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1 Introduction

The idea of extending abelian T-duality [1, 2] to non-abelian isometry groups has a long

history that both can be given a path integral formulation. However, there are a number of

notable differences that clearly distinguish the two cases. Unlike the abelian case, when the

isometries are non-commuting, they are no longer present in the T-dual background and

the transformation is non-invertible in a path integral approach. Additionally, in general,

one cannot establish non-abelian duality as an exact equivalence between partition func-

tions. Nonetheless, such a transformation can still have powerful applications as a solution

generating technique in supergravity. Also, in the examples that have been constructed,

even if the original non-abelian group G is compact, the associate variables of the T-dual

background are non-compact. The last remark, together with some earlier observation in [6]

and technical advancements in dealing with backgrounds lacking manifest isometries [9],

led recently to an improvement of our understanding. In particular, it was realized that
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Background Coset Group Dualised

AdS3 × S3 × T 4 SO(4)/SO(3) SO(4)

AdS5 × S5 SO(6)/SO(5) SO(6)

AdS4 × CP2 × S2 SU(3)/(SU(2) × U(1)) SU(3)

AdS4 × S2 × S2 × S2 (SU(2)/SO(2))3 SU(2)3

AdS4 × CP3 SU(4)/(SU(3) × U(1)) SU(4)

Table 1. Examples studied; the relevant coset manifold shown in bold.

non-abelian T-duality in pure NS backgrounds can be thought of as describing infinitely

large spin sectors of a parent theory [10]. When in the latter’s theory σ-model the target

space coordinates undergo a stretching or contraction one obtains the T-dual σ-model we

are interested in.

In some sense, the situation is similar to fermionic T-duality [11] which provided an

explanation of the dual superconformal symmetry of N = 4 SYM when applied to AdS5 ×
S5, which also is not an exact symmetry. This development motivates a reconsideration

of non-abelian T-duality, in the context of geometries supported by Ramond (RR) fluxes.

In [12], non-abelian T-duality was considered for target spaces which included some group

manifold, G, as a subspace and whose curvature was supported by RR fluxes. These

theories possess a GL × GR isometry group and it was shown how to implement the non-

abelian duality with respect to the GL symmetry. These situations can naturally occur in

the near horizon geometries of D-brane configurations. An example is the case of AdS3 ×
S3 × T 4; here a dualisation with respect to an SU(2)L symmetry of the S3 results in a

solution of massive IIA supergravity. Performing a similar dualisation on an SU(2) ⊂ SO(6)

isometry for the case of AdS5 × S5 gave rise to a solution whose M-theory lift captures

generic features of the geometries proposed in [13] (for similar geometries constructed in

type-IIA see [14]) as gravity duals to N = 2 gauge theories.

The formulation of non-abelian T-duality in the presence of Ramond fluxes in [12]

overcame certain technical difficulties. To appreciate it, recall that in the abelian case

the unique dimensional reduction to nine dimensions of the type-II supergravities provided

for the transformation rules [15]. However, in non-abelian cases an approach along these

lines seems more demanding and hasn’t been explored so far. Following this work, it is

natural to ask whether the situation can be generalized further to include the case where

the isometry is realized via a coset manifold. For instance, one may consider, as we indeed

do in a particular example, the dualization of the entire SO(6) isometry that acts on the

five-sphere within AdS5 × S5. This is a rather non-trivial extension at both the technical

and conceptual levels.

The aim of this paper is to address exactly this situation and to provide a whole class of

new examples of non-abelian T-dual backgrounds by considering target spaces containing

coset manifolds. More precisely, for target spaces containing a coset G/H manifold we

will perform a duality with respect to the full G isometry group and demonstrate how

the Ramond fluxes transform under the duality. We illustrate this by providing several

examples of dualisation in interesting supergravity backgrounds detailed in table 1.
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Initial Background Initial RR-Fields T-Dual RR-Fields

AdS3 × S3 × T 4 F3 F1 , F5

AdS5 × S5 F5 F2

AdS4 × CP2 × S2 F2 , F4 F2 , F4

AdS4 × S2 × S2 × S2 F2 , F4 F3

AdS4 × CP3 F2 , F4 F3

Table 2. Initial and T-dual backgrounds with the corresponding Ramond fluxes indicated.

Unlike the case of group manifolds, the G isometry group typically acts on the coset

G/H with isotropy and it is this feature that introduces some technical challenges. This

is very evident in the Buscher procedure in which the dim(G) isometry group is gauged;

one will have dim(G) Lagrange multipliers enforcing a flat connection. Among all these

variables dim(G/H) will become the T-dual coordinates and the remainder will be gauge

fixed. We will exploit the fact that the dual geometry can be parametrised by H invariant

combinations of the Lagrange multipliers to address this issue and to provide simplified

geometries produced by dualisation. Expanding the techniques of [12] we are able to

construct the full Ramond fluxes required to support these geometries as supergravity

solutions which we summarise in table 2. A general feature is that the chirality of the dual

theory changes when dim(G) is odd and is preserved when this is even. One may also see

that in all of the dual backgrounds there is no NS two-form, something attributable to the

fact that the coset spaces are symmetric and the group we dualized with is the maximal

symmetry group (of the corresponding factor in bold in table 2).

The structure of the rest of this paper is as follows: In section 2 we review the general

strategy of T-duality in the presence of Ramond fields and then in section 3 we show how

this may be applied to the coset geometries in general. In section 4 we then present the ex-

plicit examples studied. Due to its additional complexity we leave the case of AdS4 ×CP 3

as an appendix A to the main article. We have also included appendix B with useful infor-

mation on the geometry and Killing vectors of group and coset spaces, appendix C with the

action of the spinor-Lorentz-Lie derivative on the Killing vectors of the AdS5×S5 space and

appendix D on the Killing vectors of S5 as a coset space and the proof of a useful identity.

2 General strategy

Given a supergravity background, in order to perform the non-abelian T-duality transfor-

mation we first allocate the group of isometries with respect to which we will perform the

transformation. Next we derive the T-duals of the NS fields which on their own form a

closed set. This can be done using, for instance, path integral methods following Buscher’s

treatment of abelian T-duality [1, 2] adapted appropriately for non-abelian isometries [3].

Alternatively, we may achieve the same result by applying a canonical transformation in

the phase space of the two-dimensional σ-model [7, 8, 16]. Neither of the above proce-

dures is fully adequate to compute the transformation rules for the Ramond flux fields.

In [12] we developed a general procedure that solved this problem which is based on the
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construction of a Lorentz transformation matrix Λ relating the frames naturally defined by

the transformations of the left and right world sheet derivatives under T-duality.

This Lorentz transformation induces an action on spinors [17] given by a matrix Ω

obtained by requiring that

Ω−1ΓiΩ = Λi
jΓ

j . (2.1)

To include RR-fields into the discussion we combine them into a bi-spinor according

to the type-II supergravity to which they belong. Specifically, we have that

IIB : P =
eΦ

2

4
∑

n=0

1

(2n + 1)!
/F 2n+1 (2.2)

and

(massive) IIA : P =
eΦ

2

5
∑

n=0

1

(2n)!
/F 2n , (2.3)

where we used the standard notation /F p = Γµ1···µpFµ1···µp . In the definition of P we have

used the democratic formulation of type-II supergravities [18] wherein all forms up to order

ten appear on equal footing. In this formulation and for Minkowski signature spacetimes

the conditions

F2n = (−1)n ⋆ F10−2n , F2n+1 = (−1)n ⋆ F9−2n , (2.4)

should be imposed so that one remains with the right degrees of freedom. However, in

checking our solutions to supergravity we shall, in general, work with the standard formu-

lations of type-II supergravities in which no higher forms than five appear.

