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Abstract

We study the problem of a firm M which wishes to inform a community of in-
dividuals about its product. Information travels within the community because
of the social interactions between individuals. Our interest is in understanding
how the firm can incorporate the network of social interactions in the design of
its communication strategy.

We study a model of undirected networks and start by showing that social
interactions appear in the payoff of the firm in the form of a network multiplier.
We establish that the network multiplier is an increasing function of both the
mean and the variance in the distribution of connections of the network. This
implies in particular that denser and more dispersed degree distributions are
better for the firm. We then show that the degree distribution of the neighbor
first order dominates the degree distribution of a node at large and so it is
always better for a firm to use indirect communication, i.e., viz. picking the
neighbor of a node rather than a node itself as the target of communication.
Finally, we show that the advantages of indirect communication are increasing
with dispersion in the degree distribution.
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1 Introduction

We study the problem of a firm M which wants to inform a community of individ-
uals about its product. Information travels within the community because of the
social interactions between individuals. Our interest is in understanding how the firm
can incorporate the social interactions in the design of its communication strategy.
The social interactions are modeled as a network and our question can therefore be

rephrased as saying: how does the structure of the network affect the optimal strategy
of the firm?

We show that social interactions are captured in a network multiplier which is a
simple function of the mean and the variance of the distribution of connections of
the network. The changes in social interactions then find expression in changes in
the network multiplier. The optimal communication strategy of the firm equates the
marginal costs of communication to the network multiplier. This allows us to develop
a number of results on the relation between social interactions and optimal influence
strategies of the firm.

Our first result is that the network multiplier is an increasing function of both the
mean and the variance in the distribution of connections of the network. This implies
in particular that denser and more dispersed degree distributions lead to higher action
from the firm and also raise the profits of the firm. We then show that the degree
distribution of the neighbor first order dominates the degree distribution of a node
at large. Hence, it is always better for a firm to pick the neighbor of a node than a
node itself as the target of communication. Moreover, the advantages of choosing a
neighbor are increasing with the dispersion in the degree distribution.

The role of optimal strategies in the face of social interactions has been studied in a
number of disciplines over the years. For a discussion of this work and its relation to
the economic approach, see our earlier paper Galeotti and Goyal (2007). This note
builds on the ideas developed in Goyal and Galeotti (2007), which studies the optimal
diffusion strategy of a firm facing a set of consumers with social interactions. In that
paper we focus on directed links of information transmission: in such a setting person
7 may get information from person j without the converse flow of information. In this
note our interest is in undirected social interactions: this reflects a situation in which
interaction is mutual and a link implies two-way flow of information. Two-way flow of
information is descriptively appealing in some contexts and also has distinct technical
implications. In particular, in a context with random directed links the distribution
on in-degrees of the neighbor is the same as the distribution of in-degrees of a node
at large. By contrast, in an undirected links network the fact that j is the neighbor
of ¢ (rather than not) means that it is more likely that j has more (undirected) links
than a node taken at random. Consequently, the degree distribution of a neighbor is
different from the unconditional degree distribution of nodes.



This note explores the implications of this distinction for the network multiplier and
the optimal communication of the firm. In particular, our result that more dispersed
degree distributions are better for communication arises entirely due to this distinc-
tion. Similarly, our result of the optimality of indirect communication and that its
increasing profitability under mean preserving spreads in the degree distribution is
founded on this distinction as well.

The importance of this distinction has been hinted at in the earlier literature; for
instance, Krackhardt (1996) explores the attraction of targeting a node as against
targeting the neighbor of a node and develops some numerical examples which show
why the latter is better. Our analysis provides a general analytical result that the
degree distribution of the neighbor first order dominates the degree distribution of a
node at large and therefore shows that, for a general class of random networks, it is
always better to target the neighbor of a node rather than a node picked at random.

Section 2 lays out the basic model and section 3 presents the results.

2 Model

There is a countable infinity of individuals and we define the set of individuals as
N ={1,2,...,00}. Each individual i is located at a node i of an undirected infinite
network g. The notation g; ; = 1 signifies that a link exists between ¢ and j, while
gi; = 0 means that no link exists between ¢ and j. The set of direct neighbors of
individual i is N;(g) = {j € N : ¢;; = 1}, and k;(g) = |Ni(g)| is the degree of i in
g. N7 (g) denotes the r-neighborhood of individual 7 in g; that is all the individuals
that can be reached from ¢ by paths of length no more than r.

