
   

      Università degli Studi di Siena 

      DIPARTIMENTO DI ECONOMIA POLITICA 

  
       CARLO ALTAVILLA 
       LUIGI LUINI 
       PATRIZIA SBRIGLIA 
         
           
           
 
          
        
       Information and Learning in Bertrand and Cournot 
        Experimental  Duopolies 
        

                

 

 

 

               

              n. 406  –  Ottobre  2003 

 
 

 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/7182632?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


INFORMATION AND LEARNING IN BERTRAND AND 
COURNOT EXPERIMENTAL DUOPOLIES§ 

 
 
          CARLO ALTAVILLA, LUIGI LUINI, PATRIZIA SBRIGLIA  

Università di Siena – Università di Napoli II 
altavilla@unina.it-luini@unisi.it -sbriglia@unina.it  

 
Abstract 

In this paper we report the results from a series of experiments on Cournot (homogeneous 
and differentiated products) and Bertrand (differentiated products) duopoly markets with 
no uncertainty, fixed endpoints and random matching.  For each set, the experiments are 
designed with three alternative information set up: I) no information (participants are 
only informed on their own payoff for the period), 2)  average industrial profit 
(participants are informed on their own performance, as well as on the average profit in 
all markets), 3) imitation (players are informed, on request, on their rivals’ past 
successful actions). The effect of different information structures on individual behaviour 
in market experiments is a long debated issue. Recently, using evolutionary arguments, it 
has been argued that the imitation of successful strategies induces more competitive 
equilibria in market games (M. Schaffer, 1989; F. Vega-Redondo 1997).  By the same 
token, the information on the industry’s average profitability might induce more collusive 
outcomes, if such markets signals are perceived by players as aspiration levels and if they 
therefore try new strategies anytime their profits fall below such threshold (F. Palomino 
and F. Vega-Redondo, 1999; H. Dixon, 2000).  Our aim is to test such predictions in  
duopoly price and quantity games. We find that the imitation learning rule prevails when 
players have full information on their rivals’ previous choices, and such learning 
behaviour induces more competitive outcomes in the Cournot market designs. As for the  
aspiration learning rule, the evidence is unclear. Whilst in the majority of the cases, 
players experiment new strategies when their payoff falls below the average profit, as 
predicted by the aspiration rule, we find no evidence of convergence to collusion, though 
in the Cournot experiments, the fraction of players choosing cooperative actions in the 
last stages of the game significantly increase in the second information setting.     
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           Introduction 

 

In this paper we report the results from a series of experiments on Cournot 

(homogeneous and differentiated products) and Bertrand (differentiated 

products) duopoly markets with no uncertainty, fixed endpoints and random 

matching.  For each model, the experiments are designed with three 

alternative information settings. In the first case, participants are informed 

only on their own payoff for the period (Experimental Design 1; ED 1, 

hereafter); In the second case, participants are informed on their own 

performance, as well as on the average profit in all duopoly markets in the 

previous period (Experimental Design 2; ED 2, hereafter); Finally, in the 

third design, players are informed, on request, on their rivals’ past actions 

and payoffs (Experimental Design 3; ED 3, hereafter).  In all experimental 

sessions, however, players were informed on the cost and demand functions 

and the number of periods the experiments lasted.  

The effect of different information settings on firms’ behaviour is a long 

debated issue, and there is little theoretical agreement on their predicted 

impact on competition1. The Nash prediction on oligopoly dynamic models, 

with fixed endpoints, consider the disclosure of individual firm’s decisions 

or the publication of aggregate statistics on the market performance as 

irrelevant to the degree of market competition, since individual behaviour 

should be unaffected in both cases. 

An alternative prediction has been put forward in most traditional 

Industrial Organization models on oligopoly (Stigler, 1964) and has 

inspired many regulatory and antitrust policies2. According to this point of 

view, whilst the publication of general statistics on the industrial 
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profitability has no impact on competition, since behaviour should be 

unaffected, the full disclosure of individual data is detrimental to 

competitive practices. In fact, when information is complete, cartels can be 

enforced, since any defection is immediately detected and punished, and 

therefore collusion is encouraged. 

Recent evolutionary models on learning and bounded rationality take a 

completely different perspective, and consider all types of information as 

relevant to individual behaviour, with a final impact on competition, but the 

predicted effect is substantially different in the two cases we consider (full 

disclosure of individual data, publication of general statistics on the 

industrial profitability).   

On one side, knowing other people’s actions in the past may induce 

imitation of the more successful strategies (imitate the best). Such 

behavioural rules will increase the level of competition in the industry (M. 

Schaffer, 1989; F. Vega-Redondo 1997). 

By the same token, the information on the industry’s average profitability 

might induce more collusive outcomes, if such markets signals are 

perceived by players as aspiration levels and if they therefore try new 

strategies anytime their profits fall below such threshold (F. Palomino and 

F. Vega-Redondo, 1999; H. Dixon, 2000).  

  The aim of our experiments is to provide a test both of the imitation rule 

and the aspiration rule in duopoly markets, and, more importantly, to test 

whether the amount and type of information matter and affect the level of 

competition, as claimed in the evolutionary models.  