The Ramond fluxes then transform according to

P̂ = PΩ−1 , (2.5)

where we have denoted by a hat the bi-spinor obtained after the duality. In some sense,

this relation asserts that, demanding independence of Physics on the frame choice leads

to a tranformation of the flux fields within the two-member family of type-II supergravity.

The details of the matrix Ω corresponding to cases of non-abelian T-duality have to be

worked out in the various cases of interest. We recall for comparison that for the case of

abelian T-duality this is simply given as Ω = Γ11Γ1 [17], where the 1 labels the isometry

direction and Γ11 the product of all Gamma matrices. In the abelian case we go from IIA

to IIB and vice-versa. However, in non-abelian cases we might change or stay within the

same chirality theory [12].

3 Non-abelian T-duals in coset spaces

In [12] it was shown that the Lorentz rotation that acts on spinors can be calculated from

the transformation rules of the world sheet derivatives. These rules are easily obtained in

the canonical approach to T-duality. We now want to understand the same construction

for the coset space σ-models.
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3.1 Review of T-duals in group spaces

We first recap the results of [12] which we generalize slightly to incorporate a wider class

of σ-models on group manifolds than just the Principal Chiral Model (PCM). Consider

an element g in a group G. We construct the components of the left invariant Maurer-

Cartan forms as La
µ = −i Tr(tag−1∂µg), where the representation matrices ta obey the

corresponding Lie algebra with structure constants fab
c. The most general σ-model, that

is invariant under the global symmetry g → g0g, with g0 ∈ G, is of the form

S =
1

2

∫

d2σ EabL
a
+Lb

− , La
± = La

µ∂±Xµ , (3.1)

where E is a dim(G) square invertible constant matrix (actually E may depend on other

coordinates that have only a spectator rôle in the whole discussion, although this will not

be needed for our purposes). For the case where E is proportional to just the Cartan

metric, taken to be the identity matrix in this paper, this σ-model is just the PCM on G.

However in what follows it will be important to us that one can still perform a duality for

a general matrix E.

The non-abelian T-dual σ-model to eq. (3.1) with respect to the full G symmetry is

constructed by following the standard Buscher-like approach by introducing gauge fields

and a Lagrange multiplier term. Alternatively, we may employ a canonical transformation

in phase space. With either method the result is

S̃ =
1

2

∫

d2σ (M−1)ab∂+va∂−vb , (3.2)

in which

Mab = Eab + fab , fab = fab
cvc . (3.3)

There is also a dilaton induced as a quantum effect given by

Φ = −1

2
ln det M . (3.4)

The canonical transformation relating these models is entirely encoded in the transforma-

tion of the world sheet derivatives

La
+ = (M−1)ba∂+vb , La

− = −(M−1)ab∂−vb . (3.5)

As an immediate consequence of the identity

1

2
(M−1 + M−T ) = M−T ηM−1 = M−1ηM−T , (3.6)

in which η denotes the symmetric part of E, both M−1 and M−T occurring in eq. (3.5)

define frame fields for the metric of the dual σ-model eq. (3.2). These two frames are

related by a Lorentz transformation

Λ = −κM−T Mκ−1 = −κ−T MM−T κT , (3.7)
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where the matrix κ is such that the constant matrix η = κT κ. Given this form of the

Lorentz transformation we may explicitly solve eq. (2.1) to find the corresponding spinorial

representation Ω. We first expand M around minus the identity by treating as small

parameters the coordinates va as well as the antisymmetric part of the matrix E which

we will denote by S. After determining the infinitesimal transformation and subsequent

exponentiation we find that

Ω = e
1

2
f̃abΓ

ab

dim(G)
∏

i=1

(Γ11Γi) , f̃ = κ−T (S + f)κ−1 = −f̃T . (3.8)

The reason that we may obtain the result by an exponentiation of the infinitesimal form

is that the matrices Γab close into an so(dim(G)) algebra. From the above expression it is

clear that if the duality group is even then we stay in the same type-II supergravity, whereas

if it is odd then we flip from (massive) type-IIA supergravity to type-IIB and vice versa.

Whilst generically the σ-model eq. (3.2) has no isometries it is possible for particular

forms of the matrix E to obtain residual symmetries. These correspond to extra isometries

of the original σ-model eq. (3.1) that commute with the symmetry that we used to perform

the non-abelian T-duality. Of course, the matrix Ω in eq. (3.8) should respect this sym-

metry. For example, in the case of E = 1 the original σ-model in eq. (3.1) enjoys a global

GL × GR isometry which will lead to a residual GR symmetry in the dual theory. This is

indeed the case in the examples worked out in [12] in which a non-abelian dual of S3 is

performed with respect to SU(2)L of the total isometry group SO(4) ≃ SU(2)L × SU(2)R;

the SU(2)R symmetry is manifestly preserved in the dual background.

3.2 Non-abelian T-duals in coset spaces via reduction

To extend the discussion for σ-models corresponding to coset G/H spaces we split for

notational purposes the index a = (i, α), where the indices i and α belong to the subgroup

H ∈ G and the corresponding coset G/H, respectively. The σ-model is

S =
1

2

∫

d2σ (E0)αβLα
µLβ

ν∂+Xµ∂−Xν , (3.9)

so that it has the same form as that for group spaces in eq. (3.1). The restriction of

the matrix E in eq. (3.1) to coset space requires that E0 is G-invariant which severely

restricts its form. In most cases of interest this will be taken to be proportional to the

Killing metric. The key point that enables one to obtain the explicit form eq. (3.2) of the

non-abelian T-dual for the case of group manifolds relied on the fact that the symmetry

acts with no isotropy. In technical terms that means that, in the Buscher-like approach,

one can gauge fix the group element g to unity, so that the dual σ-model contains only

the Lagrange multipliers. For coset models this is not possible and one has to gauge fix

some of the Lagrange multipliers as well, in which the group acts with isotropy, i.e. as

δva = fbc
aǫbvc. Hence there exist fixed points of this transformation.
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For our purposes it is convenient to proceed by using a reduction method introduced

in [19].1 The reduction procedure is taken as follows: Consider a matrix E of the form

E = diag
(

E0, λ 1dim (H)

)

, (3.10)

where E0 is a dim(G/H) square invertible constant matrix and λ is a parameter. Then

the dual models eq. (3.1) and eq. (3.2) are perfectly consistent and have dim(G) target

spaces. In the limit λ → 0 the Maurer-Cartan forms associated with the subgroup in

eq. (3.1) drop out. Then, we are left with the σ-model for the coset space G/H eq. (3.9)

and eq. (3.2) represents its dual. For the whole procedure to be consistent one has to

ensure that the corresponding target spaces are reduced to dim(G/H). It can be shown

that this is ensured if E0 is indeed G-invariant [19]. The above remarks imply that we may

fix dim(H) among the va’s and denote the remaining ones by xα. Alternatively, we may

think of the xα’s as the H-subgroup invariants one can form using the dim(G) variables

parameterizing g ∈ G. This is completely analogous and in fact inspired by a treatment of

the gauge fixing procedure in gauged WZW models in [20].

