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1 Introduction

In cooperative game theory with transferable utilities, the Shapley value

(Shapley (1953)) is a widely used solution concept. It always exists, is

unique, and given by an explicit formula that pays each player his average

marginal contribution. Unlike the Shapley value, the prenucleolus and the

nucleolus (Schmeidler (1969)) are solutions of a minimization problem. The

prenucleolus is the set of efficient payoffs that lexicographically minimizes

the “dissatisfaction” of all coalitions. The nucleolus is also the solution to a

similar minimization problem but differs from the prenucleolus in requiring

the payoff vector to be individually rational. The prenucleolus always exists

and is unique while the nucleolus is unique but exists only when the set of

individually rational and efficient payoff vectors is non-empty. In this pa-

per, we identify conditions under which the prenucleolus coincides with the

Shapley value.

It is easy to show that the Shapley value and the prenucleolus coincide

on all two player games. From the axiomatization of prenucleolus (Sobolev

(1975)) and the Shapley value (Hart and Mas-Colell (1989)), we know that

both these solution concepts satisfy efficiency and symmetry and hence they

also coincide on all symmetric TU games. However, the results of Sobolev

(1975) and Hart and Mas-Colell (1989) also imply that the prenucleolus and

the Shapley value differ in terms of the consistency properties.1 Therefore,

for non-symmetric TU games with three or more players, there is no reason

to expect that these two solution concepts to coincide.

Yet, there are applications involving non-symmetric TU games where

the Shapley value and the prenucleolus do coincide. This was first demon-

strated in the context of undirected graphs and hypergraphs by Deng and

Papadimitriou (1994). Subsequently, van den Nouweland, Borm, Brouwers,

Bruinderink and Tijs (1996) applied coalitional form games to telecommuni-

cations problems and derive a class of games for which this coincidence takes

place. Chun and Hokari (2004) demonstrate the coincidence in the context

of a queueing game defined by Maniquet (1999). The results of these papers

1See also Winter (2002).
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can be summarized as saying that the class of 2-games constitute a sufficient

condition for the coincidence.2

In this paper we identify a class of TU games, which we call PS games,

for which we have this coincidence. In a PS game, each player’s marginal

contribution to a coalition and its complement coalition adds up to a player

specific constant that does not depend on the coalition. We show that this

property is sufficient to ensure the coincidence of the Shapley value and the

prenucleolus. Furthermore, the class of PS games is more general than the

class of 2-games in that while every 2-game is also a PS game, the converse

is not true.

We then apply our result to simple games. We show that a simple game

is a PS game if and only if it is either dictatorial or ‘bi-dictatorial’ or a ‘joint

dictatorship.’ We also show that for a three player non-symmetric simple

game, the PS property is also necessary for the coincidence. However, for

non-symmetric simple games with more than three players, PS property is

not necessary.

Finally, we apply our coincidence result to queueing games. We define

a class of queueing games in coalitional form which we call the generalized

queueing games. This class includes, as special cases, the queueing game

defined by Maniquet (1999) and by Chun (2004). We then identify the sub-

class of generalized queueing games that belong to the class of PS games.

We refer to this class of games as reasonable queueing games. In particular,

all queueing games that are a convex combination of Maniquet’s queueing

game and Chun’s queueing game belongs to this class of reasonable queueing

games.

The paper is organized as follows. In section 2, we set up the general

model. We provide our main result on the coincidence of prenucleolus and

the Shapley value in section 3 and compare it with the existing literature. In

section 4, we apply our coincidence result to simple games and generalized

queueing games. We conclude our analysis in section 5.

2The 2-games are a special case of the k-games defined by Deng and Papadimitriou
(1994).
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2 Preliminaries

A coalitional form game with transferable utility (or a TU game) G = (N, v)

consists of a finite set N = {1, . . . , n} of players and a function v : 2N →

ℜ that associates with every coalition (or subset) S of N a real number

v(S). The number v(S) is the worth of S which is the total payoff that

is available for division among the members of S. We define v(∅) = 0. A

profile (xi)i∈N ∈ ℜN is said to be efficient if
∑

i∈N xi = v(N). Let X(N, v)

be the set of all possible efficient payoff vectors of G. An imputation of

G is an efficient payoff profile x = (x1, . . . , xn) for which xi ≥ v(i) for all

i ∈ N . Let I(N, v)(⊆ X(N, v)) be the set of all imputations of G. Let

Mi(S) = v(S ∪ {i}) − v(S) be the marginal contribution of player i to the

coalition S. In particular, Mi(∅) = v(i).

DEFINITION 2.1 The Shapley value of a game G = (N, v) is defined by

ψi(N, v) = (1/n!)
∑

π∈ΠMi(Pi(π)) for each i ∈ N , where Π is the set of all n!

orderings of N and Pi(π) = {j|π(j) < π(i)}.

