of funds with

differential performance distinguish themselves by their poor performance. Except for

the AG funds, more than 90% of the funds with differential performance generate nega-

tive risk-adjusted returns. Expressed as a percentage of the fund population, the propor-

tion of funds with positive alphas is extremely low. The only exception comes from the

AG fund category, which contains 8.1% of funds with positive alphas15. Moreover, the

proportion of funds with negative alphas in the fund population is approximately equal

to 20% across the four investment categories. From an overall perspective, we observe

more frequently funds with negative rather than positive performance. However, the

performance of the mutual fund industry is not so bad since around 80% of the funds

truly yield zero alphas, meaning that they generate a sufficient performance to cover

their expenses. In fact, the negative average alpha documented in the literature (and in

Table 2) is only caused by the poor performance of 20% of the funds. Moreover, mutual

funds can be close substitutes for systematics risk factors (such as those of the Carhart

model) which are unavailable for investment (Pastor and Stambaugh (2000b)). For this

reason, active funds can still be valuable investments even though most of them do not

yield positive alphas. Finally, the negative performance generated by the funds should

not be extreme because these funds are dispersed in the left tail of the cross-sectional

alpha distribution.

Please insert Table 6 here

4.4 Implications for Mutual Fund Portfolio Management

In the recent years, new management techniques have been developed in order to form

strategies generating positive alphas (Bernstein (2003), Kung et Pohlman (2004))16.

This quest for alpha has led to the creation of funds of mutual funds. Their objective is

to build portfolios of funds with positive alphas. Our results reveal that there exists a

tiny but real evidence of positive performance among All and G funds and, to a greater

extent, among AG funds. An important issue regarding mutual fund portfolio manage-

15This finding is consistent with the previous literature documenting a positive performance of AG
funds (Grinblatt and Titman (1993) and Daniel et al. (1997)).
16One of these techniques is called portable alpha. Under this approach, the optimal porfolio is broken

into a beta and an alpha portfolio. The beta portfolio return is generated by exposures to systematic
sources of risk, while the alpha portfolio return is driven by selection skills.
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ment is to know whether this evidence is strong enough to generate portfolios of funds

with positive alphas.

As it is shown in the following proposition, the FDR among the best funds forming

the portfolio is a key factor determining the portfolio expected alpha. Therefore, once

we know the FDR+, we can gauge the expected portfolio alpha.

Proposition 4.1 Let us denote by αγP the expected alpha of an equally-weighted portfolio
P of the best funds at the significance level γ. We set γ ≥ γ0 (M) , where γ0 (M) =

infγ{γ : prob(R+ (γ) > 0) = 1}. The expected alpha of P can be written as:

αγP = FDR+ (γ) · α0 +
¡
1− FDR+ (γ)

¢
· α+A (18)

where FDR+ (γ) is the FDR among the best funds defined in Equation (4). α0 denotes

the fund alpha under H0. α
+
A stands for the fund alpha under HA with αA > 0.

Proof. See the Appendix.

Using Equation (18), we can compute the expected alpha of an equally-weighted

portfolio of the best All, G and AG funds.We exclude the GI funds since none of them

produces positive alphas. We set α0 equal to zero. To estimate α+A in a conservative

way, we rank all funds in decreasing order according to their estimated alphas and select

the alpha of the fund located corresponding to the 5%-quantile17. These respectively

amount to 5.3%, 5.8% and 7.7% per year for All, G and AG funds. The FDR among

the best funds is estimated with\FDR
+
. Table 7 displays the values taken by\FDR

+
and

αP at different significance levels γ (γ = 0.05, 0.10, 0.15 and 0.20). dαP /αP denotes the

relative reduction of the portfolio alpha as γ increases by 0.05. It has the nice property

of being independent of the value chosen for α+A.

We observe that the few All funds with positive performance are sufficient to gener-

ate a positive alpha equal to 2.35% per year at γ = 0.05. This result may be surprising

in light of the small proportion of these funds. However, the possibility to form portfo-

lios with positive alphas does not only depend on the proportion of funds with positive

performance, but also on their location in the right tail of the distribution. Our previous

analysis shows that these few All funds are located at the extreme right tail. There-

fore, by choosing a sufficiently low γ, we can partially separate these funds from the

17Taking lower quantiles would reduce the estimated fund alpha under HA. However, it would not
overturn the main conclusion of our analysis, which depends primarily on the level of the FDR.
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lucky ones. This is exactly what \FDR
+
tells us: although there are 1.7% of All funds

with positive alphas, these funds represent almost half of the funds in the portfolio at

γ = 0.05. As γ rises, the relative reduction of the alpha is substantial. This is not

surprising because the only new funds which enter the portfolio are lucky funds, which

greatly reduces the performance. The results of the portfolios of G funds are similar

to those of All funds. Finally, the portfolio of AG funds generates a substantial alpha

equal to 6.16% per year at γ = 0.05. This high performance is due to the low level of
\FDR

+
, implying that most of the funds in the portfolio generate positive alphas.

Please insert Table 7 here

4.5 Sensitivity Analysis

4.5.1 Alternative Asset Pricing Models

Table 8 contains the FDR among the best and worst funds at γ = 0.05 and 0.20 com-

puted with the unconditional and conditional versions of the CAPM and Fama-French

(FF) models. The results related to the four investment categories are displayed in Pan-

els A, B, C and D, respectively. When the unconditional and conditional FF models are

used, the patterns of \FDR
+
and \FDR

−
are similar to those found with the Carhart

model. For instance, we still find a low\FDR
−
across the four investment categories, a

low\FDR
+
for AG funds, and a\FDR

+
equal to 100% for GI funds.