The strategy of M is to directly informed T' € N individuals in the network. This
comes at a cost C(T); we assume that C(-) is increasing, convex, C(0) = 0 and
limy_, o, C(T) = 0o. Suppose M informs individual 4, then ¢ will report the informa-
tion to his friends, i.e., Vj € N;, and, in turn, these individuals will transmit further
the information to their neighbors, i.e., Vj € N?NN;, and so on, till the information
becomes obsolete. We assume that the information becomes obsolete after it travels
r steps and we term r as the radius of information.

For a given r, the choice of M will depend on her knowledge about the architecture
of the network. We consider a situation in which M does not know the architecture
of the network, but she only holds some beliefs about it. Specifically, the probability
structure is formalized as follows. The degree of an arbitrary individual 7 in the
network, k;, is a random variable defined on T = {1,2,...k}, where k& < co.! The

IThe infinite network taken together with a finite k& implies that two randomly picked nodes will
have a common neighbor with probability 0; we will use this observation in what follows, and assume
that the intersection of the neighborhoods of randomly picked nodes is empty.



distribution of k; is P : Z — [0,1]. We shall refer to P as the degree distribution
of the network, zp = >, 7 kP(k) is the average degree of the network, and op =
> wer P(k)(k — zp)? denotes the variance of P.

We assume that the degrees of any two neighboring nodes are stochastically indepen-
dent. This would be the case if, for example, the network has been generated via
the classical Erdos and Renyi (1960) type of link formation process.? The probability
distribution of a randomly selected neighbor is the conditional degree distribution,
which is given by:

We denote by Zp the average degree under P; this is the average degree of a neighbor.
It is easy to verify that:

2=y Plk)k = ZP g2 7Pt (1)
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We can now define the expected payoffs to M. Given the radius of information
transmission, r, and the degree distribution P, if the monopolist directly informed T’
individuals, his expected payoffs are:

1+ZZP [ZP 1—1}

These payoffs can be sunphﬁed and rewritten as follows:

-1

I1(T|r, P) —o(T).

I(T|r, P) =

L+2p Y (2p— 1)81] —C(T).
s=1
Note that since k > 1 then zp > 1 and Zp > 1. The optimal strategy of M is
T(r, P) = I[(T\r, P
(r, P) = arg max II(T'|r, P),

and we denote by II(T*(r, P)|r, P), the expected payoffs obtained under the optimal
strategy.

2In the modern literature of complex networks alternative mechanisms have been proposed which
generate networks in which neighboring nodes have independent degrees; see Vega-Redondo (2007)
for a survey



3 Analysis

We define the network multiplier as the (expected) number of individuals that even-
tually obtain the information from an individual directly informed by M: Formally,
this is written as:

T _ s—1 '
U, P) = EIN"(9)] = YN PRk Y POU-1)]  =2) (G -1 (2)
s=1 s=1
We can now rewrite the expected payoffs in terms of the multiplier as:

(T|r, P) = T[1+ U(r, P)] — C(T).

It now follows that 1 4+ W(r, P) is the marginal return to M from directly informing
an additional agent in the network. Since W(r, P) is positive and bounded for finite
r, given the assumptions on C(-), it follows that T*(r, P) is finite. Taking 7" to be a
continuous variable, it follows that 7™ (r, P) solves:

1+ Y(r,P)=C"(T*(r, P)). (3)

To illustrate how the degree distribution shapes the network multiplier let us consider
a few simple examples.

Example 1: First suppose that information only travels one step, i.e., r = 1. Then,
the network multiplier is:
‘I/<1, P) = Zp.

In other words, the higher is the average degree of the network the higher is the
network multiplier. More generally, this means that if the degree distribution P’ first
order dominates the degree distribution P, then W(1, P') > W(1, P). An increase in
the average degree raises the marginal returns and from equation (3) we know this
means that the optimal number of individuals directly informed by M also increases.
We also observe that since expected payoffs are larger under a first order shift in
degree distribution even if the strategy is kept constant, the same must hold if the
firm optimally adjusts its strategy. So, both optimal actions and profits increase with
a first order shift in the degree distribution. We conclude by noting that changes in
the variance of the degree distribution have no bearing on the network multiplier if
r=1. [

To illustrate the role of the variance of the degree distribution, we briefly discuss an
example where information travels two links.

Example 2: Suppose now that » = 2; in this case the network multiplier is
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Now we see that both the degree distribution as well as the conditional degree dis-
tribution come into play. Observe that a first order shift in both these distributions
raises the network multiplier unambiguously and thus raises the marginal returns;
from equation (3) this implies that the optimal strategy increases and it is immediate
that the profits increase as well.> Let us next consider changes in the dispersion of
the degree distribution. The simplest way to see the effect of dispersion is to look at
a degree distribution P’ which is a mean preserving spread of P. Combining equation
(1) with (4) we immediately see that W(2, P’) > ¥(2, P). Thus a mean preserving
spread in the degree distribution yields a higher network multiplier and this in turn
means, following from our earlier arguments, an increase in the optimal action as well
as profits of M.