To find out the transformation rules of the world sheet derivatives we define the

dim(G/H) square matrices N± from the relations

Lα
+ = (M−1)bα∂+vb = Nαβ

+ ∂+xβ ,

Lα
− = −(M−1)αb∂−vb = Nαβ

− ∂−xβ , (3.11)

where we have taken the λ → 0 limit. Then the Lorentz transformation is given by

Λ = κ0N+N−1
− κ−1

0 , (3.12)

where κ0 is the restriction of the frame matrix κ to the coset obeying E0 = κT
0 κ0. It should

be possible to obtain Ω, to be used in eq. (2.5), by appropriately taking the λ → 0 limit in

eq. (3.8). In that respect, whether or not one changes or stays in the same type-II theory

depends entirely on dim(G) and not on dim(G/H).

4 Examples

We present below several examples from D-brane configurations in string theory and from

some standard compactifications in type-II supergravity.

4.1 Non-abelian T-dual in the D1-D5 near horizon

As a first example we consider the AdS3×S3×T 4 geometry that arises as the near horizon

limit of the D1-D5 brane system. The type-IIB supergravity background consists of a

metric

ds2 = ds2(AdS3) + ds2(S3) + ds2(T4) , (4.1)

1This was actually considered in the more general context of σ-models related by Poisson-Lie T-duality,

of which non-abelian duality is just a particular case.
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where the normalization is such that Rµν = ∓2gµν for the AdS3 and S3 factors, respectively,

supported by the Ramond flux

F3 = 2
(

Vol(AdS3) + Vol(S3)
)

, (4.2)

whereas the dilaton Φ = 0. To construct the bi-spinor of fluxes we need the Hodge-dual of

the above three-form

F7 = −(⋆F3) = 2
(

Vol(S3) + Vol(AdS3)
)

∧ Vol(T 4) . (4.3)

Note that we have completely absorbed all constant factors by appropriate rescalings. The

presence of S3 indicates a global SO(4) with respect to which we will perform the non-

abelian transformation. For comparison, we recall that the non-abelian T-dual with respect

to the SU(2)L subgroup of SO(4) was constructed in [12]. However, in that case, unlike

here, the group’s action is without isotropy.

To proceed we need to determine the matrix M in eq. (3.2). Let’s recall that we may

construct the SO(N) algebra by first defining matrices tab with a = 1, 2, . . . , N , with

(tab)cd = δacδbd . (4.4)

Then

Jab = tab − tba , (4.5)

obey the SO(N) algebra. An SO(N − 1) subalgebra is generated by the matrices Jij with

i = 2, 3, . . . , N , whereas the coset SO(N)/SO(N − 1) currents are given by J1i.

For the case at hand, N = 4, we define

Sa = J1,a+1 , a = 1, 2, 3 ,

Sa+3 = J2,a+2 , a = 1, 2 , (4.6)

S6 = J34 .

In this arrangement the elements Sa with a = 4, 5, 6 obey an SO(3) subalgebra. We organize

the structure constants by computing

[Sa, Sb] = fab
cSc . (4.7)

According to the previous discussion we now need to gauge fix three of the six va.

For this simple case one could, of course, do this just by inspection. However, for more

complicated cases this is not such an easy thing to do. To this end we employ some group

theoretical reasoning developed in the context of gauged WZW models in [20]. Under

SO(4) → SO(3) the adjoint decomposes 6 → 3⊕ 3. If we label the first triplet as X and

the second as Y , we have explicitly

X = (v1 + v6, v5 − v2, v3 + v4) , Y = (v1 − v6,−v5 − v2, v3 − v4) . (4.8)

There are three independent invariants under SO(3) that one can construct from these

triplets given by

t1 = X2 , t2 = X · Y , t3 = Y 2 . (4.9)

– 8 –
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To fix the residual SO(3) one imposes some constraints Fi(v) = 0, with i = 1, 2, 3. Clearly

a valid gauge fixing choice cannot eliminate these invariants. In other words, after gauge

fixing there must remain three parameters in one-to-one correspondence with these invari-

ants. We now make the following gauge choice v1 = v2 = v6 = 0, and rename the remaining

coordinates

(x1, x2, x3) = (v3, v4, v5) , (4.10)

such that the invariants are given by

t1 = (x1 + x2)
2 + x2

3 , t2 = x2
1 − x2

2 − x2
3 , t3 = (x1 − x2)

2 + x2
3 . (4.11)

To construct the dual we now need the matrix M = E + f , which in the λ → 0 coset limit

is given by

M =



















1 −v4 −v5 v2 v3 0

v4 1 −v6 −v1 0 v3

v5 v6 1 0 −v1 −v2

−v2 v1 0 0 −v6 v5

−v3 0 v1 v6 0 −v4

0 −v3 v2 −v5 v4 0



















. (4.12)

Applying the gauge fixing we find the matrices N± appearing in the canonical transforma-

tion of the derivatives eq. (3.11) as

N+ =
1

x1x3







0 x2 x3

0 x2
2 − x2

1 x2x3

x1x3 x2x3 x2
3






, N− =

1

x1x3







0 x2 x3

0 x2
1 − x2

2 −x2x3

−x1x3 −x2x3 −x2
3






. (4.13)

These define two frames for the dual geometry whose metric is explicitly given by

ds2 = dx2
1 + 2

dx1(x2dx2 + x3dx3)

x1
+

dx2
2

[

x4
1 − 2x1

2x2
2 + x2

2

(

x2
2 + x2

3 + 1
)]

x2
1x

2
3

+2
dx2dx3x2

(

−x2
1 + x2

2 + x2
3 + 1

)

x2
1x3

+
dx3

2
(

x2
2 + x3

2 + 1
)

x1
2

, (4.14)

plus of course the terms ds2(AdS3) + ds2(T4). The NS two-form vanishes and the dilaton

computed from eq. (3.4) is

Φ = − ln(x1x3) . (4.15)

The Lorentz transformation relating the frames is found using eq. (3.12) with κ0 = 1. It

reads

Λ = diag(1,−1,−1) . (4.16)

Hence the corresponding transformation for the spinors is

Ω = −Γ2Γ3 , (4.17)
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as if we had two successive abelian T-dualities. The reason for this is that the lack of

isometries in the T-dual background prevents Ω from having some non-trivial structure.2

Then we compute the RR forms

F1 = 2x1x3e1 = 2(x2dx2 + x3dx3)

F5 = (1 + ⋆)(F1 ∧ Vol(T 4)) , (4.18)

supplemented by an F9 obeying ⋆F9 = F1 as it should.

