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Abstract

This paper studies a connections model of network formation in which players
are heterogeneous with respect to values as well as the costs of forming links.
We start by showing that value heterogeneity is important in determining the
level of connectedness of a network, while cost heterogeneity is important in
shaping both the level of connectedness as well as the architecture of individual
components in a network.

We then explore the role of cost heterogeneity in a society which is divided into
distinct groups and intra-group links are cheaper as compared to inter-group
links. Here we find that inter-connected stars with locally central players are
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We interpret our results as saying that centrality, center-sponsorship and small
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1 Introduction

The role of social and economic networks in shaping individual behavior and aggregate
phenomena has received increasing attention in recent years.! This work has moti-
vated research into the processes through which networks emerge and is the primary
motivation for developing a theory of network formation. In this paper, our interest
is in the role of ex-ante asymmetries among the players in shaping the architecture
of networks.?

We will focus on the connections model of network formation.? In this model there is
a set of players who each gains from accessing other players. Player 1 can access player
2 directly by forming a link; this link also allows player 1 access to other players that
player 2 is accessing on his own. We shall consider the version of this model in which
links can be formed by individuals independently (they are one-sided), but flow of
benefits is two-sided and frictionless.? Bala and Goyal (2000a) show that if a player’s
payoffs are increasing in the number of other players accessed and decreasing in the
number of links formed, then a strict Nash network is either a center-sponsored star
(a network in which one player (the center) forms links with all the other players)
or the empty network (with no links). They also show that the dynamics induced
by myopic best-response individual learning converge to the strict Nash networks.
In this paper we will examine the impact of ex-ante player heterogeneity on these
findings.

We start with a general model of heterogeneous players: the costs to player i of a
link with player j as well as the benefits of such a link are allowed to depend on
both 7 and j. In addition, we assume that the length of the path does not matter
in defining the benefits (there is no decay). We first consider a particular form of
cost heterogeneity: for any player i the costs of forming links with every other player

!There is a large body of work on this subject. See e.g., Burt (1992) on careers of professional
managers, Montgomery (1991) on wage inequality in labour markets, Granovetter (1974) on flow of
job information, and Coleman on diffusion of medical drugs (1966).

2Ex-ante asymmetries arise quite naturally in different contexts. For instance, in the context
of information networks it is often the case that some individuals are more interested in particular
issues (such as computer software) and therefore better informed which makes them more valuable
at contacts. Similarly, individuals differ in communication and social skills and it seems natural
that forming links is cheaper for some individuals as compared to others. Finally, individuals can
often be classified into distinct groups (based on geographical or cultural reasons) and forming links
within a group is easier and cheaper as compared to forming links across groups.

3This model has been extensively studied in the literature; see e.g., Bala and Goyal (2000a,
2000b), Dutta and Jackson (2000), Falk and Kosfeld (2003), Goyal (1993), Haller and Sarangi
(2001), Jackson and Wolinsky (1996), Johnson and Gilles (2000), McBride (2002) and Watts (2000,
2001). We discuss this work after presenting the model and our results.

4Examples of this include telephone calls in which people exchange information and investments
in personal relationship which creates a social tie yielding value to both partners.



are ¢; but we allow this cost to vary across players. In this setting we find that
if benefits are homogeneous then a strict equilibrium is either an empty network
or a center-sponsored star. By contrast, if values are heterogeneous then partially
connected networks can also arise, though each (non-singleton) component constitutes
a center-sponsored star (Proposition 3.1). This results suggests that heterogeneity in
benefits is important in determining the level of connectedness of a network. We then
move to a model with general cost heterogeneity where costs of forming links vary
across individuals and in addition for the same individual the costs of forming links
are sensitive to the identity of the potential partner. In this setting we obtain the
following equivalence result: a (strict) equilibrium network is minimal and conversely
every minimal network is a (strict) equilibrium for suitable costs and benefits. We also
find that this equivalence obtains even if benefits are restricted to be homogeneous
(Proposition 3.2). Figure 1 illustrates the set of minimal network architectures in
a society composed of four players. Taken together these results suggest that cost
heterogeneity is important in shaping the level of connectedness of networks as well
as the architecture of individual components. These results also clarify the role of
different forms of cost heterogeneity and in particular imply that the ‘everything is
possible’ nature of our equivalence result is closely related to cost heterogeneity which
arises when the costs of linking vary for the same player.

This leads us to develop an insider-outsider model where the society is composed of
distinct groups. The cost of forming a link between two players is (weakly) increasing
in the distance between the groups to which the two players belong. Thus, the distance
among groups may be interpreted as the degree of heterogeneity across players.

In this setting, we obtain three main results. Our first result provides a complete char-
acterization of strict Nash equilibrium networks. This result shows that an equilib-
rium network is either a single center-sponsored star or a collection of center-sponsored
stars or a generalized center-sponsored star (Proposition 4.1). The generalized center-
sponsored star architecture has a central player i: if we start at player ¢+ and move
along a path with players iy,19,13,...,7,, then the link between players ¢ and i, is
formed by player ¢, the link between player i; and 7 is formed by player i1, and so
on. Furthermore, the group to which player ¢ belongs constitutes a center-sponsored
star and all other groups are completely fragmented (between every pair of members
of such a group there is a member of another group). Figure 3 depicts all the strict
Nash architectures in a society composed of two groups. Our second result is about
the dynamics of individual learning. In the two-groups case we show that a dynamic
process based on individual myopic best responses converges to a minimal curb set
and also provide a complete characterization of the minimal curb sets. We find that
a minimal curb set is either a strict Nash equilibrium identified above or is a set of
networks in which each group constitutes a center-sponsored star and there exists a
single link between the center-sponsored stars (Propositions 5.2). The process cycles
within this set as the player forming the single link between the groups is indifferent
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between linking with any of the players in the other group. This characterization of
the minimal curb sets highlights how local centrality can arise in the long run, a pat-
tern which was not picked up by the static model. This local centrality feature is also
interesting from the viewpoint of social efficiency as the following remarks indicate.

Our third result is about efficient networks. In the insider-outsider model, it is clear
that an efficient network must minimize the number of outsider links since they are
costlier as compared to insider links. Thus in a society with 2 groups an efficient con-
nected network has each group entirely internally linked and 1 outside link (Propo-
sition 4.2). By contrast, a (connected) strict equilibrium network is a generalized
center-sponsored star, with n —n; outsider links (where n; is the number of players in
the core group). If there are 2 groups and 50 players in each group then an efficient
network has 98 insider links and 1 outsider link, while a strict equilibrium network has
49 insider links and 50 outsider links! This may suggest that individual link formation
can lead to a significant waste of resources. Our results on the dynamics however sug-
gest that individual learning can mitigate this problem: the dynamics may converge
to a limiting set in which every network consists of two center-sponsored stars linked
with a single cross group link.

Our paper is a contribution to the theory of network formation. This is a very active
area of research currently; see e.g., Aumann and Myerson (1989), Dutta, van den
Nouweland and Tijs (1995), Kranton and Minehart (2000, 2001), Slikker and van
den Nouweland (2001a, 2001b), and the other references in footnote 1. These papers
and indeed most of the existing literature focuses on homogeneous player models.
We first relate our results to the findings of Bala and Goyal (2000) reported earlier.
Our results on general heterogeneity elaborate on the respective roles of values and
costs of forming links in shaping network architecture. In particular, we show that
value heterogeneity across players is crucial in determining the connectedness of a
network, while differences in costs of linking across players is crucial in shaping the
architecture of individual components as well as the connectedness of a network. Our
results — static and dynamic — on the insider-outsider model show that the properties
of centrality, center-sponsorship and small diameter, are robust in settings where
linking costs are based on membership of groups.

We next discuss two recent papers which also allow for heterogeneous players, Johnson
and Gilles (2000) and McBride (2002). Johnson and Gilles (2001) consider two-
sided link formation while we study one-sided link formation. There are also other
differences in terms of the model specification, such as the role of decay and the
insider-outsider formulation that we use. These differences lead to very different
results. Johnson and Gilles find that if cost of linking is low as compared to the
potential benefit, locally complete networks (where a player is always connected to
at least one of his direct neighbors and belongs to a complete subnetwork), are more
likely to arise in equilibrium. This is in contrast to our findings which show that a
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(non-empty) strict equilibrium network is a center-sponsored star (or its variants) for
all costs of forming links. McBride (2002) focuses on value heterogeneity and partial
information about network structure. In the present paper, we start by showing
that value heterogeneity is important for connectedness but is not crucial for the
architecture of the components in a network. This leads us to focus on the role of
cost heterogeneity in shaping network architecture.

The rest of the paper is organized as follows. Section 2 presents the model. Section 3
presents results on equilibrium networks under general cost and value heterogeneity.
Section 4 analyzes an insider-outsider model. Section 5 studies the dynamics while
section 6 concludes.

