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1 Introduction

In this paper we establish and asymptotic normality for Generalized Empirical Likelihood

(GEL) estimators when population moment conditions are given by the expectations of

non-differentiable functions of the parameters and the data are generated by a station-

ary ergodic time-series process. The GEL framework for estimation and inference was

introduced by Smith (1997) as a common framework within which many quasi-likelihood

alternatives to the Generalized Method of Moments (GMM) approach can be nested, in-

cluding the Empirical Likelihood (EL) estimator introduced by Owen (1988) and further

developed by Qin and Lawless (1994) and Imbens (1997), the continuous updating estima-

tor (CUE) of Hansen, Heaton and Yaron (1996), and the exponential tilting estimator (ET)

of Kitamura and Stutzer (1997) and Imbens, Spady and Johnson (1998). As such it has

provided a useful framework for deriving the properties of such estimators and examining

the relationships between them; see for example Newey and Smith (2004).

Smith (1997) provided heuristic demonstrations of consistency and asymptotic normal-

ity for GEL estimators when the data are generated by a stationary stochastic process and

the population moment conditions are given by expectations of differentiable functions of

the sample data. However, Smith (1997) provided neither formal statements of the as-

sumptions under which consistency and asymptotic normality could be demonstrated nor

formal proofs of such results. Newey and Smith (2004) rectified these deficiencies for the

i.i.d. random sampling case in a paper primarily concerned with comparing and contrasting

the higher-order asymptotic properties of the EL, CUE and ET estimators.

One feature of the existing literature on these quasi-likelihood alternatives is that it

has dealt primarily with cases in which the population moment conditions are given by

the expectations of differentiable functions of the parameters. In situations where these

functions are non-differentiable the usual approach has been to smooth the functions as in

Chen and Hall (1993) and Otsu (2003). The main exception appears to be Newey and Smith

(2004) who demonstrate consistency, but not asymptotic normality, under assumptions

which allow the population moment conditions to be given by the expectations of fairly
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general functions of the parameters which only need to be continuous with probability one

at any fixed parameter value. However, as noted above, Newey and Smith (2004) limit

attention to the i.i.d. random sampling case. The main contribution of the present paper is

to demonstrate consistency and asymptotic normality for GEL estimators under an explicit

set of assumptions when population moment conditions are given by the expectations of

non-differentiable functions of the parameters and the data are generated by a stationary

ergodic time-series process.

It is well-known that GMM and Maximum Likelihood (ML) estimators can be shown to

be consistency and asymptotically normal in such circumstances under suitable conditions;

see Newey and McFadden (1994). However, a distinguishing feature of the GEL class of

estimators is that they are characterized as solutions to a saddlepoint problem rather than

a minimization or maximization problem. Thus the theorems used by Newey and McFad-

den (1994) are not directly applicable as they do not cover saddlepoint problems as such.

Instead, the strategy used in the present paper for demonstrating consistency is based on

the saddlepoint approach of Newey and Smith (2004) while the strategy for demonstrating

asymptotic normality is based on a combination of the saddlepoint approach of Newey and

Smith (2004) and the approach of Newey and McFadden (1994). One point to note is that

since the population moments are expectations which are not required to be continuous

everywhere, it is possible that no solution to the GEL saddlepoint problem actually ex-

ists. The present paper considers estimators which asymptotically approximately solve the

saddlepoint problem in a suitable fashion in order to address this issue.

In order to produce GEL estimators which are asymptotically as efficient as the standard

two-stage GMM estimator in the context of dynamic data, the present paper like most of the

literature on EL and related methods adopts the time-smoothing and blocking approach of

Kitamura (1997) and Kitamura and Stutzer (1997). Like Kitamura and Stutzer (1997) we

only consider formally the case where the estimator is generated using a uniform weighting

function for smoothing the observations. However, it seems likely that the results can

be generalized to other weighting functions albeit at the cost of modifying some of the

assumptions and complicating some of the proofs.
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The layout of the paper is as follows. Section 2 presents the model, objective function

and the saddlepoint estimator. Section 3 demonstrates consistency for the saddlepoint

estimator, using an approach similar to that of Newey and Smith (2004). Section 4 demon-

strates asymptotic normality for the the saddlepoint estimator. Section 5 concludes the

paper.

2 Model, Objective Function and Estimator

In the present paper, the parameter of interest, denoted β0, which is an unknown element

of the parameter space, denoted B0 which is a known subset of p-dimensional Euclidean

space, Rp. This parameter of interest is characterized by means of a population moment

condition:

E0[g(Z, β0)] = 0, (1)

where Z is a Z-valued random variable, where Z ⊆ Rk for some k <∞, g(·) : Rk×Rp → Rq

is a suitably measurable known function, and E0[·] denotes the expectation operator with

respect to the distribution of Z. The data on which the estimator will be based are obtained

from a doubly-infinite stationary ergodic stochastic process {Zi}+∞
i=−∞ such that Zi has the

same marginal distribution as Z for each i = 0,±1,±2, . . . .1 We would like to define the

estimator β̂n of β as the solution to the following saddlepoint optimization problem:

(P1) min
β∈B

sup
λ∈Λ̂n(β)

P̂n(β, λ),

(2)

1Notice that this framework is compatible with a situation in which there is an underlying doubly-

infinite stationary ergodic stochastic process {Xi}+∞i=−∞ and Zi = (Xi, Xi−1, . . . , Xi−r)′ for some fixed r

for each i = 0,±1,±2, . . . , as the resulting doubly-infinite stochastic process {Zi}+∞i=−∞ will be stationary

and ergodic.
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where:

P̂n(β, λ) = n−1

n+mn∑
i=1−mn

ρ(λ′gωi,n(β)), (3)

gωi,n(β) = (2mn + 1)−1

mn∑
j=−mn

gi−j,n(β) (4)

gi,n(β) = 1{1≤i≤n}gi(β), (5)

gi(β) = g(Zi, β), (6)

where 1{·} denotes the usual indicator function, ρ(·) is a twice continuously differentiable

strictly concave function from V , an open interval in R containing the point 0, to R, such

that the first derivative of ρ(·) at 0 is non-zero:

Λ̂n(β) = {λ ∈ Rq : λ′gωi,n(β) ∈ V , 1−mn ≤ i ≤ n+mn}, (7)

and mn is a lag truncation parameter which tends to infinity at a suitable rate as the

sample size, n, tends to infinity. Without loss of generality, we will impose that ρ(0) = 0

and ρ1(0) = ρ2(0) = −1 where ρ1(u) = dρ(u)/du and ρ2(u) = d2ρ(u)/du2; see Newey and

Smith (2004).

Unfortunately it is possible that there is no solution to the saddlepoint problem (P1)

since g(z, β) need not be continuous in β for all z and β. Therefore we will characterize

the estimator β̂n of β as a mapping from {Zi}∞i=−∞ to B such that:

P̂ ∗
n(β̂n) ≤ inf

β∈B
P̂ ∗
n(β) + op(n

−σ), (8)

where:

P̂ ∗
n(β) = sup

λ∈Λ̂n(β)

P̂n(β, λ), (9)

and σ is a suitable strictly positive constant. Since 0 ∈ Λ̂n(β) for all β ∈ B it follows

P̂ ∗
n(β) ≥ 0 for all β ∈ B and hence infβ∈B P̂

∗
n(β) must exist and be non-negative. It follows

that for any chosen σ > 0 there will exist a sequence of mappings {β̂n}∞n=1 satisfying

Equation (8). This definition of the estimator does not guarantee that it is a random
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variable; however, this issue can easily be circumvented provided that we substitute outer

measure for probability in the assumptions and the proofs.2

The objective function P̂n(β, λ) used here differs from that used by Smith (1997) in

two respects. First, as noted in the Introduction, our objective function imposes a uniform

weighting function in the construction of the smoothed contributions given by Equation

(4), whereas Smith (1997) allows for a more general range of weighting functions. We

have chosen this particular weighting function primarily for simplicity but it seems likely

that the assumptions and proofs can be modified to enable us to demonstrate consistency

and asymptotic normality for GEL estimators defined using a wider class of weighting

functions. Suppose that {ωm(·)}∞m=0 is a sequence of weighting function such that for each

m = 0, 1, . . ., ωm(u) = 0 for |u| ≥ (2m + 1) and
∑m

j=−m ωm(j) = 1. Now define σ1m =

(2m + 1) sup−m≤j≤m |ωm(j)|, σ2m =
∑m

j=−m |ωm(j)| and σ2m = (2m + 1)
∑m

j=−m ωm(j)2.