The metric eq. (4.14) is quite complicated. It turns out that it considerably simplifies

if we use the invariants eq. (4.9) as coordinates for the dual geometry. After some ma-

nipulations we find that the natural one-forms associated with N+ can be expressed quite

simply as

e1 =
1

8x1x3
(dt1 − 2dt2 + dt3) ,

e2 =
1

4x1x3
[(x2 − x1)dt1 + (x2 + x1)dt3] , (4.19)

e3 =
1

4x1
(dt1 + dt3) ,

where for the time being we leave these xα’s as implicit functions of the new coordinates

(they can be explicitly obtained by inverting eq. (4.11)). For the metric we find

ds2 =
1/16

t1t3 − t22

[

(−2dt2 + dt3)
2 + 4t1dt23 + 2dt1(−2dt2 + (1 − 4t2)dt3)

+ (1 + 4t3)dt21

]

+ ds2(AdS3) + ds2(T4) . (4.20)

The dilaton and the fluxes are

Φ = − ln

[

1

2

√

t1t3 − t22

]

(4.21)

and

F1 =
1

4
(dt1 − 2dt2 + dt3) , F5 = (1 + ∗)(F1 ∧ Vol(T 4)) . (4.22)

Note that the geometry is singular at x1x3 = 0. This is due to the fact that the duality

group acts with isotropy on the Lagrange multipliers. In addition, we have verified that the

supergravity equations of motion are indeed satisfied by the T-dual background. Similar

comments apply to the other examples below.

4.1.1 (No) supersymmetry of the dual

The dual background given by eq. (4.14), eq. (4.15) and eq. (4.18) does not preserve any

supersymmetry. This can easily be seen from the dilatino variation (non-democratic form)

δλ =
(

/∂φ + ieφ /F 1

)

ǫ − 1

2

(

/H + ieφ /F 3

)

ǫ∗ , (4.23)

2In that respect one can check out Ω in eq. (3.10) of [12]. In that case there is a residual rotational

symmetry after the T-duality is performed, so that the matrix Ω could have this symmetry.
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in which ǫ = ǫ1 + iǫ2 for two Majorana-Weyl supersymmetry parameters of same chirality.

For the geometry above, in which we have vanishing three NS form, this simply reduces to

an equation of the form

(aΓ3 + bΓ4 + cΓ5)ǫ = 0 , (4.24)

where a, b, c have some coordinate dependence. By squaring one can see that this implies

(a2 + b2 + c2)ǫ = 0 and hence the only solution is the trivial one ǫ = 0.

This conclusion agrees with our expectation from the spinor-Lorentz-Lie derivative

(Kosmann derivative) [21, 22]. It was shown in [12] that for the Killing spinor of AdS3 ×
S3 × T 4 to be invariant under the SU(2)L Killing vectors

(P− ⊗ 132)ε = 0 , (4.25)

where we used the doublet ε =
( ǫ1

ǫ2

)

and introduced projectors P± = 1
2 (12 ± σ1). The fact

that the projector for the left action is P− can be traced to the SU(2)L invariant 1-forms

(and corresponding dual vector fields ) which obey the Maurer-Cartan equations

dLa =
1

2
fbc

aLb ∧ Lc . (4.26)

If we were instead to consider the SU(2)R action, since the right invariant forms obey

dRa = −1

2
fbc

aRb ∧ Rc , (4.27)

we would find a projector condition

(P+ ⊗ 132)ε = 0 . (4.28)

It is clear that the only spinor that can be invariant under both the left and right actions

is the trivial zero spinor.

4.2 Non-abelian T-dual in the D3 near horizon

Our second example concerns the type-IIB supergravity solution describing the near horizon

limit of the D3-brane background. It consists of a metric

ds2 = ds2(AdS5) + ds2(S5) , (4.29)

normalized such that Rµν = ∓4gµν for the AdS5 and S5 factors, respectively, supported

by the self-dual Ramond flux

F5 = 4
(

Vol(AdS5) − Vol(S5)
)

. (4.30)

As before the dilaton Φ = 0 and we note that we have completely absorbed all constant

factors by appropriate rescalings. The presence of S5 indicates a global SO(6) with respect

to which we will perform the non-abelian transformation.
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We construct the SO(6) algebra as in eq. (4.5) with N = 6 and we define

Sa = J1,a+1 , a = 1, . . . , 5 ,

Sa+5 = J2,a+2 , a = 1, . . . , 4 ,

Sa+9 = J3,a+3 , a = 1, 2, 3 , (4.31)

Sa+12 = J4,a+4 , a = 1, 2 ,

S15 = J56 .

In this arrangement the elements Sa with a = 6, 7, . . . , 15 obey an SO(5) subalgebra. We

organize the structure constants by computing eq. (4.7).

In order to gauge fix we find it convenient to form the five invariants of the antisym-

metric matrix rep. 15 of SO(6) under the SO(5) subgroup. According to eq. (4.31) this

splits into a vector and the antisymmetric rep., i.e. 15 → 5 ⊕ 10. These are explicitly

constructed as

(Vi) = (v1, v2, . . . , v5) , (Aij) =















0 v6 v7 v8 v9

−v6 0 v10 v11 v12

−v7 −v10 0 v13 v14

−v8 v11 −v13 0 v15

−v9 −v12 −v14 −v15 0















. (4.32)

The invariants are3

t1 = V 2 , t2 = −1

2
Tr(A2) , t3 =

1

8
ǫijklmAijAklVm ,

t4 = −1

4
Tr(A4) +

1

8
[Tr(A2)]2 , t5 = −(A2)ijViVj , (4.33)

where the various numerical factors have been introduced for later convenience. The gauge

fixing of ten parameters among the fifteen va’s should be such that the remaining five have

a one to one correspondence to the above invariants. The transformation of the Lagrange

multipliers is given by

δva = fbc
aǫbvc =⇒ δvi = fjk

iǫjvk , δvα = fjβ
αǫjvβ , (4.34)

where we note that the infinitesimal parameters belong to the subgroup. One may explicitly

check that eq. (4.33) indeed remain invariants. We choose to keep non-zero the variables

va with a = 5, 8, 10, 13, 15. Hence in our notation

(x1, x2, x3, x4, x5) = (v5, v8, v10, v13, v15) . (4.35)

In terms of our variables xα, α = 1, 2, . . . , 5, the invariants become

t1 = x2
1 , t2 = x2

2 + x2
3 + x2

4 + x2
5 , t3 = x1x2x3 ,

t4 = x2
3(x

2
2 + x2

5) , t5 = x2
1x

2
5 . (4.36)

3The characteristic polynomial satisfied by the matrix A, according to the Cayley-Hamilton theorem,

is of degree 5. However, because of antisymmetry of A, we have that (A5)ijViVj = 0. Hence, the next

available invariant (A4)ijViVj is not an independent one.
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Then the matrix M significantly simplifies. The matrices that define the frames are com-

puted using eq. (3.11). They turn out to be

N+ =
1

x1

















0
x2

1
−x2

2

x5

x2(x2

1
−x2

3
)

x3x5
−x2x4

x5
−x2

0 0
x2

3
−x2

2
−x2

5

x4x5

x3

x5
0

0 −x2x4

x5

x2

1
(x2

3
−x2

2
)+x2

3
(x2

2
−x2

3
−x2

4
+x2

5
)

x3x4x5

x2

1
−x2

3
−x2

4

x5
−x4

0 −x2

x5
−x3

x5
−x4

x5
−1

x1 x2 x3 x4 x5

















, (4.37)

as well as a similar expression for N− in such a way that the Lorentz transformation

eq. (3.12) (we use that κ0 = 1) is

Λ = diag(−1, 1,−1, 1,−1) . (4.38)

The metric is obtained using either of the above frames. The NS two-form turns out to be

zero and the dilaton is

Φ = − ln(x2
1x3x4x

2
5) . (4.39)

The corresponding transformation for the spinors is (we omit an overall sign)

Ω = Γ11Γ1Γ3Γ5 , (4.40)

leading to the RR form

F2 = 4x2
1x3x4x

2
5 e2 ∧ e4 , (4.41)

together with an F8 obeying ⋆F8 = −F2 as it should.

