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Abstract

We extend the simulation results given in Santos Silva and Tenreyro (2006, �The

log of gravity,�The Review of Economics and Statistics, 88, 641-658) by considering

data generated as a �nite mixture of gamma variates. Data generated in this way

can naturally have a large proportion of zeros and is fully compatible with constant

elasticity models such as the gravity equation. Our results con�rm that the Poisson

pseudo maximum likelihood estimator is generally well behaved.
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1. INTRODUCTION

Santos Silva and Tenreyro (2006) suggested that the Poisson pseudo-maximum likeli-

hood (PPML) estimator introduced by Gourieroux Monfort and Trognon (1984) has all

the characteristics needed to make it a promising workhorse for the estimation of grav-

ity equations and, more generally, constant elasticity models. Santos Silva and Tenreyro

(2006) provided simulation evidence that the PPML is well behaved in a wide range of

situations and is resilient to the presence of a speci�c type of measurement error of the

dependent variable.

However, in the simulations performed by Santos Silva and Tenreyro (2006), the depen-

dent variable was necessarily positive, except in the case where the dependent variable

was contaminated by measurement error. This lack of zeros of the dependent variable

in the main set of experiments presented in Santos Silva and Tenreyro (2006) has raised

some questions about the performance of the estimator in situations where the dependent

variable is frequently equal to zero. Although there is no theoretical justi�cation to expect

any signi�cant di¤erence in the performance of the PPML estimator when the dependent

variable is non-negative rather that positive, it is interesting to investigate the issue with

an appropriate Monte Carlo study.

This issue has been addressed by Martínez-Zarzoso, Nowak-Lehmann and Vollmer

(2007) and by Martin and Pham (2008). However, the simulations performed by these au-

thors are �awed in that the data is not generated by a constant elasticity model. Therefore,

these simulations provide no information at all on the performance of the PPML estima-

tor of constant elasticity models. In this paper we present simulation evidence on the

performance of the PPML estimator when the data is generated by a constant elasticity

model and the dependent variable has a large proportion of zeros, as is typical of the

trade data used in the estimation of gravity equations.
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2. SIMULATION DESIGN

In these simulations, the non-negative dependent variable yi is generated so that

Pr (yi = 0) is substantial and

E (yijxi) = exp (x0i�) ;

where xi is a vector of regressors.1 In particular, yi is generated as a �nite mixture model

of the form

yi =

miX
j=1

zij,

wheremi � 0 is the number of components of the mixture, and zij is a continuous random

variable with support in R+ and distributed independently of mi.

Besides being computationally convenient, this data generation scheme has a natural

interpretation in the context of trade data. Indeed, mi can be understood as the number

of exporters and zij the quantity exported by �rm j.

It is easy to see that

E (yijxi) = E (mijxi) E (zijjxi) .

Therefore, if E (mijxi) = exp (x0i
) and E (zijjxi) = exp (x0i�), we have that E (yijxi) =

exp (x0i�) with � = 
 + �.

Draws of zij can be obtained from any continuous distribution with support in R+, like

the gamma, lognormal or exponential distributions. However, due to its additivity, the

gamma distribution is particularly suited for simulations and it is used here. The number

of components of the mixture can be generated by any standard distribution for counts

and in these experiments mi will be generated as a negative-binomial random variable,

with conditional mean exp (x0i
) and a variance to be speci�ed below.

In order to simplify the simulation design, we set � = 0 and zij will be generated by a

gamma distribution with mean 1 and variance 2. Speci�cally, zij is generated as a �2(1)

1The vector xi can be interpreted as containing the logs of the elements of a vector of regressors Xi,

assumed to be positive. Therefore, � can be interpreted as the elasticity of the conditional expectation

of yi with respect to Xi.
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random variable, implying that conditionally on mi, yi follows a �2(mi)
distribution. Inte-

grating out mi, we obtain E (yijxi) = E (mijxi) and Var (yijxi) = E (mijxi)+2Var (mijxi).