The main conditions which we then need on {ωm(·)}∞m=0 seem to be that each σjm converges

to a finite non-zero limit as m → ∞ for j = 1, 2, 3. In the case of the uniform weighting

function used here, σjm = 1 for all m = 0, 1, 2, . . ., and j = 1, 2, 3 so that these limiting

conditions are automatically satisfied.

Second, we have treated the endpoints of the sample slightly differently than seems to

be done by Smith (1997). In particular, we have smoothed in zeros at both ends of the

sample. Doing so results in rather convenient expressions for the first and second derivatives

of P̂n(β, λ) with respect to λ evaluated at λ = 0. In particular the first derivative of P̂n(β, λ)

with respect to λ is given by:[
∂P̂n
∂λ

]
= n−1

n+mn∑
i=1−mn

ρ1(λ
′gωi,n(β))gωi,n(β). (10)

Evaluating this at λ = 0 gives:[
∂P̂n
∂λ

∣∣∣∣∣
λ=0

]
= −n−1

n∑
s=1

gs(β), (11)

2If (Ω,F , P ) is a probability space then for any subset A ⊆ Ω we define the outer measure of A, denoted

P ∗(A), as the infimum of E(Y ) over all random variables Y on (Ω,F , P ) such that Y (ω) ≥ 1A(ω) for all

ω ∈ Ω where 1A(·) : Ω → {0, 1} denotes the indicator function for the set A.
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where Sn = (2mn + 1), so the first derivative of P̂n(β, λ) with respect to λ evaluate at

λ = 0 is equal to minus the sample moment condition used in GMM. In addition, the

second derivative of P̂n(β, λ) with respect to λ is given by:[
∂2P̂n
∂λ∂λ′

]
= n−1

n+mn∑
i=1−mn

ρ2(λ
′gωi,n(β))gωi,n(β)gωi,n(β)′ = Ĥn(β, λ). (12)

Evaluating this at λ = 0 gives:

Ĥn(β, 0) = −S−1
n

2mn∑
j=−2mn

κB

(
j

2mn + 1

)
Γ̂s,n(β), (13)

where:

Γ̂j,n(β) = n−1

min(n,n+j)∑
i=max(1,1+j)

gi(β)gi−j(β)′, j = 0, . . . , Sn, (14)

and κB(u) = max(0, 1 − |u|) denotes the Bartlett kernel, so that the second derivative of

P̂n(β, λ) with respect to λ evaluated at λ = 0 is proportional to the Bartlett kernel HAC

estimator of the variance of the sample moment condition used in GMM. Note that this

implicitly requires that mn < n/2.

Designing the objective function so that it treats the endpoints in this fashion thus

effectively ensures that the class of GEL estimators is as closely related as possible to

the class of GMM estimators in which the weighting matrix is given by the inverse of a

Bartlett kernel HAC estimator of the variance matrix of the sample moments. In particular,

it guarantees that the class of GEL estimators as defined here does in fact include the CUE

estimator based on the Bartlett kernel HAC estimator of the variance matrix of the sample

moments.

In order to proceed further we make the following assumptions.

Assumptions

A1. Data Generation Process (DGP)

The doubly-infinite stochastic process {Zi}+∞
i=−∞ is strictly stationary and ergodic.

A2. Parameter Space

B is a compact subset of Rp.
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A3. Moment Condition

There exists a unique β0 ∈ B such that E0[g(Zi, β0)] = 0 for i = 0,±1,±2, . . . .

A4. Continuity with Probability One

For each β̄ ∈ B and each i = 0,±1,±2, . . . , g(Zi, β) is continuous with respect to β

with probability one at β = β̄.

A5. Dominance

There exists a measurable non-negative scalar function d(z) and a finite scalar con-

stant ν > 2 such that:

(i) supβ∈B ‖g(z, β)‖ ≤ d(z) for all z; and

(ii) E0[d(Zi)
ν ] <∞ for each i = 0,±1,±2, . . ..

A6. Limiting Variance Matrix

There exists a non-singular matrix Σ0 such that:

lim
n→∞

V ar0

[
n−1/2

n∑
i=1

g(Zi, β0)

]
= Σ0.

A7. Lag Truncation Sequence

{mn}∞n=1 is a sequence of non-negative integers such that 0 ≤ mn < (n/2) for all n

and such that (2mn + 1) = O(nδ) and (2mn + 1)−1 = O(n−δ) for some 0 ≤ δ <∞.

A8. Ideal HAC Estimator

There exists a symmetric positive definite matrix Σ1 such that:

Σ̂0
n ≡

2mn∑
j=−2mn

κB

(
j

2mn + 1

)
Γ̂s,n(β0)

p→ Σ1,

where:

Γ̂j,n(β0) = n−1

min(n,n+j)∑
i=max(1,1+j)

gi(β0)gi−j(β0)
′, j = 0, 1, 2, . . . ,

and κB(u) = max(0, 1− |u|) denotes the Bartlett kernel.
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A9. Carrier Function

V is an open interval of R such that 0 ∈ V and ρ(·) : V → R is a twice continuously

differentiable strictly concave function such that:

ρ(0) = 0,

[
dρ(u)

du

∣∣∣∣
u=0

]
= −1,

[
d2ρ(u)

du2

∣∣∣∣
u=0

]
= −1.

A10. Interior Parameter Value

B has a non-empty interior, denoted int(B), and β0 ∈ int(B).

A11. Central Limit Theorem

n−1/2
∑n

i=1 g(Zi, β0)
D→ N [0,Σ0].

A12. Stochastic Equicontinuity I

The empirical process Yn(β) defined by:

Yn(β) ≡ n−1/2

n∑
i=1

[gi(β)− E0(gi(β))] ,

is stochastically equicontinuous on B.

A13. Differentiable Population Moments

E0[g(Zi, β)] is continuously differentiable with respect to β on an open neighborhood

of β0 and its Jacobian matrix evaluated at β = β0 has rank p.

A14. Stochastic Equicontinuity II

For each l = 1, . . . , q, the empirical process Xn,l(β) defined by:

Xn,l(β) ≡ n−1/2

n∑
i=1

[hi,l(β)− E0(hi,l(β))] ,

hi,l(β) ≡ |gi,l(β)− gi,l(β0)|,

is stochastically equicontinuous on B, where gi,l(β) denotes the l’th element of gi(β).

A15. Lipschitz Continuity

There exist an open neighborhood B0 ⊂ B of β0 and a positive scalar L0 <∞ such

that for each i = 0,±1,±2, . . . , and l = 1, . . . , q:∣∣hel (β̄)− hel (β0)
∣∣ ≤ L0 · ‖β̄ − β0‖, ∀β̄ ∈ B0,
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where hel (β) = E0[hi,l(β)].

Before proceeding further it is worthwhile making some comments on these assumptions,

especially regarding how they relate to those made for GMM estimation with non-smooth

objective functions. First, following the line of argument in Newey and McFadden (1994,

pp. 2129, 2132) it is easy to show that Assumptions A1–A5 are sufficient to ensure the

consistency of any simple GMM estimator β̃n characterized by:

(P2) ‖ĝ(n)(β̃n)‖2 ≤ inf
β∈B

‖ĝ(n)(β)‖2 + op(n
−σ),

(15)

for some σ ≥ 0. In fact β̃n can be shown to be consistent when the condition that ν > 2

in Assumption A5 is replaced by the weaker condition that ν ≥ 1.

