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Abstract

Value at Risk (VaR) has emerged in recent years as a standard tool to measure and
control the risk of trading portfolios. Yet, existing theoretical analyses of the optimal
behavior of a trader subject to VaR limits have produced a negative view of VaR as
a risk-control tool. In particular, VaR limits have been found to induce increased risk
exposure in some states and an increased probability of extreme losses. However, these
conclusions are based on models that are either static or dynamically inconsistent. In
this paper we formulate a dynamically consistent model of optimal portfolio choice
subject to VaR limits and show that the conclusions of earlier papers are incorrect if,
consistently with common practice, the portfolio VaR is reevaluated dynamically making
use of available conditioning information. In particular, we find that the risk exposure
of a trader subject to a VaR limit is always lower than that of an unconstrained trader
and that the probability of extreme losses is also lower. We also consider risk limits
formulated in terms of Tail Conditional Expectation (TCE), a coherent risk measure
often advocated as an alternative to VaR, and show that in our dynamic setting it is
always possible to transform a TCE limit into an equivalent VaR limit, and conversely.
Journal of Economic Literature Classification Numbers: D91, D92, G11, C61.
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Optimal Dynamic Trading Strategies

with Risk Limits

Domenico Cuoco Hua He Sergei Issaenko

Investment firms customarily limit the discretionality of their traders by imposing limits
on the risk of trading portfolios. Since Value at Risk (VaR) has gained in recent years
increasing popularity as a risk measure, these limits are frequently specified in terms of VaR.
Some recent academic papers have however argued that VaR suffers serious shortcomings
as a risk-control tool. In particular, since VaR measures are insensitive to the expected
value of losses in the tail of the distribution, traders subject to a VaR limit might have the
incentive to post very large losses in the exceptional cases where losses exceed the VaR limit
and to increase the risk of their portfolios in some states. For this reason, Tail Conditional
Expectation (TCE) is often advocated as a better risk-control tool.

However, these conclusions are based on models that are either entirely static, or, even
when they allow for dynamic trading, invariably assume that the risk of the portfolio is not
reevaluated dynamically as the composition of the portfolio changes.

Our first contribution in this paper is to develop a more realistic dynamic model of the
optimal behavior of a trader subject to risk constraints. In particular, we assume that the
risk of the trading portfolio is reevaluated dynamically: thus, the trader must satisfy the
specified risk limit at all times, rather than only at the initial date. In addition, we make the
risk computations in our model consistent with practice by assuming that, when assessing
the risk of a portfolio, the distribution of the portfolio profits and losses at the chosen
horizon is computed assuming that the current portfolio composition is kept unchanged
over this horizon. In our dynamic setting, we also allow the risk limit to vary as a function
of the portfolio value and time and examine the behavior of optimal trading strategies under
alternative functional specifications of this limit.

When portfolio risk is measured by VaR, the optimal trading behavior under the dy-
namic risk limit described above is significantly different from that implied by a static VaR
constraint and results in a much more favorable assessment of VaR as a risk-control tool.
In particular, we find that the proportional allocation to risky assets is always lower than
what it would have been in the absence of the VaR constraint and that the probability
of extreme losses is never larger than what it would have been in the absence of the con-
straint. Optimal investment strategies still display two-fund separation (with the two funds
being the riskless asset and the instantaneous mean-variance efficient portfolio): this result
remains true even if the VaR limit is allowed to vary as the value of the trading portfolio
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changes. Thus, a dynamic VaR constraint does not distort the composition of the optimal
portfolio of risky assets: instead, it simply impacts the relative allocation to the riskless
and the risky fund.

We also consider the optimal behavior of a trader subject to a TCE limit and prove
that in our setting TCE and VaR are equivalent as risk-control tools: specifically, given a
dynamic TCE limit, it is always possible to identify a dynamic VaR limit that would induce
the same optimal trading strategy (irrespective of the trader’s preferences), and conversely.
This is true in spite of the fact that TCE is a coherent risk measure, while VaR is not,
and results from the fact that VaR, while not being subadditive, is comonotone additive (in
the sense of Pflug (2000)): in our setting, the comonotonicity property arises naturally for
optimal portfolios as a result of two-fund separation.

These findings provide some theoretical support for the growing use of VaR as a risk-
control tool.
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1. Introduction

Investment firms customarily limit the discretionality of their traders by imposing limits
on the risk of trading portfolios. Since Value at Risk (VaR) has gained in recent years
increasing popularity as a risk measure,1 these limits are frequently specified in terms of
VaR.2

The popularity of VaR is due at least in part to the fact that it is an easily-understood
measure of risk: specifically, VaR is the maximum loss of a portfolio over a given horizon, at
a given confidence level. The choice of a horizon and confidence level are largely arbitrary,
although the Basle Committee proposals of April 1995 prescribed that VaR computations
for the purpose of assessing bank capital requirements should be based on a uniform horizon
of 10 trading days (two calendar weeks) and a 99% confidence level.3 The use of VaR as
a risk measure has been endorsed by regulators and industry groups, including the Basle
Committee on Banking Supervision, the SEC, the Group of Thirty (an international con-
sultative group of leading bankers, financiers and academics), the International Swap and
Derivatives Association (which represents more than 150 leading financial institutions deal-
ing in privately negotiated over-the-counter derivatives transactions) and the Derivatives
Policy Group (which comprises the six U.S. brokers-dealers with the largest OTC deriva-
tives affiliates).4 Both J.P. Morgan and Bankers Trust have introduced risk management
systems (called RiskMetrics and RAROC 2020, respectively) that produce VaR measures.

In spite of its widespread acceptance, VaR is also known to possess unappealing fea-
tures. Artzner, Delbaen, Eber and Heath (1999) proposed an axiomatic foundation of risk
measures, by identifying four properties that a reasonable risk measure should satisfy and
providing a characterization of the risk measures satisfying these properties, which they
called coherent risk measures. VaR is not a coherent risk measure, as it does not satisfy
the subadditivity property: in other words, the VaR associated with a combination of two
portfolios can be higher than the sum of the VaRs of the two individual portfolios. This
has induced Artzner, Delbaen, Eber and Heath to propose the use of the Tail Conditional
expectation (TCE), defined as the conditional expectation of losses above the VaR, as an

1See “The Risk Business”, The Economist, October 17, 1998.
2As noted by Jorion (2001, p. 379), “At the business area or unit level, VaR [. . .] can be used to set

position limits for traders and to decide where to allocate limited capital resources. A great advantage of
VaR is that it creates a common denominator with which to compare various risky activities. Traditionally,
position limits are set in terms of notional exposure. A trader, for instance, may have a limit of $10 million on
overnight positions in 5-year Treasuries. The same limit for 30-year Treasuries or in Treasury bond futures,
however, is substantially riskier. Thus, notional position limits are not directly comparable across units.
Instead, VaR provides a common denominator to compare various asset classes and can be used as a guide
to set position limits for business units.” As it will become clear in the following analysis, the risk limits
we consider translate naturally into position limits that take into account both the risk and the expected
return of the position (see Remarks 2 and 3).