2 The Model

Let N = {1,...,n} be a set of players and let ¢ and j be typical members of this
set. We shall assume throughout that the number of players n > 3. Each player is
assumed to possess some information of value to himself and to other players. He can
augment his information by communicating with other people; this communication
takes resources, time and effort and is made possible via pair-wise links.

A strategy of player i € N is a (row) vector g; = (i1, .-, Gii—1, Gi.i+1, ---» i.n) Where
gij € {0,1} for each j € N\ {i} . We say that player 7 has a link with j if g; ; = 1.
A link between player i and j can allow for either one-way (asymmetric) or two-way
(symmetric) flow of information. We assume throughout the paper that a link ¢; ; = 1
allows both players to access each other’s information. The set of strategies of player
1 is denoted by G;. Throughout the paper we restrict our attention to pure strategies.
Since player i has the option of forming or not forming a link with each player of the
remaining n — 1 players, the number of strategies of player i is clearly |G;| = 2"~1.
The set G = G; X ... X G, is the space of pure strategies of all the players.

A strategy profile ¢ = (¢1,...,9,) can be represented as a directed network. Let
g € G. We use g — g;,; to refer to the network obtained when a link ¢;,; = 1 is
deleted from g. To describe information flows, it is useful to define the closure of g :
this is a non-directed network denoted g =cl(g), and define by g, ; = max {g; ;,g;:}
for each ¢ and j in N.? Pictorially, the closure of a network simply means replacing
every directed edge of g by a non-directed one. We say there is a path in g between
i and j if either g; ; = 1 or there exist players ji, ..., j, distinct from each other

and ¢ and j such that {gi,jl =..=0;. ;= 1} . We write i <2 J to indicate a path
between ¢ and j in g. Furthermore, a path between i and j is said to be i — oriented if
either g; ; = 1 or there is a sequence of distinct players i1, %9, ..., 7, with the property

>Note that Ji; = 9;,; so that the order of players is irrelevant.



that: {gis, = giyin =1, ..., i, j = 1} . Define N% (i;g) = {k € N |gi . = 1} as the set of
players with whom ¢ maintains a link and let 1 (g) = | N (i; g)| be the cardinality of

the set. The set N (i;g) = {k: eEN ‘z AN k:} U{i} consists of players that i observes
in g, while y,; (9) = | N (4;9)] is its cardinality.

Given a network g, we define a component as a set C'(¢g) C N such that Vi, j € C (g)
there exists a path between them and there does not exist a path between Vi €
C'(g) and an player k € N\ C (g) . Given a network g, let #C (g) be the number of
components in g. A network g is said to be minimal if #C (g) < #C (g — ¢.), for
any ¢;; = 1. Moreover a network g is said to be connected if it is composed by only
one component, i.e. #C'(g) = 1. If this component is minimal, then g is said to be
minimally connected. It follows that each link in a minimally connected network is
critical in the way that it is enough to delete it, ceteris paribus, to induce some degree
of social isolation in the society. Finally, a network g is partially connected if it is
neither empty nor connected.

We note that center-sponsored star, g®**, is a network architecture in which one player
forms links with each of the other (n — 1) players and there are no other links.

To complete the definition of a normal-form game of network formation, we specify
the payoffs. Let V;; denote the benefits that player ¢ derives from accessing player
J. Similarly, let ¢; ; denote the cost for player ¢ of forming a link with player j. The
payoff to player ¢ in a network g can be written as follows:

IL; (9) = Z Vij— Z Cij (1)

JEN(i5g) JEN(isg)
We shall assume that ¢; ; > 0 and V;; > 0 for all 4,5 € N.

Given a network g € G, let g_; denote the network obtained when all of player i’s
links are removed. Note that the network g ; can be regarded as the strategy profile
where i chooses not to form a link with anyone. The network g can be written as
g = g; ® g_; where the ‘®’ indicates that ¢ is formed as the union of the links in g;
and g_;. The strategy g; is said to be a best response of player i to g_; if:

IL (9; ® g_;) 2 1L; (g: ® g_;) for all g; € G;. (2)

The set of all of player ’s best responses to g_; is denoted by BR; (¢_;) . Furthermore,
a network g = (g1, ..., gn) is said to be a Nash network if g; € BR; (g_;) for each i,
i.e. players are playing a Nash equilibrium. If a player has multiple best responses
to the equilibrium strategies of the other players then this could make the network
less stable as the player can switch to a payoff equivalent strategy. This switching
possibility in non-strict Nash networks has been exploited and has been shown to be
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important in refining the set of equilibrium networks in earlier work (see e.g., Bala
and Goyal (2000)). So we will focus on strict Nash equilibria in the present paper. A
strict Nash equilibrium is a Nash equilibrium where each player gets a strictly higher
payoff from his current strategy than he would with any other alternative strategy.

We define the social welfare of a network g as the sum of payoffs of all players.
Formally, given a network g, its welfare, W : G — R, can be stated as follows:

W(Q)ZZHi (9) forg €G. (3)

A network is said to be efficient if W (g) > W (¢') for any ¢’ € G. Hence, an efficient
architecture can be seen as the one that minimize the cost of providing a certain
amount of information to the players.

3 General Heterogeneity

In this section we shall study the scope of individual incentives in restricting network
architectures in a setting of general costs and value heterogeneity. Our results will
clarify that value heterogeneity is important in determining the connectedness of a
network while heterogeneity in costs matters both for the level of connectedness as
well as for the architecture of individual components of a network.

We start with a consideration of a setting in which players may differ in their costs
of forming links but the costs of forming links for an individual are independent
of the potential partner. Our first result establishes an equivalence between the
set of center-sponsored star networks and the set of (strict) equilibrium networks if
values are homogeneous. On the other hand, if values are allowed to vary freely then
we find an equivalence between the set of minimal networks in which non-singleton
components are center-sponsored stars and the set of (strict) equilibrium networks.

Proposition 3.1 Let payoffs satisfy (1) and suppose ¢;; = ¢;, ¥Vj € N. If V;; =
V.Vi,7 € N, then a strict equilibrium s either empty or a center-sponsored star;
conversely any such network is a strict equilibrium for some {c;,V'}. If values vary
freely then a strict equilibrium s either empty or a minimal network in which every
(non-singleton) component is a center-sponsored star; conversely any such network is
a strict equilibrium for some {c;,V; ;}.

Proof: We note first that any equilibrium network is minimal; this follows from the
no decay assumption. We next show that if ¢; ; = ¢;, Vj € N then any non-singleton
component C(g) in a strict equilibrium network g must be a center-sponsored star.
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If there are two players in this component then the claim is obviously true. So let
us consider a component with 3 or more players. Without loss of generality there
is a pair of players 7 and j such that g;; = 1. We note that player i cannot access
any other player k via this link with player j. If there were such a player then since
¢ij = ¢i, VJ € N, player ¢ would be indifferent between linking with j and & and ¢
would not be a strict equilibrium. We next note that no such player k forms a link
with ¢. If k& formed a link with ¢ then &£ would in turn be indifferent between linking
with ¢ and j. Combining these observations it follows that player ¢ must be forming
links with all players in the component and so it constitutes a center-sponsored star.
We next take up the cases of homogenous and heterogeneous values, respectively.

First consider the case of homogeneous values. Suppose ¢ is a non-empty (strict)
equilibrium network. We will show that it is connected. Let C(g) be a non-singleton
component in g and let j ¢ C1(g). From above it follows that there exists a player
i € C1(g) who is central and sponsors all links in C(g). Since g is a strict equilibrium
this implies that ¢; < V' The marginal payoff to forming a link with j is at least V,
and so player ¢ can increase his payoff by forming an additional link, contradicting
the hypothesis that ¢ is an equilibrium. Thus ¢ is connected and we have proved that
if values are homogeneous then an equilibrium network is either empty or a center-
sponsored star. We now take up the converse case. The empty network is a (strict)
equilibrium if ¢; > V for all i, while a center sponsored star with 7 at the center is a
(strict) equilibrium if ¢; < V.

Second we consider the case of heterogeneous values. From the above arguments it
follows that any component in a non-empty (strict) equilibrium network must be a
center sponsored star. We now prove the converse. Fix some minimal network ¢ in
which every (non-singleton) component is a center sponsored star. Let there be m
components in this network, C; (g) ,...,Cy (g9) . Let ¢ € C;(g) be the central player
in Ci(g). For any link g¢;; = 1, set ¢; < V;;, while for every component Cj (g),
k=2,...m, set 3 c Vej <cgforalazeCig). It follows that the links of i are
optimal while no additional links are profitable for any player x € C;(g). Since C1(g)
was arbitrary, the proof follows. O

The above result illustrates the role of value heterogeneity in defining the level of
connectedness of networks: homogeneous values ensure connectedness of networks,
while heterogeneity can generate partially connected networks. We next note that
¢; = c is a special case of the above result. This tells us that the results on equilibrium
networks with homogeneous costs and values obtained in Bala and Goyal (2000)
can in fact be generalized to allow for heterogeneity in costs of forming links across
individuals. Is this also true if costs of forming links are different for the same
individual, depending on the potential partner? The following proposition shows that
matters are quite complicated in this case.