As before we may express the background in terms of the invariants in eq. (4.33).

After some manipulations we find that the natural one-forms associated with N+ can be

expressed quite simply as

e1 =
1

2x2
1x3x5

(2t1dt3 − t3dt1 − t3dt2) ,

e2 =
1

2x3
1x3x4x

3
5

[

(t1t4 − t23)dt2 − t5dt4
]

,

e3 =
1

2x3
1x3x4x3

5

[

t4t5dt1 + (t2t
2
3 + t21t4 − t1(t

2
3 + t2t4) + t4t5)dt2

−2t3t5dt3 − t23dt4 + t1t4dt4 + t23dt5 − t1t4dt5)
]

, (4.42)

e4 = − 1

2x1x5
dt2 ,

e5 =
1

2x1
(dt1 + dt2) .

where the xα’s are implicit functions of the new coordinates. The dilaton and flux are

Φ = −1

2
ln
[

(t23 + t2t5 − t1t4)(t1t4 − t23) − t4t
2
5

]

. (4.43)

and

F2 = −dt2 ∧ dt4 , (4.44)

which is a manifestly exact form.
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The involved form of the solution suggests that supersymmetry is broken — this is

indeed the case as can be established from a consideration of the dilatino and gravitino

supersymmetry variations of type-IIA. As detailed in appendix C one reaches the same

conclusion by demanding that the spinor-Lie derivative of the Killing spinors of AdS5 ×S5

vanishes for the SO(6) killing vectors generating the isometry.

4.3 Non-abelian T-dual of AdS4 × CP2 × S2

There is a class of solutions of eleven-dimensional supergravity labeled as M(m,n), where

m and n are integers, which were constructed in [23] (for a review see [24]) and are U(1)

bundles over CP 2 × S2. By dimensionally reducing one obtains a type-IIA supergravity

solution. The metric is

ds2 = ds2(AdS4) + ds2(CP2) + ds2(S2) , (4.45)

where we have normalized in such a way that Rµν = −2gµν , Λ4gµν and Λ2gµν for AdS4,

CP 2 and S2, respectively. The geometry is supported by a two-form flux written as a

linear combination of the Kähler forms on CP 2 and S2

F2 =
2

3
Λ4 mJCP2 + Λ2 nJS2 , (4.46)

with

JCP2 = e1 ∧ e2 + e3 ∧ e4 , JS2 = Vol(S2) = e5 ∧ e6 . (4.47)

In addition, there is a four-form flux

F4 = Am,nVol(AdS4) . (4.48)

Consistency with the equations of motion requires that

Λ2 =
4

1 + 2x
, Λ4 =

4x

1 + 2x
, (4.49)

and

A2
m,n = 16

8m2x3 − 9n2(1 + x)

9(x − 1)(1 + 2x)2
, (4.50)

and that there is a constant dilaton

e−2Φ =
2

9

9n2 − 4m2x2

(1 − x)(1 + 2x)
. (4.51)

The parameter x is determined from a cubic equation

m2

n2
=

9

4

2x − 1

x2(3 − 2x)
, (4.52)

which has only one real root in the interval x ∈ [12 , 3
2 ]. For x = 1 one easily sees that

consistency requires that 2m = 3n. In this particular case the eleven-dimensional solution

has either N = 2 or N = 0 supersymmetry, but the dimensionally reduced type-IIA solution

in which we are interested has no supersymmetry whatsoever, so it is highly unexpected
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that the T-dual geometry will be supersymmetric. Note that when 2m = 3n is satisfied

then there is no singularity when x = 1.

For our purposes we need the higher forms

F6 = −(⋆F4) = Am,n e1 ∧ e2 ∧ e3 ∧ e4 ∧ e5 ∧ e6 ,

F8 = ⋆F2 =
4

1 + 2x
Vol(AdS4) ∧

(

2

3
mxJCP2 ∧ JS2 + nVol(CP2)

)

. (4.53)

The presence of CP 2 indicates a global SU(3) with respect to which we will perform

the non-abelian transformation. We will use as a basis the standard Gell-Mann matrices

λa, a = 1, 2, . . . , 8. To conform with our conventions we relabel λ1, λ2, λ3 and λ8, the

generators of the subgroups SU(2) and U(1) respectively, as S5, S6, S7, S8, and λ4, λ5, λ6, λ7

as S1, S2, S3, S4.

Now if we consider the symmetry subgroup SU(2) × U(1), we would like to gauge fix

by setting four of the Lagrange multipliers to zero. A suitable gauge fixing choice may be

discerned by constructing the four invariants of the 8 representation of SU(3) under the

SU(2) × U(1) subgroup. Under SU(2) × U(1), the 8 splits as 8 → 3 ⊕ 2 ⊕ 2̄ ⊕ 1. These

may be represented explicitly in terms of the eight Lagrange multipliers as

D = v8 , V i = (v1 − iv2, v3 − iv4) , V̄i = (V i)∗ (4.54)

and

A =

(

v7 v5 − iv6

v5 + iv6 −v7

)

. (4.55)

Then by ensuring that we gauge fix so that the remaining four Lagrange multipliers are in

one to one correspondence with the independent invariants

t1 = D , t2 =
1

2
Tr(A2) , t3 = V iV̄i , t4 =

1

2
V̄iA

i
jV

j, (4.56)

we will determine a suitable gauge fixing choice. For the current case we adopt v2 = v4 =

v6 = v7 = 0. This removes any residual freedom in SU(2) × U(1). We henceforth relabel

(x1, x2, x3, x4) = (v1, v3, v5, v8). (4.57)

For this gauge choice the invariants are

t1 = x4 , t2 = x2
3 , t3 = x2

1 + x2
2 , t4 = x1x2x3 . (4.58)

The matrices defining the frames may then be read off from the earlier prescription with

N+ taking the form

N+ =

















1 0
x1(x2

2
−x2

3
)+

√
3x2x3x4

x3(x2

2
−x2

1
)

x2(x2

2
+x2

1
−2x2

3
)+2

√
3x1x3x4

2
√

3x3(x2

1
−x2

2
)

0 0 x2

x2

2
−x2

1

x1√
3(x2

1
−x2

2
)

0 1
x2(x2

1
−x2

3
)+

√
3x1x3x4

x3(x2

1
−x2

2
)

x1(x2

1
+x2

2
−2x2

3
)+2

√
3x2x3x4

2
√

3x3(x2

2
−x2

1
)

0 0 x1

x2

1
−x2

2

x2√
3(x2

2
−x2

1
)

















. (4.59)
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The corresponding Lorentz transformation is

Λ = diag(−1, 1 − 1, 1) , (4.60)

from which one may identify the transformation for the spinors (again omitting an overall

sign) as

Ω = Γ1Γ3. (4.61)

The NS two-form is zero and the dilaton turns out to be

Φ = Φ0 − ln
(

2
√

3x3(x
2
1 − x2

2)
)

, (4.62)

where Φ0 denotes the constant original dilaton in eq. (4.51). The RR fluxes supporting the

transformed geometry become

F2 = − 4√
3

Λ4m x3(x
2
1 − x2

2)(e
2 ∧ e3 + e1 ∧ e4) ,

F4 = 2
√

3 x3(x
2
1 − x2

2)(Λ2n e1 ∧ e3 + Am,n e2 ∧ e4) ∧ Vol(S2) . (4.63)

In addition we obtain an F6 and an F8, obeying eq. (2.4).