On the contrary, the results obtained with the unconditional and conditional versions of

the CAPM are quite different from those obtained with the Carhart model. In particu-

lar, both\FDR
+
and\FDR

−
are higher across the four investment categories. It implies

that the CAPM-alphas of the best funds are lower than their Carhart-alphas. Similarly,

the CAPM-alphas of the worst funds are lower than their Carhart-alphas. This can be

easily explained by the bias introduced by omitting relevant explanatory variables in a

linear regression model (Lehman and Modest (1987)). For instance, the CAPM-alphas

of the best AG funds are biased downwards because of the negative exposures of these

funds to the book-to-market factor, which has a positive premium over the period. By

the same token, the CAPM-alphas of the worst GI funds are biased upwards because

of the positive exposures of these funds to the size and book-to-market factors, which

both have positive premia.

Please insert Table 8 here
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4.5.2 Subperiod Analysis

In order to see whether the results are consistent throughout the investigated period, we

form two subperiods of equal lengths (168 observations). The first period starts in Jan-

uary 1975 and ends in December 1988. During this period, there are 276 All funds and

only 111 G, 54 AG and 63 GI funds. Because of the small size of these three categories,

we only compute the FDR for All funds. \FDR
+
is lower than the one observed during

the entire period. It respectively amounts to 21.3% and 38.2% at γ = 0.05 and 0.20. The

fact that mutual fund performance is better during this period is also documented by

Daniel et al. (1997). They argue that this finding is due to the improvement of market

efficiency and to the dilution of performance caused by the rapid increase in the number

of mutual funds.

The second subperiod begins in January 1989 and ends in December 2002. The sample

contains 1417 All funds and 976 G, 196 AG and 277 GI funds. During this period,

the levels of \FDR across the four investment categories is extremely close to those

documented for the entire period.

5 Conclusion

In this paper, we examine the impact of luck on mutual fund performance. To this end,

we use the False Discovery Rate (FDR) in order to measure the proportion of lucky

funds among the funds with significant estimated alphas. To address the financial prob-

lem at hand, we further develop new measures which allows us to separately compute

the proportion of lucky funds among the best and worst funds. The FDR and these new

measures are very easy to compute and therefore represent straightforward extensions

of the standard approach developed in the literature. By accounting for the presence of

luck, we are able to shed light on important issues that could not be addressed with the

previous methodologies. In particular, our approach permits to determine the relative

importance as well as location of funds with genuine differential performance in the tails

of the cross-sectional alpha distribution.

Our results based on 1’472 U.S. open-end equity funds between 1975 and 2002 clearly

show that the impact of luck on performance is substantial. First, our estimators of the

number of funds with differential, positive and negative performance is much lower than

those obtained with the standard approach. It implies that our judgement on perfor-

mance across the different investment categories can substantially differ from the one

25



implied by the standard approach. Second, we find that luck has a stronger impact on

the performance of the best funds rather than the worst funds. Across the four invest-

ment categories, the FDR among the worst funds is always inferior to 50% and increases

slowly as γ rises. It means that the majority of worst funds truly yield negative alphas

(the worst funds are not bad simply by luck!) and that the latter are largely spread

in the left tail of the alpha distribution. The FDR among the best funds is generally

much higher than the FDR among the worst funds. For All and G funds, the FDR is

always higher than 50%, while it amounts to 100% for the GI funds. The only exception

comes from the AG funds. Its low FDR reveals that a sizable proportion of AG funds

produces a positive performance after accounting for luck.

Our results have important implications for the performance of the mutual fund in-

dustry. From an overall perspective, we observe more frequently funds with negative

rather than positive performance. However, the performance of the industry as a whole

is not so bad because about 80% of the funds produces zero alphas. In fact, the negative

average performance documented in the previous literature is not due to the majority

of funds but is only caused by 20% of the funds. Our analysis also has implications for

mutual fund portfolio management. By computing the FDR among the best funds, we

show that it is possible to form portfolios of All and G funds with positive alphas even

though the evidence of positive performance among the All and G funds is very low.

The reason is that the funds with positive performance are located at the extreme right

tail of the alpha distribution. Therefore, by choosing a sufficiently low significance level

γ, it is possible to separate funds with positive alphas from the lucky ones.

Because the FDR can measure the proportion of funds in a given portfolio which yield

positive alphas, it is a powerful tool to gauge the expected performance of this portfolio.

This result suggests that there is interesting work to be done in the future. By control-

ling the FDR of the portfolio, it could be possible to identify ex ante portfolios that

will produce high alphas ex-post. This has important implications for the persistence

literature (Hendricks, Patel and Zeckhauser (1993), Elton, Gruber and Blake (1996),

Carhart (1997), Kosowski et al. (2005)), where the portfolios are not formed according

to the FDR, but rather by dividing arbitrarily funds into deciles (octiles or quintiles).
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6 Appendix

6.1 Proof of Proposition 2.1

The expected alpha of the portfolio P based on a significance threshold γ can be written

as:

αγP = E
¡
αP
¯̄
R+ (γ) > 0

¢
· prob

¡
R+ (γ) > 0

¢
. (19)

Since prob (R+ (γ) > 0) = 1 by assumption, αγP = E (αP |R+ (γ) > 0) . As each fund in
the portfolio P receives a weight 1

R+
, we have:

αγP = E

⎛⎝ 1

R+

R+X
i=1

αi

¯̄̄̄
¯̄R+ (γ) > 0

⎞⎠ . (20)

Each fund share the same alpha α0 under H0 and the same α+A under HA with α+A > 0.

Thus, Equation (20) becomes:

αγP = E

µ
F+ (γ)

R+ (γ)

¯̄̄̄
R+ (γ) > 0

¶
· α0 +E

µ
T+ (γ)

R+ (γ)

¯̄̄̄
R+ (γ) > 0

¶
· α+A. (21)

Since T+ + F+ = R+, we get:

αγP = FDR+ (γ) · α0 +
¡
1− FDR+ (γ)

¢
· α+A, (22)

which is the stated result.
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6.2 Monte-Carlo Simulations

In this section, we first check the finite sample performance of the FDR methodology

and its extensions based on the new FDR+ and FDR− measures. Then, we examine

the finite sample performance of our estimators bπ+A and bπ−A of the proportion of funds
with genuine positive and negative performance. We build on a setting matching our

performance analysis problem and the mutual fund data at hand.

