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Abstract

Bagwell (1995) argues that commitment in undermined by the
slightest imperfectness in observation. Guth, Ritzberger & Kirch-
steiger (1998) question this assertion: for any finite leader-follower
game, with arbitrary many players in each role and generic payoffs,
they show that there always exists a subgame perfect equilibrium out-
come that is accessible, i.e. it can be approximated by the outcome of
a mixed equilibrium of the game with imperfect observation.We show
that accessibility fails in a class of games played in economic environ-
ments, where the payoffs to commitment actions depend upon prices
set by other agents, prices being chosen from a continuum. Accessibil-
ity requires either that commitment is not required or that the price
setting agents have no monopoly power. Our result follows from a
generalized indifference principle which mixed strategies must satisfy
in such economic environments.
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1 Introduction

A key insight in Thomas Schelling’s classic book, The Strategy of Conflict, is

that the ability to commit oneself often confers a strategic advantage. While

Schelling emphasized the value of commitment in military and social situa-

tions, his insight has since been explored and formalized in diverse fields of

economics including industrial organization, international trade and political

economy — indeed, it is perhaps the most persistent idea in the explosion of

applications of game theory to economics since the 1980s. The foundations

of this literature have been questioned in a provocative paper by Bagwell

[1], who argues that the value of commitment in undermined by the slightest

amount of imperfect observation. Bagwell considers a leader-follower model,

where the leader’s chosen action (or commitment) is observed noisily by the

follower. He shows that the pure strategy equilibria of the noisy observation

game coincide with the pure strategy equilibria of the simultaneous move

game, where the follower has no observation of the leader’s action. Bagwell

interprets this result as saying that the slightest amount of noise completely

undermines the leader’s ability to commit.

Bagwell’s claim, and his focus on pure strategy equilibria, have been

questioned — pure strategy equilibria need not always exist in the noisy

game, e.g. if the simultaneous move game fails to have a pure strategy

equilibrium. van Damme and Hurkens [4] analyze the class of games with

one leader and one follower and generic payoffs. Such games have a unique

backward induction (or Stackelberg) outcome if observation is perfect. They

show that the Stackelberg outcome is always accessible – there exists a mixed

strategy equilibrium of the game with imperfect observation, whose outcome

converges to the Stackelberg outcome, as the noise in observation vanishes.1

1The noisy observation game will, in general, have multiple equilibria;van Damme and
Hurkens use equilibrium selection theory to argue that the mixed equilibrium supporting
the Stackelberg outcome is more likely to be played than any other equilibria. On the other
hand, Oecshsler and Schlag [10] use evolutionary dynamics to select the pure strategy non-
Stackelberg equilibrium. Huck and Muller [6] present experimental evidence showing that
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The accessibility result has been shown to be very general by Guth et. al. [5],

who consider finite leader-follower games with an arbitrary number of leaders

and arbitrary number of followers. If payoffs are generic, there always exists

an accessible subgame perfect equilibrium outcome of the game with perfect

observation. 2 The proof of this proposition is based on a fundamental

property of generic extensive form games – the existence of a stable sets and

an essential component. This suggests that existence of accessible outcomes

is likely to be obtained for a very large class of games with generic payoffs.

These results offer some comfort to the vast body of applied theory, which

analyzes multi-stage games. In particular, if a game has a unique subgame

perfect equilibrium outcome, this will be accessible in generic scenarios. This

offers an intellectual justification for the fact that applied theory continues

to analyze models of commitment without reference to Bagwell’s claims.3

This paper argues that in a wide range of economic environments, acces-

sibility may fail, so that the outcome of the game with perfect observation

cannot be approximated by equilibrium outcomes under imperfect observ-

ability. By economic environments, we mean situations where incentives to

commit are influenced by the prices chosen by other agents.4 One specific

class of games where our results apply is leader-follower games that are played

in a contracting environment. A second example that we consider is the in-

teraction between a strategic buyer, who seeks to commit to certain decisions

today in order to influence her terms of trade tomorrow, and the sellers who

quote prices to her. Our main finding is that an accessible outcome fails to

the outcome is close to Stakelberg when the noise is small.
2Not all subgame perfect equilibrium outcomes are accessible, even with generic pay-

offs — see the example in [5]. A similar result is obtained in finitely repeated games with
imperfect private monitoring — Bhaskar and van Damme [3] show that efficient equilib-
rium outcomes under perfect monitoring may not be accessible with imperfect private
monitoring.

3Since mixed equilibria can be purified by adding private payoff shocks (see Maggi [7]),
commitment power can be restored even in pure strategy equilibrium.

4Since prices maybe chosen from a continuum, the results of Guth et. al. do not apply
in our context.
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exist under very general conditions. The failure of accessibility arises since

mixed strategy equilibria in these economic environments have to satisfy a

generalized indifference principle – not only must the player randomizing be-

tween two actions be indifferent between these actions, those quoting prices

to him must also be so indifferent. So the contribution of this paper is to

re-instate the Bagwell critique, for a specific class of games.

The layout of the remainder of the paper is as follows. Section 2 sets

out a simple entry deterrence example, which illustrates our basic point of

the failure of accessibility. Section 3 characterizes the equilibrium outcomes

of leader follower games in a contracting environment, when there is perfect

observation of the leaders’ actions. Section 4 has our main results, when

there is noisy observation in leader follower games. Section 5 presents an

example, of a strategic buyer, that illustrates the more general economic

contexts where our point applies. The final section concludes.

2 An Entry Deterrence Example

The basic point of our paper is made most simply by considering the following

example of an entry-deterrence game, in Fig. 1. The leader is the incumbent

firm can choose whether or not to incur a costly investment. The entrant

observes whether investment is made (I) not (N), and decides whether to

stay out or enter.

I, the act of investment on the part of the incumbent, requires the pur-

chase of equipment. We shall assume initially that the investment good is

purchased in a competitive market at cost price c, i.e. p = c. v > c, so that

the backward induction outcome has the incumbent choosing I while the

entrant stays out. This simple game illustrates the value of commitment —

the incumbent invests only in order to deter entry.

Bagwell [1] has argued that the slightest amount of imperfect observation

undermines the commitment power of the incumbent. Suppose that when

the incumbent chooses I, the entrant observes the signal i with probability
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Figure 1: The Entry Deterrence Game

1 − ε, and the signal n with probability ε. If the incumbent chooses N, the

entrant observes n with probability 1−η and i with probability η. Then there

cannot be a pure strategy equilibrium where the incumbent chooses I with

probability one. The only pure strategy equilibrium is where the incumbent

does not invest, and the entrant enters irrespective of his signal.

However, there exists a mixed strategy equilibrium where the incumbent

invests with probability θ close to one (θ solves θε
θε+(1−θ)(1−η)

= 1
2
, so that the

entrant believes that investment has taken place with probability one-half

on observing n). The entrant stays out if he observes the signal i, and if

he observes n, he enters with probability γ. The incumbent’s payoff from

investing equals

U(I, ρ) = (v − γε) − p. (1)

Whereas his payoff from not investing is

U(N, ρ) = [(1 − γ)(1 − η) + η] v. (2)

Equating these payoffs yields γ = p
v(1−η−ε)

. Note that
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θ =
1 − η

1 − η − ε
, (3)

so that the probability of investment converges to 1 as ε → 0. Since

the entrant stays out whenever he observes i, the outcome (I,OUT) occurs

with a probability that tends to one as ε → 0. This is an example of the

result in van Damme and Hurkens [4], that in any game with one leader and

one follower and generic payoffs, the subgame perfect equilibrium outcome

is always accessible.