4.4 Non-abelian T-dual of AdS4 × S2 × S2 × S2

A class of solutions of eleven-dimensional supergravity labeled as O(n1, n2, n3), where the

ni’s are integers, was constructed in [25] (for a review see [24]) and are U(1) bundles over

S2 × S2 × S2. By dimensionally reducing one obtains a type-IIA supergravity solution.

The metric is

ds2 = ds2(AdS4) +

3
∑

i=1

ds2(S2
i ) , (4.64)

where we have normalized in such a way that Rµν = −2gµν and Λigµν for AdS4 and each

of the S2’s, respectively. The geometry is supported by the two-form flux

F2 = Λ1n1 e1 ∧ e2 + Λ2n2 e3 ∧ e4 + Λ3n3 e5 ∧ e6 . (4.65)

In addition, there is a four-form flux which for consistency assumes the form

F4 = An1,n2,n3
Vol(AdS4) , An1,n2,n3

=
√

3(Λ2
1n

2
1 + Λ2

2n
2
2 + Λ2

3n
2
3)

1/2 . (4.66)

Further, consistency with the equations of motion requires that

Λ1 + Λ2 + Λ3 = 4 (4.67)

and
n2

1

n2
2

=
Λ2

2

Λ2
1

Λ1 − 1

Λ2 − 1
, and cyclic in 1, 2, 3 , (4.68)

and that there is a constant dilaton

e−Φ =
1√
6
An1,n2,n3

. (4.69)
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We need the higher forms

F6 = −(⋆F4) = An1,n2,n3
e1 ∧ e2 ∧ e3 ∧ e4 ∧ e5 ∧ e6 ,

F8 = ⋆F2 = Vol(AdS4) ∧
(

Λ1n1 e3 ∧ e4 ∧ e5 ∧ e6 (4.70)

+ Λ2n2 e1 ∧ e2 ∧ e5 ∧ e6 + Λ3n3 e1 ∧ e2 ∧ e3 ∧ e4
)

.

We will perform a non-abelian T-duality transformation with respect to the SU(2)

symmetry of each one of the S2 factors. Let’s concentrate on just one of them with metric

normalized so that Rij = gij . We can gauge fix as v1 = 0 and define

(v2, v3) = (ρ, z) . (4.71)

The matrices defining the frames are

N+ =

(

0 −1
ρ

1 z
ρ

)

, N− =

(

0 −1
ρ

−1 − z
ρ

)

, (4.72)

related by the Lorentz transformation

Λ = diag(1,−1) . (4.73)

The metric is

ds2(S2
d) =

dz2

ρ2
+

(

dρ +
z

ρ
dz

)2

, (4.74)

whereas the corresponding would be dilaton factor is Φ = − ln ρ and the NS two-form

is zero.

Taking the above into account we find that the non-abelian dual has metric

ds2 = ds2(AdS4) +
3
∑

i=1

Λ−1
i ds2(S2

d,i) , (4.75)

where the i-factor contains (ρi, zi). The dilaton is

e−Φ =
1√
6
An1,n2,n3

ρ1ρ2ρ3 . (4.76)

To find the non-abelian space requires (we omit again an overall sign)

Ω = Γ11Γ2Γ4Γ6 . (4.77)

Hence we obtain

F3 = ρ1ρ2ρ3

(

Λ1n1 e1 ∧ e4 ∧ e6 + Λ2n2 e2 ∧ e3 ∧ e6 + Λ3n3 e2 ∧ e4 ∧ e5

+ An1,n2,n3
e1 ∧ e3 ∧ e5

)

(4.78)

and an F7 obeying ⋆F3 = −F7. Note that from the the original isometry only the permu-

tation symmetry remains and there is no supersymmetry.
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5 Concluding remarks

In the present paper we have established the rules for performing non-abelian T-duality

transformations in cases where the isometry group acts with isotropy and the supergravity

backgrounds have non-trivial Ramond flux fields. In particular, we have concentrated on

coset spaces that frequently appear in important classical supergravity solutions.

We presented examples starting from D-brane configurations, namely the D1-D5 and

the D3 near horizon brane systems, and also from various supergravity compactifications

on spheres and CP -spaces. In a similar way to other non-isotropic cases in [12] it is possible

to stay in the same type-II theory or change chirality from type-IIA to type-IIB and vice

versa, depending solely on the dimension of the duality group, and irrespectively of the

details of the background.

Due to the isotropy there are fixed points of the isometry group acting on the dual

variables. These give rise to singularities in the T-dual backgrounds we have constructed.

In addition, as in previous examples, the T-dual backgrounds correspond to non-compact

manifolds even though the duality groups are compact. It would be interesting to in-

vestigate possible relations to the near horizon limits of brane configurations. Then, the

singularities could be related to the locations of the branes in the transverse space. An-

other avenue open to investigation is the possibility that our T-dual backgrounds represent

effective theories for describing high spin sectors of some parent theories as it was shown

for pure NS backgrounds in [10]. If true this will have further implications within the

AdS/CFT correspondence.

Based on our examples, non-abelian T-duality generically breaks all isometries and

supersymmetry when it is performed with respect to the maximal symmetry group. A

further interesting question is to understand whether and how the original symmetries

may be recovered as hidden non-local symmetries in the dual background.

Finally, it would be interesting to derive the same T-duality rules by dimensional

reduction on appropriate manifolds in a similar fashion to the abelian case in [15]. For

this to be possible one needs to establish relations between compactifications of type-II

supergravity to lower dimensions as well as between their massive deformations. Besides

an alternative proof of the non-abelian T-duality rules in the presence of non-trivial RR

fluxes, this would also provide a deeper understanding of the involved supergravity theories.
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A Non-abelian T-dual of AdS4 × CP3

In this appendix we will examine the type-IIA supergravity solution with metric

ds2 = ds2(AdS4) + ds2(CP3) , (A.1)

normalized such that Rµν = −12gµν for the AdS4 and Rµν = 8gµν for the CP 3 factors,

respectively. It is supported by the Ramond fluxes

F2 = ±2J , F4 = 6Vol(AdS4) , (A.2)

where J is the Kähler form with components obeying (J2)µν = gµν (for the CP 3 metric

indices only). The dilaton is Φ = 0 and as before we note that we have completely absorbed

all constant factors by appropriate rescalings.

The presence of CP 3 indicates a global SU(4) with respect to which we will perform

the non-abelian transformation. The higher forms are

F6 = −(⋆F4) = 6 Vol(CP2) = 6 e1 ∧ e2 ∧ e3 ∧ e4 ∧ e5 ∧ e6 ,

F8 = ⋆F2 = ±2Vol(AdS4) ∧
(

e3 ∧ e4 ∧ e5 ∧ e6 (A.3)

+ e1 ∧ e2 ∧ e5 ∧ e6 + e1 ∧ e2 ∧ e3 ∧ e4
)

.