Consider a game G = (N, v). We now define two very similar solution

concepts that are related to the dissatisfaction level of a coalition. To measure

how unhappy a coalition S will be with a payoff vector x in G, we look at the

excess of S with respect to x which is defined as e(S, x) = v(S) −
∑

i∈S xi.

Using e(S, x) as a measure of unhappiness with respect to x, we can try

to find out a payoff vector which minimizes the maximum excess. We can

construct a vector θ(x) by arranging the set of 2n (subsets of N) excesses in

decreasing order. Consider any two vectors y and z. With y <L z we mean

that y is lexicographically smaller that z and we say that y ≤L z to indicate

that either y <L z or y = z.

DEFINITION 2.2 The prenucleolus of a game G = (N, v) is defined by

pη(N, v) = {x ∈ X(N, v) | θ(x) ≤L θ(y) ∀ y ∈ X(N, v)}.

DEFINITION 2.3 The nucleolus of a game G = (N, v) is defined by

η(N, v) = {x ∈ I(N, v) | θ(x) ≤L θ(y) ∀ y ∈ I(N, v)}.
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Definitions 2.2 and 2.3 differ in terms of their domain of operation. While

the prenucleolus lexicographically minimizes the excess vector across the set

of all efficient payoff vectors, the nucleolus does the same minimization across

the set of all imputations. It can be shown, however, that the nucleolus and

prenucleolus coincide for TU games with non-empty core3 and for superad-

ditive TU games.4

An equivalent way of defining the two solution concepts is in terms of

objections and counterobjections. We define these as follows.

• A pair (S, y) consisting of a coalition S and an efficient vector (im-

putation) y is an objection to the efficient vector (imputation) x if

e(S, x) > e(S, y) (that is
∑

i∈S yi >
∑

i∈S xi).

• A coalition T is a counterobjection to the objection (y, S) if e(T, y) >

e(T, x) (that is
∑

i∈T xi >
∑

i∈T yi) and e(T, y) ≥ e(S, x).

DEFINITION 2.4 The prenucleolus pη(N, v) of G is the set of all x ∈

X(N, v) such that for every objection (S, y) to x there is a counterobjection

to (S, y). Here, y ∈ X(N, v).

DEFINITION 2.5 The nucleolus η(N, v) of G is the set of all imputations

x ∈ I(N, v) such that for every objection (S, y) to x there is a counterobjec-

tion to (S, y). Here, y ∈ I(N, v).

The equivalence between Definitions 2.3 and 2.5 is derived in Osborne and

Rubinstein (1994). Since this result does not depend on the fact that atten-

tion is restricted to the set of imputations, it follows that Definitions 2.2 and

2.4 are also equivalent.

We end this section with two observations on the coincidence of the Shap-

ley value and the prenucleolus. First, consider a two player game ({1, 2}, v).

A straightforward computation shows that ψi({1, 2}, v) = (v({1, 2})−v(j)+

v(i))/2, i = 1, 2 and that e({1}, ψ(v)) = e({2}, ψ(v)) = (v(1) + v(2) −

3See Peleg and Sudhölter (2003). The core of a TU game is the set of all unblocked
allocations.

4See Moulin (1988). A TU game is superadditive if for all S, T ⊆ N with S ∩ T = ∅,
v(S ∪ T ) ≥ v(S) + v(T ).
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v({1, 2}))/2. The fact that the excess vectors of the two singleton coali-

tions are identical along with the fact that the Shapley value is an efficient

profile immediately implies that the Shapley value is also the prenucleolus.

Next, define a game G = (N, v) to be symmetric if for all i, j ∈ N ,

v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N − {i, j}. Again, it is straightforward

to verify that for a symmetric game, ψi(N, v) = pηi(N, v) = v(N)
|N |

for i ∈ N .

3 PS games

The set of symmetric games and two-players games discussed in the previous

section are obviously a very small subset of coalitional form games. In this

section, we show that the coincidence of Shapley value and the prenucleolus

holds for a richer class of games which we call PS games. We also show that

this class is more general than the class of 2-class games.

DEFINITION 3.6 A TU game G = (N, v) satisfies the PS property if ∀

i ∈ N , ∃ ci ∈ ℜ such that ∀ S ⊆ N − {i}, Mi(S) +Mi(N − {i} − S) = ci.

We refer to any TU game satisfying the PS property as a PS game. We

denote this class of TU games by G(PS).

THEOREM 3.1 If G = (N, v) ∈ G(PS) then ψ(N, v) = pη(N, v).

Proof: Let G = (N, v) ∈ G(PS) and consider the efficient profile x∗ =

(x∗1, . . . , x
∗
n) such that e(i, x∗) = e(N−{i}, x∗) for all i ∈ N . It is easy to verify

that x∗ is unique and given by x∗i = (v(N) − v(N − {i}) + v(i)) /2 = ci/2

for all i ∈ N .

Claim 1:
∑

i∈S

x∗i =
v(N) − v(N − S) + v(S)

2
for all S ⊆ N .