6.2.1 Design of the Monte-Carlo Experiment

We generate artificial monthly return data according to a one-factor model:

ri,t = αi + β · rm,t + εi,t, i = 1, ...,M, t = 1, ..., T,

rm,t ∼ N(0, σrm), εi,t ∼ N(0, σε). (23)

For each fund i (i = 1, ...,M), we test the null hypothesis H0 of no performance (αi = 0)

against the alternative HA of differential performance (αi > 0 or αi < 0) . Under H0,

the t-stat bti follows the Student distribution with T − 2 degrees of freedom. Under HA,bti follows a noncentral student distribution with T − 2 degrees of freedom whose true

parameter of noncentrality can be well approximated by T
1
2 αA
σε

(Davidson and MacKin-

non (2004), p. 169). Consistently with the size of our database, we set M = 10472 and

T = 336. The values for β, σrm and σε are based on sample estimates from the market

model. β and σε correspond to the cross-sectional average accross the funds and σrm is

the standard deviation of the market return. We therefore set β = 0.97, σε = 0.030 and

σrm = 0.046. Residuals are assumed to be uncorrelated across funds.

A proportion π0 of the funds comes from H0 and has an alpha equal to zero. A propor-

tion πA of funds generate differential performance. Under HA, a proportion π
+
A = πA ·q−

of funds yields a positive alpha α+A and a proportion π−A = πA · (1− q−) of funds yields

a negative alpha α−A. q
− ∈ [0, 1] is a positive scalar. We thus have:

H0 : αi ∼ N(0, T−
1
2σε) with proportion π0,

HA : αi ∼ N(α+A, T
− 1
2σε) with proportion π+A,

: αi ∼ N(α−A, T
− 1
2σε) with proportion π−A. (24)

The experiment is realized according to different parameter values. Three sets of α+A
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and α−A are considered (in percent per year): (a) 8% and -5% (b) 5% and -5% (c) 5%

and -8%. These figures are close to the average estimated alphas of funds in the top

and worst deciles which amount to 6.5% and 5.52% per year. Since these two deciles

contain lucky funds which drive the estimated alphas near zero, our parameter values

are therefore conservative estimates of the true α+A and α−A. π0 is set in turn to (a)

0.7 and (b) 0.9. Finally, q− is set to (a) 0.3 and (b) 0.7. Two significance levels γ are

examined: (a) 0.05 and (b) 0.10. The number of Monte Carlo replications is equal to

1’000.

6.2.2 Estimators presented in Section 2.3

In this section, we successively examine the performance of the following estimators:bπ0 (λ),\FDRλ (γ) , \FDR
+

λ (γ) and\FDR
−
λ (γ).

The estimator bπ0 (λ) of the proportion of funds with zero alphas bπ0 (λ)
As shown by Equation (7), the estimator bπ0 (λ) depends on the parameter λ that has to
be determined. To this end, we use a bootstrap procedure which automatically chooses

λ such that the mean-squared error (MSE) of bπ0 (λ) is minimized. The method can be
described as follows (See Storey (2002), Storey, Taylor and Sigmund (2004) for further

details). First, we compute bπ0 (λ) across a range of λ (λ = 0.05, 0.10, ..., 0.70). Second, we
form 1’000 bootstrap versions of bπ0 (λ) for each possible value of λ. These are respectively
denoted by bπb0 (λ) with b = 1, ..., 1000. Third, we compute the MSE for each possible

value of λ :

\MSE (λ) =
1

10000

10000X
b=1

∙bπb0 (λ)−min
λ
bπ0 (λ)¸2 . (25)

we choose λ∗ such that λ∗ = argminλ \MSE (λ) . Our estimate of π0 is then equal tobπ0 (λ∗) .
Alternatively, we also test a more simple approach where λ is set to 0.5. This corre-

sponds to the eyeballing procedure explained in the text, where λ is chosen at the point

where the bars of the histogram shown in Figure 1 becomes flat. These two estimators

are compared with the true value π0 defined in the Monte-Carlo design.
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The estimators \FDRλ (γ) , \FDR
+

λ (γ) , \FDR
−
λ (γ) of the false discovery rates

The estimator \FDRλ (γ) , is defined by Equation (6). It is compared with the true

FDR (γ) computed as follows:

FDR (γ) =
π0 · γ

π0 · γ + πA

h
prob

³
t < tT−2, γ

2
|HA, αA < 0

´
+ prob

³
t > tT−2,1−γ

2
|HA, αA > 0

´i ,
(26)

where tT−2, γ
2
and tT−2,1−γ

2
denotes the quantile of probability level γ

2 and 1−
γ
2 of the

Student distribution with T − 2 degrees of freedom.

The estimator \FDR
+

λ (γ) is defined by Equation (8). It is compared with the true

FDR+ (γ) computed as follows:

FDR+ (γ) =
1
2 · π0 · γ

1
2 · π0 · γ + π+A · prob

³
t > tT−2,1−γ

2
|HA, αA > 0

´ . (27)

The estimator \FDR
−
λ (γ) is defined by Equation (9). It is compared with the true

FDR− (γ) computed as follows:

FDR− (γ) =
1
2 · π0 · γ

1
2 · π0 · γ + π−A · prob

³
t < tT−2, γ

2
|HA, αA < 0

´ . (28)

Table 9 shows the differences between the average values (over the 1’000 replications) of

the different estimators and their theoretical counterparts. Panel A considers the case

where the parameter λ is chosen with the bootstrap technique. Panel B examines the

case where λ is fixed to 0.5. The simulation results show that the performance of all

estimators is extremely good. In most cases, the estimators are identical to the true

values up to the third decimal. Moreover, the FDR estimators approach the true FDR

by above as expected because of its conservative property.

