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Abstract

We consider a model of price competition in a duopoly with product differentiation and net-

work effects. The value of a good for a consumer is the sum of a common and an idiosyncratic

component. The first captures the vertical dimension of quality, the second captures horizontal

differentiation. Each consumer privately observes his own value for each good, but cannot sep-

arate the common and the idiosyncratic component. Therefore, he has incomplete information

about the value of the goods for the other consumers. After firms announce prices, consumers

choose simultaneously which network to join, facing a coordination problem.

In the efficient allocation, both networks are active and the firm with the highest expected

quality has the largest market share. To characterize the equilibrium allocation, we derive

necessary and sufficient conditions for uniqueness of the equilibrium of the coordination game

played by consumers for given prices. The equilibrium allocation differs from the efficient one

for two reasons. First, the equilibrium allocation of consumers to the networks is too balanced,

since consumers fail to internalize network externalities. Second, if access to the networks is

priced by strategic firms, then the product with the highest expected quality is also the most

expensive. This further reduces the asymmetry between market shares and therefore social

welfare.
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1 Introduction

Many economic decisions, such as the purchase of a good by a population of consumers, or the

adoption of a standard of production by a set of firms, exhibit a specific form of strategic comple-

mentarity known as network externality. The set of consumers buying a specific product, and the

set of firms producing according to a given standard, constitute virtual networks: the externality

arises when the payoff of each player who belongs to a network is increasing in the total size of the

network itself.

This paper brings two contributions to the literature on network competition.1 The first con-

tribution is methodological. There is a problem with modelling the demand function for network

goods, since the game played by consumers choosing which network to join, after prices have been

announced, constitutes a coordination game, and typically these games have multiple equilibria.

Therefore, in a basic model of Bertrand competition between identical networks, the demand for

each good is not a well-defined function of prices. As a consequence, in order to analyze network

competition, it is necessary to select one equilibrium for each of the coordination games that con-

sumers play after observing different price announcements, e.g. one that is Pareto efficient,2 or the

one that is the most favorable to one firm, which benefits from a reputation advantage.3

Instead, we enrich the basic model by allowing for both horizontal and vertical differentiation,

and for incomplete information about the quality of the goods. Rather than complicating the

analysis, these more realistic assumptions allow us to derive a well-defined demand function for

a large class of markets. In our set-up, consumers’ network choices, for given prices, constitute

a global game with correlated private values. Therefore, we can derive necessary and sufficient

conditions that guarantee the existence of a unique equilibrium of this game and therefore yield a

well-defined demand function. These conditions relate to the amount of horizontal differentiation

and the quality of the information present on the market.

The second contribution is to address a classic issue in network industries, namely whether the

presence of network effects gives rise to excessive or insufficient asymmetry of the market shares of

rival firms. In the presence of network effects and product differentiation, characterizing the social

optimum is a non-trivial problem: the aggregate surplus from the network effect is maximized if

all players join the same network, while the surplus from the intrinsic utility from consumption of

the good is maximized if every player buys the product he likes the most.

This trade-off is exemplified by the case of PC and Macintosh. If there was only one standard,

every computer owner could run all the existing software and easily exchange files and know-how

with anybody else. On the other hand, one of the main reasons why the two standards do coexist

is that the two types of computers have different strengths that appeal to the needs of different

consumers.4

Another example is the case of matrix programming languages. Matlab seems to be best suited
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to analyze time-series data, while Gauss seems to perform better when analyzing panel data.5 At

the same time, all programmers would benefit from the existence of a unique common language

because they could exchange suggestions and pieces of code with a larger group of people.

In this paper, we investigate this trade-off between maximizing the aggregated network effect and

letting consumers use their favorite product, and show that the market outcome is characterized

by insufficient asymmetry of the market shares. This is due to the presence of two sources of

inefficiency. The first is that consumers fail to internalize the network externality. The second is

that, in equilibrium, the relative price of the high-quality product is too high.

In our model, we assume that two new, alternative network products are introduced and that

consumers simultaneously choose which one to join. We consider two cases, one where the networks

are “sponsored” and one where the networks are “unsponsored”. In the network literature, this

distinction refers to the cost an individual bears to join a network: if a network is sponsored,

access to it is priced by a strategic firm. If it is unsponsored, access is available at marginal

cost. While most telecommunication networks are typically sponsored, there are many cases of

unsponsored networks as well. For example, by learning a new language, an individual can join

a “communication network” that clearly exhibits network externalities. In this case, there is no

centralized entity that owns the language and strategically sets a price for the access to the network.

The “price” is simply the time spent studying the language.

We assume that the goods are both vertically and horizontally differentiated, but neither firms

nor consumers can perfectly observe the vertical dimension of quality. More precisely, they observe

a noisy public signal about the vertical quality of each good, and one of the two networks has a

higher expected quality. Each consumer privately and perfectly observes his private value for each

good but he cannot distinguish the common component (the objective quality of the good) from

his idiosyncratic taste component. When choosing which network to join, each individual takes

into account three elements: his private valuation for each good, the expected size of each network,

and the cost he has to bear to join it.

Consider, for example, the introduction of two new, non-interconnected telecommunication

networks, such as two softwares for videoconference. The assumption of noisy information about

the vertical quality of each good captures the fact that the overall performance of such products

critically depends on how well they interact with the complementary hardware and software, and

this interaction cannot be perfectly tested before the product is introduced. The assumption

of horizontal differentiation captures the idiosyncratic taste consumers might have for the more

“recreational” features of these products, such as the graphic interface. Finally, the assumption

that each consumer perfectly observes his private value for each good before making a purchase

captures the fact that software developers typically make trial versions of their products available

for free.

We address the question of how the equilibrium allocation of consumers across networks com-
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pares to the social optimum. We find that the optimal allocation of consumers across networks

is asymmetric, with both networks having positive market shares and more than one half of the

population joining the high-quality network. We then look at the allocation implemented by the

market, distinguishing between the two cases of sponsored and unsponsored networks.

In the case of unsponsored networks, we identify a first source of inefficiency. Since consumers

fail to internalize network effects, the equilibrium allocation is too balanced from a social point of

view: the market share of the high-quality firm, though larger than one half, is still smaller than

would be socially optimal. This inefficiency is exacerbated as the amount of horizontal differenti-

ation vanishes. Looking at the case of sponsored networks, we find that strategic pricing makes

the inefficiency even worse: the high-quality firm has an intrinsic advantage that is reflected in

an equilibrium price higher than the one charged by the competitor, and this in turn reduces its

market share even more.

A number of papers analyze price competition between two differentiated networks.

In models with network effects and pure vertical differentiation, such as the one presented by

Farrell and Katz (1998), there are multiple sets of self-fulfilling expectations in the coordination

game played by consumers. The same holds for most models where the goods are horizontally

differentiated. For example, Griva and Vettas (2004) give a full characterization of the set of

equilibria of a model with horizontal differentiation à la Hotelling, allowing also for vertical quality

differences.

The closest model to ours is presented by De Palma and Leruth (1993). They allow only

for horizontal differentiation and prove that a large degree of heterogeneity in consumers’ tastes is

necessary and sufficient for uniqueness of the equilibrium . This condition is similar to the condition

we derive in our paper, for the limit case of our model where all the players perfectly observe the

vertical dimension of quality and the latter is identical for the two goods.

Our discussion of the optimal allocation of consumers between networks is related to Farrell and

Saloner (1986), who address the issue of whether complete standardization is efficient if consumers

have heterogeneous preferences.6 Our model differs from theirs in that in our model, where hetero-

geneity in consumers’ tastes is modeled as a probit, neither the market equilibrium nor the social

optimum can involve complete standardization. In our model, the relevant question is rather what

is the optimal amount of asymmetry in the market shares of two networks, when there is enough

product differentiation to guarantee that both are, and should be, active.

More recently, Mitchell and Skrzypacs (2005) have addressed the issue of the optimal amount

of disparity in market shares in the long run, in a dynamic model of network competition with

product differentiation. In the static version of their model, they find a result similar to ours: the

market equilibrium yields more equal market shares than is socially desirable. The main difference

between our analysis and the static version of their model is that, while they directly assume that

the demand function is well-defined and downward sloping, we focus on the distribution of consumer
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preferences and on the information structure of the coordination game they play for given prices,

in order to characterize and explain the necessary and sufficient conditions that guarantee that the

demand function is well-defined and downward sloping.

Finally, Jullien (2007) analyzes network competition with perfect price-discrimination and finds

a result analogous to the one we establish for the case of sponsored networks: in equilibrium, the

largest network is too small. There are two main differences between our model and his. First,

in his model the coordination game played by consumers after prices have been announced has

multiple equilibria, and he assumes that consumers always select an equilibrium that maximizes

the market share of a given “focal firm”. We instead characterize the necessary and sufficient

conditions for the existence of a unique equilibrium of the coordination game. Second, he assumes

that firms announce prices sequentially (the focal firm first, then its competitor) and can perfectly

price-discriminate, while we assume uniform pricing and simultaneous price announcements.

Our work is also connected to the literature on duopolistic price competition with differentiated

goods. For a discussion of this literature, see Tirole (1988).

In our paper, we model consumers’ choice as a global game with correlated private values.

Global games, first analyzed by Carlsson and van Damme (1993), have been typically applied to

economic situations where players have common values, such as currency crises and regime switches.

Morris and Shin (2004) analyze a private-value global game where two players choose between two

alternative actions and each player privately observes his own payoff type which is the sum of a

common component and an idiosyncratic component. They derive a condition on the information

structure that is necessary and sufficient for a unique equilibrium in that context. The solution of

the model is identical in the case of a continuum of players choosing between two actions (Morris

an Shin (2003)). In our model, we apply the Morris-Shin condition for uniqueness, and relate it

to the degree of horizontal differentiation and the precision of the available information about the

vertical dimension of quality.

The paper is organized as follows. In Section 2, we introduce the formal model. In Section

3, we characterize the socially optimal allocation of consumers to networks. In Section 4, we

solve the consumer coordination game, characterize the equilibrium allocation for both the case of

unsponsored and sponsored networks, and compare it to the efficient one. Section 5 concludes. All

the proofs are relegated to the Appendix.

2 The Model

We assume that two indivisible network goods, a and b, become available to a population of con-

sumers represented by a continuum of mass 1. The two goods are produced at the same, constant

marginal cost c. If the networks are sponsored, each good is produced and sold by a firm who
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strategically chooses its price to maximize its profits:

πj =
¡
pj − c

¢
nj

where pj is the price charged by firm j (with j = a, b) and nj is the number of units it sells. If the

networks are unsponsored, there are no strategic firms and each good can be purchased at marginal

cost.