We apply induction to prove Claim 1. First note that Claim 1 is true for any

singleton coalition T = {i}. We assume that Claim 1 is true for any T ⊂ N

with the property that |T | = m < n. To prove Claim 1, we will have to show

that it holds for any T ′ = T ∪ {j} where j ∈ N − T . Given the vector x∗

and our assumption we get

x∗j +
∑

i∈T

x∗i =
v(N) − v(N − {j}) + v(j)

2
+
v(N) − v(N − T ) + v(T )

2
(3.1)
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From the PS property we know that Mj(∅) + Mj(N − {j}) = Mj(T ) +

Mj(N − {j} − T )(≡ cj) and hence

v(N) − v(N − {j}) + v(j) = v(T ′) − v(T ) + v(N − T ) − v(N − T ′) (3.2)

Substituting (3.2) in (3.1) and then simplifying it we get

∑

i∈T ′

x∗i =
v(N) − v(N − T ′) + v(T ′)

2
(3.3)

Thus, we have established that if Claim 1 is true for any T ⊂ N with the

property that |T | = m < n then Claim 1 is also true for any T ′ ⊂ N with

the property that |T ′| = m+ 1. This proves Claim 1.

Claim 2: x∗ =
(

c1
2
, . . . , cn

2

)

= pη(N, v).

Using Claim 1 one can verify that for all S ⊆ N and S 6= ∅

e(S, x∗) = e(N − S, x∗) =
v(S) + v(N − S) − v(N)

2
(3.4)

From (3.4) it follows that the profile x∗ ∈ X(N, v) has the property that for

every objection (S, y) to x∗, the coalition T = N − S is a counterobjection

to (S, y). To see this, consider any objection (S, y) to x∗. This means that
∑

i∈S yi >
∑

i∈S x
∗
i and hence e(N − S, x∗) < e(N − S, y). To show that

T = N − S is a valid counterobjection to (S, y) we will now show that

e(N−S, y) > e(S, x∗). Observe that e(N−S, y) = v(N−S)−v(N)+
∑

i∈S yi >

v(N−S)−v(N)+
∑

i∈S x
∗
i = e(S, x∗). The last equality follows from Claim 1

and condition (3.4). Hence from Definition 2.4 it follows that x∗ = pη(N, v).

Claim 3: x∗ =
(

c1
2
, . . . , cn

2

)

= ψ(N, v).

To prove this claim choose any ordering π = (π1, . . . , πn) ∈ Π of the agents

in N and its dual π′ = n + 1 − π = (n + 1 − π1, . . . , n+ 1 − πn) ∈ Π. From

PS property it follows that Mi(Pi(π)) + Mi(Pi(π
′)) = ci, since Pi(π

′) =

N −Pi(π)−{i}. Using the definition of the Shapley value we get ψi(N, v) =
1
n!

(

cin!
2

)

= ci

2
for all i ∈ N . Therefore, x∗ = ψ(N, v).

REMARK 3.1 The following two observations are immediate consequences

of Theorem 3.1: (1) an additive TU game G is a PS game with ci = 2v(i)
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for all i ∈ N and (2) a zero-sum game is a PS game only if it is additive.

REMARK 3.2 Note that the PS property, while strong, is different from

convexity. A game G = (N, v) is convex if and only the marginal contribu-

tion of a player to a coalition is monotone nondecreasing with respect to set

theoretic inclusion. The following examples shows that the PS property and

convexity are independent.

EXAMPLE 3.1 Let G = ({1, 2, 3}, v) with v(1) = v(3) = v(13) = 1,

v(2) = 0, v(23) = 2, v(12) = 3 and v(123) = 4. This game is a PS game

with c1 = 3, c2 = 3, c3 = 2. However, this game is not convex since v(123) −

v(23) = 2 < 3 = v(12) − v(2). To see that convexity does not imply the

PS property, let G = ({1, 2, 3}, w) with w(1) = w(2) = w(3) = 0, w(12) =

w(13) = 0.5, w(23) = 1, w(123) = 3. This game is convex but it does not

satisfy the PS property for player 1 because w(12)−w(2) +w(13)−w(3) =

1 6= 2 = w(123) − w(23) + w(1) − w(∅).

3.1 The class of k games

The following definition is due to Deng and Papadimitriou (1994).

DEFINITION 3.7 A coalitional form game Gk = (N, v) is a k-game if

v(S) =











0 if |S| < k
∑

T⊆S,|T |=k

v(T ) otherwise

Observe that a 1-game is simply an additive game and hence it is a PS

game. In different applications of cooperative game theory, the 2-game has

led to the coincidence of prenucleolus and the Shapley value.5 The following

proposition establishes that every 2-game is a PS game.

PROPOSITION 3.1 A 2-game G = (N, v) is a PS game.

5See Brown and Housman (1988), Chun and Hokari (2005), Deng and Papadimitriou
(1994) and Nouweland, Borm, Brouwers, Bruinderink and Tijs (1996)).
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Proof: It follows from the definition of a 2-game that for all i ∈ N and all

S ⊆ N − {i},

Mi(S) +Mi(N − S − {i}) =
∑

j∈S

v(ij) +
∑

j∈N−S−{i}

v(ij) =
∑

j∈N−{i}

v(ij).