Please insert Table 9 here

6.2.3 Estimators presented in Section 4.3

The estimated proportions bπ+A (γ) and bπ−A (γ) of funds in the population with positive
and negative alphas are given by Equations (16) and (17). To choose the significance

level γ, we use a bootstrap technique which is similar to the one used to determine bπ0 (λ) .
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γ is chosen such that the mean-squared error (MSE) of bπ+A (γ) and bπ−A (γ) is minimized.
The method can be described as follows. First, we compute bπ+A (γ) across a range
of γ (γ = 0.10, 0.15, ..., 0.25). Second, we form 1’000 bootstrap versions of bπ+0 (γ) for
each possible value of γ. These are respectively denoted by bπb+A (γ) with b = 1, ..., 1000.

Third, to compute theMSE for each possible value of γ, we usemaxγ bπ+A (γ) as a plug-in
estimate of bπ+A :

\MSE
+
(γ) =

1

10000

10000X
b=1

∙bπb+A (γ)−max
γ
bπ+A (γ)¸2 . (29)

We choose γ+∗ such that γ+∗ = argminγ \MSE
+
(γ) . Our estimate of π+A is then

equal to bπ+A (γ+∗) . We use the same procedure for bπ−0 (γ) to determine γ−∗ such that
γ−∗ = argminγ \MSE

−
(γ) . In this case, the estimate of π−A is then equal to bπ−A (γ−∗) .

Alternatively, we also test a more simple approach where γ is set to 0.2. This corre-

sponds to an empirical eyeballing procedure where γ is chosen at the point where bothbπ+A (γ) or bπ−A (γ) become constant. These two estimators are compared with the true
values π+A and π−A defined in the Monte-Carlo design.

Table 10 shows the differences between the average values (over the 1’000 replications)

of the two estimators and their theoretical counterparts. Panel A considers the case

where the significance level γ is chosen with the data-driven technique. The simulation

results show that the estimators based on the bootstrap procedure have a good accuracy,

up to the second decimal. Moreover, it is conservative since the average value of the

estimators are most of time lower than the true parameter values. Panel B examines

the case where γ is fixed to 0.2. Although the performance of the estimators are slightly

worse in this case, they remain close to the true values. Unsurprisingly, we notice that

this simple procedure yields better estimates when the power of the test is higher. This

is the case for bπ+A when α+A = 8% or for bπ−A when α−A = −8%. Since we find empiri-
cally that funds with positive alphas are located at the extreme right tail of the alpha

distribution (meaning that the power of the test of positive performance is likely to be

high), fixing γ should also provide a precise approximation of the proportion of funds

with positive alphas.

Please insert Table 10 here
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Table 1

Outcomes of the Multiple Test of Differential Performance
for the Significance Level γ

# Accept H0 # Reject H0 # Total
Funds with no performance N (γ) F (γ) M0

Funds with differential performance A (γ) T (γ) MA

# Total W (γ) R (γ) M

The null hypothesis H0 of no performance (αi = 0) is tested against the alternative HA of differ-
ential performance (αi > 0 or αi < 0). N(γ) stands for the number of funds with no performance
which are correctly considered as funds with zero alphas. F (γ) denotes the number of funds with
no performance which are incorrectly classified as significant funds (i.e. lucky funds). A(γ) cor-
responds to the number of funds with differential performance which are incorrectly classified as
funds with zero alphas. T (γ) stands for the number of funds with differential performance which
are correctly considered as significant. Among the M funds, R(γ) funds are called significant
(i.e. H0 is rejected R times). The ratio π0 =M0/M corresponds to the proportion of funds with
no performance in the total population of M funds.
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Table 2

Average Mutual Fund Performance

Panel A Unconditional Carhart Model

α βm βsmb βhml βmom R2

All funds -0.44%
(0.18)

0.95
(0.00)

0.14
(0.00)

-0.02
(0.22)

0.02
(0.12)

97.9%

G funds -0.43%
(0.20)

0.96
(0.00)

0.15
(0.00)

—0.04
(0.12)

0.03
(0.05)

97.8%

AG funds -0.64%
(0.22)

1.05
(0.00)

-0.40
(0.00)

-0.26
(0.00)

0.08
(0.00)

95.8%

GI funds -0.72%
(0.05)

0.88
(0.00)

-0.06
(0.00)

0.16
(0.00)

-0.02
(0.16)

97.9%

Panel B Conditional Carhart Model

α βm βsmb βhml βmom R2

All funds -0.51%
(0.16)

0.96
(0.00)

0.15
(0.00)

-0.03
(0.12)

0.02
(0.11)

98.0%

G funds -0.56%
(0.16)

0.96
(0.00)

0.15
(0.00)

-0.04
(0.05)

0.03
(0.03)

97.9%

AG funds -0.70%
(0.19)

1.06
(0.00)

-0.40
(0.00)

-0.26
(0.00)

0.08
(0.00)

96.1%

GI funds -0.72%
(0.05)

0.88
(0.00)

-0.06
(0.00)

0.15
(0.00)

-0.02
(0.09)

97.9%

This table shows the alpha, the factor exposures, and the adjusted R-square of an equally-
weighted portfolio including all funds in a given investment category. Figures in parentheses
denote the heteroskedasticity-consistent p-values under the null hypothesis that the regression
parameters are equal to zero. Panel A and B show the coefficients of the unconditional and
conditional Carhart models, respectively. The regressions are based on monthly data between
January 1975 and December 2002 (336 observations). The alphas are expressed in percent per
year.
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Table 3

Performance Measurement with the Standard Approach

Panel A: All funds

γ 0.05 0.10 0.15 0.20 γ 0.05 0.10 0.15 0.20

bR 156 248 346 422 bR/M 10.6% 16.8% 23.5% 28.6%bR+ 52 83 112 139 bR+/M 3.5% 5.6% 7.6% 9.4%bR− 104 165 234 283 bR−/M 7.1% 11.2% 15.9% 19.2%