Preferences exhibit network externalities: the utility that any consumer i derives from joining

network j is increasing in nj . More precisely, we assume:

U j
i = xji + nj − pj

where xji represents the intrinsic value of good j for consumer i.

We further assume that the two goods are both vertically and horizontally differentiated. The

intrinsic value of a good for a consumer is the sum of a common value component eθj , representing the
vertical dimension of quality of brand j, and an idiosyncratic component eεji , representing individual
taste: exji ≡ eθj + eεji .

We assume that each eθj is a normal random variable:

eθj ∼ N

µ
yj ,

2

α

¶
.

The expected value of eθj , given by yj , can be interpreted as a noisy public signal about eθj .
We model consumer heterogeneity assuming that each individual’s idiosyncratic taste compo-

nent is normally distributed around zero:

eεji ∼ N

µ
0,
2

β

¶
.

Finally, we assume that eθa, eθb and each eεji are independently distributed. All the above distribu-
tional assumptions are common knowledge.

Each consumer privately observes the vector

xi =
³
xai , x

b
i

´
∈ R2

which constitutes his type. We will denote a type profile for all consumers as

x = ×i∈[0,1]xi ∈
¡
R2
¢[0,1]

.
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Notice that consumers have correlated private values: types are correlated, due to the presence

of a common component, but each consumer’s payoff does not depend directly on other consumers’

types. We emphasize that in the general case of finite precision of the public signals, neither firms

nor consumers can perfectly observe the vertical quality of each good. Therefore, a consumer can

only observe his type but he cannot observe θj and εji separately. However, all the results in the

paper still hold in the limit case where the precision of the public signals is infinite, i.e. if consumers

can perfectly learn θj and εji by observing y
j .

We can now formally define actions, strategies and payoff functions for the players. If the net-

works are sponsored, then the two firms and the population of consumers play a game of incomplete

information in two stages. In the first stage, firms announce prices
¡
pa, pb

¢
simultaneously and non-

cooperatively. An action for firm j is a price pj ∈ R. The strategy space for the firms coincides
with their action space and a strategy profile for the firms is a vector p =

¡
pa, pb

¢
∈ R2.

In the second stage of the game, consumers learn their types, observe prices and simultaneously

choose a network. We assume complete market coverage and exclusivity: each consumer buys

exactly one unit of one good, thus joining either network a or network b. Formally, an action for

consumer i is ri ∈ {a, b} , and an action profile for all the consumers is r ∈ {a, b}[0,1]. A pure

strategy for a consumer is

si : R2 ×R2 → {a, b}

and a strategy profile for all consumers is s ≡ ×i∈[0,1]si. The size of network j when consumers

play strategy profile s and firms play strategy profile p is nj (s (x,p)).7

In the first stage, each firm maximizes its expected profits solving

max
pj∈R

Ex
£
πj
¡
nj (s (x,p)) ,p

¢¤
= max

pj∈R
(pj − c)Ex

£
nj (s (x,p))

¤
.

In the second stage, each consumer maximizes his expected net surplus solving

max
j∈{a,b}

Ex−i
h
U j
i (xi, (s (x,p)) ,p) |xi

i
= max

j∈{a,b}

h
xji + Ex−i

£
nj (s (x,p)) |xi

¤
− pj

i
.

If networks are unsponsored, then both goods are priced at marginal cost and consumers play a

static game of incomplete information equivalent to the second stage of the above game for the case

pa = pb = c.
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For notational convenience, we also define the following differences:

y ≡ ya − yb

2

eθ ≡
eθa − eθb
2

∼ N

µ
y,
1

α

¶
eεi ≡ eεai − eεbi

2
∼ N

µ
0,
1

β

¶
exi ≡ exai − exbi

2
∼ N

¡
y, σ2

¢
where

σ2 = σ2 (α, β) =
1

α
+
1

β
.

The above variables can be easily interpreted. The random variable eθ is an index of vertical
differentiation. For positive realizations of eθ, good a has a higher objective quality than good b,

and the opposite is true for negative values. The parameter y is a public signal about the difference

in quality between the two goods. Without loss of generality, we will assume that y > 0 throughout

the paper (i.e. we will assume that good a has a weakly higher expected quality than good b).

The parameter α represents the precision of the public information about the difference in quality

between the two goods. The random variable eεi captures the idiosyncratic differences in taste among
consumers and β, the precision of its distribution, is an index of the amount of heterogeneity among

consumers.8 More precisely, the smaller is β, the larger is the amount of horizontal differentiation

between the two goods. The random variable exi is a measure of consumer i0s relative preference for
good a, the good with the highest expected quality, with respect to good b. For positive realizations

of exi, he prefers a to b. For negative realizations, his idiosyncratic preference for b is so strong that
he prefers b to a. Notice that we use the notation xi for the vector

¡
xai , x

b
i

¢
and the notation xi for

the difference xai−xbi
2 .

Finally, we define

p
³
pa, pb

´
≡ pa − pb

2
.

In what follows, we will use the simplified notation p to denote p
¡
pa, pb

¢
.

3 Efficient Allocation

In this section, we derive the ex-ante efficient allocation of consumers across networks. We choose

to address the issue of efficiency from an ex-ante point of view because we believe that the right

benchmark to compare to the allocation implemented by the market is the allocation that maximizes

welfare given all, and only, the public information available on the market.9 10
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We therefore consider the problem faced by a benevolent social planner who has access to all

the public information available on this market, and the power to choose ex-ante an allocation of

consumers to the networks, i.e. an anonymous rule assigning each consumer i to either network a

or network b according to his type xi alone.

First, we need to define the welfare criterion. Given our assumption of quasi-linear utility

functions, aggregate welfare equals consumer gross surplus minus total cost, since prices are a

transfer from consumers to firms. Also, since we assumed that the two firms have the same marginal

cost and that the total number of units sold in the market is constant, we can ignore costs as we solve

the welfare maximization problem. Finally, the only choice variable in the welfare maximization

problem is the allocation of consumers to the networks.

Let (A,B) be an allocation chosen ex-ante by the planner, and Ax and Bx denote the set of
consumers who must join networks a and b, respectively, for a given realization of x, when the

allocation chosen is (A,B).11 Also, let na (Ax,Bx) and nb (Ax,Bx) denote the Lebesgue measure
of the sets Ax and Bx, respectively.

The welfare maximization problem is equivalent to the following problem:

max
A,B

Ex [W (Ax,Bx)] = max
A,B

Ex
∙Z

i∈Ax
(xai + na (Ax,Bx)) di+

Z
i∈Bx

³
xbi + nb (Ax,Bx)

´
di

¸
(∗)

s.t. Ax ∪ Bx = [0, 1] and Ax ∩ Bx = ∅ for every x.

Next, we show that the optimal choice of the allocation (A,B) can be characterized as a threshold
allocation. By this we mean that a benevolent social planner would maximize ex-ante social welfare

by choosing a threshold t, and establishing the following rule: those consumers with a preference

for a larger than t should join network a, and those with a preference for a smaller than t should

join network b. Formally, we define a threshold allocation as follows:

Definition 1

A threshold allocation is a pair (A (t) ,B (t)) such that ∃t ∈ R such that, for every realization of
x, Ax (t)={i ∈ [0, 1] : xi > t} and Bx (t) = {i ∈ [0, 1] : xi ≤ t}.

Lemma 1

The welfare maximizing allocation is a threshold allocation.

In what follows, we will denote by (A∗,B∗) the solution to problem (∗) and by t∗ the corre-

sponding threshold .

The intuition for the result presented in Lemma 1 is the following. Consider an arbitrary rule

to allocate consumers to the networks. If this is not a threshold allocation, then it must be such

that there are some “relatively high” values of xi for which it requires that consumers join b and
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some “relatively low” values of xi for which it requires that consumers join a. One can show that

the allocation obtained by switching the network assignment associated to some of these values of

xi, while being careful to keep the expected network sizes constant, yields a higher expected social

welfare, hence the initial allocation could not be welfare maximizing.

In what follows, we will denote the welfare associated to a given threshold allocation (A (t) ,B (t))
as

Ex [W (t)] ≡ Ex [W (Ax (t) ,Bx (t))] .

Given that the optimal allocation is associated to a threshold, the final step to solve the welfare

maximization problem is to identify the optimal threshold t∗. First, notice that the welfare function

can be rewritten as the sum of three components:

Ex [W (t)] = Ex

"ÃZ
i∈Ax(t)

θadi+

Z
i∈Bx(t)

θbdi

!
+ (1)

+

ÃZ
i∈Ax(t)

εai di+

Z
i∈Bx(t)

εbidi

!
+

+

ÃZ
i∈Ax(t)

na (Ax (t) ,Bx (t)) di+
Z
i∈Bx(t)

nb (Ax (t) ,Bx (t)) di
!#

.

The first component measures the aggregate surplus consumers derive from the vertical quality of

the goods, the second measures the aggregate surplus derived from idiosyncratic taste and finally

the third component measures the aggregate surplus derived from network effects. By evaluating

expression 1 for a given realization of
³eθa,eθb´ and then taking the expectation, the welfare function

can be finally be re-written as

Ex [W (t)] = Eθa,θb
n
θa − 2θΦ

³
(t− θ)

p
β
´
+ (2)

+

r
2

πβ
e−

(t−θ)2β
2 +

+2
h
Φ
³
(t− θ)

p
β
´i2
− 2Φ

³
(t− θ)

p
β
´
+ 1

¾
where Φ (·) denotes the cdf of a standard normal random variable.12

Before we characterize the optimal threshold, it is worth to analyze in larger detail the three

components of the welfare function.

For a given realization of
³eθa,eθb´, the first component,

θa − 2θΦ
³
(t− θ)

p
β
´
, (3)
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measures the aggregate surplus derived from the vertical quality of the goods. Expression (3)

can be easily interpreted. If t = −∞ it reduces to θa : all consumers are assigned to network a and

a measure 1 of individuals enjoy quality θa. For a finite t, if we denote by F (·) the cdf of xi, then
only 1− F (t) consumers are assigned to a, while the remaining F (t) consumers are assigned to b

and enjoy quality θb. Substituting to F (t) its expression and using the variable θ defined in section

2, we get (3). If the realized quality difference θ is positive, it easy to see that (3) is maximized by

t = −∞, i.e. by an allocation where all consumers join the high quality network (see Figure 113).