We will denote the generators of the SU(4) algebra by Sa, a = 1, 2, . . . , 15 and we will

choose the following anti-hermitian basis [26]

S1 =











0 0 0 −i

0 0 0 0

0 0 0 0

−i 0 0 0











, S2 =











0 0 0 −1

0 0 0 0

0 0 0 0

−1 0 0 0











,

S3 =











0 0 0 0

0 0 0 −i

0 0 0 0

0 −i 0 0











, S4 =











0 0 0 0

0 0 0 −1

0 0 0 0

0 1 0 0











, (A.4)

S5 =











0 0 0 0

0 0 0 0

0 0 0 −i

0 0 −i 0











, S6 =











0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0











,

and

S7 = − i√
6
diag(1, 1, 1,−3) , S7+i =

(

λi 0

0 0

)

, i = 1, 2, . . . , 8 , (A.5)

where λi are the Gell-Mann matrices for SU(3). In this basis the Kähler form is [26]

J = e1 ∧ e2 + e3 ∧ e4 + e5 ∧ e6 . (A.6)
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Again we organize the structure constants by computing eq. (4.7). Under the SU(3) ×
U(1) ⊂ SU(4) the 15 → 80 ⊕ 3+ ⊕ 3̄− ⊕ 10. These can be represented in doubled line

notation as Ai
j , V i, V̄i and D where explicitly in terms of the 15 va’s we have

D = v7 , V i = (v1 − iv2, v3 − iv4, v5 − iv6) , V̄i = (V i)∗ (A.7)

and

(Ai
j) =







v10 + v15√
3

v8 − iv9 v11 − iv12

v8 + iv9
v15√

3
− v10 v13 − iv14

v11 + iv12 v13 + iv14 −2v15√
3






. (A.8)

There are two classes of charge invariant operators that can be built by forming contrac-

tions; ”glueballs” of the form Tr(An) and ”mesons” of the form V i(An)i
j V̄j. However,

trace relations similar to those mentioned in the main text, ensure that these are not all

independent and a suitable basis is given by

t1 = V iV̄i , t2 = V̄iA
i
jV

j , t3 = V̄i(A
2)ijV

j − 1

2
V iV̄iTr(A2)

t4 =
1

2
Tr(A2) , t5 =

1

3
Tr(A3), t6 = 2

√

2

3
D . (A.9)

As already pointed out in the main text, the gauge fixing of nine parameters among the

fifteen should be in one to one correspondence with the above invariants. We choose to

keep non-zero the variables va with a = 1, 6, 7, 8, 10, 12. Adopting the notation

(x1, x2, x3, x4, x5, x6) = (v1, v6, v7, v8, v10, v12) , (A.10)

the invariants are

t1 = x2
1 + x2

2 , t2 = x1 (x1x5 − 2x2x6) ,

t3 = −x2

(

x2(x
2
4 + x2

5) + 2x1x5x6

)

, (A.11)

t4 = x2
4 + x2

5 + x2
6 , t5 = x5x

2
6 , t6 = 2

√

2

3
x3 .

One could now compute the matrices which define frames by following the procedure

prescribed in eq. (3.11), however this entails the onerous task of inverting a large matrix. An

alternative approach described in [19, 27], is to start directly with the generating functional

of the canonical transformation between dual σ-models, apply the above gauge fixing and

then calculate the remaining transformations. Finally one sets to zero the components of

momenta in the direction of the subgroup since these drop out of the σ-model eq. (3.9)

in the coset limit. In this way one may calculate the following explicit, albeit extremely
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complicated, expressions for the frames of the dual σ-model

2∆e1 = x1s1dt1 + x2
2x6dt2 + x1x2dt3 + (x1s1 + t6x

2
2x6)dt4 + x2s3dt5

+
1

4

(

s2s3 − x3
1x2x5 − 2x4

2x6

)

dt6 ,

2∆e2 = x2
2x6dt4 + x1x2dt5 +

1

4
x1s2dt6 ,

2x4∆e3 = −x−1
1 (s5x2x5x6 + s6s7) dt1 + s6dt2 − s5dt3 +

(

s6(t6 − x5) + x2
4x

2
2x6

)

dt4

+ (s6 − s5t6)dt5 +
1

4
((s4x6 − s7s2) t6 + s8) dt6 ,

2x4∆e4 = s6dt4 − s5dt5 +
1

4

(

s5x
2
6 − 2s6x5 + (x2

1 + 2x2
2)x

2
4x6

)

dt6 , (A.12)

2∆e5 = x1x2x6dt4 + x2
1dt5 −

s4

4
dt6 ,

2∆e6 = −x2
2x

2
6dt1 − x1x2x6dt2 − x2

1dt3 − x2x6s3dt4 − x1s3dt5

+
1

4

(

t6s4 + x4
1x5 + 2x1x

3
2x6 − x6s2

)

dt6 ,

in which we have defined

s1 = t4x2 + x1x5x6 , s2 = 2t4x2 + 3x1x5x6 , s3 = t6x1 + x2x6 ,

s4 = t4x
2
1 − 3x2

2x
2
6 , s5 = x1x2x5 + (x2

1 − x2
2)x6 , s6 = x5s5 + x1x2x

2
4 ,

s7 = x1x5 − x2x6 , ∆ = x2
1s1 − x3

2x
2
6 ,

s8 = 2t4(s6 − t1x1x2) + x3
1x2x

2
5 − (x4

1 + 3x2
1x

2
2 − 2x4

2)x5x6 + (4x1x
3
2 − 3s5x5)x

2
6 .

The dual background has a dilaton given by

Φ = − ln(4
√

2x4∆) (A.13)

and zero NS two-form field.4 Whilst this background as presented is clearly very compli-

cated one might hope that some more sophisticated group theoretic arguments could be

brought to bear in order that it can be understood better.

The Lorentz transformation relating left and right movers is given by

Λ = diag(−1, 1,−1, 1, 1,−1) , (A.14)

which has the spinorial representation

Ω = Γ11Γ1Γ3Γ6 . (A.15)

Therefore we conclude that the dual geometry is supported by the following flux

F3 = ±8
√

2x4∆(3e2 ∧ e4 ∧ e5 + e1 ∧ e3 ∧ e5 − e2 ∧ e3 ∧ e6 − e1 ∧ e4 ∧ e6) . (A.16)

There is also an F7 = −(⋆F3) as it should.

4Other gauge fixing choices may result in a non-zero NS two-form. However, these will be pure gauge

with vanishing field strength.
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B Geometry and Killing vectors in group and coset spaces

For the reader’s convenience we recapitulate some relevant results for our purposes concern-

ing the geometry of groups and coset manifolds. Further details may be found in [29, 30].