Second, Assumptions A3, A6 and A10–A13 in combination with the consistency of β̃n,

as implied by Assumptions A1–A5, are sufficient to enable us to invoke Theorem 7.2 of

Newey and McFadden (1994) to show that if σ ≥ 1 then n1/2(β̃n − β0) is asymptotically

normal with mean zero and variance matrix (G0
′G0)

−1G0
′Σ0G0(G0

′G0)
−1, where G0 de-

notes the Jacobian matrix of E0[g(Zi, β)] with respect to β evaluated at β = β0. In fact,

as noted by Newey and McFadden (1994, p. 2187), Assumption A12 is somewhat stronger

than is necessary for invoking Theorem 7.2 of Newey and McFadden (1994).

Third, if we have a sequence of symmetric non-negative definite stochastic matrices

{Ĉn}∞n=1 such that Ĉn converges in probability to Σ−1
0 then then the same arguments can

be used to establish the existence, consistency and asymptotic normality of an optimal

GMM estimator β̇n defined by solving:

(P3) ĝ(n)(β̇n)
′Ĉnĝ(n)(β̇n) ≤ inf

β∈B
ĝ(n)(β)′Ĉnĝ(n)(β)+op(n

−σ),

(16)

for some σ ≥ 1. The limiting distribution of β̇n then has a variance matrix given by

(G0
′Σ−1

0 G0)
−1. Of course, as is well-known, the conditions on the limiting behavior of Ĉn

needed for an optimal GMM estimator are weaker than this; indeed, they do not require

that Σ0 be non-singular.
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There are many possible choices for Ĉn but one of the most commonly used is the

feasible Bartlett kernel HAC estimator Σ̂n(β̃n) of Σ0, where:

Σ̂n(β) =
2mn∑

j=−2mn

κB

(
j

2mn + 1

)
Γ̂j,n(β), (17)

and Γ̂j,n(β) is defined as in Equation (14). The properties of this estimator have been

investigated by a number of authors, most notably Andrews (1991), in the case where

g(z, β) is differentiable with respect to β. In the present context, where g(z, β) might be

non-differentiable with respect to β, we show in Lemma 4 below that if β̄n = β0+Op(n
−1/2)

then Σ̂n(β̄n)
p→ Σ1 under Assumptions A1–A15.

It is clear that several of the assumptions made here, in particular Assumptions A6, A8,

A11, A12 and A14, are fairly high level assumptions. Clearly, these assumptions all impose

implicit conditions on the moments and time-series dependence in the stochastic process

{Zi}∞i=−∞ which are almost certainly stronger the conditions specified by Assumptions A1

and A5. However, Assumptions A6, A8 and A11 all hold provided Assumptions A1, A5

and A7 hold such that ν > 4 and {Zi}∞i=−∞ has strong mixing coefficients {αs}∞s=1 which

satisfy
∑∞

s=1 s
2α

(b−1)/b
s <∞ for some 1 < b ≤ (ν/4).345

Assumptions A12 and A14 are stochastic equicontinuity assumptions. Suppose that

{Win : i ≤ n, n ≥ 1} is a triangular array of W-valued random variables for W ⊆ Rk and

that Π ⊂ Rd is a bounded parameter space. Then let M = {m(·, π) : π ∈ Π} denote a

class of scalar real-valued functions and define the associated empirical process ηn(·) by:

ηn(π) = n−1/2

n∑
i=1

[m(Win, π)− E(m(Win, π))].

3 With these stronger conditions we can invoke Lemma 1 from Andrews (1991) to establish that Σ0 =

limn→∞ V ar0

[
n−1/2

∑n
i=1 g(Zi, β0)

]
exists, though this does not ensure that Σ0 is non-singular.

4 With these stronger conditions we can invoke Proposition 1 from Andrews (1991) to establish that

Σ̂0
n

p→ Σ0.

5 With these stronger conditions together with the Assumption A6 then we can invoke Corollary 24.7

of Theorem 24.6 from Davidson (1994) and establish that n−1/2
∑n

i=1 g(Zi, β0)
D→ N [0,Σ0].

11



This process is said to be stochastically equicontinuous if for every sequence of positive

scalar constants {δn : n ≥ 1} that converges to zero:

sup
π1,π2∈Π:‖π1−π2‖≤δn

‖ηn(π1)− ηn(π2)‖
p→ 0.

Andrews (1993) provides a variety of conditions under which stochastic equicontinuity can

be demonstrated for empirical processes based on dependent random variables. These

conditions usually consist of three components. First, there are usually some restrictions

on the mixing properties of the {Win : i ≤ n, n ≥ 1} array. Second, let the real-valued

function M̄(·) on W be an envelope of M if:

sup
π∈Π

|m(w, π)| ≤ M̄(ω),∀w ∈ W .

Then there are usually requirements thatM possesses an envelope function M̄(·) satisfying

certain restrictions. Third, there are usually restrictions on the size or complexity of the

class M, typically expressed in terms of so-called cover numbers. One particularly useful

set of cover numbers are the so-called Lp-bracketing cover numbers defined as follows.

Suppose M is a class of real-valued functions. For ε > 0 and p ∈ [1,∞], the Lp-bracketing

cover number NB
p (ε,M) is the smallest value of n for which there exist real functions

a1, . . . , an and b1, . . . , bn on W such that for all m ∈M:

|m(w)− aj(w)| ≤ bj(w) ∀w ∈ W for some j ≤ n

and:

max
j≤n

sup
i≤n,n≥1

(E [bj(win)
p])1/p ≤ ε.

The restrictions then take the form of bounds on how rapidly NB
p (ε,M) can grow as

ε → 0. One useful source of such bounds are provided by so-called Lp-continuity condi-

tions. The class of functions M satisfies an Lp-continuity condition if there exist constants

p, C0, ψ, r0 > 0 such that for every π ∈ Π and 0 < δ < r0:

sup
i ≤n,n≥1

(
E sup

π1∈Π:‖π1−π‖≤δ
|m(Win, π1)−m(Win, π)|p

)1/p

≤ C0δ
ψ. (18)
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Then provided that Π ⊂ Rd is bounded it follows that NB
p (ε,M) ≤ C1ε

−d/ψ for some

C1 <∞; see Andrews (1993, p. 201).

A vector real-valued process is then stochastically equicontinuous if each of its elements

is stochastically equicontinuous. We can thus see that Assumptions A12 and A14 state

that the processes Yn and Xn are stochastically equicontinuous, where Wi = Zi, π = β

and Π = B, and m(·, ·) = g(·, ·) or m(·, ·) = h(·, ·) respectively. In the present context,

Lp-continuity conditions on the classes of functions are also potential useful because they

help to provide a motivation for Assumption A15. Suppose that the elements of the class

M are all non-negative and that furthermore there exists π0 ∈ Π such that m(w, π0) = 0

for all w ∈ W . Observe that if M satisfies the Lp-continuity condition with respect to the

stochastic process {Win : i ≤ n, n ≥ 1} given in Equation (18) and p ≥ 1 then it follows

that for all π ∈ Π and 0 < δ < r0:

C0δ
ψ ≥ E

(
sup

π1∈Π:‖π1−π‖≤δ
|m(Win, π1)−m(Win, π)|

)
≥ sup

π1∈Π:‖π1−π‖≤δ
E (|m(Win, π1)−m(Win, π)|)

≥ sup
π1∈Π:‖π1−π‖≤δ

|E[m(Win, π1)]− E[m(Win, π)]| , (19)

generating a property which closely resembles that Assumption A15.