The second welfare component for a given realization of
³eθa,eθb´,

r
2

πβ
e−

(t−θ)2β
2 , (4)

measures the portion of aggregate surplus due to consumers’ idiosyncratic taste for the network

to which they are allocated. Expression 4 is maximized at t = θ (see Figure 2). Intuitively, this

idiosyncratic surplus component is maximized when each consumer is assigned to the network for

which he has an idiosyncratic preference. If θ were perfectly observable, this could be achieved by

choosing t = θ, so that every consumer with a positive εi would join a and the others would join b.

Finally, for given
³eθa,eθb´ , the last welfare component,

2
h
Φ
³
(t− θ)

p
β
´i2
− 2Φ

³
(t− θ)

p
β
´
+ 1 (5)

measures the aggregated network effect. Expression (5) can be easily interpreted. The total network

effect is given by the sum of the squared market shares (all consumers in a network receive a positive

effect measured by the size of the network itself). Denoting again by F (·) the cdf of xi, for a given
threshold t market shares are na = 1 − F (t) and nb = F (t). Substituting to F (t) its expression

we get (5).

This component of consumer surplus is maximized by t ∈ {−∞,+∞}, since for any of those
values all consumers join the same network and therefore each of them enjoys the largest possible

network effect (see Figure 3). Given this decomposition, it appears that there is a trade-off between

maximizing the first and the third component of welfare by assigning all consumers to the same

network, and maximizing the second component by splitting consumers equally. Proposition 1

characterizes the socially optimal allocation.

Proposition 1 (Ex-Ante Efficient Allocation)

Social welfare is maximized by an asymmetric threshold allocation such that

−1 < t∗ < 0 < y.

As one would intuitively expect, t∗ < y : the optimal allocation is such that the network with
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the largest expected quality has the largest expected market share.

Nonetheless, the presence of enough heterogeneity in consumers’ taste results in an interior

optimum (−∞ < t∗).14 Next, notice that, in the absence of network externalities, the optimal

threshold would simply be t∗ = 0 : each consumer should consume the good he privately prefers.

Because there are network effects, the optimal threshold is instead smaller than zero: all the

consumers with a positive xi, who therefore have a private preference for a, and who constitute

more than one half of the population, and some of those with a small preference for b, should

join the large network a. The minority of consumers with a strong preference for b should form

another, much smaller network. The intuition for this result is the following: suppose the threshold

were zero, then network a would be larger than network b. For this reason, moving the marginal

consumer to network a would increase the utility of a large measure of consumers, through the

network effect, and decrease the utility of a smaller number of consumers. Also, notice that the

lower bound on t∗ is equal to minus one because we implicitly normalized the maximum network

externality (the externality derived from being in a network of measure one) to one. If we re-scaled

the network effect by writing the utility function as U j
i = xji + knj − pj , with k ∈ R+, then the

lower bound on t∗ would be −k.
We conclude this section presenting a simple comparative statics result about the effect on t∗

of a marginal increase in either α, the precision of the common value quality component θ, or β,

the precision of the idiosyncratic component εi.

Corollary 1 (Comparative Statics of t∗)

The socially optimal threshold t∗ is decreasing in both α and β.

To get an intuition for this result, it is helpful to consider the value of t∗ for given values of

α and β, keeping in mind that it represents the (negative) intrinsic preference for good a of the

marginal consumer allocated by the planner to network b. In t∗, the marginal benefit, in terms of

increased aggregate network effects, that the planner could achieve by moving the threshold further

to the left and increasing the asymmetry, is exactly balanced by the loss of intrinsic utility that

would then be imposed on the marginal consumer with preference t∗, who would be re-allocated to

a instead of b.

An increase in either α or β results in a decrease in σ2, the unconditional variance of the

consumers’ private values. This change in the shape of the distribution implies that, for the initial

t∗, a smaller set of consumers are allocated to network b and a larger set of consumers are allocated

to network a. In turn, this stronger asymmetry increases the marginal network effect gain from

moving the threshold to the left of the initial t∗ and makes it optimal to do so. In other words, the

increased marginal benefit from the network effects makes it socially optimal to impose a stronger

sacrifice, in terms of intrinsic utility, on the marginal consumer.
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4 The Equilibrium Allocation

In this section, we characterize the allocations that prevail in equilibrium in the market, for the

case of unsponsored and sponsored networks, in order to compare them to the efficient one that we

characterized in Section 3. First, we will solve the coordination game consumers play when they

choose which network to join, for given prices. Then, we will consider separately the case where

prices are simply equal to the marginal cost and the case where they are set by strategic firms.

4.1 Consumer Coordination

The next result characterizes the equilibrium of the coordination game played by consumers for

given price difference p and given expected quality difference y. This coordination game constitutes

a global game with correlated private values, such as the one analyzed by Morris and Shin (2004).

We apply their methodology to characterize the equilibrium and identify the necessary and sufficient

condition for its uniqueness. Then, we illustrate how this condition relates to the heterogeneity of

consumers’ preferences and to the quality of the public information available on the market.

Suppose consumers observe a quadruple
©
pa, pb, ya, yb

ª
. Consider a type bxi of consumer i with

the following property: if a consumer has type bxi, and he believes that every consumer with a
preference for a larger than his own will join a, and every consumer with a preference for a smaller

than his own will choose b, then he is indifferent between the two networks. Formally, bxi (p, y) is a
solution to:

xai +Pr [(xi0 > xi)|xi]− pa = xbi +Pr [(xi0 ≤ xi)|xi]− pb. (6)

Let t (p, y) be the intrinsic preference for a of a consumer of type bxi (p, y). That is:
t (p, y) ≡ bxai (p, y)− bxbi (p, y)

2
.

By rearranging (6), it can be shown that t (p, y) is implicitly defined by the following equation:

t− Φ [(t− y) z] +
1

2
− p = 0 (7)

where

z = z(α, β) ≡
s

α2β

(α+ β) (α+ 2β)
. (8)

The following proposition holds:

Proposition 2 (Equilibrium of the Coordination Game)

If z 6
√
2π, the coordination game played by consumers after any price announcement

¡
pa, pb

¢
has

13



the following unique Nash-equilibrium:

s∗i (x,p) =

⎧⎪⎪⎨⎪⎪⎩
a if xi > t(p, y),

b if xi ≤ t(p, y),

∀i ∈ [0, 1] .

where t (p, y) satisfies

t (p, y)−Φ [(t (p, y)− y) z] +
1

2
− p = 0.

The threshold t (p, y) is strictly increasing in p and strictly decreasing in y.

The equilibrium described by Proposition 2 is a symmetric equilibrium in switching strategies

around the threshold t(p, y): consumers with a preference for a larger than t (p, y) join a and

the others join b. Therefore, the equilibrium allocation is a threshold allocation. This will prove

particularly useful as we compare the market allocation to the efficient one.

The two available pieces of public information, namely the public signal y about the relative

quality of the two goods and the difference p between the two prices, affect the equilibrium threshold

in a very intuitive way. For a given quality signal, if a becomes more expensive with respect to

b, the threshold moves to the right, i.e. a loses some consumers to b. For given prices, instead,

if a’s expected quality advantage y increases, the threshold moves to the left, i.e. a gains some

consumers.

Next, we illustrate the intuition behind the uniqueness condition mentioned in the statement of

Proposition 2. It can be shown that, if the game has only one equilibrium in the class of equilibria

in switching strategies, then the game has no other equilibrium of any type.15 This implies that

the key condition for uniqueness is that there exists only one value of the threshold t that solves

(7). In turn, (7) has a unique solution t (p, y) if the second term is (almost) invariant with respect

to t. That term represents the strategic uncertainty of a player who observes a private signal

exactly equal to the threshold t. More precisely, it represents his expectation of the proportion of

consumers who will choose b because their private value xi is smaller than t. Therefore, uniqueness

is guaranteed if strategic uncertainty is not very sensitive to the value of t.

This low level of sensitivity is achieved in the parameter region defined by the inequality

z 6
√
2π.

Following Morris and Shin (2004) and Ui (2006), z can be rewritten as

z =

s
α2β

(α+ β) (α+ 2β)
=

vuut αβ

α+ β

Ã
1− β

α+β

1 + β
α+β

!
=

s
1

σ2

µ
1− ρ

1 + ρ

¶
(9)
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where σ2 is the unconditional variance of the consumers’ private values and

ρ ≡ β

α+ β

is their correlation coefficient. From this reparametrization, it is easy to see that the uniqueness

condition is satisfied if either the unconditional variance or the correlation is sufficiently large.

The intuition for this result is the following.16 When consumers’ private values are strongly

correlated, strategic uncertainty is not very sensitive to a player’s type because no matter what

specific realization of exi he observed, any consumer i believes that it is about as likely for any
consumer i0 to observe xi0 > xi or xi0 < xi.

In the case of high unconditional variance of consumers’ private values, the density approaches

the uniform density. Therefore, also in this case strategic uncertainty is not very sensitive to a

player’s type: whatever the realization of exi he observed, consumer i believes that approximately
one half of the remaining consumers observed values xi0 > xi, and the other half observed xi0 < xi.

In the parameter space (α, β) the uniqueness condition is satisfied either if β is sufficiently large,

for any α, or if α is large and β is smaller than some upper bound that approaches 2π as α goes

to infinity. In the first case, uniqueness is guaranteed by a high correlation of consumers’ private

values. In the second case, correlation is small, but the low β guarantees that the unconditional

variance is sufficiently large to guarantee that z 6
√
2π.

In terms of market features, the first case corresponds to markets where the amount of horizontal

differentiation is sufficiently small, with respect to the noise of the public information about the

vertical quality of the goods, and the second case to markets with rather precise public information

and a large amount of horizontal differentiation.17

Throughout the rest of the paper, we will assume that the condition for uniqueness, z 6
√
2π, is

satisfied, focusing our attention on those network markets where the demand function is naturally

well-defined.

Before we consider the two cases of sponsored and unsponsored networks in more detail, we

present one more result about the issue of consumer coordination.

Proposition 3 (Ex-Post Impact of Public Information)

Let z 6
√
2π. For any pair (p, y) and for a given realization of θ, in equilibrium the networks

realized market shares are

na = 1− nb = Pr [xi > t(p, y)] = 1− Φ
h
(t (p, y)− θ)

p
β
i
. (10)

Each firm’s ex-post market share is strictly increasing in its expected quality.