We now consider the implications of this game being played in a con-

tracting environment. Let us assume that there is a monopoly supplier of

equipment, whose cost of production is c. The game in the contracting envi-

ronment, Γ̃, is as follows. The supplier chooses a price, p, that is quoted to

the incumbent. This is observed by the incumbent alone, who then chooses

his action. The entrant observes the incumbent’s action and chooses his own

action. This game has a unique perfect Bayesian equilibrium, as follows.

The supplier chooses p = v. The incumbent chooses I if and only if p ≤ v,

and chooses N otherwise. The entrant stays out if he observes I and enters

if he observes N. Note that in this equilibrium, the supplier earns a profit of

v− c, and the action profile (I,OUT) is played with probability one – we call

this the outcome of the equilibrium. Call the outcome of this equilibrium the

Stackelberg outcome — the incumbent invests, buying equipment at price v,

and the entrant stays out. Observe that the action profile played in this equi-

librium coincides with that played when investment good is purchased on a

competitive market; however, the monopoly supplier earns profits that equal

his marginal contribution to the incumbent’s payoff at this equilibrium.

Now let us assume that the investment decision is observed only imper-

fectly. Recall that the prices quoted by the incumbent’s suppliers are not

observed by the entrant. We claim that there is no equilibrium with an

outcome that is close to the Stackelberg outcome. An equilibrium outcome

of the game with noisy observation consists of an (expected) profit for the

supplier and a probability distribution over player action profiles, i.e. it is
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an element of Euclidean space. So more precisely, if we let ε → 0, there does

not exist a sequence of equilibria of the associated games Γ̃(ε), the outcome

of which converges to the Stackelberg outcome in the Euclidean metric. Let

ε > 0 and assume that there is an equilibrium where the incumbent chooses I

with high probability, and where the supplier chooses any price p > c. Note

first in such an equilibrium, the incumbent cannot invest with probability

one, for the same reason as in the original Bagwell argument. For in this

case, the entrant will stay out regardless of the signal, and the incumbent

would therefore prefer not to invest. So let us assume that the outcome is

such that incumbent plays both I and N with positive probability. Let the

total probability that N is played be α. Consider first the case where the

supplier does not randomize, and let p > c be the supplier’s price chosen, so

that his payoff is

(p − c)(1 − α). (4)

We now show that α > 0 implies that p cannot be optimal for supplier

A, for he can do better by choosing p′ < p, where p′ is arbitrarily close to

p. If he chooses any price less than p, then we claim that the incumbent will

choose to invest with probability one. To verify this, inspect the expressions

for (1) and (2) — since the two are equal at p, it follows that the former

will be strictly greater when p′ < p. It follows that the supplier can earn

(p′ − c) for any p′ < p, which will exceed (p − c)(1 − α) for p sufficiently

close to p. Hence there cannot exist an equilibrium with outcome close to the

Stackelberg outcome, i.e. with p close to v,and where the incumbent invests

with probability close to one.

It remains to consider the case where the supplier randomizes across

prices. Suppose that he chooses p, p′ with positive probability, where p > p′.

At p, the incumbent must invest with positive probability, since otherwise

the supplier’s payoff is zero. The argument of the previous paragraph implies

that at p′, the incumbent invests with probability one. But then the supplier

can choose p′′ such that p > p′′ > p′, and the incumbent will still invest

with probability one, implying that p′ cannot be optimal. We have therefore
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shown that for any ε > 0, there does not exist an equilibrium where invest-

ment occurs with positive probability, and where the supplier chooses a price

which is greater than c. Since supplier profits equal v − c in the Stackelberg

outcome with perfect observability, this outcome is not accessible, since it

cannot be approximated in the game with imperfect observation.

This example does not rely upon the supplier having complete monopoly

power over the supply of the investment good, it only requires that there is

some monopoly power. Suppose that there is a second supplier for the same

good, whose cost of production where v > c′ > c. The equilibrium outcome

in the game without noise would have p = c′−c, so that the efficient supplier

makes positive profits. 5 However, in the game with noisy observation where

investment takes place, the incumbent must randomize, so positive profits

for the supplier are inconsistent with equilibrium.

The above argument makes clear that in any equilibrium where the in-

cumbent randomizes between I and N, the supplier must also be indifferent

between these actions, i.e. the supplier’s price must equal marginal cost c.

There does exist such an equilibrium — the supplier quotes p = c, and the

incumbent randomizes between I and N at this price.6 In such an equilib-

rium, the incumbent’s payoff is approximately v − c when the noise is small,

which is strictly greater than his payoff under perfect observability, 0. In this

equilibrium, the incumbent appropriates the supplier profits, which he can-

not do under perfect observability. In other words, if incumbent retains his

commitment power under imperfect observation, he also enhances his power

vis-a-vis his supplier, and captures all the surplus.

5This is true in any cautious equilibrium, where the inefficient supplier does not choose
price below c′.

6The precise continuation strategies for the strategies of the incumbent and entrant are
as given in equations [1]-[3], with p = c. If the supplier deviates and chooses p > c, the
incumbent chooses N for sure.
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2.1 A game where the leader has no incentive to devi-

ate

The entry deterrence game is a classic instance of a game where commitment

is important – the incumbent firm has no incentive to invest except in order to

deter entry. However, the failure of accessibility also applies when the leader

has no incentive to deviate from his subgame perfect equilibrium action in

the underlying game. Our second example, in Fig. 2, illustrates this. Assume

that x < 2 and x �= 1, so that the underlying game has a unique subgame

perfect equilibrium.
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Figure 2: Leader has no incentive to deviate, x < 2.

Consider the game of Fig. 2. The subgame perfect equilibrium outcome is

(T, L). Since this is a Nash equilibrium of the simultaneous move game, it is

also a pure strategy equilibrium outcome of the game with noisy observation.

Now consider the game played in a contracting environment where player 1,

the leader, requires to contract with a monopoly supplier, supplier T, in order

to play T. None of the other actions of either player need contracting with a

supplier. With perfect observation of the leader’s action, the price charged by
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this supplier, p(T ), must equal 1, the difference between the leader’s payoff at

(T, L) and (B,R). However, with imperfect observation, the outcome where

(T, L) and supplier T makes a profit of 1 is not accessible. In any equilibrium

where T is played with probability one, we must have p(T ) = 2−x, since the

follower will play L irrespective of the signal that he observes. On the other

hand, if the leader randomizes, p(T ) = 0 for the same reasons as in the entry

deterrence example. Thus we have a failure of accessibility in this example

as well, as long as x �= 1.

The basic characteristic of this example is that the leader’s action is

relevant to the follower, in the sense that the follower’s best response varies

depending on whether T or B is played). This condition, in conjunction with

supplier monopoly power, is sufficient to ensure failure of accessibility.

2.2 Robustness: Discrete Prices

Why is there a failure of accessibility? Our example, of a game played in a

contracting environment are clearly not generic extensive form game, in the

sense of Guth et. al. [5]— the game is not finite, since prices are chosen from

a continuum. Assume now that prices must be chosen from a discrete grid.