As in Santos Silva and Tenreyro (2006), the conditional mean E (yijxi) was speci�ed as:

E (yijxi) = E (mijxi) = � (xi�) = exp (�0 + �1x1i + �2x2i) ; (1)

where, x1i is drawn from a standard normal and x2 is a binary dummy variable that

equals 1 with a probability of 0:4. The two covariates are independent and a new set of

observations of all variables is generated in each replication using �0 = 0, �1 = �2 = 1.

To complete the design of the experiments it is necessary to de�ne the conditional

variance of mi. We considered the following quadratic speci�cation:

Var (mijxi) = aE (mijxi) + bE (mijxi)2 ;

which implies Var (yijxi) = (1 + 2a) E (mijxi) + 2bE (mijxi)2. Therefore, by varying the

values of a and b, it is possible to generate a rich set of patterns of heteroskedasticity.

The combinations of a and b used in the experiments are presented in Table 1, which also

displays the approximate probability of observing yi = 0 in each case.

Table 1: Values of Pr (yi = 0) for di¤erent
combinations of the parameters

Case number 1 2 3 4

a 10 50 1 1

b 0 0 5 15

Pr (yi = 0) 0:62 0:83 0:65 0:81

In cases 1 and 2, mi has a NegBin1 distribution, with conditional variance proportional

to the conditional mean. Therefore, in these cases the PPML estimator is optimal in the

sense that its implicit assumption about the conditional variance is valid. For cases 3

and 4, the conditional variance is a quadratic function of the conditional mean and there-

fore mi follows a NegBin2 distribution (see Cameron and Trivedi, 1997, or Wikelmann,

2008, for details on the NegBin1 and NegBin2 distributions). For cases 2 and 4, none of
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the estimators considered in these experiments will be optimal in the sense used above.

However, as the importance of the quadratic term in the variance increases, the gamma

pseudo-maximum likelihood estimator (GPML) will become approximately optimal.

In these experiments we analysed the performance of two consistent pseudo-maximum

likelihood estimators of the multiplicative model: GPML and the PPML. The non-linear

least squares considered by Santos Silva and Tenreyro (2006) was not included in these

simulations because it revealed a dismal performance in preliminary trials. We also con-

sidered di¤erent estimators of the log-linearized model, namely, the truncated-at-zero

OLS estimator, denoted OLS (y>0); the OLS estimator using as dependent variable

ln (yi + 1), denoted OLS (y + 1); and the threshold Tobit of Eaton and Tamura (1994),

denoted ET-Tobit.2

In view of the claims of Martínez-Zarzoso, Nowak-Lehmann and Vollmer (2007), we

also tried a FGLS estimator version of OLS (y>0). In particular, we implemented the

FGLS as described in Wooldridge (2009, p: 283). However, the results obtained with this

estimator did not dominate those obtained with the simpler OLS (y>0) and therefore

will not be presented.

3. SIMULATION RESULTS

The results presented in this section where obtained with 10; 000 replicas of the sim-

ulation procedure described above, for samples of size 1; 000 and 10; 000. The results of

these experiments are summarized in Table 2, which displays the biases and standard

errors of the di¤erent estimators of �. Only results for �1 and �2 are presented, as these

are generally the parameters of interest.

The results in Table 2 fully con�rm the �ndings of Santos Silva and Tenreyro (2006).

In particular, the PPML estimator is well behaved in all the cases considered, even when

it is far from being optimal. The maximum bias of the PPML estimator over all the cases

considered is smaller than 3:5%, for Case 4 and N = 1; 000. The performance of the

2We also studied the performance of other variants of the Tobit model, �nding very poor results.
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Table 2: Simulation results when yi is generated as a �nite mixture of gamma variates

N = 1; 000 N = 10; 000

�1 �2 �1 �2

Estimator: Bias S.E. Bias S.E. Bias S.E. Bias S.E.