3Banks using a 1-day horizon for internal VaR reporting are allowed to obtain their 10-day VAR by
simply multiplying the 1-day VaR by the square root of 10: see Jorion (2001, pp. 64–65).

4See Jorion (2001, pp. 43–49).
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alternative to VaR.5 Artzner, Delbaen, Eber and Heath proved that TCE is a coherent
risk measure under a technical condition on the risk distribution. Pflug (2000) provides a
general proof of coherence for continuous risk distributions and discusses several additional
desirable properties of TCE (see also Embrechts (1999)).

Our focus in this paper is on the dynamic portfolio choice of a trader subject to a risk
limit specified in terms of VaR or TCE. This problem has not yet received a complete
treatment in the existing literature.6 Ahn, Boudoukh, Richardson and Whitelaw (1999)
study the static minimization of the VaR of a given stock exposure using put options on
the stock. Alexander and Baptista (2000), Huisman, Koedijk and Pownall (1999), Kast,
Luciano and Peccati (1999) and Vorst (2001), among others, focus on the maximization of
the expected return of a portfolio subject to a VaR constraint in a static (one-period) setting,
while Rockafellar and Uryasev (2001) consider TCE minimization, again in a static setting.
To our knowledge, the only analyses of portfolio choice subject to risk limits in models with
dynamic trading are in two recent papers by Emmer, Klüppelberg and Korn (2001) and
Basak and Shapiro (2001).7

Emmer, Klüppelberg and Korn consider a model with continuous trading in which
traders face a VaR limit. However, for analytical tractability, they only consider strategies
that maintain fixed portfolio weights: this reduces their problem to a static one and results
in a dynamically-inconsistent trading strategy.

Basak and Shapiro consider the following static optimization problem:

max
WT≥0

E[u(WT )]

s.t. E[ξTWT ] ≤ W0,

P [W0 −WT > VaR] ≤ α,

(1)

where u is the trader’s utility function, T > 0 is the investment horizon (which is assumed
to coincide with the VaR horizon), WT (respectively, W0 > 0) is the terminal (respectively,
the initial) portfolio value, ξT is the state-price density at time T , 1−α ∈ (0, 1) is the chosen
confidence level and VaR ≥ 0. The first constraint in (1) is the usual budget constraint,
while the second constraint is equivalent to the portfolio VaR being no larger than VaR.
The problem in (1) is interpreted as the static formulation of a dynamic portfolio problem
subject to a VaR constraint at time 0 in a complete-market economy with continuous
trading. Letting ξ be such that P [ξT > ξ] = α, Basak and Shapiro show that, whenever
the constraint is binding, a trader forced to reduce portfolio losses in some states to satisfy
the VaR constraint would optimally choose to finance these reduced losses by increasing the
portfolio losses in the “costly states” where ξT > ξ. Since these states are already the ones
with the lowest terminal portfolio value under the unconstrained optimal policy, the VaR
constraint results in a fattening of the left tail of the distribution of the terminal portfolio
value (i.e., in an increased probability of extreme losses). This leads Basak and Shapiro to
conclude:

5TCE is also sometimes referred to as Conditional VaR, Tail VaR, Mean Excess Loss, Conditional Loss
or Tail Loss.

6For a review of the literature on VaR and related risk measures, see the book of Jorion (2001), the
review article of Duffie and Pan (1997) and the extensive on-line references at www.gloriamundi.org.

7Basak and Shapiro (2001) also contains an analysis of the general equilibrium implications of VaR limits.
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The [VaR risk-management] is viewed by many as a tool to shield economic
agents from large losses, which, when they occur, could cause credit and solvency
problems. But our solution reveals that when a large loss occurs, it is a yet
larger loss under the [VaR risk-management] and hence more likely to lead to
credit problems, defeating the very purpose of using the [VaR risk-management].
(p. 378)8

Not surprisingly, Basak and Shapiro also find that, with lognormally-distributed returns, the
VaR constraint in problem (1) induces traders to invest significantly more in risky assets in
some states than they would have invested in the absence of the constraint: this increase in
risk-taking is necessary to realize increased losses in the “costly states”. Finally, Basak and
Shapiro report that a risk limit specified in terms of a tail-expectation-based measure would
result in neither an increased probability of extreme losses nor in an increased allocation
to risky assets in some states: thus, tail-expectation-based measures should be preferred to
quantile-based measures (such as VaR) for the purpose of risk control.9

However, the problem in (1) has several shortcomings as a model of the dynamic portfolio
choice of a trader subject to risk limits. First, it assumes that the portfolio’s VaR is never
reevaluated after the initial date: thus, the conditional probability of portfolio losses below
the prescribed maximum VaR can become zero after the initial date and yet the trader is
allowed to continue to follow his trading strategy. This assumption is extreme: in practice,
most financial institutions using VaR for internal risk control reevaluate it at least daily.10

Second, because the VaR limit is only imposed at the initial date, the trading strategy
solving (1) is dynamically inconsistent and must be interpreted as a commitment solution:
otherwise, the trader would find it optimal to instantaneously revert to the unconstrained-
optimal investment strategy after the initial date and the VaR constraint would never be
binding. Third, the formulation in (1) assumes that the portfolio VaR is computed under
full knowledge of the trader’s behavior in all future contingencies. Again, this assumption
is extreme and it does not match actual practice: as noted by Jorion (2001, p. 107), VaR
is invariably computed under the assumption that the existing portfolio is kept unchanged
over the VaR horizon.11

8Similarly, Vorst (2001) states: “Recently, financial institutions discovered that portfolios with a limited
Value at Risk often showed returns that were close to the VaR and had large losses in the exceptional cases
where losses exceeded VaR. [The] theoretically optimal portfolios indeed have the properties as experienced
by financial institutions and illustrate that maximizing under a VaR-constraint is very dangerous.”

9Basak and Shapiro consider a tail-expectation-based risk measure, which they call Limited-Expected-
Losses (LEL), that is computed under the equivalent martingale measure rather than under the actual
probability measure.

10The Basle Committee proposals of April 1995 require banks to recompute the VaR of their portfolios
on a daily basis, as capital requirements are proportional to the higher of the previous day’s VaR or the
average VaR over the last 60 business days: see Jorion (2001, p. 64). Similarly, the 1993 “Best Practices”
Recommendations from the Group of Thirty stated that “Dealers should use a consistent measure to calculate
daily the market risk of their position, which is best measured with a Value-at-Risk (VaR) approach.”
(Jorion, 2001, p. 485).

11Because VaR measures are computed under the assumption that the existing portfolio is kept unchanged
over the VaR horizon, companies normally select a VaR horizon for internal reporting purposes taking into
account the turnover of the trading portfolio. Accordingly, “Commercial banks currently report their trading
VaR over a daily horizon because of the liquidity and rapid turnover in their portfolios. In contrast, invest-
ment portfolios such as pension funds generally invest in less liquid assets and adjust their risk exposures
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Our first contribution in this paper is to develop a more realistic dynamically-consistent
model of the optimal behavior of a trader subject to risk constraints. Differently from Basak
and Shapiro, we assume that the risk of the trading portfolio is reevaluated dynamically
(in fact, continuously), making full use of conditioning information: thus, the trader must
satisfy the specified risk limit at all times, rather than only at the initial date. In addition,
we make the risk computations in our model consistent with practice by assuming that,
when assessing the risk of a portfolio, the distribution of the portfolio value at the chosen
horizon is computed assuming that the current portfolio composition is kept unchanged over
this horizon. For technical convenience, we restrict ourselves to the case of lognormally-
distributed returns.