This result has a natural interpretation. For a given θ, the market share of each network is given

by the proportion of consumers with a value of xi above or below the equilibrium threshold. After
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θ has been drawn, the distribution of xi is uniquely determined and clearly it does not depend on

y, the expected value of θ. Therefore, the fact that a network’s ex-post market share is increasing

in its ex-ante expected quality has to be due to the fact that the equilibrium threshold t (p, y) is a

function of y. In turn, the result that t (p, y) is affected by y might appear counterintuitive, since

consumers play the coordination game that determines t (p, y) after each of them has perfectly

observed his own private value xi. Since this is a model with private values, one might expect that,

after observing his own xi, each consumer i would discard the noisy information contained in its

expected value y. Still, consumer i cares not only about his own xi but also about the distribution

of the private values of other consumers. This is true because of the presence of network effects:

the signals observed by other consumers will affect their choices, and i needs to take such choices

into account because of the strategic complementarity. This is where y becomes relevant. The prior

distribution of each xi0 is centered around y. When consumer i observes xi, and updates his belief

about the distribution of xi0 , whatever the value of xi he observed, the posterior expectation of xi0

is increasing in y. Since in equilibrium consumers with a high xi0 choose a, the higher y, the higher

a’s expected market share from the point of view of consumer i, the higher his own convenience in

choosing a.

4.2 Unsponsored Networks

We now consider the case where the two networks are unsponsored, in order to highlight the possible

coordination failure arising on these markets when we abstract from the issue of strategic pricing.

Without sponsors, consumers can join any network by paying a price equal to the marginal cost:

pa = pb = c, and p = 0.

The next proposition describes the equilibrium allocation and compares it to the efficient one.

Proposition 4 (Inefficiency with Unsponsored Networks)

With unsponsored networks, the equilibrium allocation is a threshold allocation with threshold

tu ≡ t(0, y) ∈ (−0.5, 0) .

Moreover,

tu > t∗ and Ex [W (tu)] < Ex [W (t∗)] .

The allocation implemented by the market if the networks are unsponsored shares some quali-

tative features with the efficient allocation: both are threshold allocations and in both cases, since

the threshold is smaller than y, the network with higher expected quality has an expected market

share larger than one half. Moreover, in both cases the threshold is negative: network a includes not
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only all consumers with a positive xi, but also some consumers with a moderate private preference

for b.

Nonetheless, the market does not implement the welfare maximizing allocation. In particular,

the market allocation is more balanced than the efficient one. The source of this market failure is

the presence of network effects that consumers fail to internalize. To get an intuition for this result,

it is useful to revise the decomposition of the welfare function that we presented in Section 3. For

any realized level of quality of the two goods, social welfare is the sum of the gross surplus derived

from the objective quality of the goods, gross surplus derived from idiosyncratic taste and, finally,

gross surplus derived from network effects. The efficient threshold t∗ is therefore the result of the

compromise among different forces: from a social point of view, horizontal differentiation makes

a symmetric allocation more desirable while vertical differentiation and the presence of network

externalities make asymmetry more desirable. Since individual consumers do not internalize the

network externality, society implements an allocation that is more symmetric than the efficient one.

In order to discuss how this inefficiency is affected by the precision α of the public signal y, and

by the amount of horizontal differentiation, we present the following corollary.

Corollary 2 (Comparative Statics of tu)

The equilibrium threshold for the case of unsponsored networks, tu, is decreasing in α. Moreover,

for β <
α√
2
,

∂tu

∂β
< 0

for β >
α√
2
,

∂tu

∂β
> 0,

and

lim
β→+∞

tu = 0.

To capture the intuition for this result, it is useful to remember that, for given values of α

and β, tu measures the intrinsic preference for good a of a consumer who, observing that both

goods are available at the same price, and assuming that all consumers with xi ≤ tu consume

good b and all consumers with xi > tu consume good a, is indifferent between joining network a or

network b. In particular, since tu < 0, this “threshold- consumer” has a strict intrinsic preference

for good b, which is exactly compensated by the fact that, conditional on his observation tu and

the equilibrium strategies, he expects network a to be larger than network b. More precisely, using

the reparametrization presented in equation (9), his expectation of the difference between the size

of the two networks can be written as

Ex−i [na |xi = tu ]−Ex−i
h
nb |xi = tu

i
= 1−2Ex−i

h
nb |xi = tu

i
= 1−2Φ

"
(tu − y)

s
1

σ2

µ
1− ρ

1 + ρ

¶#
.

(11)
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Let us now examine the impact of a marginal increase of the precision α of the public signal

y on this expectation. Both the unconditional variance σ2 and the correlation ρ decrease. As a

consequence, the value of expression (11) increases: a consumer with preference for a equal to the

initial value of tu now expects a stronger asymmetry in the size of the two networks. This implies

that he cannot be indifferent anymore, but has a strict preference for joining network a. Hence,

the new indifferent consumer has to be someone with a stronger intrinsic preference for good b. In

other words, the new threshold has to be to the left of the initial one.

By Corollaries 1 and 2, both the socially optimal threshold t∗ and the equilibrium threshold

tu are decreasing in α, so we cannot identify a monotonicity in α of the inefficiency illustrated in

Proposition 4.

Next, consider the impact of a marginal increase of the precision β of the idiosyncratic com-

ponent εi on expression (11). As β increases, the unconditional variance σ2 decreases, while the

correlation ρ increases. It can be shown that the net effect on expression (11) depends on the value

of β
α . In particular, for small values of

β
α , the expected difference in market shares from the point

of view of the initially indifferent consumer increases, hence this consumer cannot be indifferent

anymore but instead strictly prefers to join network a, and the new equilibrium threshold has to

be to the left of the initial one. For large values of β
α , the opposite happens.

The last result in Corollary 2 is that for a given α, as β goes to infinity the correlation ρ tends to

one and the equilibrium threshold tu goes to zero. The intuition for this result is that as the amount

of heterogeneity among consumers goes to zero, each consumer thinks of himself as “typical”, hence

expects that if consumers follow the equilibrium strategies, and his own private value constitutes

the threshold, the two network sizes will be approximately equal. Given this inference, the only

consumer who can be indifferent between joining a or b is one with intrinsic preference for a over

b equal to zero.

In the light of Corollary 1, this result bears important consequences in terms of social welfare.

For very small levels of horizontal differentiation, i.e. as β approaches infinity, the inefficiency of

the market allocation in markets with unsponsored networks becomes extreme: tu approaches its

maximum value, zero, while t∗ approaches its minimum value (for a given α).

4.3 Sponsored Networks

After identifying a source of inefficiency arising on network markets, we now ask the question of

whether strategic pricing mitigates or aggravates this inefficiency. More precisely, we will now

assume that the two networks are sponsored and that therefore access to each of them is priced

by a strategic, profit-maximizing firm. Then, we will derive the equilibrium of the two-stage price

competition game and compare the allocation of consumers induced in equilibrium to both the

ex-ante efficient one and the one implemented by the market in the absence of strategic pricing.
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The next Lemma describes the demand functions for the two goods.

Lemma 2 (Expected Demand Functions)

Let z 6
√
2π. The expected demand function for each network is well defined for any price pair¡

pa, pb
¢
and it is given by

Ex [na] = 1− Ex
h
nb
i
= 1−Φ

∙
t (p, y)− y

σ

¸
Moreover, for given prices each firm’s expected market share is strictly increasing in the expected

quality of its product.

The assumption z 6
√
2π guarantees that there is a unique equilibrium of the coordination

game played by consumers in the second stage, therefore the demand function is well defined.

It can be interesting to compare the comparative statics results contained in Lemma 2 and

Proposition 3. Proposition 3 looks at the market shares for a given realization of θ: the expected

quality of the products affects ex-post market shares because it affects the equilibrium threshold

t (p, y). Lemma 2 instead, considers the ex-ante market shares. In this case, there are two mecha-

nisms through which the larger a network’s expected quality, the larger its expected market share:

one is the change in t (p, y), the other is the shift in the distribution of xi (which is centered around

y).

We now have the tools to characterize the pure-strategy subgame-perfect equilibrium of the

price competition game. Substituting the expected demand functions into the profit functions, we

can write the two firms’ optimization problem as

max
pa∈R

Ex [πa] = (pa − c)

∙
1− Φ

∙
t (p, y)− y

σ

¸¸
max
pb∈R

Ex [πb] =
³
pb − c

´
Φ

∙
t (p, y)− y

σ

¸
.

Let ps denote the value of p associated to the firms’ equilibrium strategies and ts denote t (ps, y).

The following proposition holds:

Proposition 5 (Strategic Pricing Inefficiency)

If a pure strategy SPNE of the price competition game exists,18 then

ps ∈ (0, y) and ts ∈ (tu, y) .

Moreover,

t∗ < tu < ts
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and

Ex [W (ts)] < Ex [W (tu)] < Ex [W (t∗)] .

The main qualitative features of the equilibrium of the price competition game are consistent

with the standard results in duopolistic models of price competition with vertical differentiation:19

in equilibrium, the firm selling the best product charges the highest price (ps > 0) but the difference

in quality more than compensates the difference in prices (y > ps), so that it also attracts a fraction

of consumers larger than one half.20

What is relevant for efficiency, though, is by how much this market share exceeds one half. We

have already shown that in the absence of strategic pricing the market share of firm a is too small,

from a social point of view. According to Proposition 5, a’s market share is even smaller if the two

networks are sponsored, and this equilibrium provides even less welfare than the equilibrium with

unsponsored networks. The reason why strategic pricing reduces welfare is quite straightforward:

with vertical differentiation, the firm selling the best product has a natural advantage that is

reflected in a higher equilibrium price. In turn, the fact that a is more expensive than b, ceteris

paribus, shifts some consumers from a to b.

We have therefore identified two separate sources of inefficiency on network markets: the first

is the presence of network externalities that consumers do not internalize, which determines a

market allocation that is too balanced from a social point of view. The second, which arises only

if networks are sponsored, is the presence of strategic pricing, that further reduces the asymmetry

between network sizes.

In section 4.2, we have shown that the first type of inefficiency is exacerbated as the amount of

horizontal differentiation vanishes. An analogous result cannot be established for the second type

of inefficiency. It can be easily shown that the comparative statics results stated in Corollary 2

hold not only for tu, but more generally for t (p, y), for any (p, y) such that y > 0 and p < y. What

is ambiguous though, is the impact of a marginal increase in either α or β on the equilibrium price

difference ps. Therefore, the total impact on ts, which is the sum of a direct effect and an indirect

effect through ps, is ambiguous as well.