We find that the imitation learning rule prevails when players have full 

information on their rivals’ previous choices, and such learning behaviour 

induces more competitive outcomes in all three market models. As for the 

aspiration learning rule, the evidence is unclear. Whilst in the majority of 

the cases, players experiment new strategies when their payoff falls below 

the average profit, as predicted by the aspiration rule, we do not find clear 

evidence of convergence to collusion, though in two experiments out of 
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three, the fraction of players choosing cooperative actions in the last stages 

of the game significantly increase in the second experimental setting.   In all 

cases, however, we find evidence that the amount and type of information 

produce changes in behaviour and learning, thus affecting the process of 

convergence.   

There are several experimental papers to which our work is connected (S. 

Huck, H. T. Normann, J. Oechssler, 1999; S. Huck,  H. T. Normann, J. 

Oechssler, 2000; A. Bosch-Domenech, N. J. Vriend, 2003, H. D. Dixon, P. 

Sbriglia, E. Somma, 2003, among the others3). 

In particular, the imitation rule has recently received quite a lot of 

attention (S. Huck, H. T. Normann, J. Oechssler, 2000; A. Bosch-

Domenech, N. J. Vriend, 2003), but the results of these studies are fairly 

contradictory4, since in one case (S. Huck, et al., 2000) the imitation 

hypothesis is confirmed, while in the other one is rejected.  The evidence on 

the aspiration rule is more scant, though such a learning behaviour has a 

long historical tradition (H. Simon, 1955, 1956); however, the only 

experimental study which test the rule in an oligopoly game, show that 

cooperative outcomes are more likely to occur when players are informed 

on the average profitability of the industry (H. D. Dixon, P. Sbriglia, E. 

Somma, 2003), as predicted in the evolutionary models.  

  

2. Theoretical Background and Experimental Predictions 

The experimental designs were based on three types of duopoly market 

models. In the first case, firms chose the quantity to produce in each period, 

goods were homogeneous. The inverse demand function and the 

corresponding profit function for firm i were, respectively: 

)( 21 qqbap +−=                        

ii qcp )( −=π  
By the same token, in the second case of quantity competition 

(differentiated goods), market demand and individual profits were 

represented by the functions: 
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)( jii qqbap θ+−=  
iii qcp )( −=π  

 
Finally, we consider a model of price competition, where the direct 

demand function is: 

)( jii ppq θβα −−=  
Here, again, profits are: 

iii qcp )( −=π  
 

Table 1 reports the value of the demand coefficients in the three market 
models: 
 
TABLE 1: VALUES OF THE DEMAND COEFFICIENTS 
 
 a b θ α β θ 
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The second duopoly model is therefore an example of product 

differentiation, where outputs are strategic complements, and, with the 

corresponding direct demand function, the third model is an example of the 

same kind, where prices are strategic substitutes.5 

In all three models, the cost function was given by: 

icqC = ; 
where the marginal cost, c, was equal to zero.  

Let us concentrate on the symmetric solutions in the market games. We 

begin with the standard Nash equilibrium in the three cases, by reporting the 

equilibrium quantities and price in all contexts: 
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where the superscripts stand respectively for the Cournot models 

(homogeneous, c, and differentiated products, cc,) and the Bertrand model 

of competition (b).  

The Nash-Cournot and the Nash-Bertrand solutions are a natural 

benchmark for our tests, and there is wide experimental evidence that such 

solutions are enforced in the laboratory, under a large number of designs 

and models’ variations6. The Nash equilibrium can be implemented in all 

experimental settings we consider (ED 1, ED 2 and ED 3). The basic 

requirements for its implementation regard in fact the (finite) number of 

periods the game lasted and the absence of structural uncertainty (costs, 

demand and payoffs) and both requirements were met in all sessions. We 

regard ED 1, however, as a benchmark setting, since no extra information is 

provided by the organizers. The existence of the “benchmark” setting 

allows us to state the first experimental prediction: 

Claim I: In the duopoly experiments where participants did not receive 

any extra information on the industrial profitability and the rivals’ actions 

(ED 1), output choices converge to the values reported in (1), and the Nash 

equilibrium solutions represent the correct prediction for the three market 

games.     

Notice that, as it has been found in a number of recent papers on this 

specific issue7, the emergence of the Nash equilibrium in market games is 

compatible with several learning rules (best reply, fictitious play, and, in 

some cases, qualitative response learning), but we do not attempt to analyse 

individual choices, assuming that the convergence to the Nash equilibrium 

is determined by some sort of adaptive learning process, without ruling out 

sophisticated behaviours.  

Let us now move to the second aim of our investigation, e.g., the study of 

the aspiration learning rules.  As noticed in the introduction, aspiration 

rules have a long standing historical tradition in explaining the behaviour of 
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imperfectly rational agents. We may recall here H. Simon theory on 

bounded rationality, but also, the hypothesis of satisfying behaviour in 

firm’s organisational decision making (R Cyert and J. March (1963)). The 

rationale beyond aspiration rules is that firms, rather than optimising 

agents, tend to be survivors, and their prior objective is to be at least as 

profitable as their opponents, because making losses might force their exit 

from the market (H. Dixon, 2000). 