More precisely, each supplier must choose a price pi from the set { k
m

: k = 0 or

k ∈ N}, where m ∈ N indexes the fineness of the grid. The noisy game Γ̃ can

now be parameterized by the pair (ε,m) where ε is the noise in observation

and m is the grid size. We shall demonstrate two results. First, for any

given level of noise parameterized by ε, there exists a grid size m(ε) such

that the limit perfect equilibrium outcomes in the sequence of games Γ̃(ε,m)

(ε > 0,m ≥ m(ε)) as ε → 0 and m → ∞ are disjoint from the limit

perfect equilibrium outcomes in the sequence of noiseless games Γ̃(0,m) as

m → ∞. However, if we fix the grid size at some m̄, this discontinuity does

not appear, i.e. there exists a perfect equilibrium outcome of Γ̃(0, m̄) which

is a limit of a sequence of perfect equilibrium outcomes of the games Γ̃(ε, m̄)

as ε → 0. This latter result is not implied by the results of Guth et. al. [5]

since homogeneous good Bertrand competition with discrete prices is not a
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generic game — there are ties in payoffs at the terminal nodes of the game

tree, so long as both suppliers must choose from the same grid of prices.7

It will be expositionally convenient to assume that the payoff v in Fig. 1

is an irrational number. Given the price grid m, let p∗(m) be the largest price

that is less than v, and let the grid be sufficiently fine that p∗(m) > c. Let us

now characterize perfect Bayesian equilibrium outcomes in the game where

the incumbent’s action is perfectly observed. Clearly, in any equilibrium

outcome, the incumbent will invest with probability one and entrant will stay

out with probability one. If the supplier chooses the price p∗(m), then he

sells with probability one, since v > p∗(m). Thus the unique perfect Bayesian

equilibrium has the supplier making profits p∗(m) − c, with (I,OUT) being

played with probability one.

Now let us consider the situation where commitment is imperfectly ob-

served. Fix an equilibrium of the game Γ̃(ε,m), where I is played by the

incumbent with positive probability, and let p̂(m) be the largest price, that

is chosen by the supplier in this equilibrium. Clearly, at p̂(m) the incumbent

must buy with positive probability, since otherwise p̂ will not be chosen by

the supplier. Since it is optimal for the incumbent to buy at p̂, it must be

strictly optimal to buy at any price strictly below p̂. Hence the supplier can

ensure the payoff of p̂(m) − 1
m

by choosing the price p̂(m) − 1
m

. If α is the

probability that the incumbent buys at price p̂, we must have that

αp̂(m) ≥ p̂(m) − 1

m
. (5)

Let β be the probability that the supplier’s price equals p̂. Hence the total

probability that the incumbent does not invest equals

β(1 − α) ≤ 1 − α ≤ 1

p̂(m)m
. (6)

If the grid of prices is sufficiently fine, then m is large and the right hand

side above will be close to zero unless p̂(m) is also small. However, the total

7For example, one can show that such a game will have a continuum of perfect equi-
librium outcomes as long as the grid of prices is sufficiently fine.
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probability that the incumbent does not invest must equal 1 − θ, where θ is

given by 3. Therefore,

p̂(m) ≤ 1 − η − ε

εm
. (7)

We have therefore proved the following:

1. For any ε > 0, there exists m∗(ε) such that if we consider the sequence

of games Γ̃(ε,m(ε)) where ε → 0 and m(ε) ≥ m∗(ε), the Stackelberg

outcome is not accessible.

2. If we fix m, and consider the sequence Γ̃(ε,m) where ε → 0, the Stack-

elberg outcome is accessible.

To interpret this statement, consider an example where c = 0, and v

= £100 + ξ, where ξ is a tiny irrational number. The supplier makes a

profit of £100 when commitment is perfectly observed. In the game with

noisy observation, suppose that the probability of the incumbent does not

invest (1 − θ) must equal ε in order to make the entrant indifferent between

entering and staying out when she observes n. If the price grid is in pennies,

then the supplier will have no incentive to reduce price below £100 only if

(1 − ε)100 ≥ 99.99, i.e. ε must be smaller than 0.0001. In other words, if

the profits that the supplier makes are large relative to the minimum unit of

account, the noise must be very small indeed.

The remainder of the paper sets out how the insight contained in these ex-

amples generalize. Our first task, in section 3, is to provide a characterization

of equilibrium outcomes in leader-follower games played in a contracting en-

vironment, where the followers’ have perfect observation of leaders’ actions.

In section 4, we will consider how noisy observation results in a failure of

accessibility quite generally.
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3 Perfect observation

We consider a leader-follower game played in a contracting environment,

with perfect observation of the leaders’ commitment. This follows the set up

in Bhaskar [2], although the exposition here is self-contained. We will use

the term player for someone who plays the game in question, and the term

supplier to denote someone with whom a player may need to contract with

in order to be able to adopt some strategy in the game. Among the players,

we will distinguish between the set of leaders, L = {1, 2, ...,m} and the set of

followers, F = {m+1, ..., n}. I = L∪F is the set of players, and each player

i has a finite action set Ai, whose generic element will also be denoted by aj
i

or ai. Let A = ×i∈IAi be the set of action profiles, and let gi : A → R be the

gross payoff of player i. These gross payoffs at the profile a = (ai)i∈I will in

general differ from the usual (net) payoffs of a player since she may have to

contract with a supplier in order to be able to play the action ai. Let Āi ⊂ Ai

be the set of actions for which the player needs a supplier. For any player i

and any action aj
i ∈ Āi , let Σij = {ij1, ..., ijmij

} denote the set of competing

suppliers – the player needs to contract with exactly one of these suppliers in

order to take action aj
i . The h−th supplier, ijh, has a cost of supply, cijh. Let

ij1 index the efficient supplier for action ij, that is the one with the lowest

cost. We will also use the notation φ(ij) to denote the efficient supplier for

action ij. Σi = ∪
j∈Āi

Σj denotes the set of suppliers for player i. Let pijh

denote the price which is charged by supplier ijh for enabling the action aj
i ,

and let pij = (pijh)ijh∈Σij
, and pi = (pij)j∈Āi

. If aj
i /∈ Āi we set the price of

this action, pij, to zero. The net payoff at the profile a = (aj
i , a−i) where a−i

is the vector of actions of players h �= i, and player i contracts with supplier

ijh, is given by

ui(a, pi) = gi(a
j
i , a−i) − pijh. (8)

The payoff to supplier ijh is given by pijh − cijh, where cijh is the cost

of producing the input required for this action. If the player does not play
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action aj
i , the payoff to any supplier of this action is zero. Let us normalize

prices and gross payoffs by measuring them net of the minimum cost of supply

(equal to cij1 for any action ij), so that a zero price corresponds to pricing at

minimum cost. Henceforth, the gross payoff gi(ai, a−i) will denote the payoff

when player pays the minimum cost of action ai. We extend, in the usual

way, the gross payoff function gi to correlated action profiles: gi(α) is the

payoff to player i when α ∈ Δ(A) is the vector of correlated actions played.

The leader-follower game with private contracts, Γ, is as follows:

1. Each supplier in ΣL = ∪i∈LΣi quotes a price for each input that he

supplies.

2. Each leader i ∈ L observes the price vector pi (but not the prices

quoted to other players), and chooses an action.

3. Each supplier in ΣF = ∪i∈FΣi observes the action profile aL chosen by

the leaders and chooses her price.

4. Each follower i ∈ F observes aL and her own price vector pi, and

followers simultaneously choose actions.

We make the following assumptions regarding the game Γ.

Assumption A1. (No Complementary Inputs): For any player i and any

action aj
i , no more than one supplier is required.

Assumption A2. For every player i there exists an action a0
i such that no

input is required to play this action.