5 Conclusions

We analyzed a model of duopolistic competition between two vertically and horizontally differen-

tiated networks. We characterized the necessary and sufficient condition that guarantee that the

coordination game played by the consumers for given prices has a unique equilibrium, and that

therefore the demand function for each of the products is well-defined. Uniqueness is guaranteed

either by a large amount of horizontal differentiation, or by a sufficient amount of noise in the

public information available about the vertical quality of the goods.
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We also addressed the issue of efficiency of network markets. We found that social welfare is

maximized by an asymmetric allocation such that the network with the highest expected quality

has the largest market share. We then compared this allocation with the ones implemented by

the market if the networks are unsponsored or sponsored, respectively. Two sources of inefficiency

emerged from the analysis: the failure to internalize network externalities, which is exacerbated in

the case of vanishing horizontal differentiation, and the presence of sponsors that strategically set

prices for the products. Both these facts induce the market to implement an allocation of consumers

that is too symmetric.

We analyzed efficiency from an ex-ante point of view. One possible alternative is to analyze

efficiency from an ex-post point of view, assuming that a benevolent social planner can observe the

realized distribution of private values in the population. It can be shown that also in that case the

efficient allocation is a threshold allocation such that both networks are active and one of them

has a larger market share than the other. The main difference with the ex-ante case is that the

ex-post optimal threshold depends on the realization of θ. Also, in the ex-post efficient allocation

the network with the largest market share is the one with the highest realized quality, while in the

ex-ante case it is the one with the highest expected quality.

Comparing the equilibrium allocation to the ex-post efficient allocation, the main result is that

strategic pricing can increase welfare if the firm with the highest expected quality has the lowest

realized quality, and decrease welfare in the opposite case. The intuition for this result is the

following. If the public signal is in favor of, say, firm a, in equilibrium it will charge a price higher

than the competitor and ex-post this will negatively affect its market share (everything else equal).

Therefore, if ex-post a is the best firm, strategic pricing shifts some consumers towards the worst

firm, while if a is the worst firm, then strategic pricing shifts some consumers towards the best

firm.

In our model, we assumed that consumer heterogeneity is unbounded while the utility derived

from the network effect is bounded. The result that the ex-ante efficient threshold is an interior

optimum holds under more general assumptions. For symmetric, bounded network effects, if the

distribution of xi is continuous and symmetric around the mean, then it is sufficient that the upper

bound of the support of xi is weakly larger than the individual surplus from being in a network of

size one.

We also assumed complete market coverage. This assumption allowed us to abstract from the

possible deadweight loss associated to strategic pricing and to focus only on the inefficiency arising

from the difference in equilibrium prices.

Finally, we assumed that firms have access only to the public information available about the

vertical quality of the products. A natural extension of the model would be to allow each firm

to observe a private signal about the vertical quality of its product. This would add the issue of

whether firms can use prices to signal their quality.
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We leave for future research an extension of this model to a dynamic environment, where

consumers choose sequentially and firms can adjust prices over time.
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A Appendix

A.1 Proofs

Proof of Lemma 1. We will prove by contradiction that any allocation (A0,B0) that is not a
threshold allocation cannot maximize the ex-ante welfare function.

Since there is a continuum of consumers, for almost every realization x the distribution of types xi

in the population is the same as the distribution of each individual xi. Then, by construction of

(A0,B0), there exists at least a pair (S, T ) such that:
- for every x, Sx⊂ A0x, Tx⊂ B0x, and xi < xi0 for every (i, i0) such that i ∈ Sx and i0 ∈ Tx,
- for almost every x,

R
i∈Sx di =

R
i∈Tx di.

Consider now a different allocation (A00,B00) such that A00 = (A0/S) ∪ T and B00 = (B0/T ) ∪ S.
We will show that (A00,B00) yields a larger expected welfare than (A0,B0).
First, notice that since there is a continuum of consumers, the sets A0x, B0x, Sx, Tx, A00x, B00x are
identical for almost every realization of x, up to a permutation of the i0s. In other words, for

each if these sets it holds that its measure is the same for almost every x, but the identities of the

consumers that belong to it can change.

The total change in ex-ante welfare when moving from allocation (A0,B0) to allocation (A00,B00) is
the following:

Ex
£
W
¡
A00x,B00x

¢¤
− Ex

£
W
¡
A0x,B0x

¢¤
=

= Ex

"Z
i∈A00x

¡
na
¡
A00x,B00x

¢
+ xai

¢
di+

Z
i∈B00x

³
nb
¡
A00x,B00x

¢
+ xbi

´
di +

−
Z
i∈A0x

¡
na
¡
A0x,B0x

¢
+ xai

¢
di−

Z
i∈B0x

³
nb
¡
A0x,B0x

¢
+ xbi

´
di

#
=

= Ex

"Z
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¡
A00x,B00x

¢
di+

Z
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¡
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di

+

Z
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¡
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di+

Z
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¡
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di+

−
Z
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¡
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Z
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¡
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¢
di+

−
Z
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¡
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¢
di−

Z
i∈Tx
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¡
A0x,B0x

¢
di+

+

Z
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xai di+

Z
i∈Tx

xai di+

Z
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Z
i∈Sx

xbidi+
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−
Z
i∈(A0x/Sx)

xai di−
Z
i∈Sx

xai di−
Z
i∈(B0x/Tx)

xbidi−
Z
i∈Tx

xbidi

#
=

= Ex
∙Z

i∈∪Tx
xai di+

Z
i∈∪Sx

xbidi−
Z
i∈∪Sx

xai di−
Z
i∈Tx

xbidi

¸
=

= −Ex
∙Z

i∈Sx
2xidi−

Z
i∈Tx

2xidi

¸
> 0

where the last inequality holds because by construction xi < xi0 for every (i, i0) such that i ∈ Sx
and i0 ∈ Tx. This proves that allocation (A00,B00) yields a large expected welfare than allocation
(A0,B0).

Proof of Proposition 1. The proof of Proposition 1 is divided into 4 claims. In Claim 1

we derive expression (2) for the welfare function. In Claim 2 we prove that the welfare function

has a global maximum and the maximum is attained at a point t ∈ (−1, 1). In Claim 3 we prove

that the optimum cannot be in the interval t ∈ [0, y]. For the case y ≥ 1, this completes the proof.
Claim 4 considers the case where y < 1 and shows that it cannot be the case that t∗ ∈ (y, 1). This
concludes the proof.

Claim 1: Expression (2) represents the ex-ante welfare function associated to a generic threshold

allocation.

For a given realization of
³eθa,eθb´, take a generic threshold allocation (A (t) ,B (t)). Let I (·) denote

the indicator function. The level of welfare associated to (A (t) ,B (t)) is

Ex
h
W (t)

¯̄̄
θa, θb

i
=

= Ex
∙Z t−θ

−∞
θbf (εi) dεi +

Z +∞

t−θ
θaf (εi) dεi+

+

Z t−θ

−∞
(1− na (A (t) ,B (t))) f (εi) dεi +

Z +∞

t−θ
na (A (t) ,B (t)) f (εi) dεi +

+

Z +∞

−∞

Z +∞

−∞
εai I

µ
εai − εbi
2
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¶
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dεai dε

b
i +

+

Z +∞

−∞

Z +∞

−∞
εbiI

µ
εai − εbi
2

6 t− θ

¶
f (εai ) f

³
εbi

´
dεai dε

b
i

¸
=

= Ex
h
θbΦ

³
(t− θ)

p
β
´
+ θa

h
1−Φ

³
(t− θ)

p
β
´i
+

+(1− na (A (t) ,B (t)))Φ
³
(t− θ)

p
β
´
+ na (A (t) ,B (t))

h
1− Φ

³
(t− θ)

p
β
´i
+

+

Z +∞

−∞

"Z +∞

εbi+2(t−θ)
εai f (ε

a
i ) dε

a
i

#
f
³
εbi

´
dεbi +

+

Z +∞

−∞

"Z +∞

εai−2(t−θ)
εbif

³
εbi

´
dεbi

#
f (εai ) dε

a
i

#
=

= Ex
h
θbΦ

³
(t− θ)

p
β
´
+ θa

h
1−Φ

³
(t− θ)

p
β
´i
+

+
h
Φ
³
(t− θ)

p
β
´i2

+
h
1− Φ

³
(t− θ)

p
β
´i2

+

+

Z +∞

−∞

"r
2

β
φ

Ã³
εbi + 2 (t− θ)

´rβ

2

!#
f
³
εbi

´
dεbi +

+

Z +∞

−∞

"r
2

β
φ

Ã
(εai − 2 (t− θ))

r
β

2

!#
f (εai ) dε

a
i

#
=

= Φ
³
(t− θ)

p
β
´ h

θb − θa
i
+ θa +

+2
h
Φ
³
(t− θ)

p
β
´i2
− 2Φ

³
(t− θ)

p
β
´
+ 1 +

+

r
2

πβ
e−

(t−θ)2β
2 . (12)

Therefore, the expected welfare as a function of a generic threshold t is:

Ex [W (t)] = Eθa,θb
n
θa − 2θΦ

³
(t− θ)

p
β
´
+

+

r
2

πβ
e−

(t−θ)2β
2 +

+2
h
Φ
³
(t− θ)

p
β
´i2
− 2Φ

³
(t− θ)

p
β
´
+ 1

¾
.
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Claim 2: The welfare function has a global maximum and the maximum is attained at a point

t ∈ (−1, 1).
Given Claim 1, the optimal threshold t∗ solves the following problem:

max
t
Ex [W (t)] = max

t
Eθa,θb

nh
θa − 2θΦ

³
(t− θ)

p
β
´i
+

+

∙r
2

πβ
e−

(t−θ)2β
2

¸
+

+
∙
2
h
Φ
³
(t− θ)

p
β
´i2
− 2Φ

³
(t− θ)

p
β
´
+ 1

¸¾
.

The welfare function is continuous and differentiable in t, and by Leibnitz’ rule, its first derivative

can be written as:
∂

∂t
Ex [W (t)] =

= Eθa,θb
h³
2Φ
³
(t− θ)

p
β
´
− 1− θ − t+ θ

´³
2
p
βφ
³
(t− θ)

p
β
´´i

=

= Eθa,θb
h³
2Φ
³
(t− θ)

p
β
´
− 1− t

´³
2
p
βφ
³
(t− θ)

p
β
´´i

.