Panel B: G funds

γ 0.05 0.10 0.15 0.20 γ 0.05 0.10 0.15 0.20

bR 106 171 235 282 bR/M 10.3% 16.7% 22.9% 27.5%bR+ 36 57 78 98 bR+/M 3.5% 5.6% 7.6% 9.6%bR− 70 114 157 184 bR−/M 6.8% 11.1% 15.3% 17.9%

Panel C: AG funds

γ 0.05 0.10 0.15 0.20 γ 0.05 0.10 0.15 0.20

bR 39 54 68 80 bR/M 16.6% 23.1% 29.0% 34.2%bR+ 18 25 30 34 bR+/M 7.7% 10.7% 12.8% 14.5%bR− 21 29 38 46 bR−/M 8.9% 12.4% 16.2% 19.7%

Panel D: GI funds

γ 0.05 0.10 0.15 0.20 γ 0.05 0.10 0.15 0.20

bR 30 52 76 91 bR/M 9.6% 16.7% 24.5% 29.3%bR+ 6 12 16 24 bR+/M 1.9% 3.8% 5.2% 7.7%bR− 24 40 60 69 bR−/M 7.7% 12.9% 19.3% 22.2%

The results for All funds (All), Growth funds (G), Aggressive Growth funds (AG), and Growth
and Income funds (GI) are presented in Panels A, B, C, and D, respectively. The left part
of each Panel displays the number of significant funds bR, the number of best funds bR+, and
the number of worst funds bR+ at different significance levels γ. The right part of each Panel
displays the proportion of significant funds bR/M , the proportion of best funds bR+/M , and the
proportion of worst funds bR−/M at different significance levels γ. The best (worst) funds are
defined as funds with significant positive (negative) estimated alphas. The alphas of all funds
are computed with the unconditional Carhart model.
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Table 4

Proportion of Funds with Zero and Non-Zero Alphas

No performance Differential performancebπ0 bπA
All funds 78.4% 21.6%
G funds 80.4% 19.6%
AG funds 71.5% 28.5%
GI funds 75.3% 24.7%

The first column contains the estimated proportion bπ0 of funds with no performance (zero
alphas), and the second one contains the estimated proportion bπA of funds with differential
performance (non-zero alpha). For each investment category, bπ0 is determined with a bootstrap
procedure which minimizes the mean-squared error of the estimator (details are provided in the
Appendix). The alphas of all funds are computed with the unconditional Carhart model.
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Table 5

Performance Measurement with the False Discovery Rate

Panel A: All funds

Significant funds
γ 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20

\FDR 37.0% 46.5% 50.0% 54.5% \FDR 37.0% 46.5% 50.0% 54.5%

bR 156 248 346 422 bR/M 10.6% 16.8% 23.5% 28.6%bF 58 115 173 231 bF/M 3.9% 7.8% 11.7% 15.6%bT 98 133 173 191 bT/M 6.7% 9.0% 11.7% 13.0%

Best funds
γ 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20

\FDR
+

55.5% 69.5% 76.8% 82.1% \FDR
+

55.5% 69.5% 76.8% 82.1%

bR+ 52 83 112 139 bR+/M 3.5% 5.6% 7.6% 9.4%bF+ 29 58 87 116 bF+/M 1.9% 3.9% 5.9% 7.9%bT+ 23 25 25 25 bT+/M 1.6% 1.7% 1.7% 1.7%

Worst funds
γ 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20

\FDR
−

27.7% 34.9% 37.0% 40.9% \FDR
−

27.7% 34.9% 37.0% 40.9%

bR− 104 165 234 283 bR−/M 7.1% 11.2% 15.9% 19.2%bF− 29 58 87 116 bF−/M 1.9% 3.9% 5.9% 7.9%bT− 75 107 147 167 bT−/M 5.1% 7.3% 10.0% 11.2%

The results for All funds (All), Growth funds (G), Aggressive Growth funds (AG), and Growth
and Income funds (GI) are presented in Panels A, B, C, and D, respectively. The impact of
luck is measured among the sets of significant, best and worst funds at different significance
levels γ. For the set of significant (best or worst) funds, the left part of each Panel displays the

estimated False Discovery Rate \FDR (\FDR
+
or \FDR

−
), the number of significant (best or

worst) funds bR ( bR+ or bR−), the number of lucky funds bF ( bF+ or bF−), and the number of funds
with differential (positive or negative) performance bT (bT+ or bT−). The right part of each Panel
shows the proportion of significant (best or worst) funds bR/M ( bR+/M or bR−/M), the proportion
of lucky funds bF/M ( bF+/M or bF−/M), and the proportion of funds with differential (positive
or negative) performance bT/M (bT+/M or bT−/M). The best (worst) funds are defined as funds
with significant positive (negative) estimated alphas. The alphas of all funds are computed with
the unconditional Carhart model.
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Table 5

Performance Measurement with the False Discovery Rate

Panel B: G funds

Significant funds
γ 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20

\FDR 38.8% 48.2% 52.6% 58.5% \FDR 38.8% 48.2% 52.6% 58.5%

bR 106 171 235 282 bR/M 10.3% 16.7% 22.9% 27.5%bF 41 82 124 165 bF/M 4.0% 8.0% 12.0% 16.0%bT 65 89 111 117 bT/M 6.3% 8.6% 10.8% 11.4%

Best funds
γ 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20

\FDR
+

57.2% 72.3% 79.2% 84.2% \FDR
+

57.2% 72.3% 79.2% 84.2%

bR+ 36 57 78 98 bR+/M 3.5% 5.6% 7.6% 9.6%bF+ 21 41 62 82 bF+/M 2.0% 4.0% 6.0% 8.0%bT+ 15 16 16 16 bT+/M 1.5% 1.6% 1.6% 1.6%