This assumption ensures that the minimum payoff that any player in I

can receive is bounded and given by mina−i
gi(a

0
i , a−i).

Assumption A3. A supplier supplies at most one player, i.e. Σi and Σj

are disjoint if i �= j.

This assumption plays an essential role in our analysis of private contracts,

since it ensures that the beliefs of player i regarding the actions chosen by

other players do not vary with the prices that player i is quoted by her

supplier.

Assumption A4. A supplier supplies at most one action of any player,

i.e. ∀i, Σij and Σik are disjoint if j �= k.
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Define c̃ij = minijh∈Σijh,h �=1{cijh}. c̃ij = ∞ if φ(ij) is a monopoly supplier.

Assumption A5. For any player i and action aj
i ∈ Āi ⊂ Ai, c̃ij > 0 .

A5 states that efficient supplier has some monopoly power, and is made

for expositional convenience. It is without essential loss of generality – if

there is more than one efficient supplier for an action, then in any equilibrium

where this action is played, the price must equal zero, and this is equivalent

to assuming that this action does not belong to Āi.

We will restrict attention to perfect Bayesian equilibria of the game Γ.

Beliefs of the players are given by Bayes rule along the equilibrium path.

If a supplier deviates, then assumption A3 implies that this does not affect

the beliefs of a player to whom this price applies, i.e. her beliefs about the

actions of other players are unaffected. In addition, we want to rule out

“unreasonable equilibria”, where inactive suppliers (i.e. those who do not

make a sale) choose strictly negative prices. Such equilibria are sometimes

called cautious, and can be ruled out by considerations of trembling hand

perfection.8 So henceforth, by “equilibrium” we mean a cautious perfect

Bayesian equilibrium where all supplier prices are non-negative.

A pure strategy for a supplier ijh (for action aj
i ) is a price pijh ∈ R+. A

mixed strategy is a probability measure πijh on R+. A strategy for leader i

is a map σi : R|Σi| → Δ(Ai). A pure strategy for supplier ijh, who supplies

a follower’s action aj
i , is a map ρijh : AL → R+, while a mixed strategy

ρ̃ijh specifies a probability measure on R+ for every aL ∈ AL. A strategy

for follower j is a map σj : R|Σj | × AL → Δ(Aj). A strategy profile σ is a

collection ((πijh)ijh∈ΣL
, (σi)i∈L, (ρ̃ijh)ijh∈ΣF

, (σj)j∈F ).

In usual terminology, the outcome of a strategy profile σ is the induced

8Simon and Stinchcombe [11] set out refinements for continuum normal form games,
but there are no universally accepted refinements for continuum extensive form games.
However, we can discretize the price space, and consider trembling hand perfect equilibria
of the discretized game. We may restrict attention to equilibria of the continuum game
which are limit points of a sequence of trembling hand equilibria of discrete games as
the grid of prices becomes increasingly finer. It is easy to see that any equilibrium with
negative prices will not be a limit of such trembling hand perfect equilibria.
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distribution over the terminal nodes of the game tree. In price setting games,

the set of equilibrium outcomes usually contains considerable redundancy.

For example, in the case of Bertrand competition between three firms with

differing unit costs, the price set by the highest cost firm is irrelevant, and

can therefore be chosen arbitrarily. It will be therefore be more useful to

focus on a refinement of the set of outcomes. The action outcome associated

with a strategy profile is the induced distribution over the set of player-action

profiles, A. The supplier payoffs associated with σ are simply the payoffs to

the suppliers under this profile. For the purposes of this paper, the outcome

of a strategy profile is defined as the pair consisting of the action outcome

and the supplier payoffs, and is an element of Euclidean space.

Our results will relate the equilibrium action outcomes in Γ̃, the leader

follower game in a contracting environment to those in a standard leader-

follower game. This is the leader-follower game Γ where all supplier prices

are exogenously fixed at zero (i.e. all inputs are supplied at cost) and players

net payoffs equal their gross payoffs. A strategy for a leader in Γ is a mixed

action αi ∈ Δ(Ai), while a follower’s strategy is a map βj : AL → Δ(Aj).

Let EΓ denote the set of subgame perfect equilibria of Γ. The outcome of a

strategy profile (αL, βF ) is the induced distribution over the elements of A.

Let ΩΓ ⊂ Δ(A) denote the set of subgame perfect equilibrium outcomes of

the game Γ. Given aL ∈ AL, let EΓ(aL) denote the set of Nash equilibria in the

subgame that results following the play of aL. Let αL = (αi)i∈L, βF = (βi)i∈F ,

and let (αL, βF ) ∈ EΓ. Given an vector a = (ai)
n
i=1, we use the notation a\a′

i

to denote the vector that results when the i-th component ai is replaced by

a′
i.Given aL ∈ AL, if follower i’s continuation βi(aL) is a pure action, we

define follower i’s deviation loss δi(aL, βF ) as :

δi(aL, βF ) = gi(aL, βF (aL)) − max
ai �=βi(aL)

gi(aL, βF (aL)\ai). (9)

That is, δi(αL, βF ) is follower i’s loss from choosing his next best action

rather than the recommendation of the equilibrium. 9 If βi(aL) is a mixed,

9In the game Γ̃, if a supplier is required for taking action βi(aL), δi(aL, βF ) can be
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δi(αL, βF ) = 0.

Consider now a leader, i ∈ L. If the leader plays a pure action âi as part

of the equilibrium (αL, βF ), we define his deviation loss δi(αL, βF ) as :

δi(αL, βF ) = gi(αL, βF (aL)) − max
ai �=âi

gi(aL\ai, βF (aL\ai)). (10)

If the leader plays a mixed action, δi(αL, βF ) = 0.

Let ΩΓ̃ denote the set of equilibrium action outcomes of the game Γ̃, i.e.

the actions played by the leader and follower in a cautious perfect Bayesian

equilibrium of the game Γ̃.

Proposition 1 ΩΓ̃ = ΩΓ i.e. the cautious perfect Bayesian equilibrium ac-

tion outcomes of Γ̃ coincide with the subgame perfect equilibrium outcomes

of Γ. In any equilibrium of Γ̃ with action outcome (aL, βF (aL)), an active

supplier for player i earns his marginal contribution min{δi(aL, βF (aL)), c̃ij}.

Proof: While this proposition may be proved more succinctly by an ap-

plication of theorem 1 in Bhaskar [2] and an induction argument, we present

the complete argument here for the reader’s convenience. We show first the

correspondence between equilibrium action outcomes in the two games in the

second stage, when the followers choose their actions. Let aL be an arbitrary

action profile chosen by the leaders. In the game Γ̃, the continuation game

that follows the choice of aL is a game of imperfect information, since the

prices chosen by the suppliers in stage 1 are not observed by either the fol-

lowers or their suppliers. Nevertheless, these prices are payoff irrelevant, and

the only payoff relevant variable, (aL), is commonly observed by all followers

and their suppliers. In the game Γ, let E(aL) denote the set of Nash equilib-

ria in the subgame following the play of aL, and let β(aL) ∈ E(aL). We show

first that in the game Γ̃, there exists an equilibrium where, following the play

of aL in stage one, β(aL) is played by the followers and every supplier of a

follower earns his marginal contribution. If follower i plays a pure action at

thought of as the marginal contribution of this supplier to the follower’s payoff at this
subgame perfect equilibrium.
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β(aL), let the most efficient supplier for this action choose a price equal to his

marginal contribution, δi(aL, β(aL)), while all other suppliers in Σi choose a

price of zero. If follow i randomizes at β(aL), then let every supplier in Σi

choose a price of zero. Let each follower i play βi(aL) if no active supplier

deviates, and play any best response action otherwise.