Proposition 3.2 Let payoffs satisfy (1) and suppose costs vary freely. Then a strict
equiltbrium is minimal; conversely, any minimal network is a strict equilibrium for
some {c; ;,Vi;}.

Proof: Minimality follows directly from the no decay assumption. We now prove
the converse. Fix some minimal network g. We set the costs and values as follows:
Vi; =V, Vi,j € N and for any link g; ; = 1, let the corresponding cost ¢; ; = € <V,
while for any link g;; = 0, set the corresponding cost ¢;; > (n — 1) V. The proof
follows. O

Figure 1 illustrates the set of minimal network architectures for a society composed
of four players. In this figure a filled circle on a link next to a player indicates that
this player has formed the link and pays for the link. This result shows that if costs
of forming links for an individual vary across partners and costs of forming links
are different for different players then strategic interaction imposes no restrictions on
network architecture. We also note that the proof of the second part of the result
actually uses homogeneous values to support arbitrary minimal networks. This shows
that, in case of general cost heterogeneity, the level of value heterogeneity plays no
important role in determining network architecture. We summarize our analysis of
the general heterogeneity model in the following table.

Costs\ Values Homogeneous Heter ogeneous

g%, minimal networks
in which every non-

Homogeneous o8 g singleton component
is a center-sponsored
star

g8 minima networks
in which every non-

Gij=Gi o5 g singleton component
is a center-sponsored
star

Heter ogeneous Minimal networks Minimal networks
Table 1

This table tells us that value heterogeneity is important in determining the level of
connectedness of networks. We also observe that cost heterogeneity is important
in shaping both the level of connectedness as well as the architecture of individual
components. Finally, this table also highlights the significance of different forms of
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cost heterogeneity in shaping networks. In particular it implies that the ‘everything
is possible’ nature of our equivalence result is closely related to cost heterogeneity
which arises when the costs of linking vary for the same player.

4 An insider-outsider model

In this section we consider a society in which individuals are divided into pre-specified
groups, and the costs of forming links within the groups is lower as compared to costs
of forming links across groups. This leads to a model in which costs of linking are
partner specific. Our analysis yields a characterization of strict Nash and efficient
networks.

We consider a society composed by m groups. Let n; = |N;| be the size of group
[, with [ =1,2,3,...,m. The set of players is then N = U], N;. We assume perfect
symmetry in value across individuals and we normalize it to one, i.e. V;; = 1 for
all 3,57 € N.5 To allow for cost heterogeneity we consider a spatial cost structure:
groups can be ordered in a line according to some well defined characteristics. The
distance between two groups can be interpreted as a measure of the heterogeneity
that distinguishes them. Given two players ¢ € N; and j € Ng, the cost of forming a
link g; ;, is:

cij = cji = f (|l — kI) (4)
If 7 and j belong to the same group we let:
Cij = Cj; = f (0) =CL (5)

We shall assume that f(-) is (weakly) increasing in its argument and c¢;, > 0. Let

Nk (35 g) ={j € Ng|gi; =1}, for k = 1,...,m,; then define N (i; g) = U, N®* (4; g) .
Furthermore, let %" (¢) be the cardinality of N* (i; g) . In other words, u" (¢) rep-

resents the number of links initiated by 7 with members of group k. Hence, given a

network ¢ and a player i € N;, the payoff function described by (1) can be rewritten

as follows:

m

1L (9) = pi(g) = > p* F (|l — K]) (6)

k=1

We note two interesting special cases of our specification.

0This normalization simplifies the statement of our results; on occasion this normalization can
create some confusion between the notions of component value and component size. For instance, our
statements relating costs of forming links with specific networks are clearly restrictions on component
value and not on component size alone.
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1. Homogeneous Players: This case arises when f(0) = f(1)=...=f(m—1) =
c. This implies that player i’s payoff is the number of players he observes less the
total cost of link formation. Clearly, the distinction between inside and outside links
becomes irrelevant and we can consider that the whole society is composed of one
group. In this case the payoff may be written as follows:

IL; (9) = s (9) — 1 (g) c. (7)

This is the linear payoff model presented in Bala and Goyal (2000).
2. Two-cost levels: The case of two-cost levels arises when we assume that f (d) =
ey, V¥d > 1, and f (0) = ¢;, < cy. We can then write the cost structure as follows:

o _ e ifijeN, ®)
W\ ey, ifie Nyand j € Ny, 1 #k

In words, the cost of creating an outside link across groups, ¢y, is higher than the cost
of creating an inside link within a group, c;. However, links formed with different
external groups are equally costly.

We now develop some additional notation. Given a network g, we say that two

players i,i" € N, are internally linked if either g;» = 1 or there exists a group of
distinct players {i1,42, .94} where i, € N; for any = € {1,...,k} such that g;;, =
Girip = --- = Gip.iv = 1. A group N, is entirely internally linked if every pair of players

1,7 € Nj is internally linked. Similarly, a pair of players i,7 is externally linked if
gi» = 0 and there exists a group of distinct players {ji, jo,..jx} where j, ¢ N, for
any x € {1,...,k} such that g;;, = G5, = ... = Gj,.v = 1. A group N, is entirely
externally linked if every pair of players 7,7’ € N is externally linked. Moreover,
a group which is linked but neither entirely internally linked nor entirely externally
linked is referred to as a hybrid group. Finally, let the diameter of a non-singleton
component C (g) be defined as the length of the largest geodesic distance between
any pair of players belonging to it, i.e. D (C (g)) = max; jec(q) d (i, 5;C (g9)).” We now
define some network architectures that arise in this model.

Definition 4.1 A generalized center-sponsored star is a minimally connected network
which satisfies the following conditions:

(¢) 31 and Ji € N; such that g;; = 1,¥j € N\ {i}.
(i7) For anyj € N, 1 NN j, is an i — oriented path.

(i1i) Consider ani— oriented path, i,i1,is, ..., in with {gis, = ... = gi_,i, = 1} . Let
ir € Ny, then f (|l — lsa|) < f(Jle = Iz]) forx e {k+2,k+3,...,n}.

TGiven two players i and j in g, the geodesic distance, d (i,7;g) , is defined as the length of the
shortest path between them.
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We note that a generalized center-sponsored star will have the feature that along
any path starting from the central player there can be at most m players. Thus the
diameter of any such network is at most 2m, which is independent of the size of the
society and only depends on the number of groups. We shall use ¢9¢° to refer to any
generalized center-sponsored star network. Figure 2 illustrates a generalized center-
sponsored star. A network in which each group constitutes a distinct center-sponsored
star and there are no links across groups has the unconnected center-sponsored stars
architecture. We shall use g““* to refer to any network with this architecture.

Our first result provides a complete characterization of strict Nash networks in the
insider-outsider model.

Proposition 4.1 Suppose (4) and (6) hold. Assume that ny >2,Vl=1,...,m.

1. If ¢, > 1 then the empty network is the unique strict equilibrium.

2. Suppose ¢, € (0,1), then there are three cases: (2a) if f(1) € (cp,1), then
a strict equilibrium is a generalized center-sponsored star. (2b) If f(1) €
(1, max [nq, ...,ny]), then a strict equilibrium does not exist. (2c) If (1) >
max [nq,...,Ny,] , then the only strict equilibrium is an unconnected center-
sponsored stars.

Proof: See the appendix.

Figure 3 illustrates the different strict Nash architectures for a society with two groups
of two players each (n; = ny = 2). We note that strict equilibrium networks have very
specific architectures and thus strictness is a useful refinement. The proof consists
of a set of lemmas, which are stated and proved in the appendix. The first step of
the proof shows that in every non-singleton component of a strict Nash network g
there exists at least one inside link (Lemmas 1 — 3). For simplicity assume that g is
connected; then there is a path between any two players belonging to the same group,
say 1,7 € N;. There are two possible path configurations. First, the two players are
directly linked and if this is the case the claim follows. Second, the two players access
each other indirectly, through other players. In this case it is shown that the network
must have the following pattern of links: {g;; = 1,..., gk~ = 1}, with 5,k ¢ N;. Next
we note that the same property must also hold for j, 7' € Ny: there exists a player
k' ¢ Ny who lies in the path between j and j'. Since the number of groups is finite
and each group is composed of at least two players, an iteration of this argument
shows that there will exist two players belonging to the same group who access each
other via a direct link. The second step shows that if a group has an inside link
then it has to be entirely internally linked and constitutes a center-sponsored star
(Lemma 4). Here we use two arguments. One, we use network externality effects
to argue that if two players of a group are directly linked then all members of this
group must belong to the same component. Two, we use the switching argument to

12



show that given an inside link, i.e. g; = 1 with 4,7 € N;, ¢ will bear all the links
with members of his own group. Hence, group N, is entirely internally linked and
constitutes a center-sponsored star.