When risk is measured by VaR, the optimal trading behavior under the dynamic risk
limit described above is significantly different from that implied by the static VaR constraint
of Basak and Shapiro and results in a much more favorable assessment of VaR as a risk-
control tool. In particular, we find that the proportional allocation to risky assets is always
lower than what it would have been in the absence of VaR the constraint and that the
probability of extreme losses is always no larger than what it would have been in the absence
of the constraint. As in Basak and Shapiro, we find that the optimal investment strategy still
displays two-fund separation, the two funds being the riskless asset and the instantaneous
mean-variance efficient portfolio. Thus, a dynamically-reevaluated VaR constraint does not
distort the composition of the optimal portfolio of risky assets: instead, it simply impacts
the relative allocation to the riskless and the risky fund.

We also consider the optimal behavior of a trader subject to a TCE limit and prove
that in our setting TCE and VaR are equivalent as risk-control tools: specifically, given a
dynamic TCE limit, it is always possible to identify a dynamic VaR limit that would induce
the same optimal trading strategy (irrespective of the trader’s preferences), and conversely.
This is true in spite of the fact that TCE is a coherent risk measure, while VaR is not, and
results from the fact that VaR, while not being subadditive, is comonotone additive (in the
sense of Pflug (2000)):12 in our setting, the comonotonicity property arises naturally for
optimal portfolios as a result of two-fund separation.

The rest of the paper is organized as follows. Section 2 describes our model. Sec-
tion 3 contains the main characterization result of optimal trading strategies under VaR
constraints. Section 4 provides some explicit examples with CRRA utilities. Section 5
considers the case of TCE constraints and establishes the equivalence result. Section 6
concludes and an Appendix contains all the proofs.

2. The Model

We consider a continuous-time stochastic economy on the finite horizon [0, T ]. Uncertainty
is represented by a filtered probability space (Ω,F ,F, P ), where F = {Ft} is the natural
filtration generated by a d-dimensional Brownian motion w.

only slowly, which is why a 1-month horizon is generally chosen for investment purposes.” (Jorion, 2001,
p. 117).

12Two random variables X and Y on the same probability space (Ω,F , P ) are said to be comonotone if
(X(ω1) − X(ω2))(Y (ω1) − Y (ω2)) ≥ 0 a.s. for all ω1, ω2 ∈ Ω.
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The investment opportunities are represented by n+1 long-lived securities. The first se-
curity (the “bond”) is a money market account earning a constant continuously-compounded
interest rate r > 0. The other n assets (the “stocks”) are risky and their price process S
(inclusive of reinvested dividends) is a n-dimensional geometric Brownian motion with drift
vector r1̄ + µ and diffusion matrix σ, i.e.,

St = S0 +
∫ t

0
IS
s (r1̄ + µ) ds +

∫ t

0
IS
s σ dws,

where IS
t denotes the n × n diagonal matrix with elements St and 1̄ = (1, . . . , 1)�. We

assume without loss of generality that 1 ≤ n ≤ d and that rank(σ) = n.13 Trading in the
bond and in the stocks takes place continuously and is frictionless. An admissible trading
strategy is an adapted n-dimensional portfolio-weight process π with

∫ T
0 |πt|2 ds < ∞.14

Let Π denote the set of admissible trading strategies. Given a trading strategy π ∈ Π, the
associated portfolio value process W π satisfies the dynamic budget constraint

W π
t = W0 +

∫ t

0
W π

s (r + π�
s µ) ds +

∫ t

0
W π

s π�
s σ dws,

or
W π

t = W0 exp
(∫ t

0

(
r + π�

s µ− 1
2
|π�

s σ|2
)

ds +
∫ t

0
π�

s σ dws

)
, (2)

where W0 > 0 denotes the initial value of the portfolio. Notice that (2) implies

W π
t+τ = W π

t exp
(∫ t+τ

t

(
r + π�

s µ− 1
2
|π�

s σ|2
)

ds +
∫ t+τ

t
π�

s σ dws

)
(3)

for any τ > 0.
For given τ > 0, W > 0 and π ∈ IRn, let

Wt+τ (W,π) = W exp
((

r + π�µ− 1
2
|π�σ|2

)
τ + π�σ(wt+τ − wt)

)
.

It follows immediately from (3) that, given a portfolio πt and the associated portfolio value
W π

t at time t, the random variable Wt+τ (W π
t , πt) would be the future value of the portfolio

at time t + τ if the portfolio weights were kept constant between time t and time t + τ .
For a given probability level α ∈ (0, 1) and a given horizon τ > 0, the VaR at time t of

a portfolio π ∈ Π, denoted by VaRα,π
t , is then given by

VaRα,π
t = inf {L ≥ 0 : P (W π

t −Wt+τ (W π
t , πt) ≥ L | Ft) < α} = (Qα,π

t )−, (4)

where
Qα,π

t = sup {L ∈ IR : P (Wt+τ (W π
t , πt) −W π

t ≤ L | Ft) < α}
is the quantile of the projected portfolio gain over the interval (t, t+τ) and x− = max[0,−x].
In other words, VaRα,π

t is the loss over the next period of length τ which would be exceeded
only with a (small) conditional probability α if the current portfolio πt were kept unchanged.

13If n > d or rank(σ) < n, some stocks are redundant and can be omitted from the analysis.
14All the inequalities involving random variables are understood to hold almost surely.
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The fact that VaRα,π
t is computed under the assumption that the current portfolio is kept

unchanged reflects the actual practice and the fact that financial institutions monitoring
their traders do not typically know the traders’ future portfolio choices over the VaR horizon.
Instead, the measure of VaR in (4) only requires knowledge of the current portfolio value,
the current portfolio composition and the conditional distribution of asset returns.15

Similarly, the TCE of a portfolio π ∈ Π is defined by

TCEα,π
t =


E

[
(W π

t −Wt+τ (W π
t , πt))1{W π

t −Wt+τ (W π
t ,πt)≥−Qα,π

t } | Ft

]
α




+

, (5)

where x+ = max[0, x]. In other words, the TCE of a portfolio is the conditional expected
value of the losses exceeding −Qα,π

t .
Given our assumption of lognormally-distributed asset returns, both the VaR and the

TCE of a portfolio can be explicitly computed.

Proposition 1. We have

VaRα,π
t = W π

t

[
1 − exp

((
r + π�

t µ− 1
2
|π�

t σ|2
)
τ + N−1(α)|π�

t σ|
√
τ

)]+

(6)

and

TCEα,π
t = W π

t

[
1 − exp ((r + π�

t µ) τ)
N

(
N−1(α) − |π�

t σ|
√
τ
)

α

]+

, (7)

where N(x) and N−1(x) denote the normal distribution and inverse distribution functions.
In particular,

0 ≤ VaRα,π
t ≤ TCEα,π

t < W π
t (8)

and
VaRα,0

t = TCEα,0
t = 0. (9)

Proof. See the Appendix.