This shows that a 2-game is a PS game with ci =
∑

j∈N−{i} v(ij) for all

i ∈ N .

The converse of Proposition 3.1 is not true. In particular, the TU game

({1, 2, 3}, v) in Example 3.1 is a PS game but not a 2-game.

4 Applications

In this section, we consider some applications of cooperative game theory

where our main result can be applied.

4.1 Simple Games

Simple games—where the value of a coalition is either zero or one—are games

used mainly to describe parliaments, councils and committees. They occur

in many applications of game theory to political science.6 The Shapley value

in the context of simple games is a measure of the “power” of individual play-

ers and is better known as the Shapley-Shubik index.7 Peleg and Sudhölter

(2003) have studied the nucleolus in the context of simple games. Before

analyzing the PS property in this context, we provide some relevant defini-

tions.

DEFINITION 4.8 A game G = (N, v) is a simple game if (i) v(S) ∈

{0, 1} for all S ⊆ N , (ii) v(N) = 1 and (iii) if v(S) = 1 and S ⊂ T then

v(T ) = 1.

DEFINITION 4.9 The simple game Gs = (N, v) is dictatorial if there

exists a player i ∈ N such that for all S ⊆ N , v(S) = 1 if and only if i ∈ S.

6See Shapley (1962) and Curiel (1996).
7See Shapley and Shubik (1954).
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DEFINITION 4.10 The simple game Gs = (N, v) is bi-dictatorial if

there exist two distinct players i, j ∈ N such that v(S) = 1 if and only if

{i, j} ∩ S 6= ∅.

DEFINITION 4.11 The simple game Gs = (N, v) is a joint dictatorship

if there exists two distinct players i, j ∈ N such that v(S) = 1 if and only if

{i, j} ⊂ S.

We shall need the following terminology in proving the main result of this

section. Let G = (N, v) be a simple game. A coalition S is a swing for player

i if v(S ∪ {i}) = 1 and v(T ) = 0 for all T ⊆ S. Player i is a null player if

Mi(S) = 0 for all S ⊆ N − {i}.

PROPOSITION 4.2 The simple game Gs = (N, v) is a PS game if and

only if it is either dictatorial or bi-dictatorial or a joint dictatorship.

Proof: (Necessity) In a simple game, Mi(S) = 1 if S is a swing coalition

for i and zero otherwise. Hence, Mi(S) ∈ {0, 1} for all i ∈ N . Therefore, a

simple game Gs is a PS game only if for all i ∈ N and for all S ⊆ N − {i},

ci = Mi(S) + Mi(N − S − {i}) ∈ {0, 1, 2}. Moreover, for a simple game

satisfying the PS property, Theorem 3.1 implies that the Shapley Value and

the prenucleolus are given by ψi(N, v) = pηi(N, v) = ci/2 for all i ∈ N . Since

both solutions are efficient, we have
∑

k∈N ψk(N, v) =
∑

k∈N pηk(N, v) =
∑

k∈N ck/2 = 1. Therefore, given ci ∈ {0, 1, 2} for all i ∈ N and
∑

k∈N ck = 2,

we have two possibilities.

Case 1 The simple game Gs(N, v) is a PS game such that there exists i ∈ N

with ci = 2 and ck = 0 for all k ∈ N − {i}.

Case 2 The simple game Gs(N, v) is a PS game such that there exists i, j ∈ N

with ci = cj = 1 and ck = 0 for all k ∈ N − {i, j}.

Case 1: Since ci = Mi(S) +Mi(N − S − {i}) = 2 for all S ⊆ N − {i}, this

implies that Mi(S) = 1 for all S ⊆ N − {i} and hence v(S ∪ {i}) = 1 and

v(S) = 0 for all S ⊆ N − {i}. Hence, the simple game is dictatorial.

Case 2: We will show that the simple game must be either bi-dictatorial or

a joint dictatorship. We first prove the following claim.
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Claim: If ci = cj = 1 and ck = 0 for all k ∈ N − {i, j}, then v(S ∪ {i}) =

v(S ∪ {j}) for all S ⊆ N − {i, j}.