The third step in the proof shows that if a group is not entirely internally linked
then it is entirely externally linked (Lemma 5). Consider a connected strict Nash
network. Let IV; be the group highlighted in the previous step and let ¢ be the center
of this group. Consider a path between ¢ and j, who is an end-player of the path.
Suppose for simplicity that ¢ and j have a direct link. If g;; = 1 then player j has
a strict incentive to delete his link with player 7 and instead form a link with some
player j* whom he accesses via player ¢ and who belongs to his own group. Given our
assumption n; > 2, there exists such a player. Hence this cannot be an equilibrium
network. A variant of this argument involving switching allows us to cover the case in
which players ¢ and j are indirectly linked. Given the i — orientedness of each path,
it is easy to see that along any path leading away from player i, there can be at most
one player of any specific group. Hence it follows that if we take a pair of players in a
group ! # [ there exists a path (since g is connected) and along this path there is no
player of group I’. Thus all groups apart from [ are entirely externally linked. This
observation yields the property that the diameter of the network is less than or equal
to 2m. The final step in the proof consists of combining the above observations for
different cost parameters.

We discuss some aspects of this characterization result. The first remark is about
insider and outsider links. Our result shows that there is one group, the core group,
which is entirely internally linked in the connected strict Nash network, while all other
groups are entirely externally linked. In other words, the formation of local connec-
tions is not allowed in equilibrium (except for one group). This is an unexpected
result and it suggests that incentives for link formation can completely undermine
the structure that one might have expected: a set of local center-sponsored stars
(corresponding to individual groups) linked with each other. Two, we note that the
diameter of connected strict equilibrium networks is independent of the number of
players, and depends only on the number of groups. Thus we expect strict equilibrium
networks to have a relatively short diameter.

The third observation concerns the centrality and center-sponsorship properties. If the
strict Nash network is connected, there is a player ¢ such that all paths are oriented
toward him. Hence, this player plays a particularly central role in the network.
Furthermore, if the strict Nash network is non-empty but unconnected, then each
component consists of members of one group and it has the center-sponsored star
structure.

The fourth remark is related to the two special cases introduced in the specification
of the insider-outsider model. An application of Proposition 4.1 to the homogeneous
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player example reveals that if ¢ > 1 the only strict Nash network is the empty one,
while if ¢ € (0, 1) then the only strict Nash network is a center-sponsored star. This
corresponds to the finding of Bala and Goyal (2000) for the linear model. Let’s now
turn to the two-cost levels case. When cy € (cp,1), a strict Nash network has a
generalized center-sponsored star architecture. More formally, there is an individual,
say ¢ € N; which is the center of the whole network: each path in the network is
oriented to him. Furthermore, group /V; is the only group to be entirely internally
linked. Moreover, the members of all the remaining groups are passively linked with
some members belonging to group N;.® In particular, if all the remaining players are
passively linked with player i, then the network is a center-sponsored star.

Our fifth remark is on the assumption that there are at least two members in each
group. If we relax this assumption and allow for some groups to have only one
member then two substantial changes occur. The first change is that there may exist
more than one entirely internally linked group while the second change is that the
non-existence of equilibrium may be avoided. The following example illustrates these
points. Consider a society composed by three groups, where group /N; and N5 consist
of three players and group N, has only one player. Let g be a connected network
depicted in Figure 4. When f (1) € (¢z,1), g is strict Nash. We note that in g
all groups are entirely internally linked. Now, suppose that f (1) = 1 + ¢, where € is
positive and small enough. Again, the network g is strict Nash. However, if we assume
that group N, consists of more than one player, a standard switching argument leads
to the non-existence result.

We now turn to the issue of efficiency. We first introduce some new terminology that
will be used in the proposition below. Let ¢™¢ refer to a minimally connected network
with each group N; forming a minimally connected component with n; — 1 inside
links respectively and with (m — 1) outside links of distance one. Finally, a partially
connected network with each group generating a minimally connected component will
be denoted as gE¢.

We start with an example which illustrates the role of group size in shaping efficient
networks. For simplicity, we consider the two-cost levels case. Let the society be
composed by three groups where group /V; is small while groups N, and N3 are large.
Suppose now that ¢;, € (0,1) and ¢y < 2n9ns, then an efficient network must have the
three groups internally linked and group N, and N3 connected by one outside link.
However, if cy € (2n;y (ng + n3), 2ngong) then it is socially efficient to leave group N,
isolated. Therefore, the efficient network is one in which the three groups are linked
internally and where group N, and N3 are connected by one outside link while group
Ny is left out. Clearly, if ¢, € (0,1) and ¢y < 2nq (ne + n3) the efficient network
is minimally connected with m — 1 outside links, while if ¢y > 2nsns then only a

SWe say that an agent i is passively linked with an agent j if g;; = 1 and g; ; = 0.
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partially connected network where the three groups are linked internally is efficient.
Finally for ¢;, > max {n1, n9,n3} and ¢y sufficiently high the only efficient network is
the empty one. This variety in efficient networks arises due to the differences in sizes
of the different groups. To keep matters simple, in what follows we therefore restrict
attention to the case of equal size groups.

The following result provides a complete characterization of efficient networks for
the case of equal group sizes. Let n; = for all [ = 1,2,..,m; moreover, we define
c1 =mn? and ¢y = [ma(mn — 1) — (mn — m)cg]/(m —1).

Proposition 4.2 Suppose (4) and (6) hold. In addition suppose that n, = n, ¥V
[=1,2,...m.

1) Suppose ¢, € (0,m). If f(1) € (cp,c1) the network g™ is uniquely efficient,
while if f(1) > ¢; then the network gE¢ is uniquely efficient.

2) Suppose ¢, € (m,mn). If f(1) € (cp,c2) then the network g™ is uniquely
efficient, while if f(1) > co then the empty network is uniquely efficient.

3) If ¢, > mn then the empty network is uniquely efficient.
Proof: See the appendix.

Figure 5 illustrates two (non-empty) efficient architectures for a society composed of
three groups and three players each. The proof is presented in the appendix. We
briefly sketch the main steps here. An efficient network is minimal; this follows from
the no-decay assumption. When c¢j, is high enough the empty network is efficient,
while if ¢;, is relatively low it is beneficial for the society to have each group internally
linked. Considerations on f (1) allow us to divide this cost space into two sub-spaces:
for f (1) high enough the society is better-off leaving each group isolated by the others,
yielding the network gF¢, while if f(1) is not so high then the connected network arises.
However, only a connected network with a minimal number of outside links (m — 1)
and all of ‘length’ one, is efficient. This yields us g™¢.?

We have showed that if ¢ is efficient the corresponding set of strict Nash networks
does not contain any architectures compatible with the efficient one. This conflict
persists until the level of f (1) is such that any outside link is not beneficial both
from an individual and social point of view. When this is the case, the heterogeneity
introduced in the model becomes irrelevant and our problem degenerates in a sum
of independent homogeneous problems leading to unconnected center-sponsored stars

Y Each minimally connected network produces the same gross social welfare but different minimally
connected networks will have a different total cost depending on the allocation of links.
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networks. It follows that the trade-off between efficiency and stability fades in this
case.

The conflict between efficient and equilibrium connected architectures arises out of a
misallocation of links: too many outside links are set-up in order to obtain connect-
edness. Consider a connected network g and pick two players belonging to a group
different from the core group, then if g is strict Nash, they will access each other via
a sequence of outside links. This does not allow network participants to minimize the
costs of connecting with each other and this lowers social welfare.

We now make two remarks about how this conflict between equilibrium and efficiency
can be mitigated. One possibility arises within the static framework if we relax the
assumption, used in the characterization of strict Nash networks, that each group is
composed of at least two players. Consider a society composed by three groups where
groups Ny and N3 consist of three individuals each while group N, consists of a single
individual. Suppose f (1) € (¢, 1) . The network depicted in Figure 4 is strict Nash.
Moreover, this network satisfies all the necessary conditions for a connected network
to be efficient: the allocation of links is optimal from a societal point of view. In
general, the presence of a single player between two heterogeneous groups composed
by at least two individuals mitigates substantially the conflict between the notion
of efficiency and strategic stability. The second remark is about the stability of the
network in which each group constitutes a center-sponsored star and there is a single
link across the groups. For example, consider a society composed by two groups
of the same size (n; = ng) and let g be a network where each group constitutes a
center-sponsored star and a player ¢ belonging to group 1 forms a link with a player
j belonging to group 2. We note that this network is efficient for ¢, < 1 and ¢y < nj.
We note that this network is not a strict Nash network but that it is stable in the
following sense: player i has a strict incentive to retain each of the within group links,
and the moving around of the cross group link has no effect on the attractiveness of
the within group links. This suggests a form of local stability. We now turn to a
dynamic analysis to explore the scope of this argument.