3. Optimal Trading Strategies under VaR Limits

Now consider the problem of a trader who starts with an endowment W0 and must select
a portfolio π ∈ Π so as to maximize the expected utility E[u(W π

T )] of the terminal value of

15Alternatively, it would be possible to compute the portfolio’s VaR under the assumptions that the cur-
rent asset holdings were kept unchanged. Our formulation not only has computational advantages under
lognormality, but is also a natural one for portfolios having target compositions specified in terms of pro-
portions rather than amounts. In addition, this formulation is consistent with typical calculations of the
VaR of a portfolio, which are based on the assumption that the horizon portfolio return equals a weighted
average of the horizon asset returns, with weights equals to the relative amounts invested at the beginning
of the period (see Jorion (2001, Section 7.1)). In any case, the difference between the two formulations is
likely to be insignificant if the VaR horizon τ is small (e.g., 1 day).
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the trading portfolio, subject to the constraint that, at any time t ∈ [0, T ], the value at risk
of its portfolio, VaRα,π

t , is no larger than some prespecified level VaR(W π
t , t) ≥ 0:

max
π∈Π

E[u(W π
T )]

s.t. W π
0 = W0

VaRα,π
t ≤ VaR(W π

t , t) ∀t ∈ [0, T ].
(10)

Note that in (10) we allow the VaR limit at time t to depend on calendar time and on the
current value of the portfolio.

Remark 1. Since we have assumed VaR(W π
t , t) ≥ 0,it follows from (9) that setting πt =

0 (that is, investing everything in the riskless bond) always satisfies the VaR constraint.
Hence, the set of feasible trading strategies is not empty.

Remark 2. The expression for VaR in (6) implies that a portfolio π satisfies the constraint
VaRα,π

t ≤ VaR(W π
t , t) if and only if

log

(
1 − VaR(W π

t , t)
W π

t

)+

−
(
r + π�

t µ− 1
2
|π�

t σ|2
)
τ −N−1(α)|π�

t σ|
√
τ ≤ 0. (11)

In the case of a single risky asset (n = 1), it can be easily verified that (11) is equivalent to
an upper and a lower bound on the fraction πt allocated to the risky asset:

π−(W π
t , t) ≤ πt ≤ π+(W π

t , t),

where

π±(W, t) =

µ
|σ|

√
τ ±N−1(α) ±

√√√√( µ
|σ|

√
τ ±N−1(α))2 − 2

(
log

(
1 − VaR(W,t)

W

)+

− rτ

)

|σ|√τ
.

(12)
In particular, given the current portfolio value W π

t , the set of admissible portfolios πt is
convex. This is however generally not the case in the presence of multiple risky assets if
α > 1

2 . Figure 1 shows an example with two risky assets in which the set of admissible
trading strategies is not convex.16

Rewriting (10) as the stochastic control problem

max
π∈Π

E[u(W π
T )]

s.t. W π
t = W0 +

∫ t

0
W π

s (r + π�
s µ) ds +

∫ t

0
W π

s π�
s σ dws,

log

(
1 − VaR(W π

t , t)
W π

t

)+

−
(
r + π�

t µ− 1
2
|π�

t σ|2
)
τ −N−1(α)|π�

t σ|
√
τ ≤ 0

(13)

leads to the following characterization of optimal trading strategies.17

16Note that in this example both assets have a return risk premium of .07 and a volatility of .17, while
the instantaneous correlation coefficient between the two risky assets is -.9.

17Since the set of πt satisfying the inequality (11) is not necessarily convex when n > 1 (as shown in
Figure 1) and it depends on the current portfolio value W π

t , the convex duality technique of Cvitanić and
Karatzas (1992) cannot be applied to this problem.

9



0 20 40 60 80

0

20

40

60

80

π1

π2

Figure 1: The graph shows the set of portfolios satisfying the VaR constraint, assuming n = 2,

r = .008, µ =
(
.07
.07

)
, σ =

(
.170 0

−.153 .074
)
, VaR(W π

t ,t)
W π

t
= .01, α = .9, τ = 1.

Theorem 1. Let V (W, t) denote the value function for the stochastic control problem (13)
and let

ϕ+
α (W, t) =

|κ|√τ + N−1(α) +

√√√√(|κ|√τ + N−1(α))2 − 2

(
log

(
1 − VaR(W,t)

W

)+

− rτ

)

|κ|√τ
,

(14)
where κ = σ�(σσ�)−1µ. Then ϕ+

α (W, t) ≥ 0 for all (W, t) ∈ (0,∞)× [0, T ] and V solves the
Hamilton-Jacobi-Bellman equation

0 =

{
−1

2
V 2

W
VWW

|κ|2 + VWWr + Vt if − VW
WVWW

≤ ϕ+
α

1
2VWWW 2|κϕ+

α |2 + VWW (r + |κ|2ϕ+
α ) + Vt otherwise

(15)

with terminal condition
V (W,T ) = u(W ). (16)

Finally, letting

ϕ(W, t) = min
[
− VW (W, t)
WVWW (W, t)

, ϕ+
α (W, t)

]
(17)

the policy
π∗(W, t) = ϕ(W, t)(σσ�)−1µ (18)

solves (13).

Proof. See the Appendix.

10



Remark 3. Equation (18) shows that the optimal portfolio of a VaR-constrained agent is
a combination of the riskless asset and the growth-optimal portfolio (σσ�)−1µ.18 Thus,
with lognormally-distributed asset returns, the VaR constraint affects the distribution of the
optimal portfolio between riskless and risky assets, but does not distort the composition of
the optimal portfolio of risky assets. The function ϕ+

α (W, t) in (14) identifies the maximum
fraction of wealth that can be invested in the growth-optimal portfolio at time t under the
VaR constraint19 (as shown in the proof of Theorem 1, shorting the growth-optimal portfolio
is never optimal).

The result in Theorem 1 also allows us to compute the distribution of the terminal
portfolio value under the optimal trading strategy.

Corollary 1. Let p(W, t) denote the density function of W π∗
t . Then p solves Kolmogorov’s

forward equation

∂

∂t
p =

∂2

∂W 2

[
(Wϕ|κ|)2p

]
− ∂

∂W

[
W (r + ϕ|κ|2)p

]
(Wp) (19)

with initial condition
p(W, 0) = δ(W −W0),

where ϕ is the function in (17) and δ denotes Dirac’s delta function.

Proof. See Karatzas and Shreve (1988).