Finally, it might seem simpler to replace Assumption A15 with an assumption that

E0[h(Zi, β)] is differentiable at β = β0, thus paralleling Assumption A13 for the g(·, ·)

function. Unfortunately, that would be a very restrictive assumption which would not

be satisfied in certain leading cases of interest. In particular, suppose that {Zi}+∞
i=−∞ is a

univariate stochastic process such that Zi is a continuous random variable with a continuous

and strictly positive density everywhere in R, and that we wish to estimate the median of

Zi. A natural choice for the g(·) function is to set g(z, β) = (1z<β − 1z>β)/2 which clearly

satisfies Assumptions A4 and A5 given these conditions. Taking expectations we see that:

E0[g(Zi, β)] = (Pr{Zi < β} − Pr{Zi > β})/2 = Pr{Zi ≤ β} − (1/2), (20)

since Zi has a continuous distribution. Furthermore, since Zi has a strictly positive density
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it follows that E0[g(Zi, β)] = 0 has a unique solution at β = β0 where β0 is the median of

Zi characterized by Pr{Zi ≤ β0} = Pr{Zi ≥ β0} = (1/2) thus satisfying Assumption A3.

If we define FZ(z) = Pr{Zi ≤ z} then differentiating E0[g(Zi, β)] gives:

dE0[g(Zi, β)]

dβ
=
dFZ(β)

dβ
= fZ(β), (21)

where fZ(z) denotes the density function of Zi evaluated at z. By assumption, this is

positive for all z and, in particular, it is positive at z = β0 thus implying that E0[g(Zi, β)]

satisfies Assumption A13. However if we now define h(Zi, β) = |g(Zi, β) − g(Zi, β0)| then

taking expectations gives:

E0[h(Zi, β)] = Pr{min(β, β0) ≤ Zi ≤ min(β, β0)}. (22)

It thus follows that E0[h(Zi, β)] has a kink at β = β0 such that its right derivative at

β = β0 is equal to −fZ(β0) while its left derivative is equal to fZ(β0). Hence E0[h(Zi, β)]

it is not differentiable at β = β0 since the density of Zi is assumed to be strictly positive

everywhere. However, E0[h(Zi, β)] is differentiable at every other value of β and if it is

assumed that fZ(·) is uniformly bounded above by L0 < ∞ then it is easy to verify that

Assumption A15.

3 Consistency

As stated in the Introduction, our strategy for demonstrating consisting of the GEL estima-

tor is based on the approach used by Newey and Smith (2004) to demonstrate consistency

in the i.i.d. sampling case. However, it is modified somewhat by the need to take the

dependence in the {Zi} process into account.

The first step in demonstrating consistency is to establish the following lemma which

directly parallels Lemma A1 from Newey and Smith (2004).

Lemma 1 Under Assumptions A1, A2, A5, A7 and A9, for any fixed ζ such that (1/ν) <

ζ <∞, define Λζ
n = {λ ∈ Rq : ‖λ‖ ≤ n−ζ}; then:

14



(i) supβ∈B,λ∈Λζ
n,1−mn≤i≤n+mn

|λ′gωi,n(β)| p→ 0; and

(ii) Λζ
n ⊆ ∩β∈BΛ̂n(β), with probability asymptotically one (w. p. a. 1), where:

Λ̂n(β) = {λ ∈ Rq : λ′gωi,n(β) ∈ V ; 1−mn ≤ i ≤ n+mn}. (23)

Proof. See Appendix.

Note that the assumptions we have made for Lemma 1 are stronger than are needed for

the proof. in particular, the proof does not require: (a) the ergodicitity of {Zi}+∞
i=−∞ in

Assumption A1; (b) the compactness of B in Assumption A2; (c) the requirement that ν >

2 in Assumption A5, as the proof works for any ν ≥ 1; (d) the rate of growth restrictions

on mn in Assumption A7; or (e) any of the specific requirements on ρ(·) in Assumption

A9. Indeed, if we replaced part (b) of Assumption A5 with the weaker condition that there

exists M0 < ∞ such that E0[d(Zi)
ν ] ≤ M0 for all i = 0,±1,±2, . . ., then we would not

require {Zi}∞i=−∞ to be stationary.

The second step is to establish the following lemma, based on part of Lemma A2 from

Newey and Smith (2004), which controls the asymptotic behavior of P̂ ∗
n(β0).

Lemma 2 Under Assumptions A1, A3 and A5–A9, suppose that δ ≤ (1/2)− (1/ν); then:

P̂ ∗
n(β0) ≡ sup

λ∈Λ̂n(β0)

P̂n(β0, λ0) = Op(n
δ−1). (24)

Proof. See Appendix.

The third step is given by the following lemma which is a somewhat weakened version

of Lemma A3 from Newey and Smith (2004).

Lemma 3 Under Assumptions A1–A3 and A5–A9, suppose that δ ≤ (1/2) − (1/ν), σ >

(1ν) and {β̄n}∞n is a sequence of estimators of β0 such that:

P̂ ∗
n(β̄n) ≤ P̂ ∗

n(β0) + op(n
−σ). (25)

Then:

‖ĝ(n)(β̄n)‖ = op(1). (26)
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Proof. See Appendix.

Note that the proof of Lemma 3 does not require the compactness of B in Assumption A2

and it is not entirely clear as to how important is the requirement that ν > 2 in Assumption

A5 for the proof. The proof uses Lemma 1 which, as noted above, only requires that ν ≥ 1.

However, Assumption A8 almost certainly imposes stronger requirements on ν as discussed

in Section 2 above.

We are now in a position to establish the consistency of β̂n.

Theorem 1 Under Assumptions A1–A9, suppose that δ ≤ (1/2)− (1/ν) and {β̄n}∞n is a

sequence of estimators of β0 such that P̂ ∗
n(β̄n) ≤ P̂ ∗

n(β0) + op(n
−σ) where σ > (1/ν); then

β̄n
p→ β0.

Proof. See Appendix.

Corollary 1 Under Assumptions A1–A9, if δ ≤ (1/2) − (1/ν) and σ > (1/ν) then β̂n is

a consistent estimator of β0.

Proof. By construction infβ∈B P
∗
n(β) ≤ P ∗

n(β0) and hence it follows that β̂n satisfies the

conditions of Theorem 1.

Note that Theorem 1 does need stronger assumptions than do Lemmas 1–3. In particular,

unlike Lemmas 1–3, Theorem 1 does require the compactness of B in Assumption A2 and

the continuity with probability one of g(·) in Assumption A4.

Finally, it is worth comparing the assumptions under which consistency is demonstrated

with the assumptions under which Newey and Smith (2004) are able to demonstrate con-

sistency for the static GEL estimator, i.e. the estimator when mn = 0, in the i.i.d. sampling

case. Clearly, the assumption that the {Zi} are i.i.d replaces Assumption A1. In addition,

the assumption that mn = 0 clearly replaces Assumption A7. The other assumptions made
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by Newey and Smith (2004) for establishing consistency are then identical to those made

here for establishing consistency.6

4 Asymptotic Normality

The first step in the proof of asymptotic normality of β̂n under suitable conditions on τ is

to establish the following lemma.

Lemma 4 Under Assumptions A1–A2, A5–A8 and A14–A15, suppose that δ < (1/2) −

(1/ν) and that β̄n = β0 + 0p(n
−1/2) then:

Σ̂n(β̄n) = Σ1 + op(1). (27)

Proof. See Appendix.

The second step is to to establish that β̂n is root-n consistent under suitable conditions

on α, γ, δ, and σ.

Lemma 5 Under Assumptions A1–A15, suppose that δ < (1/2) − (1/ν) and {β̄n}∞n is a

sequence of estimators of β0 such that P̂ ∗
n(β̄n) ≤ P̂ ∗

n(β0)+ op(n
−σ) where σ ≥ (1− δ) ; then

β̄n = β0 +Op(n
−1/2).

Proof. See Appendix.

Note that since Lemma 4 holds under a subset of the assumptions of Lemma 5 it follows

that Σ̂n(β̂n) is a consistent estimator of Σ1.

The third step is to demonstrate that a rescaled version of P ∗
n(β) behaves approximately

like nĝ(n)(β)′Σ0ĝ(n)(β) in any sequence of neighborhoods of β0 which shrink at rate n−1/2.

6Newey and Smith (2004) assume that V ar0[g(Zi, β0)] is non-singular but this is equivalent to Assump-

tion A6 under i.i.d. sampling. In addition, they do not impose that ρ(0) = 0 in Assumption A9 but, as

noted in Section 2 above, this condition is simply a normalization which is made without loss of generality.