Case 1: Var (yijxi) = 21E (mijxi)

PPML �0:00066 0:066 0:00389 0:139 �0:00014 0:021 0:00062 0:043

GPML 0:04561 0:156 0:02440 0:224 0:00547 0:052 0:00330 0:071

ET-Tobit �0:26013 0:085 �0:25741 0:109 �0:25971 0:027 �0:25813 0:034

OLS (y>0) �0:41440 0:105 �0:42796 0:199 �0:41453 0:033 �0:42952 0:062

OLS (y + 1) �0:53477 0:029 �0:51048 0:057 �0:53468 0:009 �0:51135 0:018

Case 2: Var (yijxi) = 101E (mijxi)

PPML 0:00038 0:139 0:00762 0:291 �0:00011 0:044 0:00228 0:091

GPML 0:16789 0:329 0:08616 0:483 0:02517 0:103 0:01338 0:147

ET-Tobit 0:11603 0:177 0:11511 0:234 0:11741 0:056 0:11702 0:074

OLS (y>0) �0:69422 0:178 �0:71706 0:337 �0:69202 0:055 �0:71717 0:105

OLS (y + 1) �0:70096 0:033 �0:68840 0:060 �0:70065 0:011 �0:68832 0:019

Case 3: Var (yijxi) = 3E (mijxi) + 10E (mijxi)2

PPML �0:01552 0:156 �0:00516 0:237 �0:00222 0:057 �0:00076 0:078

GPML 0:01453 0:110 0:00575 0:187 0:00187 0:035 0:00085 0:058

ET-Tobit �0:36969 0:086 �0:37120 0:142 �0:36781 0:027 �0:36930 0:045

OLS (y>0) �0:35931 0:118 �0:35291 0:220 �0:35766 0:037 �0:35478 0:070

OLS (y + 1) �0:71959 0:033 �0:70878 0:062 �0:71952 0:010 �0:70907 0:019

Case 4:Var (yijxi) = 3E (mijxi) + 30E (mijxi)2

PPML �0:03480 0:242 �0:00594 0:390 �0:00546 0:095 �0:00272 0:129

GPML 0:01557 0:156 0:00650 0:284 0:00174 0:047 0:00034 0:087

ET-Tobit �0:45051 0:124 �0:45489 0:224 �0:44949 0:039 �0:45262 0:070

OLS (y>0) �0:41138 0:167 �0:40497 0:318 �0:41339 0:052 �0:41382 0:100

OLS (y + 1) �0:84074 0:031 �0:83526 0:060 �0:84077 0:010 �0:83597 0:018
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GPML is also generally very good, but its has reasonably large biases for Cases 1 and 2

when the smaller sample is considered. Indeed, for Case 2 and N = 1; 000, the bias of

the GPML is almost 17%. For N = 10; 000 both the PPML and GPML have much lower

biases, but the bias of the GPML is still above 2:5% for case 2.

Therefore, although both the PPML and the GPML are both consistent and generally

well behaved, the PPML appears to be more robust to departures from the implicit

heteroskedasticity assumptions.

As for the results in of the estimators based on the log-linear model, the results in

Table 2 also fully con�rm the �ndings of Santos Silva and Tenreyro (2006). Indeed, the

ET-Tobit, the OLS (y>0) and the OLS (y + 1) have very large biases that do not vanish

as the sample size increases, con�rming the inconsistency of these estimators.

4. CONCLUSIONS

The results presented in this study con�rm that the Poisson pseudo maximum likelihood

estimator is generally well behaved, even when the conditional variance is far from being

proportional to the conditional mean. Moreover, as expected, the fact that the dependent

variable has a large proportion of zeros does not a¤ect the performance of the estimator.

On the contrary, the presence of the zeros is an additional motive to use the Poisson pseudo

maximum likelihood because in this case all estimators based on the log-linearization of

the gravity equation have to use unreasonable solutions to deal with these observations.

Hence, like before, we conclude that the Poisson pseudo maximum likelihood estimator

is a promising workhorse for the estimation of constant elasticity models such as the

gravity equations.
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