4. Examples with CRRA Utility

We now specialize our model by assuming that u(W ) = W 1−γ

1−γ for some γ > 0. We recall
that, in the absence of a VaR constraint,

V (W, t) = eρ(T−t)W
1−γ

1 − γ
,

where

ρ = (1 − γ)

(
r +

|κ|2
2γ

)
,

and
π∗(W, t) =

1
γ

(σσ�)−1µ. (20)

Thus, it follows from (2) and (20) that the terminal portfolio value W π∗
T is in this case

lognormally distributed, with mean

W0e

(
r+

|κ|2
γ

)
T

18The growth-optimal portfolio is the portfolio that maximizes the expected continuously-compounded
rate of return 1

T
log (W π

T /W π
0 ). Equivalently, π∗ is a combination of the riskless asset and the mean-variance

efficient portfolio of risky assets (σσ�)−1µ/1̄�(σσ�)−1µ.
19This can be immediately verified by noting that the expression for ϕ+

α in (14) can be obtained from the
expression for π+ in (12) by replacing µ with |κ|2 = µ�(σσ�)−1µ (the instantaneous risk premium on the
growth-optimal portfolio) and |σ| with |κ| = |µ�(σσ�)−1σ| (the volatility of the growth-optimal portfolio).

11



and standard deviation

W0e

(
r+

|κ|2
γ

)
T

√
e

|κ|2
γ

T − 1.

To further understand the implications of VaR constraints for optimal trading strategies,
we consider below three alternative specifications of the function VaR(W, t) which identifies
the maximum admissible VaR at any time t ∈ [0, T ]. Notice that it follows immediately
from Remark 3 and (20) that a given VaR constraint not binding if and only if

1
γ
≤ inf

(W,t)∈(0,∞)×[0,T ]
ϕ+

α (W, t).

Moreover, it follows from (18) and (20) that the VaR-constrained optimal portfolio is a
multiple

q(W, t) = γϕ(W, t) (21)

of the unconstrained optimal portfolio. Following the terminology of Basak and Shapiro (2001),
we will refer to this multiple as the relative risk exposure. In particular, we have from the
boundary condition (16) that at the terminal date

q(W,T ) = min[1, γϕ+
α (W,T )].

In cases where an analytical solution is not available, we solve the PDE (15) numer-
ically by rewriting it in terms of the state variable w = log(W ) and then applying the
explicit finite-difference method (see Kushner and Dupuis (1992) for details). This allows
us to obtain the optimal trading strategy π∗ from (18). Since the finite-difference method
approximates the state variable W π∗

with a Markov chain with known transition proba-
bilities, we use these transition probabilities to compute the distribution of the terminal
portfolio value W π∗

T . This approach generates results similar to those obtainable by solving
the Kolmogorov equation (19) separately using the finite-difference method.

All the numerical computations assume r = .008, |κ| = .37, α = .01, τ = 1/260 (one
trading day), T = 10, γ = .5 or γ = 5 and W0 = 1. Moreover, we scale the function
VaR(W, t) so that VaR(W0, 0) = .05 (this amounts to setting β = .05 in the examples
below).

4.1. VaR(W, t) = β

We start by considering the case of a constant VaR limit: VaR(W, t) = β. In this case, the
function ϕ+

α is independent of t and monotonically decreasing in W , with

lim
W↓0

ϕ+
α (W, t) = +∞

and

lim
W↑+∞

ϕ+
α (W, t) =

|κ|√τ + N−1(α) +
√

(|κ|√τ + N−1(α))2 + 2rτ

|κ|√τ
= .000582.

Therefore, the VaR constraint is binding if γ < 1
.000582 = 1, 717.8 and not binding otherwise.

12
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Figure 2: The graph plots the relative risk exposure q(W, t) at t = 0 (heavier line) and t = T
(lighter line), assuming r = .008, |κ| = .37, T = 10, γ = .5, W0 = 1, α = .01, τ = 1/260,
VaR(W, t) = .05.
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Figure 3: The graph plots the probability density of the terminal portfolio value Wπ∗

T under
the optimal trading strategy in the constrained (heavier line) and unconstrained (lighter line) case,
assuming r = .008, |κ| = .37, T = 10, γ = .5, W0 = 1, α = .01, τ = 1/260, VaR(W, t) = .05.
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Figure 2 plots the relative risk exposure under the optimal policy (the function q(W, t)
in (21)) for the case γ = .5, when t = 0 and when t = T . Contrary to the conclusion
of Basak and Shapiro (2001), the figure shows that a VaR-constrained agent never invests
more in risky assets than a VaR-unconstrained agent (the relative risk exposure is never
larger than 1). Consequently, as shown in Figure 3, the probability of extreme losses
at the horizon T is lower under the VaR-constrained investment strategy than under the
unconstrained strategy. These conclusions also apply to the other examples we consider.
Thus, the reservations expressed by Basak and Shapiro (2001), Vorst (2001) and others
against the use of VaR as a risk-control tool seem unwarranted if the VaR is reevaluated
periodically.

It is also worth noting the presence of a significant hedging demand in Figure 2: for
example, a VaR-constrained agent with initial wealth W0 = .4 (log(W0) = −.916) and an
investment horizon of 10 years would invest only 67% as much as an unconstrained agent
in the growth-optimal portfolio, even though he could invest the unconstrained-optimal
amount in the growth-optimal portfolio and still satisfy the VaR constraint at time 0 (since
ϕ+

α (.4, 0) = 2.5). Clearly, this lower allocation to the growth-optimal portfolio reduces the
volatility of the optimal portfolio and reflects the smaller indirect utility of extreme portfolio
values induced by the fact that a constant VaR constraint becomes more severely binding
when the portfolio value increases (as can be seen from Figure 2 or from the fact that the
function ϕ+ in (14) is a decreasing function of the portfolio value in this case).

Figures 4 and 5 illustrate the corresponding results for the case γ = 5. In this case,
hedging demand is negligible, as shown by the fact that the optimal risk exposure at the
initial date is very close to that at the terminal date. This stems from the fact that the
VaR constraint is binding at time t (i.e., 1

γ > ϕ+
α (W, t)) only if W > 4.76 (log(W ) > 1.56),

and this event has negligible probability, as shown in Figure 5.

4.2. VaR(W, t) = βW

Fixing the VaR limit to a constant amount has the obvious shortcoming that the constraint
becomes binding when the portfolio value increases and is not binding when the portfolio
value is sufficiently low. Thus, a constant VaR limit penalizes successful traders. In practice,
successful traders typically see their VaR limit increased. To capture this fact, we consider
next the case of a constant proportional VaR, VaR(W, t) = βW .20

Thus,

ϕ+
α (W, t) =

|κ|√τ + N−1(α) +
√

(|κ|√τ + N−1(α))2 − 2 (log(1 − β)+ − rτ)

|κ|√τ
= ϕ+

α (22)

for all (W, t). It can be easily verified that in this case the value function

V (W, t) = eρ̂(T−t)W
1−γ

1 − γ
,

20Alternatively, the proportional constraint VaRα,π
t ≤ βW π

t (or. equivalently, W π
t ≥ β−1VaRα,π

t ) could
be motivated by the requirement that capital exceed a given multiple β−1 of the current VaR, as advocated
by the Basle Committee proposals of April 1995.
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Figure 4: The graph plots the relative risk exposure q(W, t) at t = 0 (heavier line) and
t = T (lighter line), assuming r = .008, |κ| = .37, T = 10, γ = 5, W0 = 1, α = .01, τ = 1/260,
VaR(W, t) = .05.
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Figure 5: The graph plots the probability density of the terminal portfolio value Wπ∗