Worst funds
γ 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20

\FDR
−

29.4% 36.1% 39.3% 44.8% \FDR
−

29.4% 36.1% 39.3% 44.8%

bR− 70 114 157 184 bR−/M 6.8% 11.1% 15.3% 17.9%bF− 21 41 62 82 bF−/M 2.0% 4.0% 6.0% 8.0%bT− 49 73 95 102 bT−/M 4.8% 7.1% 9.3% 9.9%
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Table 5

Performance Measurement with the False Discovery Rate

Panel C: AG funds

Significant funds
γ 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20

\FDR 21.5% 31.0% 37.5% 41.8% \FDR 21.5% 31.0% 37.5% 41.8%

bR 39 54 68 80 bR/M 16.6% 23.1% 29.0% 34.2%bF 8 16 25 33 bF/M 3.4% 7.0% 10.6% 14.1%bT 31 38 43 47 bT/M 13.2% 16.2% 18.4% 20.1%

Best funds
γ 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20

\FDR
+

23.3% 33.4% 43.3% 49.2% \FDR
+

23.3% 33.4% 43.3% 49.2%

bR+ 18 25 30 34 bR+/M 7.7% 10.7% 12.7% 14.5%bF+ 4 8 13 17 bF+/M 1.8% 3.5% 5.5% 6.5%bT+ 14 17 17 17 bT+/M 5.9% 7.2% 7.2% 7.2%

Worst funds
γ 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20

\FDR
−

20.0% 28.9% 33.0% 36.4% \FDR
−

20.0% 28.9% 33.0% 36.4%

bR− 21 29 38 46 bR−/M 8.9% 12.4% 16.3% 19.7%bF− 4 8 13 17 bF−/M 1.8% 3.5% 5.5% 6.5%bT− 17 21 25 29 bT−/M 7.1% 8.9% 10.7% 12.5%
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Table 5

Performance Measurement with the False Discovery Rate

Panel D: GI funds

Significant funds
γ 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20

\FDR 38.6% 44.8% 46.0% 51.2% \FDR 38.6% 44.8% 46.0% 51.2%

bR 30 52 76 91 bR/M 9.6% 16.7% 24.5% 29.3%bF 12 23 35 47 bF/M 3.7% 7.5% 11.2% 15.0%bT 18 29 41 44 bT/M 5.8% 9.3% 13.2% 14.3%

Best funds
γ 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20

\FDR
+

100.0% 100.0% 100.0% 100.0% \FDR
+

100.0% 100.0% 100.0% 100.0%

bR+ 6 12 16 24 bR+/M 1.9% 3.8% 5.2% 7.7%bF+ 6 12 16 24 bF+/M 1.9% 3.8% 5.2% 7.7%bT+ 0 0 0 0 bT+/M 0.0% 0.0% 0.0% 0.0%

Worst funds
γ 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20

\FDR
−

24.3% 29.1% 29.2% 33.8% \FDR
−

24.3% 29.1% 29.2% 33.8%

bR− 24 40 60 69 bR−/M 7.7% 12.9% 19.3% 22.2%bF− 6 12 16 24 bF−/M 1.9% 3.8% 5.2% 7.7%bT− 18 28 44 45 bT−/M 5.8% 9.1% 14.2% 14.5%
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Table 6

Source of Differential Performance

Positive performance Negative performancebπ+A bπ−A
All funds 1.9% 19.6%
G funds 1.5% 18.0%
AG funds 8.1% 20.3%
GI funds 0.0% 24.3%

The first column contains the estimated proportion bπ+A of funds with positive performance (pos-
itive alpha). The second column contains the estimated proportion bπ−A of funds with negative
performance (negative alpha). For each investment category, these two proportions are deter-
mined with a bootstrap procedure which minimizes the mean-squared error of the estimator
(details are provided in the Appendix). The alphas of all funds are computed with the uncon-
ditional Carhart model.

43



Table 7

Expected Alpha of Portfolios of the Best Funds

Panel A: Best All funds (α+A = 5.3%)

γ 0.05 0.10 0.15 0.20

\FDR
+

55.5% 69.5% 76.8% 82.1%

αp 2.35% 1.61% 1.22% 0.94%
dαp/αp -31.4% -25.5% -22.9%

Panel B: Best G funds (α+A = 5.8%)

γ 0.05 0.10 0.15 0.20

\FDR
+

57.2% 72.3% 79.2% 84.2%

αp 2.47% 1.60% 1.21% 0.92%
dαp/αp -35.2% -24.4% -24.0%

Panel C: Best AG funds (α+A = 7.7%)

γ 0.05 0.10 0.15 0.20

\FDR
+

23.3% 33.4% 43.3% 49.2%

αp 5.90% 5.12% 4.36% 3.90%
dαp/αp -13.2% -14.8% -10.5%

The results for All funds (All), Growth funds (G), and Aggressive Growth funds (AG) are
presented in Panels A, B, and C, respectively. We exclude Growth and Income funds (GI)
since none of them produce positive alphas. Each portfolio is built by equally-weighting the best

funds at different significance levels γ. \FDR
+
denotes the estimated False Dicovery Rate among

the funds forming the portfolio. To estimate the alpha of funds with positive performance α+A,
we compute the estimated alpha of the fund located at the 5%-quantile of the best funds. It
respectively amounts to 5.3%, 5.8% and 7.7% per year for All, G, and AG funds. dαp/αp denotes
the relative reduction of the portfolio alpha as γ rises by 0.05. It is independent of the value
chosen for α+A. The alphas of all funds are computed with the unconditional Carhart model.
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Table 8