Notice that

2
p
βφ
³
(t− θ)

p
β
´
> 0 ∀θ.

This implies that, since for every t ≤ −1

2Φ
³
(t− θ)

p
β
´
− 1− t > 0 ∀θ

then it is true that for every t ≤ −1

Eθa,θb
h³
2Φ
³
(t− θ)

p
β
´
− 1− t

´³
2
p
βφ
³
(t− θ)

p
β
´´i

> 0.

So the derivative is always positive for any t ≤ −1.
Analogously, since for every t ≥ 1 it is true that

2Φ
³
(t− θ)

p
β
´
− 1− t < 0 ∀θ,

then for every t ≥ 1 it is also true that

Eθa,θb
h³
2Φ
³
(t− θ)

p
β
´
− 1− t

´³
2
p
βφ
³
(t− θ)

p
β
´´i

< 0,

i.e. the derivative is always negative for any t ≥ 1.
If we restrict the domain of the welfare function to any set [t1, t2] such that (−1, 1) ⊂ [t1, t2], the
function has a global maximum t∗ ∈ [t1, t2] by Weierstrass theorem. If then we extend the domain
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to R, it is true that t∗ is still the global maximum because Ex [W (t)] < Ex [W (−1)] ∀t < t1 and

Ex [W (t)] < Ex [W (1)] ∀t > t2.

By a similar argument, it has to be the case that t∗ ∈ (−1, 1) ⊂ [t1, t2] because Ex [W (t)] <

Ex [W (−1)] ∀t such that t1 < t ≤ −1 and Ex [W (t)] < Ex [W (1)] ∀t such that 1 ≤ t < t2.

Claim 3 The optimum cannot be in the interval t ∈ [0, y].
We will prove this claim by showing that welfare is strictly decreasing ∀t ∈ [0, y].
By the definition of a derivative,

∂

∂t
Ex [W (t)] = lim

δ→0

Ex [W (t+ δ)]− Ex [W (t)]

δ
= lim

δ→0+
Ex [W (t+ δ)]− Ex [W (t)]

δ
.

The welfare function Ex [W (t)] can be rewritten as:

Ex [W (t)] =

= Ex

"Z
i∈Ax(t)

na (Ax (t) ,Bx (t)) di+
Z
i∈Ax(t)

xai di+

Z
i∈Bx(t)

nb (Ax (t) ,Bx (t)) di+
Z
i∈Bx(t)

xbidi

#
=

= Ex

⎡⎣ÃZ
i∈Ax(t)

di

!2
+

ÃZ
i∈Bx(t)

di

!2
+

Z
i∈Ax(t)

xai di+

Z
i∈Bx(t)

xbidi

⎤⎦ .
Hence, for any positive δ :

Ex [W (t+ δ)]− Ex [W (t)] =

= Ex

⎡⎣ÃZ
i∈Ax(t+δ)

di

!2
−
ÃZ

i∈Ax(t)
di

!2
+

ÃZ
i∈Bx(t+δ)

di

!2
−
ÃZ

i∈Bx(t)
di

!2
+

+

Z
i∈Ax(t+δ)

xai di−
Z
i∈Ax(t)

xai di+

Z
i∈Bx(t+δ)

xbidi−
Z
i∈Bx(t)

xbidi

#
=

= Ex

⎡⎣ÃZ
i∈Ax(t+δ)

di

!2
−
ÃZ

i∈Ax(t)
di

!2
+

ÃZ
i∈Bx(t+δ)

di

!2
−
ÃZ

i∈Bx(t)
di

!2
+

+

Z
i∈Ax(t+δ)/Ax(t)

xai di+

Z
i∈Bx(t+δ)/Bx(t)

xbidi

#
=

= Ex

⎡⎣ÃZ
i∈Ax(t+δ)

di

!2
−
ÃZ

i∈Ax(t)
di

!2
+

ÃZ
i∈Bx(t+δ)

di

!2
−
ÃZ

i∈Bx(t)
di

!2
+

+

Z
i∈Bx(t+δ)/Bx(t)

³
xbi − xai

´
di

#
=
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= Ex

⎡⎣ÃZ
i∈Ax(t+δ)

di

!2
−
ÃZ

i∈Ax(t)
di

!2
+

+

ÃZ
i∈Bx(t+δ)

di

!2
−
ÃZ

i∈Bx(t)
di

!2
−
Z
i∈Bx(t+δ)/Bx(t)

2xidi

⎤⎦ . (13)

where the third inequality follows from the definition of xi.

Since there is a continuum of consumers, and we assume that law of large numbers holds, each of

the sets Ax (t+ δ), Ax (t), Bx (t+ δ), Bx (t) is identical for almost every realization of x, up to a
permutation of the i0s, hence the expression can be rewritten as

[1− F (t+ δ)]2 − [1− F (t)]2 + [F (t+ δ)]2 − [F (t)]2 −
Z t+δ

t
2xif (xi) dxi (14)

where F (·) denotes the cdf of the random variable xi.

Let

H1 (δ) ≡ [1− F (t+ δ)]2 − [1− F (t)]2 + [F (t+ δ)]2 − [F (t)]2 − 2 (t+ δ) [F (t+ δ)− F (t)] .

Since

−
Z t+δ

t
2xif (xi) dxi > −2 (t+ δ)

Z t+δ

t
f (xi) dxi = −2 (t+ δ) [F (t+ δ)− F (t)] ∀δ > 0,

then

H1 (δ) < Ex [W (t+ δ)]− Ex [W (t)] ∀δ > 0,

which implies
H1 (δ)

δ
<
Ex [W (t+ δ)]− Ex [W (t)]

δ
∀δ > 0.

Similarly, let

H2 (δ) ≡ [1− F (t+ δ)]2 − [1− F (t)]2 + [F (t+ δ)]2 − [F (t)]2 − 2t [F (t+ δ)− F (t)] .

Since

−
Z t+δ

t
2xif (xi) dxi < −2t

Z t+δ

t
f (xi) dxi = −2t [F (t+ δ)− F (t)] ∀δ > 0,

then

Ex [W (t+ δ)]− Ex [W (t)] < H2 (δ) ∀δ > 0,
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which implies
Ex [W (t+ δ)]− Ex [W (t)]

δ
<

H2 (δ)

δ
∀δ > 0.

Hence, it holds that

H1 (δ)

δ
<
Ex [W (t+ δ)]− Ex [W (t)]

δ
<

H2 (δ)

δ
∀δ > 0.

Next, notice that

lim
δ→0+

H1 (δ)

δ
= lim

δ→0+
[1− F (t+ δ)]2 − [1− F (t)]2 + [F (t+ δ)]2 − [F (t)]2 − 2 (t+ δ) [F (t+ δ)− F (t)]

δ
(15)

is equal, by l’Hôpital’s rule, to

lim
δ→0+

{f (t+ δ) [2F (t+ δ)− 2 + 2F (t+ δ)− 2 (t+ δ)]− 2 [F (t+ δ)− F (t)]} =

= lim
δ→0+

{2f (t+ δ) [2F (t+ δ)− 1− (t+ δ)]− 2 [F (t+ δ)− F (t)]}

= 2f (t) {2F (t)− 1− t} .

Similarly,

lim
δ→0+

H2 (δ)

δ
= lim

δ→0+
[1− F (t+ δ)]2 − [1− F (t)]2 + [F (t+ δ)]2 − [F (t)]2 − 2t [F (t+ δ)− F (t)]

δ
(16)

is equal, by l’Hôpital’s rule, to

lim
δ→0+

{f (t+ δ) [2F (t+ δ)− 2 + 2F (t+ δ)− 2t]} =

= lim
δ→0+

{2f (t+ δ) [2F (t+ δ)− 1− t]}

= 2f (t) {2F (t)− 1− t} .

Since
H1 (δ)

δ
<
Ex [W (t+ δ)]− Ex [W (t)]

δ
<

H2 (δ)

δ
∀δ > 0

and

lim
δ→0+

H1 (δ)

δ
= lim

δ→0+
H2 (δ)

δ
= 2f (t) {2F (t)− 1− t}

we can conclude that

∂

∂t
Ex [W (t)] = lim

δ→0+
Ex [W (t+ δ)]− Ex [W (t)]

δ
= 2f (t) {2F (t)− 1− t} . (17)
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Moreover, since y > 0 implies that

2f (t) {2F (t)− 1− t} < 0 ∀t ∈ [0, y] ,

we can conclude that
∂

∂t
Ex [W (t)] < 0 ∀t ∈ [0, y]

and that therefore the welfare maximizing threshold cannot be in the interval t ∈ [0, y].
Claim 4. It cannot be the case that t∗ ∈ (y, 1).
We will prove Claim 4 by proving that for any t > y there exists a t0 < y such that

Ex [W (t0)] > Ex [W (t)].

Let t ∈ (y, 1) and take t0 < y such that

¯̄
y − t0

¯̄
= |y − t| ≡ ∆.

It holds that

Ex
£
W
¡
t0
¢¤
− Ex [W (t)] =

= Eθa,θb
h
θa − 2θΦ

³¡
t0 − θ

¢p
β
´i
− Eθa,θb

h
θa − 2θΦ

³
(t− θ)

p
β
´i
+

+Eθa,θb
∙r

2

πβ
e−

(t0−θ)2β
2

¸
− Eθa,θb

∙r
2

πβ
e−

(t−θ)2β
2

¸
+

+Eθa,θb
∙∙
2
h
Φ
³¡
t0 − θ

¢p
β
´i2
− 2Φ

³¡
t0 − θ

¢p
β
´
+ 1

¸¸
+

−Eθa,θb
∙∙
2
h
Φ
³
(t− θ)

p
β
´i2
− 2Φ

³
(t− θ)

p
β
´
+ 1

¸¸
=

= Eθ
h
−2θΦ

³¡
t0 − θ

¢p
β
´i
− Eθ

h
−2θΦ

³
(t− θ)

p
β
´i

.

The last equality holds because both

Eθa,θb
∙r

2

πβ
e−

(t−θ)2β
2

¸
and

Eθa,θb
∙∙
2
h
Φ
³
(t− θ)

p
β
´i2
− 2Φ

³
(t− θ)

p
β
´
+ 1

¸¸
=

= Eθa,θb
∙h
Φ
³
(t− θ)

p
β
´i2

+
h
1− Φ

³
(t− θ)

p
β
´i2¸

are symmetric with respect to y.
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To establish the sign of

= Eθ
h
−2θΦ

³¡
t0 − θ

¢p
β
´i
− Eθ

h
−2θΦ

³
(t− θ)

p
β
´i

rewrite the expression asZ +∞

−∞
2θ
h
Φ
³
(y +∆− θ)

p
β
´
− Φ

³
(y −∆− θ)

p
β
´i

g (θ) dθ

where g (θ) denotes the pdf of the random variable θ.