T under
the optimal trading strategy in the constrained (heavier line) and unconstrained (lighter line) case,
assuming r = .008, |κ| = .37, T = 10, γ = 5, W0 = 1, α = .01, τ = 1/260, VaR(W, t) = .05.
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Figure 6: The graph plots the probability density of the terminal portfolio value Wπ∗

T under
the optimal trading strategy in the constrained (heavier line) and unconstrained (lighter line) case,
assuming r = .008, |κ| = .37, T = 10, γ = .5, W0 = 1, α = .01, τ = 1/260, VaR(W, t) = .05W .

where

ρ̂ = (1 − γ)
(
r + ϕ∗

(
1 − γϕ∗

2

)
|κ|2

)

and

ϕ∗ = min
(

1
γ
, ϕ+

α

)
,

solves the HJB equation (15). Thus, ϕ(W, t) = ϕ∗ and q(W, t) = γϕ∗ ≤ 1 for all (W, t).
Hence, in this case there is no hedging demand and the VaR-constrained optimal trading
strategy coincides with the unconstrained-optimal trading strategy for an investor with
CRRA coefficient γ∗ = 1

ϕ∗ .
With the parameters of our numerical example, ϕ+

α = .966, so that the VaR constraint
is binding if γ < 1

.966 = 1.035 and not binding otherwise. In particular, if γ = .5 the
constrained-optimal trading strategy coincides with the unconstrained trading strategy for
an agent with higher CRRA coefficient γ∗ = 1.035 and the relative risk exposure q(W, t) is
constant and equal to .483. Figure 6 shows the distribution of the terminal portfolio value
under the VaR-constrained and the unconstrained optimal trading strategies in this case.

4.3. VaR(W, t) = (W − (1 − β)W0)
+

In the example of Section 4.1. (constant VaR) the maximum allowable proportional invest-
ment in the growth-optimal portfolio, ϕ+

α , was a decreasing function of the current portfolio
value, while in the example of Section 4.2. (constant proportional VaR) it was a constant.
As a final example, we consider the case in which VaR(W, t) = (W − (1 − β)W0)+: thus,
the VaR limit equals a fixed proportion βW0 of the initial portfolio value, plus any running

16



gain W −W0. In this case, ϕ+
α (W, t) is a monotonically increasing function of W , with

lim
W↓0

ϕ+
α (W, t) =

|κ|√τ + N−1(α) +
√

(|κ|√τ + N−1(α))2 + 2rτ

|κ|√τ
= .000582

and
lim

W↑+∞
ϕ+

α (W, t) = +∞.

Therefore, the VaR constraint is binding if γ < 1
.000582 = 1, 717.8 and not binding otherwise

(as in the example of Section 4.1.).
It is also worth noting that, in the extreme case α = 0, ϕ+

α (W, t) = 0 for all W ≤
(1− β)W0, so that the optimal portfolio π∗ has the property that W π∗

t ≥ (1− β)W0 for all
t ∈ [0, T ]. Thus, the dynamic VaR constraint VaRα,π

t ≤ (W π
t −(1−β)W0)+ can be considered

as a relaxed version of the dynamic portfolio insurance constraint W π
t ≥ (1 − β)W0 for all

t ∈ [0, T ].
Figures 7 and 8 (respectively, Figures 9 and 10) show the optimal risk exposure and

the distribution of the terminal portfolio value when γ = .5 (respectively, γ = 5). In both
cases, the VaR constraint results in a highly skewed distribution for the terminal portfolio
value. As already noted, when α = 0 the resulting distribution must assign zero probability
to values of log(W π∗

T ) below log[(1 − β)W0] = −.051: in Figures 8 and 10 the probability
of these values is positive but negligible, while the probability of a loss smaller than βW0

is significantly larger than under the unconstrained policy. For the larger value of the risk
aversion coefficient, the risk limit does not bind if the portfolio value is above the initial
value and the probability of a large terminal gain is close to that in the unconstrained case.

5. TCE Limits

We now turn to the problem of a trader subject to a risk limit specified in terms of TCE,

max
π∈Π

E[u(W π
T )]

s.t. W π
0 = W0

TCE α̂,π
t ≤ TCE(W π

t , t) ∀t ∈ [0, T ],
(23)

where TCE is a given nonnegative function and α̂ ∈ (0, 1). As mentioned in the Intro-
duction, TCE has been advocated as a better risk management tool than VaR. As we will
see, however, any dynamic risk limit formulated in terms of TCE can be easily mapped
into an equivalent VaR limit, and conversely, so that the choice of VaR or TCE as a risk-
management tool is largely irrelevant.

Definition. The constraints VaRα,π
t ≤ VaR(W π

t , t) and TCE α̂,π
t ≤ TCE(W π

t , t) are equiv-
alent if the optimal portfolio policies in (10) and (23) coincide for all utility functions u.

Recall from Proposition 1 that

VaRα,π
t = W π

t ρα(πt)+

17
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Figure 7: The graph plots the relative risk exposure q(W, t) at t = 0 (heavier line) and t = T
(lighter line), assuming r = .008, |κ| = .37, T = 10, γ = .5, W0 = 1, α = .01, τ = 1/260,
VaR(W, t) = (W − (1 − .05)W0)+.
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Figure 8: The graph plots the probability density of the terminal portfolio value Wπ∗

T under
the optimal trading strategy in the constrained (heavier line) and unconstrained (lighter line) case,
assuming r = .008, |κ| = .37, T = 10, γ = .5, W0 = 1, α = .01, τ = 1/260, VaR(W, t) =
(W − (1 − .05)W0)+.
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Figure 9: The graph plots the relative risk exposure q(W, t) at t = 0 (heavier line) and
t = T (lighter line), assuming r = .008, |κ| = .37, T = 10, γ = 5, W0 = 1, α = .01, τ = 1/260,
VaR(W, t) = (W − (1 − .05)W0)+.
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Figure 10: The graph plots the probability density of the terminal portfolio value Wπ∗

T under
the optimal trading strategy in the constrained (heavier line) and unconstrained (lighter line) case,
assuming r = .008, |κ| = .37, T = 10, γ = 5, W0 = 1, α = .01, τ = 1/260, VaR(W, t) =
(W − (1 − .05)W0)+.
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and
TCE α̂,π

t = W π
t ρ̂α̂(πt)+,

where

ρα(πt) = 1 − exp
((

r + π�
t µ− 1

2
|π�

t σ|2
)
τ + N−1(α)|π�

t σ|
√
τ

)

and

ρ̂α̂(πt) = 1 − exp ((r + π�
t µ) τ)

N
(
N−1(α̂) − |π�

t σ|
√
τ
)

α̂
.