We prove this claim by contradiction. Suppose that there exists S ⊆

N − {i, j} such that v(S ∪ {i}) 6= v(S ∪ {j}). Without loss of generality let

v(S ∪ {i}) = 1 > v(S ∪ {j}) = 0. (4.5)

Since ci = cj = 1, it follows that

Mi(S) +Mi(N − S − {i}) = Mj(S) +Mj(N − S − {j}) = 1. (4.6)

Since v(S ∪ {j}) = 0, the monotonoicity of a simple game implies that

v(S) = 0.8 Hence, by (4.5), Mi(S) = 1 and Mj(S) = 0. By (4.6), it

follows that Mj(N − S − {j}) = 1 > Mi(N − S − {i}) = 0. Therefore,

v(N − S) = v(N − S − {i}) = 1 > v(N − S − {j}) = 0. Using (4.5)

and (4.6) again, we get v(S ∪ {i}) = 1, v(Sc ∪ {i}) = 0, v(S ∪ {j}) = 0 and

v(Sc∪{j}) = 1 where Sc = N−S−{i, j}. Since ck = 0 for all k ∈ N−{i, j},

all such players are null players. Adding the null players in Sc to S ∪{i}, we

get v(Sc ∪S ∪{i}) = v(S ∪{i}). Hence, v(N −{j}) = 1. On the other hand,

adding the null players of S to Sc ∪ {i}, we get v(S ∪Sc ∪ {i}) = v(Sc ∪ {i})

which implies v(N − {j}) = 0. This is a contradiction and proves the claim.

From the above claim it follows that players i and j are symmetric. Now

consider player i. Since ci = Mi(j) + Mi(N − {i, j}) = 1, we have two

possibilities.

2a) Mi(j) = 0 and Mi(N − {i, j}) = 1

2b) Mi(j) = 1 and Mi(N − {i, j}) = 0

If 2a) is true, then v(N−{j}) = 1. Using symmetry of players i and j we get

v(N − {i}) = 1. Moreover, all players k ∈ N − {i, j} are null players (since

ck = 0) and therefore, by the monotonicity property of the simple game,

v(T − {i}) = v(T − {j}) = 1 for all T ⊆ N such that i, j ∈ T . Thus, for

T = {i, j} we get v(i) = v(j) = 1. Monotonicity of the simple game gives

8See Definition 4.8(iii).
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that for l ∈ {i, j}, v(S∪{l}) = 1 > v(S) for all S ⊆ N−{i, j} and Mi(j) = 0

gives v(ij) = v(i) = v(j) = 1. So {i, j} are the only dictators.

If 2b) is true, then v(ij) = 1 > v(j) = 0. Using the fact that all players

k ∈ N−{i, j} are null players and the symmetry of i and j we get v(S∪{i}) =

v(S ∪ {j}) = 0 for all S ⊆ N − {i, j}. Using v(ij) = 1 and monotonicity of

simple games we get v(T ) = 1 for all T ⊆ N such that i, j ∈ T . So i and j

are joint dictators.

(Sufficiency) If a simple game is dictatorial, then for the dictator i, Mi(S) =

1 for all S ⊆ N−{i} and hence Mi(S)+Mi(N−S−{i}) = 2 = ci. Moreover,

since all other players are null players, for all k ∈ N − {i}, Mk(S) = 0 and

hence Mk(S) +Mi(N − S − {k}) = 0 = ck for all S ∈ N − {k}. Therefore,

if a simple game is dictatorial then it is a PS game.

If a simple game is bi-dictatorial, then players i and j are the two dictators

and all other players in N − {i, j} are null players. Consider player i. Note

that for player i, Mi(S) = 0 if j ∈ S and Mi(S) = 1 if j 6∈ S. Thus, player i

is a swing for a coalition S if j 6∈ S and player i is not a swing for a coalition

S if j ∈ S. Therefore, for all S ⊆ N − {i}, Mi(S) + Mi(N − S − {i}) = 1

since either (a) j ∈ S ⇔ j 6∈ N − S − {i} or (b) j 6∈ S ⇔ j ∈ N − S − {i}.

A same sort of reasoning holds for player j. Any player k ∈ N − {i, j} is a

null player, we get ck = 0 for all k ∈ N − {i, j}. Therefore, if a simple game

is bi-dictatorial then it is a PS game.

Now consider a simple game which is a joint dictatorship with i and j the

joint dictators and all other players in N −{i, j} are null players. For player

i, Mi(S) = 0 if j 6∈ S and Mi(S) = 1 if j ∈ S. Thus, player i is a swing for

a coalition S if j ∈ S and player i is not a swing for a coalition S if j 6∈ S.

Therefore, for all S ⊆ N − {i}, Mi(S) + Mi(N − S − {i}) = 1 since either

(a) j ∈ S ⇔ j 6∈ N − S − {i} or (b) j 6∈ S ⇔ j ∈ N − S − {i}. A similar

reasoning holds for player j. Since any player k ∈ N −{i, j} is a null player,

we get ck = 0 for all k ∈ N − {i, j}. This shows that a joint dictatorship is

a PS game and concludes the proof of the theorem.

We conclude this section with two observations.

1. For a non-symmetric three player simple game, PS property is nec-

essary for the coincidence. There can be exactly two types of non-
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symmetric three player simple games that are not PS games. They are

(a) Ḡs = ({i, j, k}, v) with v(j) = v(k) = 0, v(i) = v(ij) = v(ik) =

v(jk) = v(ijk) = 1 and (b) G̃s = ({i, j, k}, v) with v(i) = v(j) = v(k) =

v(jk) = 0, v(ij) = v(ik) = v(ijk) = 1. For Ḡs, ψ(N, v) = (2
3
, 1

3
, 1

3
) 6=

pη(N, v) = (1
2
, 1

4
, 1

4
). For G̃s, ψ(N, v) = (2

3
, 1

3
, 1

3
) 6= pη(N, v) = (1, 0, 0).