The False Discovery Rate with Alternative Asset Pricing Models

Panel A: All funds
Unconditional models Conditional models
CAPM FF CAPM FF

γ 0.05 0.20 0.05 0.20 γ 0.05 0.20 0.05 0.20

\FDR
+

100% 100% 55.3% 72.1% \FDR
+

100% 100% 35.5% 51.0%

\FDR
−

45.9% 68.9% 17.2% 29.0% \FDR
−

49.8% 76.2% 13.4% 24.1%

Panel B: G funds
Unconditional models Conditional models
CAPM FF CAPM FF

γ 0.05 0.20 0.05 0.20 γ 0.05 0.20 0.05 0.20

\FDR
+

100% 100% 68.6% 80.0% \FDR
+

100% 100% 35.7% 51.2%

\FDR
−

48.4% 67.6% 21.3% 35.4% \FDR
−

52.8% 76.2% 17.1% 28.2%

Panel C: AG funds
Unconditional models Conditional models
CAPM FF CAPM FF

γ 0.05 0.20 0.05 0.20 γ 0.05 0.20 0.05 0.20

\FDR
+

100% 100% 20.2% 29.4% \FDR
+

100% 100% 18.0% 27.3%

\FDR
−

32.4% 49.3% 22.6% 46.4% \FDR
−

44.0% 60.1% 22.8% 35.9%

Panel D: GI funds
Unconditional models Conditional models
CAPM FF CAPM FF

γ 0.05 0.20 0.05 0.20 γ 0.05 0.20 0.05 0.20

\FDR
+

100% 100% 100% 100% \FDR
+

100% 100% 100% 100%

\FDR
−

51.0% 76.7% 12.2% 18.6% \FDR
−

70.5% 79.5% 7.4% 12.5%

The results for All funds (All), Growth funds (G), Aggressive Growth funds (AG), and Growth
and Income funds (GI) are presented in Panels A, B, C, and D, respectively. The left part of
each Panel contains the estimated FDR among the best and worst funds computed with the
unconditional CAPM and Fama-French (FF) models at two different significance levels γ. The
right part of each Panel contains the estimated FDR among the best and worst funds computed
with the conditional CAPM and Fama-French (FF) models at two different significance levels γ.
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Table 9

Performance of the FDR Estimators using Monte-Carlo Simulations

Panel A: Bootstrap Procedure
α+A= 8%, α

−
A= −5%

q− γ π0 bπ0 FDR \FDR FDR+ \FDR
+

FDR− \FDR
−

0.3 0.05 0.7 0.696 0.114 0.114 0.078 0.078 0.211 0.211
0.9 0.890 0.332 0.328 0.246 0.243 0.508 0.505

0.10 0.7 0.696 0.198 0.197 0.143 0.143 0.321 0.321
0.9 0.892 0.489 0.482 0.393 0.387 0.646 0.640

0.7 0.05 0.7 0.704 0.127 0.128 0.165 0.166 0.103 0.104
0.9 0.895 0.359 0.357 0.433 0.430 0.307 0.305

0.10 0.7 0.704 0.211 0.212 0.281 0.283 0.168 0.168
0.9 0.894 0.508 0.502 0.602 0.599 0.439 0.435

α+A= 5%, α
−
A= −5%

q− γ π0 bπ0 FDR \FDR FDR+ \FDR
+

FDR− \FDR
−

0.3 0.05 0.7 0.711 0.138 0.140 0.103 0.104 0.211 0.214
0.9 0.897 0.382 0.382 0.307 0.307 0.508 0.508

0.10 0.7 0.710 0.221 0.222 0.168 0.170 0.321 0.324
0.9 0.901 0.523 0.524 0.439 0.440 0.646 0.647

0.7 0.05 0.7 0.710 0.138 0.140 0.211 0.214 0.103 0.104
0.9 0.897 0.382 0.381 0.508 0.507 0.307 0.305

0.10 0.7 0.709 0.221 0.222 0.321 0.323 0.168 0.169
0.9 0.902 0.523 0.524 0.646 0.647 0.439 0.439

α+A= 5%, α
−
A= −8%

q− γ π0 bπ0 FDR \FDR FDR+ \FDR
+

FDR− \FDR
−

0.3 0.05 0.7 0.704 0.127 0.128 0.103 0.104 0.165 0.166
0.9 0.894 0.359 0.355 0.307 0.303 0.433 0.428

0.10 0.7 0.704 0.211 0.212 0.168 0.169 0.281 0.283
0.9 0.903 0.508 0.510 0.439 0.440 0.602 0.603

0.7 0.05 0.7 0.697 0.114 0.114 0.211 0.211 0.078 0.078
0.9 0.895 0.332 0.330 0.508 0.506 0.246 0.242

0.10 0.7 0.697 0.198 0.199 0.321 0.321 0.143 0.143
0.9 0.902 0.489 0.489 0.646 0.647 0.393 0.394

The monthly returns are simulated according to a one-factor model for 1’472 funds and 396
periods. A proportion π0 of funds have zero alphas. A proportion πA of funds have differential
performance. Under HA, a proportion π−A = πA · q− of funds has a negative alpha and a
proportion π+A = πA · (1− q−) of funds has a positive alpha, with q− ∈ [0, 1]. FDR, FDR+ and

FDR− correspond to the true false discovery rates. bπ0,\FDR, \FDR+ and \FDR− stand for the
average value of the estimators across 1’000 Monte-Carlo simulations. In Panel A, the parameter
λ used to compute bπ0 is chosen with the bootstrap procedure explained in the Appendix. In
Panel B, the parameter λ is fixed to 0.5.
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Table 9

Performance of the FDR Estimators using Monte-Carlo Simulations

Panel B: Fixed λ equal to 0.5
α+A= 8%, α

−
A= −5%

q− γ π0 bπ0 FDR \FDR FDR+ \FDR
+

FDR− \FDR
−

0.3 0.05 0.7 0.704 0.114 0.114 0.078 0.078 0.211 0.212
0.9 0.900 0.332 0.331 0.246 0.246 0.508 0.511

0.10 0.7 0.700 0.198 0.200 0.143 0.144 0.321 0.324
0.9 0.900 0.489 0.488 0.393 0.392 0.646 0.647

0.7 0.05 0.7 0.711 0.127 0.128 0.165 0.167 0.103 0.104
0.9 0.902 0.359 0.358 0.433 0.433 0.307 0.306