Since TCEα,π
t depends on π only through the instantaneous expected rate of return π�

t µ
and the instantaneous return variance |π�

t σ|2, it follows as in Theorem 1 that the optimal
portfolio π∗ in (23) is a combination of the riskless asset and the growth-optimal portfolio
(σσ�)−1µ, i.e.,

π∗
t = ϕ̂(W π∗

t , t)(σσ�)−1µ (24)

for some function ϕ̂. The next lemma implies that, for portfolios that are combinations of
the riskless asset and the growth-optimal portfolio, the TCE limit is equivalent to a lower
and an upper bound on the allocation to the growth-optimal portfolio.

Lemma 1. For all a ≥ 0, the set

Φa
α̂ =

{
ϕ ∈ IR : ρ̂α̂(ϕ(σσ�)−1µ) ≤ a

}

is a closed interval containing the origin. Thus, there exist functions Φ−
α̂ and Φ+

α̂ with
Φ−

α̂ < 0 < Φ+
α̂ such that Φa

α̂ = [Φ−
α̂ (a),Φ+

α̂ (a)]. If a < 1, Φa
α̂ is bounded and Φ−

α̂ (a) and
Φ+

α̂ (a) are the two roots of the equation ρ̂α̂(ϕ(σσ�)−1µ) = a. If a ≥ 1, Φ−
α̂ (a) = −∞ and

Φ+
α̂ (a) = +∞.

Proof. See the Appendix.

Recalling that TCE α̂,π
t = W π

t ρ̂α̂(πt)+, it follows immediately from the above lemma
that the policy π∗ in (24) satisfies the TCE limit in (23) if and only if

ϕ̂−
α̂ (W, t) ≤ ϕ̂(W, t) ≤ ϕ̂+

α̂ (W, t)

for all (W, t) ∈ IR+ × [0, T ], where

ϕ̂±
α̂ (W, t) = Φ±

α̂

(
TCE(W, t)

W

)
. (25)

Since shorting the growth-optimal portfolio is never optimal,21 it is then easy to show
that given VaR and TCE limits are equivalent if and only if the maximum feasible allocation
to the growth-optimal portfolios under the two constraints coincide, i.e., if the function ϕ+

α

in (14) coincides with the function ϕ̂+
α̂ in (25). This leads to the following result.

21This follows from the same argument used in the proof of Theorem 1.

20



Proposition 2. The constraint TCE α̂,π
t ≤ TCE(W π

t , t) is equivalent to the constraint
VaRα,π

t ≤ VaR(W π
t , t), where α ∈ (0, 1) is an arbitrary probability such that

|κ|√τ + N−1(α) +
√

(|κ|√τ + N−1(α))2 + 2rτ

|κ|√τ
≤ inf

(W,t)∈IR+×[0,T ]
ϕ̂+

α̂ (W, t), (26)

VaR(W, t) = Wρα(ϕ̂+
α̂ (W, t)(σσ�)−1µ) ≥ 0, (27)

and ϕ+
α̂ is the function in (25). Conversely, the constraint VaRα,π

t ≤ VaR(W π
t , t) is equiv-

alent to the constraint TCE α̂,π
t ≤ TCE(W π

t , t), where α̂ ∈ (0, 1) is an arbitrary probability
such that

Φ+
α̂ (0) ≤ inf

(W,t)∈IR+×[0,T ]
ϕ+

α (W, t), (28)

TCE(W, t) = Wρ̂α̂(ϕ+
α (W, t)(σσ�)−1µ) ≥ 0, (29)

and ϕ+
α is the function in (14)

Proof. See the Appendix.

Proposition 2 implies in particular that a proportional VaR limit is equivalent to a
proportional TCE limit.

Corollary 2. A proportional VaR limit VaRα,π
t ≤ βW with β ∈ (0, 1) is equivalent to a

proportional TCE limit TCEα,π
t ≤ β̂W , where

β ≤ β̂ = ρ̂α


 |κ|√τ + N−1(α) +

√
(|κ|√τ + N−1(α))2 − 2 (log(1 − β) − rτ)

|κ|√τ
(σσ�)−1µ


 < 1.

Proof. See the Appendix.

6. Concluding Remarks

A frequently-mentioned limitation of VaR as a risk-control tool is that VaR focuses on
the probability of large losses, but not on the expected value of these losses. This might
induce traders subject to VaR limits to post large losses in the exceptional cases where
losses exceed the VaR limit and has led several authors to propose alternatives to VaR
based on the expected value of large losses. In this paper we show that this intuition,
largely developed from static models, does not apply to dynamic models where the VaR
is reevaluated periodically, making full use of conditioning information. Instead, in all the
cases we consider, we always find that the expected value of losses and the proportional
investment in risky assets are lower under a VaR constraint than they would have been
without the constraint. In addition, we show that, in spite of the fact that VaR in not a
coherent risk measure, risk limits formulated in terms of VaR are equivalent to to risk limits
formulated in terms of TCE, which is known to be a coherent risk measure. These findings
provide some theoretical support for the growing use of VaR as a risk-control tool. It remains
to be seen if and to what extent they apply to models with varying price coefficients.
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Appendix

Proof of Proposition 1: We have

P (Wt+τ (W π
t , πt) −W π

t ≤ L | Ft)

= P

(
exp

((
r + π�

t µ− 1
2
|π�

t σ|2
)
τ + π�

t σ(wt+τ − wt)
)
≤ 1 +

L

W π
t

| Ft

)

= P

(
π�

t σ(wt+τ − wt) ≤ log
(

1 +
L

W π
t

)+

−
(
r + π�

t µ− 1
2
|π�

t σ|2
)
τ | Ft

)

= N


 log

(
1 + L

W π
t

)+
−

(
r + π�

t µ− 1
2 |π�

t σ|2
)
τ

|π�
t σ|

√
τ


 ,

where the last equality follows from the fact that the random variable π�
t σ(wt+τ − wt) is

conditionally normally distributed with zero mean and variance |π�
t σ|2τ . Thus,

P (Wt+τ (W π
t , πt) −W π

t ≤ L | Ft) ≤ α
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
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
 ≤ α

⇐⇒ L ≤ W π
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[
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2
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t σ|
√
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− 1

]
,

which implies

Qα,π
t = W π

t

[
exp
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r + π�

t µ− 1
2
|π�

t σ|2
)
τ + N−1(α)|π�

t σ|
√
τ

)
− 1

]
.

Therefore,

VaRα,π
t = (Qα,π

t )− = W π
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[
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t µ− 1
2
|π�

t σ|2
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√
τ
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.

Similarly,
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Dividing by α gives the expression for TCEα,π
t in (7).

Proof of Theorem 1: The Hamilton-Jacobi-Bellman (HJB) equation for the problem in
(13) is

0 = max
π

[
1
2
VWW |Wπ�σ|2 + VWW (r + π�µ) + Vt (30)

− ψ

(
log

(
1 − VaR

W

)+

−
(
r + π�µ− 1

2
|π�σ|2

)
τ −N−1(α)|π�σ|

√
τ

)]
,

where ψ is a Lagrangian multiplier. The first-order conditions for a maximum in (30) are:

VWWW 2σσ�π∗ + VWWµ + ψ

(
(µ− σσ�π∗)τ + N−1(α)

σσ�π∗

|π∗�σ|
√
τ

)
= 0, (31)

ψ

(
log

(
1 − VaR

W

)+

−
(
r + π∗�µ− 1

2
|π∗�σ|2

)
τ −N−1(α)|π∗�σ|

√
τ

)
= 0, (32)

log

(
1 − VaR

W

)+

−
(
r + π∗�µ− 1

2
|π∗�σ|2

)
τ −N−1(α)|π∗�σ|

√
τ ≤ 0. (33)

Rearranging equation (31) gives[
VWWW 2 − ψ

(
τ −N−1(α)

√
τ

|π∗�σ|

)]
π∗ = − [VWW + ψτ ] (σσ�)−1µ.