[ |
These examples allow us to state the following general result on the effects of radius
of information transmission and the degree distribution on the network multiplier.

Proposition 3.1 The network multiplier V(r, P) is:
1. increasing in the radius of information transmission, r;

2. increasing under a first order shift in the degree distribution P and the condi-
tional degree distribution P;

3. increasing under a mean preserving spread of the degree distribution P.

The proof is immediate from expression (2) and is omitted. Equipped with this result
on the network multiplier, we can now establish a general result on optimal strategies
and payoffs.

Proposition 3.2 The optimal strategy T*(r, P) and the payoffs IL(T*(r, P)|r, P) of
the firm M are increasing with the radius of information transmission r, increas-
ing under a first order shift of the degree distribution P and the conditional degree
distribution P, and also increasing under a mean preserving spread of the degree dis-
tribution P.

The proof follows from Proposition 3.1 and equation (3) and is omitted.

31t is worth noting that a first order shift in P does not imply a first order shift in P. The following
example taken from Galeotti et. al. (2006) illustrates this point. Consider two degree distributions
P and P’, where P’ assigns one half probability to degrees 2 and 10 each, while distribution P
assigns one half probability to degrees 8 or 10 each. Clearly P FOSD P’. As mentioned above,
when neighboring degrees are independent, the probability of having a link with a node is (at
least roughly, depending on the process) proportional to the degree of that node, so that for all
k, P(k'|k) = k'P(k')/ S, P(I)l. Let P(k') be the neighbor’s degree distribution. Under P’, the
probability that a neighbor has degree 10 is 5/6, while under P, the same probability is 5/9. Thus,
P does not FOSD P'.



3.1 The optimality of indirect communication

So far we have studied a strategy of direct communication: M picks T individuals in
the network and informs them. Suppose instead that M picks T" people, but instead
it informs a neighbor of each of these T" people. We shall refer to this strategy of
sending information to the neighbors of nodes as indirect communication.

The network multiplier with indirect communication is given by

W(r,P) = 35 PR [ PO -] =2 3 - 1)

Therefore the expected payoffs to M from an indirect communication strategy of
informing 7" individuals is:*

I(T|P,r) = T[1 4+ ¥(r, P)] — C(T)

The distinction between payoffs under direct and indirect communication rests on
the difference between zp and Zp. Indeed, let this difference be A(P) = II(T|P,r) —
I(T|P,r), then

r

A :T(EP—ZP) Z<2P— 1)8_1. (5)
s=1
We now establish a simple general result on the relation between P and P which
allows us to rank the two averages unambiguously.

Proposition 3.3 The conditional degree distribution P first order stochastically dom-
wnates the unconditional degree distribution P.

Proof: Recall that P(k) = kP(k)/zp, where zp is the average degree under P.
Define P(z) = S.'=% P(k). Note that by definition P(k) = P(k) = 1. We wish
to show that for all < k, P(z) > P(z). From the definition of P it follows that
P(x) < P(z), for all z < zp. Suppose that P(y) > P(y) for some zp < y < k and let
A =P(y) —P(y) > 0. Now observe that for any 3’ > y,

) - Pl) = gmk) ]
- Srw[E ]« 3w [E ]
§ Z=1 k=y+1

4Here we are again exploiting the infinite nodes and finite maximum degree assumptions to
suppose that neighborhoods of neighbors have an empty intersection.

6



This however contradicts P(k) = P(k) = 1. |

This first order dominance result immediately implies that Zp > zp, and we can now
state the following result as a corollary.

Proposition 3.4 Given any degree distribution P, indirect communication yields
higher profits as compared to direct communication.

We now turn to the effects of changing networks on the relative attractiveness of
indirect communication. Observe that if the probability of any degree is 1 under
P, then the conditional and the unconditional degree distributions coincide. So the
profit differential arises when there is some variation in degrees. The following result
builds on this intuition and shows that the difference in profits A is increasing with
greater dispersion in the degree distribution.

Proposition 3.5 The difference in profits between direct and indirect communication
18 increasing under a mean preserving spread in the degree distribution P.

Proof: First observe that variance is increasing under a mean preserving spread of
the degree distribution. We now use equations (1) and (5) to show that

UP + 212) 4 ~ 1
A:T(——Zp> (Zp—l)s .
This in turn allows us to conclude that the difference in profits between direct and
indirect profits is increasing under a mean preserving spread of the degree distribution

P. |
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