We now show that in any equilibrium of Γ̃, the action outcome follow-

ing the choice of aL by the leaders is an element of E(aL). Fix an equi-

librium of Γ̃, and consider the decisions of follower i and his suppliers.

From the point of view of these agents, aL is given, and the strategies

of the suppliers of other followers and the strategies of the followers, in-

duce a mixed action profile, α−i ∈ ×j∈F,j �=iΔ(Aj). Furthermore, by as-

sumption A3, the player i’s beliefs about the profile played by other fol-

lowers do not change with the prices charged by i’s suppliers. So our re-

sults follow from standard results on Bertrand competition between asym-

metric sellers and a single buyer. Let aj
i ∈ arg maxai

gi(ai, α−i, aL), and

let ak
i ∈ arg maxai �=aj

i
gi(ai, α−i, aL) be the next best action. Consider first

the case where gi(a
j
i , α−i, aL) > gi(a

k
i , α−i, aF ). In this case, we show that

aj
i must be played with probability one, and supplier φ(aj

i ) must earn a

payoff δi(a
j
i , α−i, aF ) in any cautious equilibrium. By choosing a price

δi(a
j
i , α−i, aF )−ε, φ(aj

i ) can ensure a sale with probability one, since the prices

of other suppliers are non-negative, and thus his payoff must be no less than

δi(a
j
i , α−i, aF ) . If his payoff is strictly greater than δi(a

j
i , α−i, aF ), then the

support of φ(aj
i ) ’s mixed strategy must consist of prices strictly greater than

δi(a
j
i , α−i, aF ), and φ(ak

i ) can also earn positive profits. Thus in any mixed

strategy equilibrium suppliers φ(aj
i ) and φ(ak

i ) must both earn positive prof-

its. By assumption A2, the prices of the two sellers must also be bounded,

by [gi(a
j
i , α−i, aF ) − gi(a0, α−i, aF )] and [gi(a

k
i , α−i, aF ) − gi(a0, α−i, aF )] re-

spectively (recall that a0 is the action that does not require any supplier).

We now show that at least one seller’s mixed strategy has in its support a

price that earns zero profits, contradicting our earlier result that each seller

earns positive profits. Let x(φ(aj
i )) (resp. x(φ(ak

i ))) denote the supremum
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of prices that lie in the support of φ(aj
i )’s (resp. φ(ak

i ) mixed strategy. If

x(φ(aj
i )) > x(φ(ak

i ))+ δi(a
j
i , α−i, aL), then φ(aj

i ) chooses a price which makes

zero profits, while if the inequality is reversed, this is the case for φ(ak
i ). If

both expressions are equal, then both sellers must choose a price which makes

zero profits, unless each player’s mixed strategy has an atom at the supre-

mum. But in this case, a player can do strictly better by choosing a price

ε below the supremum, where ε is sufficiently small. We conclude therefore

that if aj
i is the unique maximizer element of arg maxai

gi(ai, α−i, aL), then it

must be played with probability one, and φ(aj
i ) earns his marginal contribu-

tion. Similar arguments establish that if arg maxai
gi(ai, α−i, aL) has several

elements, then the player’s mixed strategy can only assign probability to one

of these, and the prices must equal zero. We have therefore established that

following the play of aL in stage 1, each player must assign positive proba-

bility only to actions that maximize his gross payoffs, given any the induced

beliefs over the actions of other players. Thus the action outcome of must

be an element of E(aL), and supplier payoffs are as in the statement of the

theorem.

We now proceed to the first stage of the game Γ̃. Given any action pro-

file aL chosen by the leaders, gross payoffs to any leader i are given by

gi(aL, β(aL)) where β(aL) ∈ EΓ(aL). Thus any equilibrium strategy profile of

the followers defines a strategic form game for the leaders played in a con-

tracting environment, and applying the theorem again, the actions chosen

by the leaders must constitute a Nash equilibrium. Finally, the payoff loss to

any leader from choosing his best deviant action or an alternative supplier is

min{δi(aL, βF (aL)), c̃ij}, which specifies the payoff to each active supplier to

a leader.

The above proposition establishes the following: given any subgame per-

fect equilibrium of the game Γ, there is associated a unique outcome ω of

the game Γ̃, since the supplier payoffs are uniquely defined by their marginal

contributions.

Remark 1 Since the proof is based on induction over two stages, the propo-
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sition can be generalized as follows. Consider an arbitrary finite multistage

game Γ with observed actions, with finitely many actions, players and stages.

Now embed Γ in a contracting environment, resulting in the game Γ̃, where

in each stage, the suppliers involved choose prices after having observed the

actions played in previous stages. The equilibrium distributions over players

actions in the games Γ̃ and Γ coincide.

This proposition has the following corollary. Consider a game Γ with one

leader and one follower. For generic payoffs, the game Γ has a unique back-

wards induction equilibrium in pure strategies, that we denote by (a∗
1, β

∗
2),

where a∗
1 is the leader’s action, and β∗

2 is the follower’s best response .

The action profile played in this equilibrium is denoted by (a∗
1, a

∗
2), where

a∗
2 = β∗(a∗

1). Now for generic payoffs, δ1(a
∗
1, β

∗
2), the deviation loss suffered

by the leader at the unique equilibrium, is strictly positive, as is that of the

follower. We have therefore that:

Corollary 2 Any one-leader one-follower game Γ̃ with generic payoffs has a

unique equilibrium action outcome. If a supplier is required for the leader (or

follower) to take his equilibrium action, this supplier makes strictly positive

profits.

4 The noisy leader- follower game

We now assume that the leaders’ action profile is observed with some noise:

given that ak
L ∈ AL is chosen by the leader, nature chooses signal ah

L ∈ AL

with probability λhk. λ is a stochastic matrix defined on AL × AL. Let Λ be

the set of possible signal structures, and Int(Λ) be the set of signal structures

with full support, i.e. the set of λ such that λhk > 0 ∀ hk. Let λ0 denote the

identity matrix – this corresponds to perfect observation. The game Γ̃(λ) is

defined as follows:

1. Each supplier in ΣL quotes a price for each input that he supplies.

2. Each leader i ∈ L observes the price vector pi, and chooses an action.
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3. Given the action profile chosen by the leaders, nature chooses a signal

in AL, according to the stochastic matrix λ. The signal is observed by agents

in ΣF ∪ F.

4. Each supplier in ΣF quotes a price for each input that he supplies.

5. Each follower i observes the price vector pi and followers simultaneously

choose actions.

The gross payoffs to players depend only on action profile realized, and

not upon the signal. As before, net payoffs to players are equal to gross

payoffs minus the prices paid.

Note that all agents have exactly the same strategy sets in the games Γ̃

and Γ̃(λ) – only the payoffs associated with strategy profiles differ in the two

games. We restrict attention to cautious perfect Bayesian equilibria of the

game Γ̃(λ). Fix an equilibrium of the game Γ̃(λ). The action outcome of an

equilibrium is the element of Δ(A) induced by the equilibrium. The outcome

of an equilibrium is the pair consisting of the action outcome and the profile

of supplier payoffs. Let Ξ(λ) denote the set of equilibrium outcomes of Γ̃(λ),

and let Ξ(0) denote the set of equilibrium outcomes of Γ̃. Expected supplier

payoffs are real numbers, while the player action outcomes are probability

distributions over a finite set. Thus Ξ(λ) ⊂ R|ΣL∪ΣF | × Δ(A), a subset of

Euclidean space. Since the set of outcomes is a subset of Euclidean space,

we may use the usual norm in order to define convergence. We say that a

sequence ωn → ω if this convergence is in the usual topology.