Thus, for non-symmetric three player games that are not PS games,

ψ(N, v) 6= pη(N, v).

2. For a non-symmetric simple game with more than three players, PS

property is not necessary for the coincidence. Consider the TU game

Gs = ({1, 2, 3, 4}, v) where v(1) = v(2) = v(3) = v(4) = v(13) =

v(14) = v(23) = v(24) = v(34) = 0, v(12) = 1, v(S) = 1 for all

S ⊆ {1, 2, 3, 4} such that |S| ≥ 3. Gs is not a PS game (since M1(∅)+

M1(234) < M1(2) +M1(34)) and yet ψ(N, v) = pη(N, v) = (1
3
, 1

3
, 1

6
, 1

6
).

4.2 Generalized queueing games

Let N = {1, . . . , n} be the set of agents. Each agent wants to consume

a service provided by a server. It is assumed that agents can be served

only sequentially and that serving any agent occupies a unit of time. Each

agent is identified with a waiting cost θi ∈ ℜ+ which is her disutility of

waiting in the queue. If agent i occupies the σith position in the queue,

then her cost is −(σi − 1)θi. Let θN = (θ1, . . . , θn) be a profile of waiting

costs of all the agents. Given a profile of waiting cost θN = (θ1, . . . , θn) ∈

ℜn
+ and a non-empty set S(⊆ N) of agents with associated waiting costs

θS = (θi)i∈S, a queue σ∗(θS) = {σ∗
i (θS)}i∈S ∈ τ(|S|) is said to be S-efficient

if it minimizes the aggregate waiting costs for the set of S agents, that is

σ∗(θS) ∈ argminσ∈τ(|S|)

∑

i∈S(σi − 1)θi where τ(|S|) is the set of all possible

permutations of the integers {1, . . . , |S|}. The queue σ∗(θN) is said to be an

efficient queue for the set of N agents.

There are different ways of modeling queueing situation as a coalitional

form TU game. Maniquet (1999) has one way of defining a queueing game

in coalitional form. He defines v(S) = −
∑

i∈S(σ∗
i (θS) − 1)θi for all S ⊆ N .

This is an optimistic approach to the queueing problem because a coalition

13



S thinks that its members will be served first in the queue (that is, before

the agents of coalition N − S). Hence, they agree to the S-efficient queue

amongst themselves. The other approach is the pessimistic approach of Chun

(2004) where each coalition thinks that its members will be served only after

all the members of their complement coalition has been served. So for Chun’s

game, v(S) = −
∑

i∈S(n− |S| + σ∗
i (θS) − 1)θi for all S ⊆ N .

DEFINITION 4.12 A TU game GQ = (N, v) is a generalized queueing

game if given any θN = (θ1, . . . , θn) ∈ ℜn
+,

1. v(S) =
∑

i∈S

a (|S|, σ∗
i (θS)) θi for all S ⊆ N with S 6= ∅,

2. ∀ S ⊂ N , |S| > 1, {a (|S|, k + 1) < a (|S|, k) ≤ 0} ∀ k ∈ {1, . . . , |S|−1}.

3. a (|N |, σ∗
i (θN )) = −(σ∗

i (θN) − 1) for all i ∈ N and

4. a(1, 1) ∈ [−(n− 1), 0].

This is a very general way of representing a queueing situation as a coalitional

form game. The first condition simply gives us the worth of a coalition. The

second restriction simply guarantees that in a coalition the agent served ear-

lier incur lower waiting cost than agents served later. The third restriction

follows from efficiency condition for the grand coalition. The fourth restric-

tion that a(1, 1) ∈ [−(n− 1), 0] is reasonable in the sense that the best thing

that can happen to a single agent is that the agent gets first position in the

queue implying a(1, 1) must be at most zero and the worst thing that can

happen to a singleton coalition is to get the last queue position which means

that a(1, 1) must be weakly greater than −(n− 1).

Observe that if a (|S|, σ∗
i (θS)) = −(σ∗(θS)−1) for all S ⊆ N then we have

Maniquet’s queueing game (see Maniquet (1999)) and if a (|S|, σ∗
i (θS)) =

−(n − |S| + σ∗(θS) − 1) for all S ⊆ N then we have Chun’s queueing game

(see Chun (2004)). Using this general specification we try to identify the

sub-class of generalized queueing games that are PS games.

DEFINITION 4.13 A generalized queueing game GQ is said to be a rea-
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sonable queueing game if for all non-empty sets S ⊆ N ,

a (|S|, σ∗
i (θS)) = −{δ(n− |S|) + (σ∗

i (θS) − 1)} (4.7)

where σ∗
i (θS) ∈ {1, . . . , |S|} and δ = − a(1,1)

(n−1)
∈ [0, 1].