Furthermore, in the i.i.d. sampling case it is trivial to establish that with mn = 0 then Assumption A8 is

satisfied by the Law of Large Numbers under Assumptions A3 and A5.
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Lemma 6 Under Assumptions A1–A15, suppose that δ < (1/2)− (1/ν), σ ≥ (1− δ), and

σ1 = Σ0; then for any fixed 0 < L <∞:

sup
β∈Bn(L)

∣∣∣(2n/Sn)P̂ ∗
n(β)− 2nQ̂∗

n(β; Σ0)
∣∣∣ = op(1), (28)

where Bn(L) = {β ∈ B : ‖β − β0‖ ≤ n−1/2L} and:

Q̂∗
n(β;A) = (1/2)ĝ(n)(β)′A−1ĝ(n)(β), (29)

for any (q × q) symmetric positive definite matrix A.

Proof. See Appendix.

It is immediately obvious that Q̂∗
n(β; Σ0) is an ideal optimal GMM objective function.

We can now easily establish the main result of the paper.

Theorem 2 Under Assumptions A1–A15, suppose that δ < (1/2) − (1/ν), σ ≥ (1 − δ),

and Σ1 = Σ0; then:

n1/2(β̂n − β0)
D→ N [0, (G0Σ

−1
0 G0)

−1]. (30)

Proof. See Appendix.

Thus β̂n is asymptotically efficient in that has the same asymptotic distribution as

an optimal GMM estimator based on the same moment conditions. Indeed, the proof of

Theorem 2 proceeds by demonstrating that β̂n is an optimal GMM estimator.

There are then three issues of interest. First, in order to ensure consistency we need to

impose an upper bound on δ, namely that δ < (1/2)− (1/ν). Since ν > 2 by assumption,

it is clear that we can select δ to satisfy this upper bound while still being non-negative.

It is not clear whether this upper bound can be relaxed by using alternative smoothing

windows; this remains a topic for further research.

Second, there is still an issue of estimating the asymptotic covariance matrix of β̂n.

Under the assumptions we can consistently estimate Σ0 by Σ̂n(β̂n). Furthermore, we

can then apply theorem 7.4 from Newey and McFadden (1994) to provide a consistent

18



estimator of G0 under the assumptions made here. Putting these together then we can

easily construct a consistent estimator of (G0Σ
−1
0 G0)

−1.

Third, it is clear that we can implement asymptotically chi-square tests of hypotheses of

interest either by means of Wald tests or by a comparison of evaluated objective functions.

Thus let H0 : φ(β) = 0 be as set of r ≤ k restrictions forming a hypothesis of interest such

that φ(β) is continuously differentiable with respect to β with rank r and suppose that

β̂R,n satisfies φ(β̂R,n) = 0 and:

P̂ ∗
n(β̂R,n) ≤ inf

β inB:φ(β)=0
P̂ ∗
n(β) + op(n

−σ). (31)

Then following the same logic as used to prove Theorem 2 we can establish that β̂R,n is

a restricted optimal GMM estimator and that P̂ ∗
n(β̂n) and P̂ ∗

n(β̂R,n) are asymptotically

equivalent to rescaled versions of an optimal GMM objective function evaluated at β̂n and

β̂R,n respectively. This leads to the test statistic :

2nS−1
n (P̂ ∗

n(β̂R,n)− P̂ ∗
n(β̂n)) (32)

which should be asymptotically chi-square with r degrees of freedom under the null hy-

pothesis. In a similar fashion we should find that 2nS−1
n P̂ ∗

n(β̂n) is asymptotically chi-square

with (q − k) degrees of freedom if the implicit overidentifying restrictions present in the

moment conditions when q > k are in fact valid.

5 Conclusions

In this paper we have demonstrated consistency and asymptotic normality for GEL es-

timators using non-smooth moment conditions with dynamic data. Our approach works

directly with the relevant non-differentiable functions without any requiring us to smooth

the non-differentiabilities.

Most of the assumptions made are fairly standard. However, in order to handle the non-

differentiability we need to make fairly high-level assumptions to justify the use of empirical
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process methods. These high-level assumptions take the form of stochastic equicontinuity

and Lipschitz-type conditions and would need to be verified using more primitive conditions

in any specific case of interest.

Appendix

Proof of Lemma 1

Define:

φn ≡ sup
β∈B,λ∈Λζ

n,1−mn≤i≤n+mn

|λ′gωi,n(β)|, (A.1)

and observe that:

0 ≤ φn ≤ n−ζ sup
β∈B,1−mn≤i≤n+mn

‖gωi,n(β)‖, (A.2)

by application of the Cauchy-Schwartz inequality and the definition of Λζ
n. Then observe

that:

0 ≤ ‖gωi,n(β)‖ ≤ sup
1−mn≤i≤n+mn

∥∥∥∥∥(2mn + 1)−1

+mn∑
j=−mn

gi−j,n(β)

∥∥∥∥∥ ≤ max
1≤s≤n

‖gs(β)‖, (A.3)

where gs(β) = g(Zs, β), and hence that:

0 ≤ φn ≤ n−ζ sup
β∈B,1≤s≤n

‖gs(β)‖ ≤ n−ζ max
1≤s≤n

d(Zs). (A.4)

Application of the Markov inequality and Jensen’s inequality then implies that max1≤s≤n d(Zs) =

Op(n
1/ν), since ν ≥ 1, and hence that φn = n−ζOp(n

(1/ν)) = op(1), since ζ > (1/ν), which

establishes the first desired result.

Furthermore, Equation (A.4) immediately implies that:

w. p. a. 1 : λ′gωi,n(β) ∈ V ∀ λ ∈ Λζ
n, β ∈ B, 1−mn ≤ i ≤ n+mn, (A.5)

as V is an open interval containing 0. The second desired result then follows directly. �
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Proof of Lemma 2

Define ĝ(n)(β) = n−1
∑n

i=1 g(Zi, β) and then observe that since ρ(·) is twice continuously

differentiable, by Assumption A9, a Taylor series expansion of P̂n(β, λ) in λ around λ = 0

gives:

P̂n(β, λ) = −λ′ĝ(n)(β) + (1/2)λ′Ĥn(β, πλ)λ

= −λ′ĝ(n)(β) + (1/2)λ′

[
n−1

n+mn∑
i=1−mn

ρ2(πλ
′gωi,n(β))gωi,n(β)gωi,n(β)′

]
λ, (A.6)

for some 0 ≤ π ≤ 1 which may depend on β, {Zi}ni=1 and n. Now fix ζ such that

(1/ν) < ζ < (1/2) − δ and define Λζ
n as in Lemma 1; note that this is feasible since

0 < δ < (1/2) − (1/ν) by Assumption A7. Since ρ(·) is concave on the open set V by

assumption it follows that ρ(u) is continuous in u ∈ V and hence P̂n(β, λ) is continuous in

λ ∈ Λ̂n(β) for given β. It then follows from Lemma 1 that:

w. p. a. 1 : ∃λ̃0 s. t. λ̃0 = arg max
λ∈Λζ

n

P̂n(β0, λ). (A.7)

Furthermore, since Λζ
n is convex and since 0 ∈ Λζ

n, it also follows from Lemma 1 and

Assumption A9 that:

w. p. a. 1 : max
1−mn≤i≤n+mn

sup
0≤π≤1

ρ2(πλ̃0
′gωi,n(β) < −(1/2) = (1/2)ρ2(0), (A.8)

since ρ2(0) = −1. Combined with the Taylor series expansion above this implies that:

0 = P̂n(β0, 0) ≤ P̂n(β0, λ̃0) ≤ −λ̃′0ĝ(n)(β0) + (1/4)λ̃′0Ĥn(β0, 0)λ̃0. (A.9)