Definition 3 ω ∈ Ξ(0) is accessible if ∃ countable sequences (λ, Γ̃(λ), ω(λ)),

ω(λ) ∈ Ξ(λ) with λ ∈ Int(Λ), λ → λ0 such that Γ̃(λ) → Γ̃(λ0) and ω(λ) → ω.

Let us consider the class of games Γ with a subgame perfect equilibrium

(a∗
L, βF ), where a∗

L ∈ AL is a pure action profile. We assume :

Assumption A6: The subgame following the play of a∗
L has a unique

equilibrium.

Let us denote the outcome of this equilibrium by (a∗
L, α∗

F ), where α∗
F =

βF (a∗
L). Notice that if Γ has one leader and one follower, then generically Γ

has a unique subgame perfect equilibrium, and therefore satisfies A6.
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We now set out the conditions under which accessibility fails.

Definition 4 Leader i ∈ L has an incentive to deviate at (a∗
L, α∗

F ) if

max
ai

gi(a
∗
L\ai, α

∗
F ) > gi(a

∗
L, α∗

F ).

This definition is straightforward – a leader has an incentive to deviate at

a subgame perfect equilibrium if he can increase his payoff, given the choices

of other leaders and given that followers do not respond to this deviation.

In standard leader-follower games outside a contracting environment, the

question of commitment is only relevant if the leader has an incentive to

deviate. Our entry deterrence example belongs to this class. However, our

negative results on accessibility apply to a larger class equilibria, in a larger

class of games.

Definition 5 Leader i’s action is relevant at (a∗
L, βF ) if

max
ai �=a∗

i

gi(a
∗
L\ai, α

∗
F ) �= max

ai �=a∗
i

[gi(a
∗
L\ai, βF (a∗

L\ai)].

Let âi ∈ arg maxai �=a∗
1
gi(a

∗
L\ai, βF (a∗

L\a)). If β(a∗
L\âi) differs from α∗

F ,

then leader i’s action will be relevant (for the followers) at (a∗
L, βF ), provided

that payoffs are generic. In other words, any game where some follower’s best

response depends upon whether leader i chooses his commitment action a∗
i

or deviates (optimally) from this, leader i’s action will be relevant. Clearly,

in any game where the leader has an incentive to deviate, his action will be

relevant, but the converse is not true.

To clarify our definitions, let us consider a one leader-one follower game,

with a unique subgame perfect equilibrium, (a∗
1, β2). Let â1 ∈ arg maxa1 �=a∗

1
g1(a1, a

∗
2),

where a∗
2 = β2(a

∗
1). If β2(â1) �= a∗

2, then the leader’s action will be relevant,

provided that payoffs are generic. The game in Fig. 2 (p. 9) provides an illus-

tration: in the (generically unique) subgame perfect equilibrium, the leader

has an incentive to deviate only if x > 2; however, as long as x �= 1, the

leader’s action is always relevant.
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Let γi(a
∗
L, α∗

F ) = gi(a
∗
L, α∗

F )−maxai �=a∗
i
gi(a

∗
L\ai, α

∗
F ) denote the deviation

loss of the leader in the simultaneous move game, where the follower has no

observation of the leader’s action. If γi(a
∗
L, α∗

F ) �= δi(a
∗
L, βF ), then leader i′s

action is relevant.

Theorem 6 Let Γ be a leader follower game with subgame perfect equilibrium

(a∗
L, βF ), with α∗

F = β(a∗
L), that satisfies A6. Let Γ̃ be the associated game

in a contracting environment, and let ω∗ denote the equilibrium outcome of

Γ̃ that is associated with (a∗
L, βF ). If either a) leader i’s action is relevant

at (a∗
L, βF ) for some i ∈ L, and there is a monopoly supplier for action a∗

i ,

or b) some leader j ∈ L has an incentive to deviate at (a∗
L, α∗

F ) and needs

to contract with a supplier to take action a∗
j , then the outcome ω∗ is not

accessible.

Proof. From proposition 1, we know that in the game Γ̃, there exists an

equilibrium with p(a∗
i ) > 0, with the leaders choosing a∗

L and the followers

chooses α∗
F on observing a∗

L. Let ω∗ denote the outcome of this equilibrium.

Consider the noisy game Γ̃(λ) where λ ∈ Int(Λ) is sufficiently close to λ0 and

suppose that we have an equilibrium with an outcome ω(λ) that is sufficiently

close to ω∗ where the probability that a∗
L is played by the leaders is at least

1− ε and for any action ai played by leader i, the probability that the signal

(a∗
L/ai) is observed is at least 1 − ε. Suppose that leader i plays a∗

i for sure

in this equilibrium. Then the followers must believe that he has chosen a∗
i

irrespective of the signal that is observed. Assumption A6 implies that if

ε is sufficiently close to zero, the followers must play α∗ after every signal

(a∗
L/ai).

Suppose b), so that leader i has an incentive to deviate. In this case,

since the followers play α∗ after every signal (a∗
L/ai), there cannot be an

equilibrium where i plays a∗
i for sure. Consider next an equilibrium where

the leader randomizes between a∗
i and some other action. Since a∗

i is played

with probability less than one, the equilibrium price p(a∗
i ) cannot be strictly

positive, for if this was the case, supplier a∗
i has a profitable deviation – by
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reducing his price by any η > 0, he can ensure a sale for sure. Thus in any

such equilibrium, p(a∗
i ) = 0, so that the outcome cannot be close to ω∗.

Suppose a) so that in the noiseless game p(a∗
i ) = δi(a

∗
L, βF ). If the leader

chooses a∗
i for sure in the noisy game, the followers play α∗after every signal

(a∗
L/ai). So if γi(a

∗
L, α∗

F ) < δi(a
∗
L, βF ) and p(a∗

i ) > γi(a
∗
L, α∗

F ), it is optimal

for the leader to deviate and choose the action a1 ∈ arg maxa1 �=a∗
1
g1(a1, a

∗
2),

so that the payoff of supplier a∗
i cannot be close to δi(a

∗
L, βF ). Conversely,

if γi(a
∗
L, α∗

F ) > δi(a
∗
L, βF ) supplier a∗

i can increase his price to γi(a
∗
L, α∗

F )

and it will still be optimal for the leader to buy. Thus we cannot have an

equilibrium where a∗
i is played with probability one and where supplier p(a∗

i )

is close to δi(a
∗
L, βF ). Once again, if i randomizes, p(a∗

i ) = 0, so that the

outcome cannot be close to ω∗.

Having shown that we cannot, in general, approximate the equilibrium

outcomes of the noiseless game Γ̃ when we allow for noise, one may ask

a more limited question. Is it possible to approximate equilibrium action

profiles taken by the players in the game, even if one does not approximate

the supplier payoffs? Let us consider games Γ with one leader, player 1,

and one follower, player 2. We assume that the gross payoffs in the game

satisfy the following genericity assumption:

A7: For any a, a′ ∈ A, a �= a′, g1(a) �= g1(a
′) and g2(a) �= g2(a

′).

A7 implies that the game Γ has a unique subgame perfect equilibrium,

the outcome of which we denote by a∗ =(a∗
1, a

∗
2). By proposition 1, in the

associated game Γ̃ played in a contracting environment, ΩΓ̃ consists of a

singleton set, {a∗}.