We can interpret condition (4.7) in the following way. In our generalized

queueing game, a(|S|, σ⋆
i (θS)) measures the externality imposed by all agents

(that is, agents from the set N − {i}) on an agent i ∈ S whose queue

position is σ∗
i (θS) in the S-efficient queue. For a reasonable queueing game,

a(|S|, σ⋆
i (θS)) has two components. The component (σ∗

i (θS))−1) captures the

externality imposed upon i ∈ S by her group members. The term δ(n− |S|)

captures the externality imposed on agent i ∈ S by outsiders (that is, agents

in N − S). It shows that the externality imposed by the outsiders (that is,

N − S) is proportional to the number of outsiders.

PROPOSITION 4.3 A generalized queueing game GQ is a PS game if

and only if it is a reasonable queueing game.

Proof: For PS property it is necessary that for all i ∈ N and for all S ⊆

N−{i}, MCi(S)+MCi(N−{i}−S) = ci, where ci is a number independent

of S. For a generalized queueing problem this means that given any θN =

(θ1, . . . , θn) ∈ ℜn
+ and any i ∈ N ,

αi(S)θi +
∑

j∈S

βj(S)θj +
∑

l∈N−S

γl(S)θl = ci (4.8)

for all S ⊆ N − {i}. Here αi(S), βj(S) and γl(S) have the following expres-

sions:

(1) αi(S) = a
(

|S| + 1, σ∗
i (θS∪{i})

)

+ a (|N − S|, σ∗
i (θN−S)),

(2) βj(S) = a
(

|S| + 1, σ∗
j (θS∪{i})

)

− a
(

|S|, σ∗
j (θS)

)

and

(3) γl(S) = a (|N − S|, σ∗
l (θN−S)) − a

(

|N − S| − 1, σ∗
l (θN−{i}−S)

)

.
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We first argue that αi(S) must be independent of S. Consider any state

θN ∈ ℜn
+ with the property that θj 6= θl for all j, l ∈ N with j 6= l, any agent

i ∈ N and any two distinct sets S1 and S2 such that S1 ⊂ S2 ⊆ N−{i}. Using

condition (4.8) for S1 and for S2 separately and then taking their difference

we get

(αi(S2) − αi(S1))θi +
∑

j 6=i

z(S2, S1)θj = 0 (4.9)

Now consider another state θ′N ∈ ℜn
+ with the property that θ′j = θj for

all j ∈ N − {i}, θ′i 6= θi and σ∗(θ′N ) = σ∗(θN). Therefore, the state θ′N is

constructed from the state θN by perturbing the waiting cost of agent i in

such a way that the efficient queue remains unchanged under both the states.

Like in the earlier case, consider the sets S1 and S2. Using condition (4.8)

for S1 and for S2 separately and then taking their difference we get

(αi(S2) − αi(S1))θ
′
i +

∑

j 6=i

z(S2, S1)θj = 0 (4.10)

By subtracting (4.9) from (4.10) we get

(αi(S2) − αi(S1))(θ
′
i − θi) = 0 (4.11)

Condition (4.11) implies that αi(S1) = αi(S2) since θ′i 6= θi. Since the selec-

tion of S1 and S2 was arbitrary, it follows that for any i ∈ N ,

(a) αi(S) = αi for all S ⊆ N − {i}.

Observe that given any θN = (θ1, . . . , θn) and any i ∈ N with queue position

σ∗
i (θN),

(b) if σ∗
i (θS∪{i}) = y then σ∗

i (θN−S) = σ∗(θN ) + 1 − y.

From (1), (a) and (b) we get the following: Given any queue position σ∗
i (θN ) =

q ∈ {1, . . . , n}, for all x ∈ {1, . . . , n} and for all y ∈ {1, . . . , min[q, x]}

a(x, y) + a(n + 1 − x, q + 1 − y) = −(q − 1) + a(1, 1) (4.12)

Consider a coalition S such that i, j 6∈ S, x = |S| + 1, σ∗
i (θN ) = q <

σ∗
j (θN) = q + 1 and σl(θN) > σj(θN ) for all l ∈ S. Using condition (4.12) for
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agents i and j separately we get

a(x, 1) + a(n+ 1 − x, q) = −(q − 1) + a(1, 1) (4.13)

a(x, 1) + a(n + 1 − x, q + 1) = −q + a(1, 1) (4.14)

Subtracting (4.14) from (4.13) we get

a(n + 1 − x, q) − a(n+ 1 − x, q + 1) = 1 (4.15)

Solving condition (4.15) we get for all q ≤ r ≡ n + 1 − x,

a(r, q) = a(r, 1) − (q − 1) (4.16)

Using condition (4.16) in the generalized queueing problem we get for all

S ⊆ N ,

v(S) =
∑

i∈S

[a(|S|, 1)− (σ∗
i (θS) − 1)] θi (4.17)