But from Assumptions A6 and A8 it follows that −SnĤn(β0, 0) = Σ̂n(β)
p→ Σ1 under a

subset of the assumptions made here. Furthermore, since Σ1 is symmetric positive definite

by assumption it follows that there exists 0 < C0 <∞ such that λ′Σ0λ ≥ C0 · ‖λ‖2 for all

λ ∈ Rq combined with the Cauchy-Schwartz inequality this implies that:

w. p. a. 1 : 0 ≤ P̂n(β0, λ̃0) ≤ ‖λ̃0‖ · ‖ĝ(n)(β0)‖ − (1/8)C0(2mn + 1)−1 · ‖λ̃0‖2 (A.10)

and thus that:

=⇒ w. p. a. 1 : ‖λ̃0‖ ≤ 8C−1
0 (2mn + 1) · ‖ĝ(n)(β0)‖. (A.11)
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Assumption A6 also implies that ĝ(n)(β0) = Op(n
−1/2) since E0[n

1/2ĝ(n)(β0)] = 0 and

V ar0[n
1/2ĝ(n)(β0)] = O(1). Since mn = Op(n

δ) it thus follows from Equation (A.11) that

‖λ̃0‖ = Op(n
δ−(1/2)) and since ζ < (1/2) − δ it follows that ‖λ̃0‖ = op(n

−ζ) which in turn

implies that ‖λ̃0‖ ∈ int(Λζ
n), w. p. a. 1. But Lemma 1 implies that int(Λζ

n) ⊆ int(Λ̂n(β0)),

w. p. a. 1, under a subset of the assumptions made here and since, by assumption, ρ(·) is

concave on V and hence P̂n(β0, λ) is concave in λ ∈ Λ̂n(β0)), it thus follows that:

w. p. a. 1 : ‖λ̃0‖ = arg max
λ∈Λ̂n(β0))

P̂n(β0, λ) (A.12)

=⇒ w. p. a. 1 : 0 ≤ P̂ ∗
n(β0) = P̂n(β0, λ̃0) ≤ ‖λ̃0‖ · ‖ĝ(n)(β0)‖, (A.13)

which then implies that P̂ ∗
n(β0) = Op(n

δ−1) as desired. �

Proof of Lemma 3

The first step in the proof of this lemma is to establish that there exists 0 < C1 <∞ such

that:

w. p. a. 1 : sup
β∈B,λ:λ′λ=1

[
−λ′Ĥn(β, 0)λ

]
< C1. (A.14)

Observe that:

− λ′Ĥn(β, 0)λ = n−1

n+mn∑
i=1−mn

[λ′gωi,n(β)]2 ≤ n−1

n+mn∑
i=1−mn

‖λ‖2 · ‖gωi,n(β)‖2 (A.15)

which implies that:

sup
λ:λ′λ=1

[
−λ′Ĥn(β, 0)λ

]
≤ n−1

n+mn∑
i=1−mn

‖gωi,n(β)‖2

≤ n−1

n+mn∑
i=1−mn

[
(2mn + 1)−1

mn∑
j=−mn

‖gi,n(β)‖2

]

≤ n−1

n∑
i=1

‖g(Zi, β)‖2. (A.16)

It then follows that:

sup
β∈B,λ:λ′λ=1

[
−λ′Ĥn(β, 0)λ

]
≤ n−1

n∑
i=1

d(Zi)
2 p→ E[d(Zi)

2] <∞, (A.17)
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by the law of large numbers since {d(Zi)2}+∞
i=−∞ is stationary and ergodic with a finite

expectation. Setting C1 = E[d(Zi)
2] + ε for any ε > 0 establishes Equation (A.14).

Second, fix ζ such that (1/ν) < ζ < min{σ, (1 − δ)}, which is feasible by assumption

since σ > (1/nu) and δ < (1/2)− (1/ν) < 1− (1/ν). Then define Λζ
n, as in Lemma 1, and:

λ̇n =

 −n−ζ ĝ(n)(β̄n)/‖ĝ(n)(β̄n)‖, if ĝ(n)(β̄n) 6= 0,

−n−ζ(1, 0, . . . , 0)′, otherwise.
(A.18)

By construction λ̇n ∈ Λζ
n and hence it follows from Lemma 1 that λ̇n ∈ Λ̂n(β̄n), w. p. a. 1,

under a subset of the assumptions made here. A Taylor series expansion then gives:

w. p. a. 1 : P̂n(β̄n, λ̇n) = −λ̇n′ĝ(n)(β̄n) + (1/2)λ̇n
′Ĥn(β̄n, πλ̇n)λ̇n, (A.19)

for some 0 ≤ π ≤ 1 which may depend on λ̇n, β̂n and the {Zi}n+mn
i=i−mn

. But Lemma 1 then

implies that:

sup
0≤π≤1,1−mn≤i≤n+mn

|πλ̇n′ĝ(n)(β̄n)|
p→ 0, (A.20)

and hence that:

w. p. a. 1 : sup
0≤π≤1,1−mn≤i≤n+mn

|1 + ρ2(πλ̇n
′ĝ(n)(β̄n))| < (1/2), (A.21)

which in turn implies that:

w. p. a. 1 : P̂n(β̄n, λ̇n) ≥ −λ̇n′ĝ(n)(β̄n) + (3/4)λ̇n
′Ĥn(β̄n, 0)λ̇n. (A.22)

But then it follows from Equation (A.14) that:

w. p. a. 1 : P̂n(β̄n, λ̇n) ≥ −λ̇n′ĝ(n)(β̄n)− (3/4)C1 · ‖λ̇n‖2

= n−ζ‖ĝ(n)(β̄n)‖ − (3/4)C1n
−2ζ , (A.23)

by virtue of the definition of λ̇n. Clearly, P̂n(β̄n, λ̇n) ≤ P̄ ∗
n(β̄n), w. p. a. 1, and from the

characterization of β̄n together with the result of Lemma 2, which holds under a subset of

the assumptions made here, it then follows that:

P̂ ∗
n(β̄n) ≤ P̂ ∗

n(β0) + op(n
−σ) = Op(n

−1+δ) + op(n
−σ). (A.24)

23



Combined, these imply that:

w. p. a. 1 : n−ζ‖ĝ(n)(β̄n)‖ − (3/4)C1n
−2ζ ≤ Op(n

−1+δ) + op(n
−σ)

=⇒ ‖ĝ(n)(β̄n)‖ = Op(n
−ζ) +Op(n

−1+δ+ζ) + op(n
−σ+ζ). (A.25)

But, by assumption, ζ > (1/ν) so −ζ < 0, ζ < 1 − δ so −1 + δ + ζ < 0, and ζ < σ so

−σ + ζ < 0. Hence it follows that Op(n
−ζ) + Op(n

−1+δ+ζ) + op(n
−σ+ζ) = op(1) and thus

that ‖ĝ(n)(β̄n)‖ = op(1) as desired. �

Proof of Theorem 1

For convenience in what follows, define ge(β) = E0[g(Zi, β)], which is valid in view of

Assumptions A1 and A5. As noted in Section 2 above, it follows from Assumptions A1–

A2 and A4–A5 that ge(β) is continuous on B and that ĝ(n)(β) converges in probability

to ge(β) uniformly on B by application of Lemma 2.4 from from Newey and McFadden

(1994) and the discussion in the succeeding paragraphs. From Lemmma 3 if follows that

‖ḡ(n)(β̄n)‖
p→ 0, under a subset of the assumptions made here, so by the triangle inequality

it follows that ge(β̄n)
p→ 0. But then observe that Assumptions A2 and A3 combined with

the continuity of ge(β) demonstrated above then implies that ‖ge(β)‖ has an identifiably

unique minimum on B at β = β0. The desired result follows immediately. �

Proof of Lemma 4

First, observe that:

‖Σ̂n(β̄n)−Σ1‖ ≤ ‖Σ̂n(β̄n)−Σ̂n(β0)‖+‖Σ̂n(β0)−Σ1‖ ≤ ‖Σ̂n(β̄n)−Σ̂n(β0)‖+op(1), (A.26)

by Assumption A8. Second, observe that:

‖Σ̂n(β̄n)− Σ̂n(β0)‖ ≤
2mn∑

j=−2mn

κB(j/Sn) · ‖Γ̂j,n(β̄n)− Γ̂j,n(β0)‖

≤ 2Sn sup
|j|≤2mn

‖Γ̂j,n(β̄n)− Γ̂j,n(β0)‖, (A.27)
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using Equation (17) and noting that 0 ≤ κB(u) ≤ 1 for all u ∈ R. Third, observe that for

each |j| ≤ 2mn:

Γ̂j,n(β)− Γ̂j,n(β0) = n−1

min(n,n+j)∑
i=max(1,1+j)

[gi(β)gi−j(β)′ − gi(β0)gi−j(β0)
′]

= n−1

min(n,n+j)∑
i=max(1,1+j)

[gi(β)− gi(β0)]gi−j(β)′

+ n−1

min(n,n+j)∑
i=max(1,1+j)

gi(β0)[gi−j(β)− gi−j(β0)]
′, (A.28)

and hence that:

‖Γ̂j,n(β)− Γ̂j,n(β0)‖ ≤ { sup
1≤i≤n

‖gi(β)‖+ sup
1≤i≤n

‖gi(β0)‖} · n−1

n∑
i=1

‖gi(β)− gi(β0)‖

≤ 2 sup
1≤i≤n

d(Zi) · n−1

n∑
i=1

q∑
l=1

hi,l(β). (A.29)

Since for given n, the right-hand side of Equation (A.29) is the same for all j = −2mn, . . . , 2mn,

then substituting Equation (A.29) into Equation (A.27) implies that:

‖Σ̂n(β̄n)− Σ̂n(β0)‖ ≤ 4Sn sup
1≤i≤n

d(Zi) · n−1

n∑
i=1

q∑
l=1

hi,l(β̄n). (A.30)

Now Assumptions A1 and A5 imply that n−1
∑n

i=1 d(Zi)
ν = Op(1) which by the Markov

Inequality implies that sup1≤i≤n d(Zi) = Op(n
1/ν). In conjunction with Equation (A.30)

and Assumption A7 this then implies that:

‖Σ̂n(β̄n)− Σ̂n(β0)‖ ≤ Op(n
δ+(1/ν))

{
n−1

n∑
i=1

q∑
l=1

hi,l(β̄n)

}
. (A.31)

Fourth, note that ‖gi(β) − gi(β0)‖ = h(Zi, β) ≥ 0 for all β ∈ B with equality if β = β0.

Since β̄n = β0 +Op(n
−1/2) = β0 + op(1), it follows from Assumption A14 that:

0 ≤ n−1

n∑
i=1

q∑
l=1

hi,l(β̄n) ≤
q∑
l=1

hel (β̄n) + op(n
−1/2), (A.32)

where hel (β) = E0[hi,l(β)]. But since hi,l(β) ≥ 0 for all β ∈ B with equality if β = β0 it

follows that that hi,l(β) = |hi,l(β)−hi,l(β0)| for all β ∈ B which combined with Assumption
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A15 and the property that β̄n = β0 +Op(n
−1/2) = β0 + op(1) implies that:

0 ≤ n−1

n∑
i=1

q∑
l=1

hi,l(β̄n) ≤ qL0 · ‖β̄n − β0‖+ op(n
−1/2). (A.33)

This in conjunction with Equation (A.31) then implies that:

‖Σ̂n(β̄n)− Σ̂n(β0)‖ ≤ Op(n
δ+(1/ν))

[
‖β̄n − β0‖+ op(n

−1/2)
]

(A.34)

But by assumption δ < (1/2)−(1/ν) so δ+(1/ν)−(1/2) < 0 and hence ‖Σ̂n(β̄n)−Σ̂n(β0)‖ =

op(1) and hence ‖Σ̂n(β̄n)− Σ1‖ = op(1) as desired. �

Proof of Lemma 5

First, observe from Assumptions A11 and A12 it follows that:

g(β̄n) = ĝ(n)(β̄n)− ĝ(n)(β0) + op(n
−1/2) = ĝ(n)(β̄n) +Op(n

−1/2), (A.35)

which together with Assumption A13 then implies that:

G0 · (β̄n − β0) + op(‖β̄n − β0‖) = ĝ(n)(β̄n) +Op(n
−1/2), (A.36)

by application of the Mean Value Theorem, where denotes the Jacobian matrix of g(β)

with respect to β evaluate at β = β0. Since G0 has rank of p, by Assumption A13, it

follows that:

‖β̄n − β0‖ ≤ ‖G0
′G0‖−1/2 · ‖ĝ(n)(β̄n)‖+ op(‖β̄n − β0‖) +Op(n

−1/2), (A.37)

where for any matrix A, ‖A‖ = [tr(A′A)]1/2, and hence that:

‖β̄n − β0‖ ≤ Op(1) · ‖ĝ(n)(β̄n)‖+Op(n
−1/2). (A.38)

Second, fix ζ = (1/2)− δ and then define:

λ̇n =

 −n−ζ ĝ(n)(β̄n)/‖ĝ(n)(β̄n)‖, if ĝ(n)(β̄n) 6= 0,

−n−ζ(1, 0, . . . , 0)′, otherwise,
(A.39)
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as in the proof of Lemma 3. Following the line of argument in the proof of Lemma 3 we

can then show that, under a subset of the assumptions made here:

w. p. a. 1 : −λ̇n′ĝ(n)(β̄n) + (3/4)λ̇n
′Ĥn(β̄n, 0)λ̇n ≤ P̂n(β̄n, λ̇n), (A.40)

and also that:

w. p. a. 1 : P̂n(β̄n, λ̇n) ≤ P̂ ∗
n(β̄n) ≤ P̂ ∗

n(β0) + op(n
−σ) = Op(n

−1+δ) + op(n
−σ). (A.41)

Together with the results that Ĥn(β̄n, 0) = −S−1
n Σ̂n(β̄n) and −λ̇n′ĝ(n)(β̄n) = n−ζ‖ĝ(n)(β̄n)‖

these imply that:

w. p. a. 1 : ‖ĝ(n)(β̄n)‖ ≤ Op(n
−δ−ζ) · ‖Σ̂n(β̄n)‖+Op(n

−1+δ+ζ) + op(n
−σ+ζ). (A.42)

Third, observe that:

‖Σ̂n(β̄n)‖ ≤ ‖Σ̂n(β̄n)− Σ̂n(β0)‖+ ‖Σ̂n(β0)− Σ1‖+ ‖Σ1‖, (A.43)

which in conjunction with Assumption A8 and Equation (A.34) from the proof of Lemma

4 then implies that:

w. p. a. 1 : ‖ĝ(n)(β̄n)‖ ≤ Op(n
(1/ν)−ζ) · ‖β̄n − β‖+Op(n

−1/2). (A.44)

In conjunction with Equation (A.38), this implies that:

‖β̄n − β‖ ≤ Op(n
(1/ν)+δ−(1/2)) · ‖β̄n − β‖+Op(n

−1/2). (A.45)

Fourth, since δ < (1/2)− (1/ν) it then follows that

‖β̄n − β‖ ≤ op(1) · ‖β̄n − β‖+Op(n
−1/2). (A.46)

from which the desired result follows immediately. �
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Proof of Lemma 6

First, fix 0 < L < ∞n and define Bn(L) = {β ∈ B : ‖β − β0‖ ≤ n−1/2L}. Then, for any

(1/ν) < ζ < ∞ define Λζ
n as in Lemma 1 and observe that by application of Lemma 1 it

follows that there exist 0 ≤ η1,n ≤ 1 ≤ η2,n such that:

w. p. a. 1 : η1,n = inf
β∈Bn(L),λ∈Λζ

n,1−mn≤i≤n+mn

[−ρ2(λ
′gωi,n(β)], (A.47)

w. p. a. 1 : η2,n = sup
β∈Bn(L),λ∈Λζ

n,1−mn≤i≤n+mn

[−ρ2(λ
′gωi,n(β)], (A.48)

and ηj,n = 1 + op(1) for j = 1, 2. By a Taylor series expansion it follows that for all β ∈ B

and λ ∈ Λ̂n(β):