Theorem 7 Let Γ be a one-leader one follower game that satisfies A7, with

unique subgame perfect equilibrium outcome a∗. For any countable sequence

λ → λ0, λ ∈ Int(Λ) and associated sequence of noisy games Γ̃(λ), there exists

a sequence α̃(λ) ∈ Ω(Γ̃(λ)) such that α̃(λ) → a∗.

Proof. We consider two separate cases, depending upon whether the

leader has an incentive to deviate or not. Suppose that the leader has no
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incentive to deviate, so that a∗
1 ∈ arg maxa1 g1(a1, a

∗
2). In the noisy game, let

supplier a∗
1 choose a price equal to min{γ1(a

∗
1, a

∗
2), c̃

∗
1}, where c̃∗1 denotes the

cost of the next most efficient supplier for a∗
1 ( if no supplier is needed for a∗

1,

set this price equal to zero), and let suppliers for other actions choose a price

of zero. Let the leader choose a∗
1, and let the suppliers of the follower and the

follower choose the continuation strategies in Γ̃ (the noiseless) that follow the

play of a∗
1, regardless of the signal that is observed – these are clearly optimal

given that a∗
1 is played with probability one by the leader, and given that λ

∈ Int(Λ). Given the follower’s behavior, it is optimal for the leader to play

a∗
1, since maxa1 �=a∗

1
g1(a1, a

∗
2) = g1(a

∗
1, a

∗
2) − γ1(a

∗
1, a

∗
2) ≤ g1(a

∗
1, a

∗
2) − p1(a

∗
1).

Thus the outcome a∗ is an equilibrium outcome of the noisy game.

Suppose now that the leader has an incentive to deviate at a∗. From

van Damme and Hurkens [4], we know that if A7 is satisfied, there exists a

sequence λ → λ0, λ ∈ Int(Λ) , with an associated sequence of leader-follower

games Γ(λ), such that in each of these games there exists an equilibrium

(α1(λ), β2(λ)), where the outcomes of this sequence of equilibria converge to

a∗. For any λ in this sequence, we shall construct an equilibrium σ(λ) in Γ̃(λ),

the noisy game played in a contracting environment, with the property that

σ(λ) induces the same behavior by the players as (α1(λ), β2(λ)). Consider

Γ̃(λ) and assume that for any signal a1 observed by the followers and their

suppliers, p̂2(a1) and σ2(a1, p̂2(a1)) is such that σ2(a1, p̂2(a1)) = β2(a1, λ).

Assume further that every supplier of the leader chooses a price of zero.

Since α1(λ) is optimal for the leader in Γ(λ), it is also optimal for the leader

to play α1(λ) in Γ̃(λ) since gross payoffs are the same in the two games.

Furthermore, given that the leader has an incentive to deviate at a∗, α1(λ)

does not assign probability one to a∗
1, i.e. the leader is randomizing between

two or more actions. Thus it is optimal for every seller to choose a price

of zero, since any active seller who increases his price will fail to sell with

probability one.

It remains to verify our assumption that for any signal a1 observed by

the followers and their suppliers, p̂2(a1) and σ2(a1, p̂2(a1)) is such that σ2(a1,
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p̂2(a1)) = β2(a1, λ). This follows from proposition 1, since given any beliefs

over the A1, the continuation game is a (one player) game in a contracting

environment. Proposition 1 implies that the equilibrium distributions over

player 2’s actions coincide in the continuation game played in a contracting

environment and the continuation game without contracting being required,

where player 2’s payoffs equal his gross payoffs. Thus if β2(a1, λ) is optimal

in the latter, there exist optimal supplier prices p̂2(a1) and σ2(a1, p̂2(a1))

such that σ2(a1, p̂2(a1)) = β2(a1, λ).

One interpretation of theorem 7 is that it shows accessibility of equilib-

rium action profiles, even if supplier payoffs cannot be approximated. Thus

it might be argued that in games played in a contracting environment, im-

perfect observation has distributional consequences, but has no implications

for the actions that are taken. In our view this is not an appropriate interpre-

tation: the payoffs to suppliers will have incentive effects and will therefore

affect outcomes in a broader sense.

5 Application: Commitment by a strategic

buyer

We consider an example, and demonstrate the failure of accessibility in a

price setting context. There there is one buyer, indexed C, and two sellers,

A and B. The buyer has a consumption opportunity for one unit of the

product, for each of two periods, t = 1, 2. The valuation of the buyer for the

product is 1 in each period . Each of these buyers has one unit of the product,

and values this at zero. In each period t, each seller with positive inventory

simultaneously quotes the price for a single unit, pt
i, and the buyer makes

a choice to buy from one or none of the sellers. Let dt ∈ {A,B, ∅} denote

the buyer’s purchase decision, where ∅ denotes the choice of not buying. We

shall assume that the prices chosen by the sellers are private, i.e. they are

not observed by the other seller. However, we may distinguish two distinct
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information structures, public transactions and private transaction. In the

case of public transactions, the buyer’s decision at t = 1, d1, is commonly

observed by both the sellers. In the case of private transactions, the buyer’s

decision is only observed directly by the party with whom the transaction

occurs. As before, our focus is on cautious perfect Bayesian equilibria.

With public transactions, the buyer has substantial commitment power.

Suppose that the buyer chooses not to buy at t = 1. This implies that there

is Bertrand competition in the final period, and hence the buyer gets the

product at price 0. It follows, that in any equilibrium, the buyer’s utility is

at least 1. Indeed, the equilibrium payoff set consists of the convex hull of the

points (0, 0, 1), (1, 0, 1) and (0, 1, 1), where the three components represent

the payoffs of A,B and C respectively. Any payoff in this set, say (λA, λB, 1)

can be sustained by the following strategies: at t = 1, both sellers choose

prices equal to zero. The buyer buys from seller i with probability λj, j �= i,

as long as neither seller has chosen a price greater than zero. If either buyer

has chosen a price greater than zero, the buyer chooses not to buy. In period

2, there is either Bertrand competition at price zero (if both sellers have

inventory) or one buyer is a monopolist and chooses price equal to one.

Now let us consider the case where transactions are private. That is, if

the buyer chooses A, then A observes this, but B is only sure that the buyer

has not chosen B, i.e. he knows that d1 ∈ {A, ∅}. We may allow for the

possibility that in this case B observes a private signal that is informative

about the buyer’s decision; however, we shall assume that all signals have

positive probability under both decisions.

We show first that there exists an equilibrium where the buyer gets utility

0, while the two sellers each get utility 1. Equilibrium strategies are as follows

(if prices are greater than 1, the buyer never buys):

At t = 1 :

p1
A = p1

B = 1.

d1 = A if p1
A = p1

B ≤ 1. d1 = i if p1
i < p1

j and p1
i ≤ 1.

At t = 2 :
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p2
i = 1 if d1 �= i,for i = A,B.

d2 = A if p2
A = p2

B ≤ 1. d2 = i if p2
i < p2

j and p2
i ≤ 1.