Using observation (b) in condition (4.12) for q = 1 we get for all x ∈

{1, . . . , n− 1},

a(x, 1) + a(n + 1 − x, 1) = a(1, 1) (4.18)

Now consider the term βj(S) = a
(

|S| + 1, σ∗
j (θS∪{i})

)

− a
(

|S|, σ∗
j (θS)

)

in

condition (4.8). We argue that for |N | ≥ 3, βj(S) term is independent of S

for any j ∈ S ⊆ N − {i} such that σ∗
j (θN) < σ∗

i (θN ). Consider any state

θN ∈ ℜn
+ with the property that θl 6= θk for all k, l ∈ N with k 6= l and

consider j ∈ T1 ⊂ T2 ⊆ N − {i}. By applying condition (4.8) for the sets T1

and T2 separately and then taking the difference we get

(βj(T2) − βj(T1))θj +
∑

l∈N−{i,j}

ẑ(T2, T1)θl = 0 (4.19)

Observe that in (4.19), condition (a) guarantees that the left hand side is

independent of θi. Now consider another state θ′N ∈ ℜn
+ with the property

that θ′l = θl for all l ∈ N − {j}, θ′j 6= θj and σ∗(θ′N) = σ∗(θN). Therefore,
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the state θ′N is constructed from the state θN by perturbing the waiting cost

of agent j in such a way that the efficient queue remains unchanged under

both the states. Like in the earlier case, consider the sets T1 and T2. Using

condition (4.8) for T1 and for T2 separately and then taking their difference

we get

(βj(T2) − βj(T1))θ
′
j +

∑

l∈N−{i,j}

ẑ(T2, T1)θl = 0 (4.20)

By subtracting (4.19) from (4.20) we get

(βj(T2) − βj(T1))(θ
′
j − θj) = 0 (4.21)

Condition (4.21) gives that

(c) ∀ j ∈ T1 ⊂ T2 ⊆ N − {i} such that σ∗
j (θN ) < σ∗

i (θN ), βj(T2) = βj(T1)

since θ′j 6= θj .

(d) Observe that if σ∗
j (θN) < σ∗

i (θN ) then for all S ⊆ N − {i} such that

j ∈ S, σ∗
j (θS∪{i}) = σ∗

j (θS) and hence βj(S) = a(|S| + 1, σ∗
j (θS)) −

a(|S|, σ∗
j (θS)).

From observations (c) and (d) we get for all x ∈ {1, . . . , n − 2} and for all

p ∈ {1, . . . , x},

a(x+ 1, p) − a(x, p) = ē (4.22)

Using (4.16) in (4.22) we get

a(x+ 1, 1) − a(x, 1) = ē (4.23)

From (4.23) we get x ∈ {1, . . . , n− 2}

a(x, 1) = (x− 1)ē+ a(1, 1) (4.24)

From (4.18) and (4.24) we get

a(x, 1) =
(

n− x

n− 1

)

a(1, 1) (4.25)
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By substituting condition (4.25) in (4.17) we get

v(S) =
∑

i∈S

[(

n− |S|

n− 1

)

a(1, 1) − (σ∗
i (θS) − 1)

]

θi (4.26)

Substituting a(1,1)
n−1

= −δ in (4.26) we get the result.
To prove the sufficiency part, note that for a realistic queueing game we

have for all i ∈ N and for all S ⊆ N − {i},

MCi(S)+MCi(N−S−{i}) = −a(1, 1)
∑

j∈N−{i}

θj−(σ∗
i (θN )−1)θi−

∑

s∈P c

i
(σ∗(θN ))

θs (4.27)

where P c
i (σ∗(θN)) = {s ∈ N − {i} | σ∗

i (θN) < σ∗
s(θN )}. Observe that the

right hand side of (4.27) is independent of S.

Proposition 4.3 establishes that for a reasonable queueing game, the Shap-

ley value will coincide with prenucleolus. Observe, that if in a reasonable

queueing game, δ = 0 then we have Maniquet’s optimistic queueing game

which gives no weightage to the players outside the coalition. If δ = 1 we

have Chun’s pessimistic queueing game that gives full weightage to the play-

ers outsider the coalition. Therefore, our reasonable class of queueing games

includes all queueing games that are a convex combination of the optimistic

and the pessimistic queueing games and all these games are PS games.

5 Conclusion

The chief contribution of this paper has been to shed further light on the

coincidence of the Shapley value and the prenucleolus. As noted earlier,

these solutions are motivated by very different concerns and as such, there

is no reason to expect them to coincide. We have extended previous work

(Deng and Papadimitriou (1994), Nouweland et al (1996) and Chun and

Hokari (2004)) on this coincidence by providing a more general sufficiency

condition. In addition, we have used this sufficiency condition to identify the

subclasses of simple games and queueing games where this coincidence holds.

A remaining agenda is to identify a necessary condition for this coincidence,

at least in the context of simple games and queueing games.
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