P̂n(β, λ) = −λ′ĝ(n)(β) + (1/2)λ′Ĥn(β, πλ)λ, (A.49)

for some 0 ≤ π ≤ 1 which may depend on β, λ, {Zi}∞i=−∞ and n. By application of Lemma

1 it then follows that:

w. p. a. 1 : 0 ≤ η1,nΣ̂n(β) ≤ [−SnĤn(β, λ)] ≤ η2,nΣ̂n(β), ∀β ∈ Bn(L) & λ ∈ Λζ
n, (A.50)

where ≤ is used in the non-negative definite ordering sense for matrices so that A ≤ B

means that (B − A) is non-negative definite. Now since Λζ
n is compact it also follows by

application of Lemma 1 that there exists λ̃n(β) for each β ∈ Bn(L) such that:

w. p. a. 1 : λ̃n(β) = arg max
λ∈Λζ

n

P̂n(β, λ), ∀β ∈ Bn(L), (A.51)

and hence that:

w. p. a. 1 : 0 = P̂n(β, 0) ≤ P̂n(β, λ̃n(β)), ∀β ∈ Bn(L). (A.52)

Combined with the Taylor series expansion from above this implies that:

w. p. a. 1 : 0 ≤ −λ̃n(β)′ĝ(n)(β) + (1/2)λ̃n(β)′Ĥn(β, πλ̃n(β))λ̃n(β), ∀β ∈ Bn(L), (A.53)

for some 0 ≤ π ≤ 1 which may depend on β, {Zi}∞i=−∞ and n, and hence that:

w. p. a. 1 : λ̃n(β)′Σ̂n(β)λ̃n(β) ≤ 2η−1
1,nSn · ‖λ̃n(β)‖ · ‖ĝ(n)(β)‖, ∀β ∈ Bn(L). (A.54)
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Now let µ̂n(β) denote the smallest eigenvalue of Σ̂n(β) and µ0 denote the smallest eigenvalue

of Σ0. It follows by application of Lemmas 4 and 5 that:

w. p. a. 1 : µ̂n(β) ≥ (1/2)µ0 ≥ 0, ∀β ∈ Bn(L), (A.55)

But Σ0 is non-singular by assumption and hence µ0 > 0 which then implies that:

w. p. a. 1 : ‖λ̃n(β)‖ ≤ 4(µ0η1,n)
−1Sn · ‖ĝ(n)(β)‖, ∀β ∈ Bn(L). (A.56)

But then observe from by Assumptions A11–A13 it follows that:

sup
β∈Bn(L)

‖ĝ(n)(β)‖ = Op(n
−1/2), (A.57)

and hence that:

sup
β∈Bn(L)

‖λ̃n(β)‖ = Op(n
−(1/2)+δ) = op(n

−ζ), (A.58)

which then implies that:

w. p. a. 1 : λ̃n(β) ∈ int(Λζ
n), ∀β ∈ Bn(L), (A.59)

and hence that:

w. p. a. 1 : λ̃n(β) ∈ int(Λ̂n(β)), ∀β ∈ Bn(L), (A.60)

so that:

w. p. a. 1 : λ̃n(β) = arg max
λ∈Λ̂n(β)

P̂n(β, λ), ∀β ∈ Bn(L). (A.61)

Now observe that by application of Lemma 4 it follows that there exists 0 ≤ c1,n ≤ 1 ≤

c2,n such that:

c1,nΣ̂n(β) ≤ Σ0 ≤ c2,nΣ̂n(β), ∀β ∈ Bn(L), (A.62)

(where ≤ is again used in the non-negative definite sense) and cj,n = 1 + op(1) for j = 1, 2.

Hence it follows that:

w. p. a. 1 : Q̂n(β, λ; c−1
1,nη2,nS

−1
n Σ0) ≤ P̂n(β, λ) ≤ Q̂n(β, λ; c−1

2,nη1,nS
−1
n Σ0), ∀β ∈ Bn(L)&λ ∈ Λζ

n,

(A.63)

29



where:

Q̂n(β, λ;A) = −λ′ĝ(n)(β)− (1/2)λ′Aλ, ∀β ∈ B&λ ∈ Rq. (A.64)

For any β ∈ B and symmetic positive-definite matrix A define:

λ̄n(β;A) ≡ arg max
λ∈Rq

Q̂n(β, λ;A) = −A−1ĝ(n)(β), (A.65)

Q̂∗
n(β;A) ≡ max

λ∈Rq
Q̂n(β, λ;A) = (1/2)ĝ(n)(β)′A−1ĝ(n)(β). (A.66)

It follows that:

sup
β ∈Bn(L)

‖λ̄n(β; c−1
1,nη2,nS

−1
n Σ0)‖ = Op(n

−(1/2)+δ) = op(n
−ζ), (A.67)

sup
β ∈Bn(L)

‖λ̄n(β; c−1
2,nη1,nS

−1
n Σ0)‖ = Op(n

−(1/2)+δ) = op(n
−ζ), (A.68)

and hence that:

w. p. a. 1 : Q̂∗
n(β; c−1

1,nη2,nS
−1
n Σ0) ≤ P̂ ∗

n(β) ≤ Q̂n(β; c−1
2,nη1,nS

−1
n Σ0), ∀β ∈ Bn(L). (A.69)

But this then implies that:

w. p. a. 1 : 2n(c1,n/η2,n)Q̂
∗
n(β; Σ0) ≤ (2n/Sn)P̂

∗
n(β) ≤ 2n(c2,n/η1,n)Q̂

∗
n(β; Σ0), ∀β ∈ Bn(L).

(A.70)

Since supβ∈Bn(L) ĝ
∗
n(β) = Op(n

−1/2) then 0 ≤ nQ̂∗
n(β; Σ0) = Op(1) and then since (c1,n/η2,n) =

1 + op(1) and (c2,n/η1,n) = 1 + op(1) it follows that:

sup
β∈Bn(L)

∣∣∣(2n/Sn)P̂ ∗
n(β)− 2nQ̂∗

n(β; Σ0)
∣∣∣ = op(1), (A.71)

as desired. �

Proof of Theorem 2

The first step is to observe Lemma 6 implies that there exists a sequence of strictly positive

constants {Ln}∞n=1 such that Ln →∞ and:

sup
β∈Bn(Ln)

∣∣∣(2n/Sn)P̂ ∗
n(β)− 2nQ̂∗

n(β; Σ0)
∣∣∣ = op(1). (A.72)
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Next, there exists a sequence of mappings β̈n such that:

nQ̂∗
n(β̈n; Σ0) ≤ inf

β∈B
nQ̂∗

n(β; Σ0) + op(n
−1). (A.73)

Then it follows from Theorems 2.6 and 7.2 of Newey and McFadden (1994) together with

the discussion in Newey and McFadden (1994, p. 2133) that:

n1/2(β̈n − β0)
D→ N [0, (G0Σ

−1
0 G0)

−1]. (A.74)

Note that if β̈n are not measurable then these statements should be interpreted in terms

of outer measure rather than probability. It then follows from Lemma 5 that:

Pr
{
β̂n ∈ Bn(Ln) & β̈n ∈ Bn(Ln)

}
→ 1, (A.75)

and thus:

2nQ̂∗
n(β̂n; Σ0) ≤ 2nS−1

n P̂ ∗
n(β̂n) + op(1) ≤ 2nS−1

n P̂ ∗
n(β̈n) + op(1)

≤ 2nQ̂∗
n(β̈n; Σ0) + op(1) ≤ 2n inf

β∈B
Q̂∗
n(β; Σ0) + op(1). (A.76)

But this implies that β̂n satsifies the requirements of Theorem 7.2 of Newey and McFadden

(1994) and hence that:

n1/2(β̂n − β0)
D→ N [0, (G0Σ

−1
0 G0)

−1]. (A.77)

as desired. �
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