5 Dynamics of network formation

In this section we shall examine a dynamic model of network formation based on
myopic best response decision making by individuals. Our results establish that the
dynamic process always converges and provide a characterization of networks that
arise in the long run.

For a given set A, let A (A) denote the set of probability distributions on A. We
suppose that for each agent i there exists a number p; € (0,1) and a function ¢, :
G —A (G;) where ¢, satisfies, for all ¢ € G: ¢, (g) € Interior A (BR;(g_;)). For g,
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in the support of ¢, (g) , the notation ¢, (¢) (§) denotes the probability assigned to g;
by the probability measure ¢, (¢) . If the network at time ¢t > 1 is ¢’ = ¢} ® ¢’ ;, the
strategy of agent ¢ at time ¢ 4 1 is assumed to be given by:

t+1 | Gi € support ¢, (g), with probability p; x ¢, (9) (6:)
i 9is with probability 1 — p;

We assume that the choice of inertia as well as the randomization over best responses
by different agents is independent across agents. This implies that our decision rules
induce a transition matrix 7" mapping the state space G to the set of all probability
distributions A (G) on G. Let {X;} be the stationary Markow chain starting from the
initial network g € G with the above transition matrix.

We note that there is an equivalence between the set of absorbing states and the set
of strict Nash equilibria of the static game studied in sections above. However, our
results on strict equilibrium networks reveal that in the insider-outsider model there
are certain parameter values for which there exist no strict Nash networks. Thus the
study of the dynamics is interesting from two points of view: one, they tell us whether
the learning by individuals converges to a definite network and two, they tell us what
happens when there does not exist a limiting state.

We will use the notion of curb sets in our analysis. A strategy profile set, G C G is
closed under rational behavior (curb) if BR (g) € G for any g € G. A curb set G is
minimal if there not exist a proper subset which is a curb set. It is well known that
any game with a compact strategy set and payoffs that are continuous with respect
to the strategies of players has at least one minimal curb set. However, a game may
have several such sets, each of them containing networks with different architectures.
Our results will prove convergence of the dynamic process to a minimal curb set and
also completely characterize these minimal curb sets.

We first study the case where for each player the costs of forming links are independent
of the potential partner. The proposition below summarizes our analysis for this case.

Proposition 5.1 Let payoffs satisfy (1). Suppose that for any player i, ¢; ; = ¢;, and
Viji=1foralli and j. Let player x be such that ¢, = min{c;},; . If cz <1 then the
dynamic process converges to a center-sponsored star and if ¢, > 1 then the dynamic
process converges to the empty network, with probability 1.

Proof (Sketch): The proof of this result uses arguments analogous to Theorem 4.1
in Bala and Goyal (2001) and we provide a brief sketch only. We will focus on the
case ¢; < 1. The case where ¢; > 1 is analogous and omitted. The first step shows
that starting from any initial network the dynamics transit to a minimally connected
network with positive probability. This follows from noting that a transition path in
which players move in sequence one at a time and player x moves last has positive
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probability. The second step in the argument starts from a minimally connected
network and uses a combination of mis-coordination and agglomeration arguments
as in Bala and Goyal (2000) to show that there is a positive probability of reaching
a center-sponsored star. The only difference is that the agglomeration argument is
applied not to an arbitrary player, but to a player such that ¢; < V. These arguments
show that starting from any initial network there is a positive probability of transition
to a center-sponsored star with some player j (where ¢; < 1) as the center of the star.
The proof then follows from standard results in the theory of Markov chains. O

This result makes two points. The first point is that the dynamics of the model are
well behaved: they converge to strict Nash networks which have a unique architecture
and always exist. This is line with the result presented by Bala and Goyal (2000)
for homogeneous players. Hence, whenever the costs of linking of each player are
independent of the potential partner, cost heterogeneity does not affect the process of
agglomeration and miscoordination through which players learn about the network.
The second point is about the identity of central players: heterogeneity restricts the
players who can be central players. For example, if ¢; < 1 while ¢; > 1 for all the
remaining players then the only strict Nash network is a center-sponsored star with
¢ being the center.

We now consider a society where an individual’s cost of forming links can depend on
the identity of the linked player. Matters are considerably more complicated here as
the following example illustrates: consider the insider-outsider model with two groups
A and B each with three players {14,24,34} and {15,25,35}, respectively. Let ¢ <
1 and ¢y < 3. Consider a network in which players 14 and 15 respectively form the
centers of their respective groups and sponsor the links as well. In addition suppose
that player 14 forms a link with player 15. In this network all the players except
player 14 have a unique best response while player 1, has multiple best responses:
he retains links with his own cohorts but can switch between players 15, 25 and 3p.
It is to be noted that the best responses of the other players are insensitive to such
changes by player 14. It is easily verified that this network along with the possible
best responses of player 1, constitutes a minimal curb set of the game. Moreover,
once the dynamics enters this set it will cycle within this set forever. We also note
that if ¢; < ¢ < 1 then in addition to this minimal curb set there are other minimal
curb sets which correspond to the generalized center-sponsored stars (these are strict
Nash networks in this parameter range). Our next result builds on these observations
to obtain a convergence result for the two-groups setting. To state and prove this
result we need to introduce some additional notation.

A network in which each group constitutes a center-sponsored star and a single player
1 of group [ forms a link with some player j of group I', I' # [, is referred to as a
connected center-sponsored stars network. Note that as player ¢ varies his links across
players of group !’, distinct connected center-sponsored stars networks arise. We shall
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use G7*° to denote the set of these networks. We shall use G*® to refer to sets with this
property in general. A set of networks G* C G is a super tight curb set if BR (g) = G*
for any g € G*. This set may be considered a generalization of the strict Nash notion.
To see this note that in a super tight curb set, for any i € N, BR; (g_;) = G; for any
g—; € G*,. In words, the best response set of a player ¢ is invariant inside the set G*.
We note that a strict Nash network constitutes a super tight curb set.

Proposition 5.2 Suppose (4) and (6) hold and there are 2 groups. For generic
values of cy and cy,, the dynamic process converges to a super tight curb set, G*, with
probability 1. (1) Suppose cf, € (0,1): if cy € (cr, max [ny,na]) then G* € {g9°, G},
while if cg > max [ny,ne] then G* = {g"*}. (II) Suppose c;, > 1: then G* = {¢°},
for all cg > cp.

Proof: See the appendix.

The proof of this result consists of several steps. We start with the case ¢, € (0,1)
and cy € (cp, max [ny,ns]). The general argument is to show that starting from any
initial network there is a positive probability of transiting to a super tight curb set.
We sketch the argument for the case ¢, < 1 and ¢y < 1. In the following steps
each of the transitions occurs with positive probability. The first step shows that
starting from any network gg, the process transits to a minimal network ¢;. The
second step shows that starting from a minimal network the process converges to
a minimal network ¢gs in which at least one of the two groups N; or N, is entirely
internally linked. The third step shows that the process transits to a minimal network
g3 in which the internally linked group is a center-sponsored star. The fourth step
takes up the different cases that can arise in g3: in case g3 consists of two group based
center-sponsored stars then there is a transition to the set G°. In case g3 consists
of only one center-sponsored star the process transits to either a single g9 or to the
set Gees,

We next sketch the arguments for the case ¢, > 1. The first step checks if some
player has an incentive to form links. If not then we get all players to move and
arrive at the empty network which is the unique strict Nash network in this range of
parameters. If some player of (say) group 1 wishes to form links, then we can use an
agglomeration argument to show that all players in this group will want to access this
player in turn. We then work with a component which contains all members of the
group. We now identify a player of this group who is maximally linked x and show
that there is an agglomeration cum isolation process at work. A player will either
move and link with this player  or be isolated in this process (we exploit 1 < ¢, < ¢y
to show isolation). This process thus transits to a network in which a group 1 player
is either a part of a periphery-sponsored star or is isolated. This part of the argument
is quite complicated as we have to keep track of the members of the two groups along
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the transition process. The final set of arguments exploit mis-coordination among
players to transit from a periphery-sponsored star to a network in which all members
of the group are isolated.