This equilibrium has the outcome where the buyer buys from A at price

1 at t = 1 and from B at price 1 at t = 2. Since each seller makes his

maximal feasible profit, clearly neither has any incentive to deviate along the

equilibrium path. So consider deviations by the buyer at t = 1. If the buyer

deviates to d1 = ∅, then seller A knows that there has been a deviation, but

seller B does not know that there has been a deviation. Hence B continues

with his equilibrium strategy, and prices at 1 at t = 2. Seller A does not know

whether the buyer has deviated to ∅ or B; however, irrespective of his beliefs,

he knows that he can ensure that the buyer purchases with probability one

as long as he prices strictly below one, and the tie breaking rule embodied

in the buyer’s continuation strategy implies this is also the case if p2
A = 1,

regardless of the form of the buyer’s deviation. Hence it is optimal for A to

price at 1, and the buyer’s deviation is unprofitable. Similarly, it is easy to

verify that deviating by buying from B at t = 1 is unprofitable.

Our main result is the following proposition, showing that the buyer loses

his commitment power in every equilibrium when there is imperfect obser-

vation.

Proposition 8 If transactions are private, the payoff (1, 1, 0) is the unique

equilibrium payoff.

Proof. Consider first an equilibrium where the buyer buys with probability

one at t = 1. Fix any such equilibrium where d1 = j with positive probability

along the equilibrium path, and assume that seller i has chosen his equilib-

rium price p1
i ; then d1 �= i ⇒ i believes that d1 = j for any signal that he

receives. Hence i will choose the price 1 at t = 2 if the buyer does not buy

from him at t = 1. We show that this implies that p1
j = 1. If this is not the

case, and p1
j < 1, then j can increase his payoff by choosing p′ ∈ (p1

j , 1). If

the buyer’s equilibrium response to this deviation is to choose d1 = i, then

j will be a monopolist at t = 2, and hence this deviation is beneficial for j.
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Suppose that the buyer’s equilibrium response to j’s deviation is to choose

d1 = ∅. We have established that d1 �= i ⇒ i believes that d1 = j for any

signal that he receives, and hence i believes that he is a monopolist at t = 2,

and will choose price 1. j can therefore ensure that the buyer buys from him

at t = 2 by choosing any price p2
j < 1, and thus he has a profitable deviation.

We conclude that in any equilibrium where the buyer buys with probability

one at t = 1, he pays a price of 1, and he also buys with probability one at

t = 2, also at a price of 1.

Consider next a candidate equilibrium where the buyer fails to buy with

probability one at t = 1. Hence the price of both firms at t = 2 equals zero.

Suppose now that A offers a price p1
A < 1. The buyer will certainly buy, since

this gives him positive utility and does not affect his continuation value, since

seller B cannot observe this deviation. Hence there cannot be an equilibrium

where the buyer fails to buy with probability one at t = 1.

Finally, we consider the class of candidate equilibria where the buyer

randomizes between buying and not buying at t = 1. Consider first an equi-

librium where d1 = ∅ with probability θ and d1 = A with probability 1 − θ,

and where A’s price at t = 1 is p1
A. Write V 2

i (d1 = x) for the expected con-

tinuation value of agent i (i ∈ (A,B,C)) conditional on the buyer’s decision

d1 = x (x ∈ {A,B, ∅}). Since the buyer must be indifferent between buying

and not buying, we must have

1 − p1
A = V 2

C(d1 = ∅) − V 2
C(d1 = A). (11)

Furthermore, if A charges any price less than p1
A, the buyer will strictly

prefer to buy. Hence A must also be indifferent between making a sale in

period two at price p1
A and making a sale at t = 1 in competition with seller

B, i.e.

p1
A = V 2

A(d = ∅). (12)

Adding these expressions we obtain
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V 2
C(d1 = ∅) + V 2

A(d1 = ∅) − V 2
C(d1 = A) = 1. (13)

However, since the total available value at t = 2 is 1, this implies that

V 2
C(d1 = A) = 0 (and also V 2

B(d1 = ∅) = 0). However V 2
C(d1 = A) = 0 implies

p2
B = 1.

However, p2
B = 1 is inconsistent with an equilibrium where d1 = ∅ with

probability θ > 0; in the event that d1 = ∅, A can ensure himself of a payoff

arbitrarily close to 1 in period 2 by choosing a price 1− ε. Hence equilibrium

requires that A also choose a price of 1 at t = 2, and that the buyer buys from

A when pA = pB = 1. However, this implies that p2
B = 1 is not optimal for

B, since he does better by choosing a price slightly below 1 thereby making

a sale for sure. Thus we cannot have such an equilibrium where the buyer

randomizes between d1 = ∅ and d1 = A.

Finally we consider an equilibrium where the buyer randomizes between

d1 = ∅, d1 = A and d1 = B. In this case, in addition to the above expressions,

one similarly also obtains

V 2
C(d1 = ∅) + V 2

B(d1 = ∅) − V 2
C(d1 = B) = 1, (14)

which implies that V 2
C(d1 = ∅) = 1, so that at least one seller’s price must

be zero at t = 2 if the buyer does not buy from this seller. However we

also have V 2
C(d1 = A) = 0 and V 2

C(d1 = B) = 0, which is inconsistent with

this, and hence we cannot have an equilibrium where the buyer randomizes

between all three decisions.

This application shows a sharp discontinuity between imperfect monitor-

ing of transactions, and perfect monitoring. Whereas the buyer must get a

payoff of at least one when his transaction (i.e. his commitment) is perfectly

observed, he must get zero when his transaction is imperfectly observed.

That is, he loses his commitment power entirely. The key to this example is

that the pricing decisions of the sellers influence the terms on which the buyer

makes his commitment. In any equilibrium where the buyer randomizes be-

tween buying and not buying, the sellers must also be indifferent between his
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actions and this turns out to be impossible.

6 Conclusion

We have already discussed the literature on imperfectly observed commit-

ment in the introduction to this paper. A related class of games, introduced

by Várdy [12], is leader-follower games with costly observation, where the

follower must pay a small cost in the event that she chooses to observe the

leader’s action. Várdy shows that the Stackelberg outcome of a generic finite

one leader - one follower game, where the follower automatically observes the

leader’s action, can be approximated by the mixed equilibrium outcome of

the game with costly observation (this requires a modification of the defi-

nition of “outcome”, since the action sets in two classes of game differ).10

In a recent paper, Morgan and Várdy [9] analyze a class of costly observa-

tion games with continuum action sets, and show that the subgame perfect

equilibrium outcome when the follower automatically observes the leader’s

action cannot be approximated in the game with costly observation. For

the leader to retain commitment power, she must randomize; however, if the

follower’s payoff function is strict concave, then he plays pure at every in-

formation set. If the leader’s payoff function satisfies some strict concavity

assumptions, then it has a unique maximizer, and randomization becomes

impossible. This is an interesting and important point, and follows from

considerations that are quite distinct from those in the present paper. How-

ever, this is not a failure of accessibility result strictly speaking, since the

action sets in the limit game, where the follower automatically observes the

leader’s action, are different from those in the costly observation game, where

10Morgan and Várdy [8] conduct an experimental investigation of this type of game. For
small observation costs, the leader’s payoff is close to that of the Stackelberg outcome;
however, the randomization probabilties do not vary with the observation cost as predicted
by theory.
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the follower has to make a choice.11

To conclude, our basic results follow from the fact that mixed strategies

played in an economic environment must satisfy a stringent generalized indif-

ference principle. Since mixed equilibria are required in order to approximate

Stackelberg outcomes, outcomes with perfect observation may well be very

different from those under imperfect observation. In consequence, Bagwell’s

point, that one should be cautious in focusing upon commitment effects un-

der perfect observation, appears to be valid when we consider games played

in economic environment. It is possible that many economic applications

may fall into this category, since payoffs to agents who choose actions are

affected by the prices set by other agents.
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