Notice that Z +∞

−∞
2θ
h
Φ
³
(y +∆− θ)

p
β
´
− Φ

³
(y −∆− θ)

p
β
´i

g (θ) dθ =

=

Z 0

−∞
2θ
h
Φ
³
(y +∆− θ)

p
β
´
− Φ

³
(y −∆− θ)

p
β
´i

g (θ) dθ+

+

Z 2y

0
2θ
h
Φ
³
(y +∆− θ)

p
β
´
−Φ

³
(y −∆− θ)

p
β
´i

g (θ) dθ+

+

Z +∞

2y
2θ
h
Φ
³
(y +∆− θ)

p
β
´
− Φ

³
(y −∆− θ)

p
β
´i

g (θ) dθ.

It holds that Z 2y

0
2θ
h
Φ
³
(y +∆− θ)

p
β
´
− Φ

³
(y −∆− θ)

p
β
´i

g (θ) dθ > 0

since the integrand is nonnegative ∀θ ∈ [0, 2y] and strictly positive ∀θ ∈ (0, 2y].
Moreover, Z 0

−∞
2θ
h
Φ
³
(y +∆− θ)

p
β
´
− Φ

³
(y −∆− θ)

p
β
´i

g (θ) dθ ≤ 0

because the integrand is nonpositive ∀θ ∈ (−∞, 0] andZ +∞

2y
2θ
h
Φ
³
(y +∆− θ)

p
β
´
−Φ

³
(y −∆− θ)

p
β
´i

g (θ) dθ ≥ 0

because the integrand is nonnegative ∀θ ∈ [2y,+∞).
Next, we show thatZ 0

−∞
2θ
h
Φ
³
(y +∆− θ)

p
β
´
− Φ

³
(y −∆− θ)

p
β
´i

g (θ) dθ+

+

Z +∞

2y
2θ
h
Φ
³
(y +∆− θ)

p
β
´
− Φ

³
(y −∆− θ)

p
β
´i

g (θ) dθ > 0.

Take any θ ∈ [2y,+∞) and denote θ − 2y = d > 0.
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For any such θ, there exists θ0 ∈ (−∞, 0] such that θ0 = −d. By symmetry of the distribution of θ,
g
¡
θ0
¢
= g (θ).

Moreover,

2θ0
h
Φ
³¡
y +∆− θ0

¢p
β
´
−Φ

³¡
y −∆− θ0

¢p
β
´i
+

+2θ
h
Φ
³
(y +∆− θ)

p
β
´
− Φ

³
(y −∆− θ)

p
β
´i
=

= −2d
h
Φ
³
(y + d+∆)

p
β
´
− Φ

³
(y + d−∆)

p
β
´i
+

+(4y + 2d)
h
Φ
³
(−y − d+∆)

p
β
´
− Φ

³
(−y − d−∆)

p
β
´i
=

= 4y
h
Φ
³
(−y − d+∆)

p
β
´
− Φ

³
(−y − d−∆)

p
β
´i

> 0.

Since ∀θ ∈ [2y,+∞) there exists θ0 ∈ (−∞, 0] such that

2θ
h
Φ
³
(y +∆− θ)

p
β
´
− Φ

³
(y −∆− θ)

p
β
´i

g (θ)+

+2θ0
h
Φ
³¡
y +∆− θ0

¢p
β
´
− Φ

³¡
y −∆− θ0

¢p
β
´i

g
¡
θ0
¢
> 0,

then Z 0

−∞
2θ
h
Φ
³
(y +∆− θ)

p
β
´
− Φ

³
(y −∆− θ)

p
β
´i

g (θ) dθ+

+

Z 2y

0
2θ
h
Φ
³
(y +∆− θ)

p
β
´
−Φ

³
(y −∆− θ)

p
β
´i

g (θ) dθ ≥ 0

and combining this inequality with

+

Z 2y

0
2θ
h
Φ
³
(y +∆− θ)

p
β
´
−Φ

³
(y −∆− θ)

p
β
´i

g (θ) dθ > 0

we get

Eθ
h
−2θΦ

³¡
t0 − θ

¢p
β
´i
− Eθ

h
−2θΦ

³
(t− θ)

p
β
´i

> 0.

This implies that if 0 < y ≤ 1 it cannot be the case that the welfare function attains its global
maximum for t ∈ (y, 1].
We conclude that both if y ∈ (0, 1] and if y > 1 it has to be the case that the global maximizer of
the welfare function, t∗, satisfies

−1 < t∗ < 0 < y.

Proof of Corollary 1. From the proof of Proposition 1, we know that t∗ solves

∂

∂t
Ex [W (t)]

Á
t=t∗

= 2f (t∗) {2F (t∗)− 1− t∗} = 2φ
∙
t∗ − y

σ

¸½
2Φ

∙
t∗ − y

σ

¸
− 1− t∗

¾
= 0. (18)
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where

σ ≡
r
1

α
+
1

β

is the unconditional standard error of the consumers’ private values.

Using the chain rule
∂t∗

∂α
=

∂t∗

∂σ

∂σ

∂α
, and

∂t∗

∂β
=

∂t∗

∂σ

∂σ

∂β
.

First, notice that
∂σ

∂α
=

1

2
q

1
α +

1
β

µ
− 1
α2

¶
< 0

and
∂σ

∂β
=

1

2
q

1
α +

1
β

µ
− 1
β2

¶
< 0.

Since t∗ has to satisfy equation (18), it follows from the implicit function theorem that

∂t∗

∂σ
= −

∂ 2φ t∗−y
σ

2Φ t∗−y
σ

−1−t∗

∂σ

∂ 2φ t∗−y
σ

2Φ t∗−y
σ

−1−t∗

∂t∗

. (19)

The denominator of expression (19) is negative, since t∗ is a maximum. Next, we show that the

numerator is positive.
∂
n
2φ
h
t∗−y
σ

in
2Φ
h
t∗−y
σ

i
− 1− t∗

oo
∂σ

=

=

½
2Φ

∙
t∗ − y

σ

¸
− 1− t∗

¾
2φ

∙
t∗ − y

σ

¸
(t∗ − y)2

σ3
− 4

½
φ

∙
t∗ − y

σ

¸¾2 (t∗ − y)

σ2
=

= −4
½
φ

∙
t∗ − y

σ

¸¾2 (t∗ − y)

σ2
> 0

where the second equality holds because the first term is null by condition (18), and the inequality

holds because by Proposition 1, t∗ − y < 0.

We can conclude that
∂t∗

∂σ
> 0.

and that therefore
∂t∗

∂α
=

∂t∗

∂σ

∂σ

∂α
< 0and

∂t∗

∂β
=

∂t∗

∂σ

∂σ

∂β
< 0.

Proof of Proposition 2. The characterization of the equilibrium and derivation of the
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uniqueness condition follow directly from the Appendix of Morris and Shin (2004).

The evaluate the sign of ∂t(p,y)
∂p ,and ∂t(p,y)

∂y , notice that since t (p, y) has to satisfy expression (7),

then:

∂t (p, y)

∂p
= −

∂[t−Φ[(t−y)z]+1
2
−p]

∂p

∂[t−Φ[(t−y)z]+1
2
−p]

∂t

= − −1
1− φ [(t− y) z] z

∂t (p, y)

∂y
= −

∂[t−Φ[(t−y)z]+1
2
−p]

∂y

∂[t−Φ[(t−y)z]+1
2
−p]

∂t

= − φ [(t− y) z] z

1− φ [(t− y) z] z
.

When the uniqueness condition is satisfied, the denominators of the two expressions above are

strictly positive, therefore
∂t (p, y)

∂p
> 0 and

∂t (p, y)

∂y
< 0.

Proof of Proposition 3. If consumers play the equilibrium strategy profile, then all the

consumers who observe xi > t (p, y) and who therefore have an idiosyncratic taste component

εi > t(p, y)− θ, buy a and everyone else buys b.

For the second part of the claim, note that

∂na (·)
∂ya

=
∂na

∂y

1

2
=

µ
1

2

¶½
−φ

h
(t (p, y)− θ)

p
β
ip

β

µ
∂t

∂y

¶¾
=

=

µ
1

2

¶½
−φ

h
(t(p, y)− θ)

p
β
ip

β

µ
− φ [(t− y) z] z

1− φ [(t− y) z] z

¶¾
> 0
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Proof of Proposition 4. For the first statement, notice that the equilibrium threshold for

the case of unsponsored networks, tu ≡ t (0, y) , satisfies

tu − Φ [(tu − y) z] +
1

2
= 0. (20)

Under the uniqueness condition, the lhs of (20) is monotonically increasing in t and tu is well-

defined. Since Φ [·] ∈ [0, 1], for any t ≥ 0 it holds that the lhs of (20) is strictly negative if t ≤ −12 .
Therefore, it has to be the case that tu > −12 . Moreover, for y = 0 the solution to (20) is tu = 0,
and since t(p, y) is strictly decreasing in y, it has to be the case that tu ∈

¡
−12 , 0

¢
.
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For the second and the third statement, we know from Proposition 1 that t∗ ∈ (−1, 0). Next,
we will prove that the welfare function is strictly decreasing in the interval t ∈ [tu, 0], which in
turn implies that t∗ ∈ (−1, tu) and that tu cannot be a point where the function attains its global
maximum.

Let t = tu. From the proof of Proposition 1, we know:

∂

∂t
Ex [W (t)]

Á
t=tu

= 2f (tu) {2F (tu)− 1− tu}

We will show that

2f (tu) {2F (tu)− 1− tu} (21)

is strictly negative.

First, notice that (21) has the same sign as 2F (tu)− 1− tu, since f (tu) > 0.

From the definition of tu

tu = Φ [(tu − y) z]− 1
2
.

By assumption, F (tu) = Φ
h
tu−y
σ

i
where

σ2 ≡ α+ β

αβ

is the unconditional variance of the consumers’ private values.

Therefore, we need to check the sign of

2Φ

∙
tu − y

σ

¸
− 1− Φ [(tu − y) z] +

1

2
= Φ

∙
tu − y

σ

¸
− Φ [(tu − y) z] +Φ

∙
tu − y

σ

¸
− 1
2
.