The above result shows that myopic individual learning leads over time to a stable
architecture of networks. Moreover, the long run (connected) network is either a
single center-sponsored star or a generalized center-sponsored star or an interlinked
star with locally central players. We would like to emphasize two aspects of the above
result. One, it shows convergence to one of two specific architectural form, in all cases.
This is a strong result given the very large number of possible network architectures.
Two, it shows how dynamics can complement the static analysis nicely. In the static
model we noted that for some parameter ranges no strict Nash networks exist and
that there was a sharp conflict between strict Nash and efficient networks in some
cases. The study of dynamics shows us that in the case where no strict Nash networks
exist the process is still very well behaved and we can pin down precisely the long
run outcomes. Moreover, we find that these long run outcomes are in fact much more
efficient than the strict Nash outcomes. Thus dynamics may help resolve some of the
tension between individual incentives and social efficiency as well.

6 Conclusion

We have studied a connections model of network formation in which players are
heterogeneous with respect to benefits as well as the costs of forming links. We
start by showing that value heterogeneity across players is crucial in determining
the connectedness of a network, while differences in costs of linking across players
are crucial in shaping both the level of connectedness as well as the architecture of
individual components in a network. We then explore an insider-outsider model in
which it is cheaper to form intra-group links as compared to inter-group links. Our
main finding here is that interconnected stars with local central players are socially
efficient as well as dynamically stable in such a setting. The results in our paper
lead us to believe that centrality, center-sponsorship and small diameter are robust
features of networks.

Appendix

Proof of Proposition 4.1: We recall some definitions that will be used in the
proof. In a network g, a path between ¢ and j is said to be ¢ — oriented if either
g:; = 1 or there is a sequence of distinct players {41, is, ..., 4, } with the property that:
{9iiy = Girin = 1,...,9i,; = 1}. The proof consists of a sequence of steps, which are
covered in the following lemmas.
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Lemma 1: Suppose g is a strict Nash network. If g; ; = 1, where i € Ny and j € Ny,
L #1', then i does not access any player j' via the link g; ; =1 where j' € Ny and k
is such that |l — k| < |l —=1|.

Proof: Consider a strict Nash network g. Choose i € N; and j € Ny, | # I', such
that g; ; = 1. Let j' € Ny where k is such that |l — k| < |l —{'|. Suppose i accesses j’
via the link g, ; = 1. The spatial cost structure implies that 7 can do at least as well
by deleting his link with j and forming a link with j’. This contradicts strict Nash.
O

Lemma 2:Suppose g is a strict Nash network. Assume g¢; ;, = 1,7 € N;, j € Ny,
[ # ly and let {jo,J1, .., jx} where j, € N; for any = € {0,...,k}, be the set of
players who agent 7 accesses via the link g; ;, = 1, then g, = 0, Vj’ € Nj such that
|k — 1] > |k — ;| for some z € {0, ..., k}.

Proof: Suppose g;;, = 1. Since the cost of forming links is non-decreasing in the
distance between players’ groups, j' can do at least as well by deleting his link with
7 and forming a link with j,. This contradicts strict Nash. O

Lemma 3: Suppose n; > 2,V 1 =1,...,m. Suppose g is a strict Nash network, then
wmn any non-singleton component there exists a pair of players who belong to the same
group (this group will differ across components) and have a direct link.

Proof(Sketch): Consider a non-singleton component C' (g). There exists g;; = 1,
i € Nyand j € N\{i}. Suppose that j € Ny, [ # I'. We first note that, given g; ; = 1,
it must be true that N; C C'(g). This follows by noting that the returns to a player
k € N, from linking with component C(g) are strictly greater than the returns to
player i, while the costs are strictly smaller (since k forms a link with 7). Hence every
player k£ € N; must belong to C(g). Therefore i € N; must access every ¢’ € N; in g.
There are two possibilities. One, i accesses ' via j. This violates Lemma 1. Two, ¢
accesses ¢ via a player j’, where g, = 1. Given g¢; ; = 1, Lemma 2 implies that the
link g, = 1 is sustainable in a strict Nash network, only if j* belongs to a group that
is not accessed by 7 before the link g;; = 1 has been formed. Next note that, using
the above argument, it follows that all members of j”’s group must belong to C (g).
Suppose j' € N,. Then Lemmas 1 and 2 imply that j' accesses any j” € N, either
by being directly linked, and if this is the case the proof trivially follows, or by being
passively linked with some player j” € N, belonging to a group other than {. We
can then repeat the same argument with respect to 7 and j”. Since the number of
groups is finite, we will eventually arrive at a point where two members of the same
group are directly linked. The proof follows. O

Lemma 4: Assume n; > 2,V 1 = 1,....m. Suppose g is a non-empty strict Nash
network. If g;» =1, i,i" € Ny, then g;» = 1, Vi’ € N\ {i}.
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Proof: Consider a non-singleton component, C (g). Given the argument in Lemma
3, if g, = 1, for 4,7 € N;, then N; C C(g). We first note that, if g;» = 1, then
gin; =0,V ¢ € N \{i}. This follows from the standard switching argument: if
gi; = 1 then player 7" is indifferent between linking with ¢ and ¢’, and g is therefore
not a strict Nash network. We now have two possible configurations. First, suppose
that N; = C (g) . Then an application of the switching argument immediately implies
that g;» = 1, for all " € N;. Second, suppose N; & C(g). Since C(g) is connected,
there is a path between i and ¢”, and d(i,7"”) > 2. Then there is some player j # "
such that g; ; = 1. Suppose that j € N;. If g, ; = 1 then a simple switching argument
applies with regard to player ¢+ and this contradicts the hypothesis that ¢ is strict
Nash. If g;; = 1 then the switching argument applies to player j, who is indifferent
between the link with 7 and the link with /. This contradicts the hypothesis that g is
strict Nash. Similar arguments can be used in the case that j ¢ N; to complete the
proof of this lemma. O

Lemma 5:Assume n; > 2, VI = 1,....,m. Suppose g is a connected strict Nash

network and let i € N be the player identified by Lemma 4. Then any path i <2 j,
Vi € NN\ Ai}, is i — oriented.

Proof: Let g be a strict Nash network which is connected. Since ¢ is minimal,
every path starting at ¢ ends with a well defined end-player. The proof proceeds by
contradiction. Suppose there is a path ending with player j, which is not i-oriented.
If g;; =1 and j is not i-oriented then g;; = 1. From Lemma 4 we infer then that
j € Ny where I’ # 1. Next, since n; > 2, we can apply a switching argument for player
j with respect to some i’ € N;, and that contradicts the hypothesis that g is a strict
Nash network.

Suppose next that g; ; = 0. Let {iy, 2,13, ...,%,}, be the players on the path between
¢ and j, with g;;, = ... = @;,; = 1. We first take up the case g;,, = 1. Let
j € N if i,, ¢ N, then a simple switching argument with regard to player j and
some member of group z implies that ¢ is not a strict Nash network. If i, € N,,
there are two possibilities: (i) ¢;,_,:, = 1 and (ii) ¢;,4,_, = 1. In the first case,
player i,, 1 is indifferent between a link with player ¢,, and a link with player j. This
contradicts the hypothesis that g is a strict Nash network. In the second case, there
are two sub-cases: suppose i, and 7,_; belong to the same group; then a switching
argument applies to player j, with respect to players i, and i,_,. If i, and ,_;
belong to different groups then a switching argument applies to player 7,, with regard
to members of the group of i,, 1 (given that n; > 2, for all i =1,2,...,m).

Consider finally the case g;, ; = 1. Let k be the first player along the path {41, 42, ..., i, },
such that g1 = 1. Let 441 € N,. Since gx_2,_1 = 1 by hypothesis, Lemma 1 im-
plies that iz, 541, ..., in ¢ Ny. By hypothesis, n, > 2, and so there is a player p € N,
p # ix_1, and we know that p ¢ {ig,ix1,..1,7}. This is true because otherwise iy o
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can switch from ix_1 to p. Thus, p € N\{ix_1,%k,-..,in,j}. In this case however, a
switching argument would apply to player 7, with regard to p. Hence ¢ is a not a
strict Nash network. This contradiction completes the proof of the lemma. O

Lemma 6: Assume n; > 2, V1 = 1,...,m. Suppose g is a connected strict Nash
network. Then D (g) < 2m.

Proof: This follows directly by Lemma 1, 3, 4 and 5 O

We now complete the proof of Proposition 4.1.

1.

2a.

2b.

2c.

Consider a strict Nash network g and suppose ¢, > 1. We claim that the only
strict Nash network is the empty one. Suppose that there exists a non-singleton
component C' (g). Using arguments from Lemma 3 it follows that if i € N;, and
gi; = 1, then N; C C(g). If N; = C(g), then it is easy to show by applying
the switching argument that C(g) is a center-sponsored star. However, this
is impossible given the hypothesis that ¢, > 1. If on the other hand, C(g)
contains players from more than one group then it follows that g is a connected
network. Lemma 5 now implies that there is central player and that all paths
are oriented towards this player. However, given that f(1) > ¢; > 1, this is not
sustainable in equilibrium. This contradicts the hypothesis that ¢ is a strict
Nash equilibrium. Hence the empty network is the only possible strict Nash
network.