Since the terms in square brackets are scalar functions of (W, t), this implies that (18) must
hold for some scalar function ϕ. Replacing (18) in (33) gives

log

(
1 − VaR

W

)+

−
(
r +

(
ϕ− 1

2
ϕ2

)
|κ|2

)
τ −N−1(α)|ϕκ|

√
τ ≤ 0,

which is equivalent to
ϕ−

α ≤ ϕ ≤ ϕ+
α ,

where ϕ+
α is the function defined in (14) and

ϕ−
α (W, t) =

|κ|√τ −N−1(α) −

√√√√(|κ|√τ −N−1(α))2 − 2

(
log

(
1 − VaR(W,t)

W

)+

− rτ

)

|κ|√τ
.

Equation (31) and the complementary slackness condition (32) imply

(VWWW 2ϕ + VWW )µ = 0,

or
ϕ = − VW

WVWW
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when ϕ−
α < ϕ < ϕ+

α , and ϕ = ϕ±
α otherwise.

Since (18) implies that optimal portfolios are combinations of the riskless asset and
the growth-optimal portfolio of risky assets, (σσ�)−1µ, the general investment problem
(10) can be written equivalently as an investment problem with a single risky asset (the
growth-optimal portfolio): because the constraint set for this equivalent problem is convex
(see Remark 2), a standard argument implies that the value function V is (increasing
and) concave. Hence, the constraint −VW /(WVWW > ϕ−

α is never binding (because ϕ−
α is

nonpositive). This establishes the equality in (17).
Finally, (15) follows from substituting (18) and (17) in (30).

Proof of Lemma 1: It is easily verified that ρ̂α̂(0) = 1 − erτ < 0 and that

∂

∂ϕ
ρ̂α̂(ϕ(σσ�)−1µ) = exp

((
r + ϕ|κ|2

)
τ
) N

(
N−1(α̂) − |ϕ||κ|√τ
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α̂
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)
N (N−1(α̂) − |ϕ||κ|√τ)

sign(ϕ) − |κ|
√
τ .

Clearly, f(ϕ) < 0 on (−∞, 0). Moreover, f(ϕ) is monotonically increasing on (0,+∞), with
limϕ→+∞ f(ϕ) = +∞. Letting

ϕ∗ = inf{ϕ ≥ 0 : f(ϕ) ≥ 0},

this implies that ρ̂α̂(ϕ(σσ�)−1µ) is a monotonically decreasing function of ϕ on (−∞, 0)
and a monotonically increasing function on (ϕ∗,+∞), with ρ̂α̂(ϕ(σσ�)−1µ) < 0 on [0, ϕ∗].

Since

lim
ϕ→−∞

ρ̂α̂(ϕ(σσ�)−1µ) = 1 − lim
ϕ→−∞

exp
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τ
) N
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)
α̂

= 1

and
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exp
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τ
) N

(
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)
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= 1,

the claim immediately follows.

Proof of Proposition 2: Letting

ϕ∗ =
|κ|√τ + N−1(α) +

√
(|κ|√τ + N−1(α))2 + 2rτ

|κ|√τ

denote the positive root of the equation ρα(ϕ(σσ�)−1µ) = 0, it is easily verified that
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√
τ
(
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)(
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√
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for ϕ > ϕ∗. Therefore, if α and VaR satisfy (26) and (27), we have

VaR(W, t) = Wρα(ϕ̂+
α̂ (W, t)(σσ�)−1µ) ≥ Wρα(ϕ∗(σσ�)−1µ) = 0

and
ϕ+

α (W, t) = sup
{
ϕ ≥ 0 : Wρα(ϕ(σσ�)−1µ) ≤ VaR(W, t)

}
= ϕ̂+

α̂ (W, t).

Similarly, if α̂ and TCE satisfy (28) and (29), we have

TCE(W, t) = Wρ̂α̂(ϕ+
α (W, t)(σσ�)−1µ) ≥ Wρ̂α̂(Φ+

α̂ (0)(σσ�)−1µ) = 0

and
ϕ̂+

α̂ (W, t) = sup
{
ϕ ≥ 0 : Wρ̂α̂(ϕ(σσ�)−1µ) ≤ TCE(W, t)

}
= ϕ+

α (W, t).

Proof of Corollary 2: When VaR(W, t) = βW , (14) gives ϕ+
α (W, t) = ϕ∗ for all

(W, t) ∈ IR+ × [0, T ], where

ϕ∗ =
|κ|√τ + N−1(α) +

√
(|κ|√τ + N−1(α))2 − 2 (log(1 − β) − rτ)

|κ|√τ

Since (8) implies ρα(ϕ(σσ�)−1µ) ≤ ρ̂α(ϕ(σσ�)−1µ) for all ϕ ∈ IR, we have

inf
(W,t)∈IR+×[0,T ]

ϕ+
α (W, t) = ϕ∗

= sup
{
ϕ ∈ IR : ρα(ϕ(σσ�)−1µ) ≤ β

}
≥ sup

{
ϕ ∈ IR : ρ̂α(ϕ(σσ�)−1µ) ≤ β

}
≥ sup

{
ϕ ∈ IR : ρ̂α(ϕ(σσ�)−1µ) ≤ 0

}
= Φ+

α (0).

Therefore, the condition (28) is satisfied with α̂ = α. It then immediately follows from
Proposition 2 that the proportional VaR limit VaRα,π

t ≤ βW π
t is equivalent to the propor-

tional TCE limit TCEα,π
t ≤ β̂W π

t , where β̂ = ρ̂α(ϕ∗(σσ�)−1µ). Moreover, it follows from
(8) that

β = ρα(ϕ∗(σσ�)−1µ) ≤ ρ̂α̂(ϕ∗(σσ�)−1µ) = β̂

and
β̂ = ρ̂α̂(ϕ∗(σσ�)−1µ) < 1.
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League of Nations in Geneva represented at that time. The Institute is a self-governing foundation closely 
connected with, but independent of, the University of Geneva. 
 
The Institute attempts to be both international and pluridisciplinary. The subjects in its curriculum, the 
composition of its teaching staff and the diversity of origin of its student body, confer upon it its international 
character.  Professors teaching at the Institute come from all regions of the world, and the approximately 650 
students arrive from some 60 different countries. Its international character is further emphasized by the use 
of both English and French as working languages. Its pluralistic approach - which draws upon the methods of  
economics, history, law, and political science -reflects its aim to provide a broad approach and in-depth 
understanding of international relations in general. http://heiwww.unige.ch 
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