Since 1
σ > z and tu − y < 0, Φ

h
tu−y
σ

i
− Φ [(tu − y) z] < 0 and Φ

h
tu−y
σ

i
< 1

2 , then the derivative of

the welfare function evaluated at tu, which is equal to (21), is strictly negative.

Finally, let t ∈ (tu, 0]. We will prove that in this interval ∂
∂tEx [W (t)] < 0 as well. From the proof

of Proposition 1,
∂

∂t
Ex [W (t)] = 2f (t) {2F (t)− 1− t}

Since 2f (t) is always positive, the last expression has the same sign as 2F (t)− 1− t. The function

2F (t)−1− t is the difference of the two strictly increasing functions r (t) = 2F (t) and s (t) = 1+ t.

This difference is positive for t < −1, negative for t = tu and negative in t = 0 (since F (·) is the
cdf of xi which is distributed normally around y > 0 ).

Since the slope of s(t) is constant and the slope of r(t) is increasing in the interval t ∈ (−1, 0], it
cannot be the case that their difference is nonnegative in any point t ∈ (tu, 0). Therefore, it holds
that 2F (t)− 1− t < 0 in the interval t ∈ (tu, 0], which in turn implies that the welfare function is
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strictly decreasing in the interval t ∈ [tu, 0].
We can conclude that t∗ ∈ (−1, tu).

Proof of Corollary 2. Using the chain rule,

∂tu

∂α
=

∂tu

∂z

∂z

∂α

and
∂tu

∂β
=

∂tu

∂z

∂z

∂β
.

From Proposition 2, tu has to satisfy equation (20). It follows from the implicit function theorem

that

∂tu

∂z
= −

∂[tu−Φ[(tu−y)z]+ 1
2 ]

∂z

∂[tu−Φ[(tu−y)z]+ 1
2 ]

∂tu

= −−φ [(t− y) z] (tu − y)

1− φ [(t− y) z] z
.

Under the uniqueness condition z 6
√
2π, the denominator is positive. Also, from Proposition 4

tu − y < 0, hence the numerator is positive as well, and we can conclude that ∂tu

∂z < 0.

Finally, since

∂z

∂α
=
1

2

s
(α+ β) (α+ 2β)

α2β
·

αβ
¡
3αβ + 4β2

¢
(α+ β)2 (α+ 2β)2

> 0,

we can conclude that
∂tu

∂α
=

∂tu

∂z

∂z

∂α
< 0.

Similarly, since

∂z

∂β
=
1

2

s
(α+ β) (α+ 2β)

α2β
·

α2
¡
α2 − 2β2

¢
(α+ β)2 (α+ 2β)2

,

we can conclude that

for β <
α√
2
,
∂z

∂β
> 0 and

∂tu

∂β
=

∂tu

∂z

∂z

∂β
< 0,

for β >
α√
2
,
∂z

∂β
< 0 and

∂tu

∂β
=

∂tu

∂z

∂z

∂β
> 0.

Finally, we consider the limit cases. It holds that

lim
β→+∞

z = 0

which implies that as β goes to infinity, equation(20) which defines tu converges to

tu = 0.

Proof of Lemma 2. To calculate the expected market shares, it is sufficient to take the
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expectation over θ of the market shares expressed in Proposition 3. For the second part of the

claim, note that

∂Ex [na]
∂ya

=
∂Ex [na]
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¸
1
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µ
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1− φ [(t− y) z] z
− 1
¶¾

> 0.

Proof of Proposition 5. First, we prove that if a pure strategy SPNE exists, then it has to

be the case that ps ∈ (0, y).
The first order conditions of the firms optimization problem are

∂Ex [πa]
∂pa

= 1−Φ
∙
t (p, y)− y

σ

¸
− (pa − c)φ

∙
t (p, y)− y

σ

¸
∂t

∂p

1

2σ
= 0

∂Ex [πb]
∂pb

= Φ

∙
t (p, y)− y

σ

¸
−
³
pb − c

´
φ

∙
t (p, y)− y

σ

¸
∂t

∂p

1

2σ
= 0.

Both must be satisfied in equilibrium. Therefore, it has to be the case that
¡
pa, pb

¢
and ps = pa−pb

2

satisfy:

1− 2Φ
∙
t (p, y)− y

σ

¸
=
³
pa − pb

´
φ

∙
t (p, y)− y

σ

¸
∂t

∂p

1

2σ
. (22)

First, note that (22) can’t be satisfied if ps < 0 because that would imply that the lhs is positive

and the rhs is negative. Also, it cannot be the case that ps = 0 in equilibrium because in that case

the lhs would be positive and the rhs would be equal to zero. Moreover, it cannot be that ps = y

in equilibrium because in that case the lhs would be equal to zero and the right hand side would

be positive. Finally, it cannot be that ps > y in equilibrium because in that case the lhs would be

negative and the rhs would be positive. Therefore, if a pure strategy SPNE exists it has to be such

that ps ∈ (0, y). Notice that both the lhs and the rhs of 22 are continuous functions of p, therefore
G (ps) ≡ lhs − rhs is continuous as well. Moreover, G(p) is positive at p = 0 and is negative at

p = y, therefore it must have at least one zero in the interval p ∈ (0, y).
Next, we prove that ts ∈ (tu, y).
From Proposition 2, t (p, y) is strictly increasing in p and since ps > 0 then it has to be the case

that tu ≡ t (0, y) < t (ps, y) ≡ ts.
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From the definition of t (p, y) , it follows that t (y, y) = y. Since t (p, y) is strictly increasing in p

and ps < y, then it has to be the case that ts < y.

Finally, we need to show that Ex [W (tu)] > Ex [W (ts)]. This result holds because, as we have

shown in the proof of Proposition 4, Ex [W (t)] is strictly decreasing in the interval t ∈ [tu, y) and
ts ∈ (tu, y).

A.2 Discussion of the Existence of a Pure Strategy Equilibrium in Prices

We could not establish existence of a price equilibrium in pure strategies for general values of the

parameters α and β. Caplin and Nalebuff (1991) provide sufficient conditions for the existence of an

equilibrium in pure strategies for discrete choice models of differentiated product markets. Without

network externalities, our model reduces to an asymmetric probit which satisfies the assumptions

in Caplin and Nalebuff (1991). In the presence of network effects, instead, we cannot apply their

techniques to prove quasi-concavity of the profit functions. Therefore, although we proved that the

first order conditions of the firms maximization problems intersect at least once, this is not sufficient

to guarantee that their intersection constitutes an equilibrium. Nonetheless, we have examined the

shape of the profit functions for a grid of values of the parameters (α, β) in the relevant range

z (α, β) 6
√
2π, and in all cases the profit function was strictly unimodal and the intersection of

the first order conditions identified a pure strategy equilibrium.
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B Figures
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Figure 1: Aggregate surplus derived from the vertical quality of the goods for the case θ = 2.
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Figure 2: Aggregate surplus derived from idiosyncratic taste for the case θ = 2.
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Figure 3: Aggregate surplus derived from the network effect for the case θ = 2.
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Notes

1For a review of this literature, see Farrell and Klemperer (2004).

2See, e.g., Baake and Boom (2001).

3See Jullien (2007).

4This differentiation is both vertical and horizontal. On its website, Apple lists the top ten reasons to switch to a

Mac. Among them, “reason number 2” is that a Mac doesn’t crash (clearly a claim of higher vertical quality) while

“reason number 3” is the fact that Mac offers the best technology to store and play digital music (which is a feature

that different consumers might value differently, depending on the specific use they make of their computers).

5See Rust (1993).

6Chou and Shy (1990) and Church and Gandal (1992) address the same issue in models with indirect network

effects.

7More precisely, nj (s (x,p)) is defined as the Lebesgue measure of the set consumers joining network j. We leave

nj (s (x,p)) undefined for the case where the latter set is not measurable. In equilibrium, the set will be measurable.

8Throughout the paper, we will assume that the law of large number holds for a continuum of independent

variables, i.e. we will assume that the distribution of the idiosyncratic component in the population is the same as

the distribution of any individual εi.(see Judd 1985).

9For the concept of ex-ante efficiency, see Holmström and Myerson (1983).

10For a discussion of the results using ex-post efficiency, see the Conclusions.

11Since there is a continuum of consumers, and we are assuming that the law of large numbers holds, for almost

every realization x the distribution of types in the population is the same as the distribution of each individual

xi. Then, for a given allocation (A,B), the sets (Ax,Bx) are identical for almost every realization of x, up to a
permutation of the i0s. In other words, the measures of these sets are the same, but the identities of the consumers

that belong to each of them can change. In what follows, we will restrict attention to allocations (A,B) such that
Ax and Bx are Lebesgue measurable for almost every realization of x.

12The derivation of 2 is included in the proof of Proposition 1.

13The main purpose of Figure 1 and Figure 2 is to describe the qualitative features of the components of consumer

surplus associated with vertical and horizontal quality for a given positive θ that we fix equal to two. For this

illustrative purpose, we abstract from the absolute values each of these functions takes for specific values of the

parameters (α, β) and specific realizations of θa, θb . Therefore, we do not report the scale of the vertical axis.

14For a discussion of this result, see the Conclusions.

15More precisely, in that case the strategy profile that constitutes the only equilibrium in switching strategies is

also the unique rationalizable strategy profile of the game (see Morris and Shin (2004)).

16For an analogous discussion of the uniqueness condition in this class of games, see Morris and Shin (2004), section
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2.3.

17 In their (1993) paper, De Palma and Leruth show that in a duopolistic network market with horizontally dif-

ferentiated products the demand function is well-defined if and only if the amount of horizontal differentiation, as

measured by the variance in consumers’ idiosyncratic taste for the goods, is sufficiently large. Their setting corre-

sponds to the special case of our model in which the common quality component of the goods is perfectly observed

(α = +∞), and there is no vertical differentiation (θ = y = 0). Our results are consistent with those in De Palma

and Leruth (1994), since in this special case our uniqueness condition is satisfied iff β ≤ 2π, i.e. iff there is a sufficient
amount of horizontal differentiation.

18For a discussion of the existence of a pure strategy equilibrium see the Appendix.

19See, e.g., Shaked and Sutton (1982) for a model of pure vertical differentiation and Anderson and de Palma

(2001) for a model with both horizontal differentiation and quality differences.

20Note that in this model, the firm that has an advantage is not literally the firm “selling the best product” but is

the firm that is expected to sell the best product.
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