Suppose ¢, € (0,1) and f (1) € (¢, 1). Suppose g is a strict Nash network; given
the parameter restrictions, it is immediate that g must be connected. Lemma 3
and Lemma 4 imply that g satisfies property (7). Since g is connected, Lemma
5 holds and that implies property (ii). Considering the restrictions imposed by
Lemma 1, Property (7ii) follows by verification.

Suppose ¢;, € (0,1) and f (1) € (1,max [ny,...,n,]) . Suppose g is a strict Nash
network; first we note that it must be connected. Lemma 5 implies that g has a
central player i, and that all paths are i-oriented. However, f (1) > 1, g cannot
be sustained in equilibrium, leading to a contradiction. Hence, there does not
exist a strict Nash network.

Suppose ¢f, € (0,1) and f (1) > max [nq, ..., n,y,). Consider a strict Nash network
g. From Lemmas 3 and 4 it follows that either ¢ has m components correspond-
ing to each of the groups or it is connected. In the former case, Lemmas 3 and
4 imply that each of the components is a center-sponsored star. In the latter
case, Lemma 5 implies that g has a central player and all the paths are oriented
towards this player. But then the argument from Part 2b applies and such a
network cannot arise in equilibrium given that f(1) > max([ny, ..., ). O
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Proof of Proposition 4.2: In this proposition we assume equal group size, i.e.
n; = for any [ = 1,...,m. We first start with two observations: (a) The no-decay as-
sumption implies that each non-singleton component part of an efficient architecture
is minimal; (b) If g is efficient and non-empty then it is either minimally connected
with m—1 outside links of ‘length’ one and mn —m inside links, or partially connected
with each group generating a minimally connected component. This observation fol-
lows by the assumption of equal group size and by the definition of efficiency concept.
If a link between two members of the same group is socially efficient, then, from a
societal point of view, each group should be internally linked. Furthermore, the as-
sumption of equal group sizes implies that each group internally linked contributes
equally to the total social welfare produced by the network. It follows that if an out-
side link is social enhancing, then an efficient network should be minimally connected.
Moreover, since the definition of efficiency requires the minimization of the total cost
of information flow, a connected efficient network should have m — 1 outside links of
length one. Using these observations we compare three different architectures:

1) The social welfare from ¢, is given by:
W (g™) = (mm)* —m (7 —1) ez, — (m—1) f (1) (9)
2) The social welfare from ¢gF¢, is given by:

W (gh) =m@)° —m@—1)cy (10)

3) The social welfare from ¢° is given by:
W (g*) = mm (1)

First, we compare gk¢ with g¢. It is easily checked that W (g2¢) > W (¢¢) if and only
if Cr, S n.

Second, suppose ¢y, € (0,7] and compare g™ with gk¢. Simple computations show that
W (g™) = W (g¥) if and only if f (1) < mn? = ¢;. It follows that given c;, € (0,7] if
f (1) € (cp,c1] the only efficient network is ¢™¢, while if f (1) > ¢; the only efficient
network is gP¢. This proves part (1) .

Third, suppose ¢;, > 7 and compare ¢g™¢ with ¢g°. Again, simple computations show
that W (¢g™¢) > W (g°) if and only if f (1) < mﬁ(mﬁ_;);(fm_m)% = ¢o. We note that
¢o is a decreasing function of ¢, and attains the value mn when ¢, = mn. Suppose
therefore that ¢, € (m,mn). If f (1) € (cg,c2] then g™ is uniquely efficient, while if
f(1) > ¢o then ¢° is uniquely efficient. Finally, if ¢, > mn then ¢y < ¢f. Given our
hypothesis that f (1) > ¢;, it follows that empty network is uniquely efficient. This

proves parts (2) and (3). O
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Proof of Proposition 5.2: (I). ¢;, < 1: The first step shows that from any initial
network gg there is a positive probability of transiting to a minimal network ¢g;. Fix a
network go. Number the players 1,2, ...,n. Consider this sequence of players moving
one at a time starting with 1. We claim that after player n has moved the network ¢;
is minimal. Suppose not and there is a cycle of players. In that case consider players
in the cycle who initiate links. Within this set of players fix the player who moved
last. Clearly, this player did not choose a best response, as deleting one of his links
in the cycle would have increased his net payoffs. This contradiction completes the
argument.

The second step shows that starting from a minimal network g; there is a positive
probability that the process transits to a minimal network go in which there is at
least one group with one internal link. We focus on the case where g; is connected
and both groups are entirely externally linked. Then there exist players i,7" € N;
with g;; = 1 where j € N, and player i accesses ¢ via j. If g;; = 1 then (since
cr, < 1) there exists a best response for player i in which he will disconnect from j
and instead link with i’ and this will yield a hybrid group. The other possibility is
that g;; = 1. Since n; > 2, for [ = 1,2, there is a player j' € Ny who is accessed by j.
If this player is accessed via i the above argument leads to Ny being a hybrid group.
Since ¢; is minimal and we only let one player update at a time, the network g, must
be minimal. The other possibility is that j' is accessed via some other player i”. In
this case again variants of the above argument apply and the process transits to a
network with one group having at least one internal link. Similar arguments apply if
the initial network is not connected.

The third step shows that starting from a minimal network g, in which group N; is
hybrid there is a positive probability that the process transits to a minimal network
g3 in which group N is entirely internally linked. Let o1(g) be the number of links
between pairs of players in group N;. By hypothesis, o1 (¢) € [1,n1—1). Let g, » = 1,
for some pair of players 7,7 € N;. We distinguish between two cases. The first case
arises if players of IV; are spread over more than one component. Pick some player
1 € Ny and get him to choose a best response. It is straightforward to verify that since
cr, < 1 any best response of i, ¢., has the property that he accesses all players in own
group. Let ¢’ = g/ ® g_; be the new network. It follows that o1(¢g’) > o1(g9) +1. We
note that since ¢ is a minimal network and ¢, is a best response, it follows that ¢’ is
a minimal network as well. The second case is one in which all members of group N;
belong to a single component. Since V; is hybrid it follows that there exists a pair of

players z,y € N; such that <> y contains only players belong to Ny. This implies in
turn that there is at least one player i” € N, who is not internally linked with i. We

will focus on the case where the path 7 <> i” contains only players ji, j2, ..jn € No.!

10Tt is possible that for instance player i’ lies along this path; the arguments given below can be
adapted to deal with this complication easily.
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There are two sub-cases to consider.

(2a). If g; ;, = 1, then allow player i to play a best response. It follows from the
hypothesis c¢;, < 1 that there is a best response in which player ¢ will maintain all his
current links with players in own group (since network is minimal); in addition in any
best response, he will delete the link g; ;, = 1 and replace it with a link with some
player of his own group along the path. We can suppose without loss of generality
that the link g; ;» = 1 is formed. Define ¢’ = g/ ® g_;. It follows that o1 (¢') > o1 (9);
again note that ¢’ is a minimal network. A similar argument applies if g;» ;, = 1.

(2b). ¢;,.i = gj,.i» = 1: There are two possibilities here. (i). j; € N2 does not access
any player j' € N, via the link g; ; = 1 and (ii) j; does access some j' € Ny via this
link g;,; = 1. We take these cases up in turn.

2b(i). We first allow player j; to choose a best response; he is indifferent between
linking with ¢ and ¢’. If he does not link with the component that contains ¢ then we
arrive a network in which i does not access i and we get ¢ to choose a best response.
This leads clearly to a network ¢’ in which o1(¢’) > o1(g) + 1, and we are done. The
other possibility is that j;’s best response ¢ involves a link with i’s component and
in that case let us suppose that he forms a link with 7" and this yields a new network
g = g, ® g_;. In the new network ¢, player 7 is indifferent between linking with ¢’ or
1". Given ¢’ let j; and i move simultaneously. There is a best response in which player
1 switches from i’ to ¢”, while player j; switches from ¢’ to i, yielding the network ¢”.
We note that in ¢”, player i’ will be isolated and that ¢” will not be minimal. Now
allow player ' to choose a best response. Any best response will involve a link with
the component containing ¢ and we can suppose without loss of generality that he
forms a link with player . We now get player j; to move and any best response will
involve deletion of the link g¢;, ;. We have reached a minimal network ¢” in which
o1(g") = o1(g) + 1.