Following our notation in the main text, let ta be generators for G of which ti correspond

to the subgroup H ⊂ G and tα are the remaining coset generators. We assume that the

generators are normalised such that Tr(tatb) = δab. An element g ∈ G, parameterized

appropriately by dim(G) variables Xµ, can be used to define the G-algebra valued left-

invariant and right-invariant one-forms L = −ig−1dg = Lata and R = −ig−1dgg−1 = Rata,

with components related by Ra = DabLb, where

Dab(g) = Tr(g−1tagtb) . (B.1)

This matrix is defined by the adjoint action of g and obeys Dab(g
−1) = Dba(g). The metric

in group space is

gµν = La
µLa

ν = Ra
µRa

ν . (B.2)

This metric has a GL ×GR group of invariance. The Killing vectors for these left and right

transformations are

KL
a = Rµ

a∂µ , KR
a = −Lµ

a∂µ . (B.3)

They obey two commuting Lie-algebras for G as well as a completeness and a derivative

relation
dim(G)
∑

a=1

Kµ
a Kν

a = gµν , ∇µKa
ν = −1

2
fbc

aKb
µKc

ν , (B.4)

for either set of Killing vectors, separately. Also ∂µDab = Lc
µDadfcb

d proves useful in

various algebraic manipulations.

Turning to coset spaces, an element of the coset G/H is given by a representative

ĝ ∈ G parameterized by dim(G/H) local coordinates xµ, for example ĝ = exp(itαδα
µxµ).

The left-invariant one-forms with coset indices Lα define a frame for the coset eµ
α = Lα

µ,

with inverse eµ
α, such that the metric on the coset is given by

gµν = eµ
αeν

βδαβ (B.5)

and has only a GL invariance group. The corresponding Killing vectors are

Ka = Daα(ĝ)eµ
α∂µ , (B.6)

which obey the relations eq. (B.4) with µ and ν parameterizing the coset manifold. It turns

out that Ka can be obtained from the Killing vectors KL
a defined in eq. (B.3) for group

spaces as follows: Parameterizing a general group element in G as g = ĝh, where h ∈ H,

and denoting the variables parameterizing h by yi, arranged such that yi = 0 corresponds

to h = I, Ka can be obtained from KL
a by ”gauge fixing”, i.e. by setting yi = 0 and ignoring

the corresponding derivatives ∂i.
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C Spinor derivative on AdS5 × S5 Killing vectors

The Killing spinors of the AdS5×S5 geometry in type-IIB supergravity obey the differential

equation

0 = (12 ⊗ Dµ)ǫ +
1

8 · 5!(iσ2 ⊗ /F 5Γµ)ǫ , (C.1)

or in terms of the complex Weyl spinor ε = ǫ1 + iǫ2,

0 = Dµε − i

8 · 5!
/F 5Γµε . (C.2)

One may choose a basis of Gamma-matrices (see the appendix of [28])

Γa = σ1 ⊗ γa ⊗ 1 , Γi = σ2 ⊗ 1 ⊗ γi , (C.3)

for the AdS and sphere directions respectively, such that a chiral spinor may be decomposed

as

ε =

(

1

0

)

⊗ ǫAdS ⊗ η . (C.4)

The components of eq. (C.2) in the directions of the sphere (with unit radius) become

Dαη =
i

2
γαη , α = 5 . . . 9 , (C.5)

(in which η has four complex but otherwise unconstrained components) whilst in the di-

rection of AdS

DaǫAdS =
1

2
γaǫAdS, a = 0, 1, . . . , 4 . (C.6)

Then for the Killing vectors generating the SO(6) isometry we may act with the spinor-

Lorentz-Lie derivative as

LKaη = KaαDαη − 1

4
∇αKa

βγαβη

=
i

2
Ka

αγαη − 1

4
∇αKa

βγαβη (C.7)

=
i

2
Ka

αγαη − 1

4
fbc

aKb
αKc

βγαβη .

In the second line we have used the Killing spinor property and in the third the property

obeyed by the Killing vectors in eq. (B.4). Next we contract the above equation with Ka
α

and make use of the completeness relation on the Killing vectors in eq. (B.4) to obtain that

dim(G)
∑

a=1

Ka
αLKaη =

i

2
γαη − 1

4
fabcK

a
αKb

βKc
γγβγη . (C.8)

However, as shown in eq. (D.4) below, it turns out that fabcK
a
αKb

βKc
γ = 0, ∀ α, β and γ.

Hence for a Killing spinor to be invariant under the SO(6) action it is necessary that

dim(G)
∑

a=1

Ka
αLKaη =

i

2
γαη = 0 , (C.9)

to which the only solution is η = 0. Hence, we conclude that the non-abelian T-dual of the

AdS5 × S5 background of type-IIB does not preserve any supersymmetry.
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D S5 as a coset and its SO(6) Killing vectors

The five-sphere of half-unit radius can be defined by five stereographic coordinates zα =

yα(1/2−y6)−1 where ~y defines the embedding in R6. The isomorphism between the sphere

and the coset SO(6)/SO(5) is given by identifying with a point ~z an SO(6) element that

maps the north pole to that point, modulo the SO(5) stability group which leaves the

north pole fixed. Corresponding to the point ~z one may take as the group element (see,

for instance, the contribution of Van Nieuwenhuizen in [29])

ĝ(~z) = (1 + z2)−1

(

δαβ(1 + z2) − 2zαzβ 2zβ

−2zα 1 − z2

)

, (D.1)

in a basis in which the subgroup generators act on the top left block and the coset acts

on the remaining directions. With (Ja,b)cd = δacδbd − δadδbc the coset generators are then

given by tα = J6,α, α = 1, 2, . . . , 5 and the subgroup generators are all the rest. Following

the steps described above one recovers the metric

ds2 =
4dzαdzα

(1 + z2)2
, z2 = zαzα (D.2)

and finds the Killing vectors to be

Ka = za+1∂1 − z1∂a+1 , a = 1, 2, 3, 4 ,

Ka+4 = za+2∂2 − z2∂a+2 , a = 1, 2, 3 ,

Ka+7 = za+3∂3 − z3∂a+3 , a = 1, 2 , (D.3)

K10 = z5∂4 − z4∂5 ,

Ka+10 = zaz · ∂ +
1 − z2

2
∂a , a = 1, 2, . . . , 5 .

A tedious direct calculation verifies that fabcK
a
αKb

βKc
γ = 0, ∀α, β and γ, where the sum-

mation acts on the entire set of SO(6) algebra indices. Equivalently the three-form

fabcK
a
αKb

βKc
γdzα ∧ dzβ ∧ dzγ = 0 . (D.4)

It would be interesting to know to what extent this vanishing relation is valid for other

cosets as well.

References

[1] T.H. Buscher, A Symmetry of the String Background Field Equations,

Phys. Lett. B 194 (1987) 59 [SPIRES].

[2] T.H. Buscher, Path Integral Derivation of Quantum Duality in Nonlinear σ-models,

Phys. Lett. B 201 (1988) 466 [SPIRES].

[3] X.C. de la Ossa and F. Quevedo, Duality symmetries from nonAbelian isometries in string

theory, Nucl. Phys. B 403 (1993) 377 [hep-th/9210021] [SPIRES].

– 24 –

http://dx.doi.org/10.1016/0370-2693(87)90769-6
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B194,59
http://dx.doi.org/10.1016/0370-2693(88)90602-8
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B201,466
http://dx.doi.org/10.1016/0550-3213(93)90041-M
http://arxiv.org/abs/hep-th/9210021
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9210021


J
H
E
P
0
6
(
2
0
1
1
)
1
0
6
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