0.10 0.7 0.712 0.211 0.214 0.281 0.285 0.168 0.171
0.9 0.902 0.508 0.508 0.602 0.603 0.439 0.440

α+A= 5%, α
−
A= −5%

q− γ π0 bπ0 FDR \FDR FDR+ \FDR
+

FDR− \FDR
−

0.3 0.05 0.7 0.716 0.138 0.141 0.103 0.105 0.211 0.216
0.9 0.904 0.382 0.382 0.307 0.308 0.508 0.508

0.10 0.7 0.716 0.221 0.226 0.168 0.172 0.321 0.329
0.9 0.903 0.523 0.522 0.439 0.439 0.646 0.646

0.7 0.05 0.7 0.715 0.138 0.141 0.211 0.216 0.103 0.105
0.9 0.904 0.382 0.384 0.508 0.512 0.307 0.308

0.10 0.7 0.713 0.221 0.226 0.321 0.329 0.168 0.172
0.9 0.904 0.523 0.526 0.646 0.651 0.439 0.442

α+A= 5%, α
−
A= −8%

q− γ π0 bπ0 FDR \FDR FDR+ \FDR
+

FDR− \FDR
−

0.3 0.05 0.7 0.712 0.127 0.129 0.103 0.104 0.165 0.168
0.9 0.901 0.359 0.359 0.307 0.307 0.433 0.432

0.10 0.7 0.710 0.211 0.214 0.168 0.171 0.281 0.285
0.9 0.902 0.508 0.507 0.439 0.438 0.602 0.603

0.7 0.05 0.7 0.705 0.114 0.114 0.211 0.212 0.078 0.078
0.9 0.900 0.332 0.331 0.508 0.510 0.246 0.245

0.10 0.7 0.705 0.198 0.200 0.321 0.324 0.143 0.144
0.9 0.901 0.489 0.489 0.646 0.647 0.393 0.393
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Table 10

Performance of the Estimators of the Proportion of Funds
with Positive and Negative Alphas using Monte-Carlo Simulations

Panel A: Bootstrap Procedure
α+A= 8%, α

−
A= −5%

q− π0 π+A bπ+A π−A bπ−A
0.3 0.7 0.21 0.214 0.09 0.085

0.9 0.07 0.075 0.03 0.032
0.7 0.7 0.09 0.088 0.21 0.194

0.9 0.03 0.035 0.07 0.068

α+A= 5%, α
−
A= −5%

q− π0 π+A bπ+A π−A bπ−A
0.3 0.7 0.21 0.193 0.09 0.083

0.9 0.07 0.075 0.03 0.032
0.7 0.7 0.09 0.083 0.21 0.194

0.9 0.03 0.031 0.07 0.068

α+A= 5%, α
−
A= −8%

q− γ π+A bπ+A π−A bπ−A
0.3 0.7 0.21 0.194 0.09 0.092

0.9 0.07 0.068 0.03 0.033
0.7 0.7 0.09 0.084 0.21 0.210

0.9 0.03 0.032 0.07 0.074

The monthly returns are simulated according to the one-factor model for 1’472 funds and 396
periods. A proportion π0 of funds have zero alphas. A proportion πA of funds have differential
performance. Under HA, a proportion π−A = πA · q− of funds has a negative alpha and a
proportion π+A = πA · (1− q−) of funds has a positive alpha, with q− ∈ [0, 1]. π+A and π+A
respectively correspond to the true proportion of funds with positive and negative alphas. bπ+A
and bπ−A stand for the average value of the estimators across 1’000 Monte-Carlo simulations. In
Panel A, the parameter γ used to compute bπ+A and bπ−A is chosen with the bootstrap procedure
explained in the Appendix. In Panel B, the parameter γ is fixed to 0.2.
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Table 10

Performance of the Estimators of the Proportion of Funds
with Positive and Negative Alphas using Monte-Carlo Simulations

Panel B: Fixed γ equal to 0.2
α+A= 8%, α

−
A= −5%

q− π0 π+A bπ+A π−A bπ−A
0.3 0.7 0.21 0.209 0.09 0.081

0.9 0.07 0.070 0.03 0.027
0.7 0.7 0.09 0.088 0.21 0.187

0.9 0.03 0.030 0.07 0.064

α+A= 5%, α
−
A= −5%

q− π0 π+A bπ+A π−A bπ−A
0.3 0.7 0.21 0.188 0.09 0.080

0.9 0.07 0.063 0.03 0.028
0.7 0.7 0.09 0.079 0.21 0.189

0.9 0.03 0.027 0.07 0.063

α+A= 5%, α
−
A= −8%

q− π0 π+A bπ+A π−A bπ−A
0.3 0.7 0.21 0.188 0.09 0.089

0.9 0.07 0.064 0.03 0.030
0.7 0.7 0.09 0.081 0.21 0.209

0.9 0.03 0.028 0.07 0.070
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Figure 1

Histogram of the Fund Estimated p-values

We simulate fund excess returns for 1’472 funds and 336 observations with a one-factor market
model (see the Appendix for the details). From these simulated time-series, the fund alphas
and p-values are estimated. The proportion π0 of funds drawn from H0 is equal to 80%. Under
HA, an equal proportion of funds yields a negative alpha of -5% per year and a positive alpha
of 5% per year. Under H0, the p-values are uniformly distributed over [0,1].
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Figure 2

False Discovery Rates among the Best and the Worst Funds
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(b) G funds

0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
FDR worst
FDR best

(c) AG funds

0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
FDR worst
FDR best

(d) GI funds

The figure plots the estimated FDR among the best and the worst funds at different significant

levels γ. The solid line denotes the estimated FDR among the best funds (\FDR
+
) and the

dashed one the estimated FDR among the worst funds (\FDR
−
). The best (worst) funds are

defined as funds with significant positive (negative) estimated alphas. The alphas of all funds
are computed with the unconditional Carhart model.
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