2b(ii). Let 5’ be the first player of group N, along the path ji, 1,41, ., ir... in g. We first
consider the case that g; ;, = 1. Allow players j; and j' to choose a best response. In
any best response player j; will delete the link g;, ; = 1 and instead link with some
player of his own group such as j’. Suppose this is the case. Similarly, in any best
response player ;' will delete the link g;;, = 1 and instead link with someone of own
group such as j;. Denote by ¢’ the resulting network. Now consider player ¢: in any
best response he will want to form a link with someone such as i”. Allow player ¢
to choose a best response. Finally, let player j; move and the resulting network ¢”
is minimal as well. It follows that o1(¢”) > o1(g) + 1. Next we take up the case
i, = 1. Let j; choose a best response. It follows that in any best response he will
delete the link with 4 and switch to a player of own group such as j’. Denote the
resulting network as ¢’. We now note that ¢’ is minimal and in ¢’, agent 4,, observes 7"
via the link g;, ;. Thus, we are in case 2(a) above, and the argument follows. We have
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thus shown that starting from a minimal network g with N7 as a hybrid group there
exists a path which leads to a minimal network ¢’ in which o1(¢g") > o1(g) + 1. Since
the minimal network ¢ is arbitrary we can repeat this step to arrive at a minimal
network in which group 1 is entirely internally linked.

The fourth step shows that starting from network g3 the process transits with positive
probability to a network g4 in which group V; is a center-sponsored star. Moreover,
g4 is minimal. Suppose that V; is entirely internally linked. Now assume that all
players 7 € N, exhibit inertia. We note that the process is analogous to a process with
only homogenous players choosing links starting at a minimally connected network.
So the arguments in Theorem 4.1 in Bala and Goyal (2000) can be applied to show
that there exists a sequence of best responses leading to a network ¢’ in which Nj is
a center-sponsored star.

We now complete the proof for ¢, € (0,1) and ¢y < max{ny,ns}: First suppose g4
consists of two center-sponsored stars one for each group. If the network is connected
and minimal then it must be the case that there is a single link between the two stars.
If this network is Nash then it is easily verified that the process has entered a set
of networks in which the player ¢ initiating this single cross-group link is indifferent
between forming this link with any of the players in the other star and the set of
networks generated by this switching of links by the player 7 constitutes a super-
tight curb set. Suppose the network is connected but not Nash. Since ¢, < 1 and
cy < max{ni, ny}, this must mean that there is a player j € N;, [ = 1,2 who wishes
to delete the cross group link. Allow this player j to move. He will delete this link
and retain any internal links he has in g4 (since ¢, < 1). Next choose the central
player in the other group Ny, with I’ # [ and get him to choose a best response. From
¢, < 1 and ¢y < max{ni,ny} it follows that he will retain all his current links with
own group members and in addition form a link with some player in n;. We have now
reached a Nash network and the first part of the argument can now be applied. We
note that if g, contains two center-sponsored stars and the network is not connected
then allowing any player in the smaller group to move will lead to a Nash network as
above.

Second, we examine the case where g, has only one center-sponsored star and let it
consist of N;. Given that ¢;, < 1 we can assume that N, is connected as well. Here
we have two possibilities. One, group N, is a hybrid group. Using the arguments
presented in steps 3-4 it follows that there exists a sequence of best responses which
leads to a network where group N, constitutes a center-sponsored star as well. We
can then apply the arguments presented above. Two, suppose group N, is entirely
externally linked. Then it has to be the case that ¢ is minimally connected. If all
the links have the appropriate orientation then ¢ is a generalized center-sponsored
star. Then if ¢y € (0,1) it follows that g is strict Nash and the proof follows. If
1 < ¢y < max{nj,ny} then g is not Nash. In particular, no outside links with
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isolated players are profitable. Let all i € N; move while all j € Ny exhibit inertia.
Denote the resulting network by ¢’. Note that in ¢’ group NV; is a center-sponsored
star, while each j € N, is a singleton. Now have a player j € N, move and any best
response by him will yield a network with 2 center-sponsored stars. If in addition
there is a single link across the groups initiated by j then we are done. Otherwise,
get a player i € N; to move and he will form a link with some j € Ny (because
cy < max{ni,ny}. Finally, assume one of the links is not suitably oriented. Since
group N, is entirely externally linked, and N; constitutes a center-sponsored star,
there exists some player j € Ny who forms a link with some i € N;. Let player j
update. It follows from ¢, < 1 and ¢, < cy that the link to ¢ will be replaced by a
link to some j' € Ny. In the resulting minimal network group 2 is a hybrid group,
while the architecture of group 1 is unchanged. We then apply arguments in steps
3-4 to arrive at two center-sponsored stars and the above arguments in this step to
complete the proof.

We next complete the proof for ¢, € (0,1) and ¢y > max{n,ny}: If there are two
center-sponsored stars in g, then this network is a strict Nash network and we are
done. If there is only one center-sponsored star consisting of group /NV; then consider
the other group. Suppose as before that it is connected. If it is hybrid then we first
use arguments in steps 3-4 to get this group to form a center-sponsored network and
then follow with the arguments above. The other case is that this group is entirely
externally linked. We get players from group 1 to move and since cy > 1, they
will all delete links with players in N;. Now get a player in N, to move and this
player will link with all players in own group. We have arrived at a network with two
center-sponsored stars and we are done.

(IT). ¢z, > 1: First, we note that the empty network is the unique strict Nash network
in this parameter range. We will argue that there is a positive probability of transiting
from any network g to the empty network g°. The first step constructs a path of
transition to a minimal network g;. This is similar to what we did in step 1 in part
(I) above. The second step checks if there is any player who wants to form a link.
If the answer is no then we have all players move at the same time and they all
delete any links they have and form no new links, which yields the empty network
and we are done. If the answer is yes then we suppose that this player ¢ belongs to
Ny, without loss of generality. We then construct a path of transition such that the
process reaches a minimal network in which players in N; are directly or indirectly
connected. Here, we first get player i to move and let ¢’ be the resulting network.
We then choose a player ¢/ € N7 who is not a member of the same component as ¢ in
¢’ to move and so on. The resulting network is denoted by gs.

The third step is the main part of the proof: here we construct a path which leads
to a network g3 in which all members of N; are isolated. Let C} be the component
that contains all members of N; and let 7,, € N; who has the maximum internal links.
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Since g is minimal it follows that for each path leading away from i,,, we can define
a player who is furthest away from i, and call him an end-player. Let Ej(g2) for
k = 1,2 be the set of end players belonging to groups 1 and 2, respectively. We first
take up end-players i € F1(g2) who have initiated links. We let them move one at a
time. If they have a best response in which they form no links then we allow them to
delete their links and they become isolated. Note that they will not form links with
any other component if they do not form a link with C;. If they have a best response
which involves forming links then surely they have a best response in which they form
a single link with player i,,. Let them all link with ¢,, and continue this process so
long as there is any end-player of group 1, who initiates links with some player other
than i,. This process thus leads to a network ¢’ in which if an end-player belongs to
group 1 then he either does not initiate a link or initiates a link with 4,,. Moreover if
z € Ny but z ¢ C1(¢') then z is isolated.

We now take an end-player i € F;(g’) who does not initiate a link. If there is some
such player x then there exists y € N such that g, , = 1. Let player y move. Since
1 < ¢, < cy, any best response of y must have g,, = 0, and player = will then
be isolated. We repeat this step until all end-players not initiating a link have been
isolated, and so all end-players in group 1 are initiating a link with 7,,. Now consider
an end-player j € Ny and look at the path j < ,,. If there is no such player then we
have arrived at a periphery-sponsored star and we can proceed to the last part of this
argument. If there is such an end-player and he initiates the link then check whether
this player wants to remain linked with this component. If not then allow the player
to move and delink from the component, and the end-players as above. If this player
wishes to remain linked with the component, then using arguments above we arrive
at a network in which all players in group 2 are connected. Now define j,, € Ny the
player who has the maximum internal links and it follows that player j has a best
response in which he forms a link with player j,,. We now repeat the steps above but
for end-players in group 2 and arrive at a network in which all end-players of group
2 are initiating links with j,, or isolated.

We have now defined two central players one for each group 1 and 2, respectively.
We repeat the above argument in tandem to proceed with the agglomeration process
with regard to each of the groups. This process leads to a network ¢’ with one the
following structures: there is a single component which is an inter-linked periphery-
sponsored star with members of N; forming one star and members of N, forming the
other star, it is two distinct periphery-sponsored stars, it is one periphery-sponsored
star with members of group 1 or group 2 and the other group has disintegrated or
the network is empty. In the last case we are done. In the first three cases we use the
following transition path: we number the periphery-players of a star from 1 to m, and
get player 1 to switch his link from the center to a link with player 2 and player 2 to
link with 3 and so on, until m links with 1. This leads to the central player becoming
isolated. We now get all players in the circle to move and their unique best response
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is to delete their single link in the circle. We have thus reached a network in which
no pair of players in the group are connected to each other. It is now easy to repeat
the argument with the other group and we arrive at the empty network. a
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Figure 1: Minimal Network Architectures (n=4)
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Figure 2: A Generalized Center-Sponsored Star Architecture
(7’1/1 = N9y = N3 = 4)
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