Evolutionary Game Theoretical models (R. Karandikar, D. Mokerjee, D. 

Ray, 1998; F. Vega-Redondo, 1996; F. Palomino and F. Vega-Redondo, 

1999; H. Dixon, 2000) have studied the implication of the aspiration rules 

in a number of repeated games.  

In F. Palomino and F. Vega-Redondo, 1999, a population of agents is 

randomly paired to play the Prisoner Dilemma game. At each point in time, 

they can observe the population mean payoff, which is taken to be the 

individual aspiration level.8  Players use a simple decision rule: if they are 

earning below average they switch9, with a positive probability, to a 

different strategy. It  can be proved that, under fairly general conditions, the 

dynamics of the system converges to a state in which there is a positive 

fraction of cooperators,  the amount of cooperation being dependent on the  

value of the coefficients in the PD game. 

A stronger result is reached by H. Dixon in duopoly Cournot games, where 

firms adopt a similar rule of behaviour, considering the (overall) average 

profit as the individual aspiration level.  

H. Dixon considers an “economy” composed by several duopoly markets, 

where firms are matched in each period to play a Cournot game. Firms 

observe their own payoff, but also the average profit in whole economy (the 

aspiration level). 

At each point in time firms adopt a pure strategy, and, if their payoff is 

below average, then they are likely to experiment something new. If firms 

follow aspiration rules, then collusion “will be the “almost” global attractor 

of the economic system” (H. Dixon, p. 223). 
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There is an aspect of the evolutionary models that needs be emphasized. In 

these models, aspiration are endogenous, since they are driven by the 

working of the (economic) system; in this respect, the emergence of 

cooperation might be brought about not directly by the strategic interaction 

in the individual market (or the individual game), but rather by the market 

forces (in the Cournot games)10, or the general structure and information of 

the games, in the alternative examples. Going back to our market models, 

the second theoretical benchmark that will be tested in our experiment is 

therefore the symmetric joint profit maximising outcome, that might emerge 

in contexts such the one designed in ED 2. The equilibrium values of the 

cooperative outcomes in the three market models are reported in (2): 

;12
4

=−=
b

caqc
i  

;12
)22(

=
+
−=

θb
caqcc

i
 

;12
2

=−= capcc
  11       (2) 

Our second experimental prediction can therefore be stated in the 

following manner: 

Claim II: In the duopoly experiments where participants received 

information on the industrial profitability, e.g., the average profit in all 

markets for the previous period (ED 2), output choices converge to the 

values reported in (2), and the collusive equilibrium solutions represent the 

correct prediction for the three market games.    

Naturally, we also interested in understanding whether information does 

influence the behaviour of the participants in the experiments, and there is a 

different pattern of choices between the experimental designs ED 1 and ED 

2. 

Finally, in the third experimental design, players had free access to the 

choices of their opponents and imitation was therefore possible. 

The impact of imitative behaviour on the equilibrium selection in market 

games has been analysed in M. Schaffer, 1989 and F. Vega-Redondo 1996, 

and 1997. According to this line of research, imitation positively influences 

the degree of competition even in industries with few sellers. When players 

can observe the opponents’ previous choices, Walrasian output levels may 
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be reached either as effect of imitation or as effect of spiteful behaviour. In 

the first case, imitating the best strategies, the firm will increase (decrease) 

its output every time the market price exceeds (is lower than) the marginal 

cost (S. Huck, H. T. Normann, J. Oechssler, 2000, p. 41), and this process 

leads to competitive outcomes. Imitation is regarded to be a reasonable code 

of behaviour in complex environments, as market games, since it does not 

require sophisticated reasoning. On the other hand, when there is complete 

information on previous actions and rewards, spiteful behaviour - the agent 

chooses actions which might lead to a decrease in his own payoff, but that 

will produce an even greater loss in his opponent’s payoff (beating your 

opponent) - is also a possible learning rule, and it will lead to Walrasian 

outcomes in a similar manner.   

In order to understand why this is the case, we need to recall some 

important aspects of the evolutionary models. Firstly, the theoretical 

framework underlying the concept of Evolutionarily Stable Strategies (ESS) 

is substantially different in the case of finite populations of agents. In this 

context, as opposed to the infinite population case, a strategy, in order to be 

an ESS, needs not to be a Nash equilibrium, i.e., needs not to be a best reply 

to itself.12  The reason why non-Nash equilibria can be stationary points in 

the evolutionary dynamics lies in the basic fact that what is important for 

the survival of the strategies/genes (in evolutionary terms) is the magnitude 

of the payoffs in relative rather than absolute terms.  The importance of 

differential payoffs justifies why a “mutant” strategy might be evolutionary 

successful, with respect to a “dominant” strategy, even if its gain – for the 

individual - is lower (in absolute terms) than the gain   provided by the other 

one. What is crucial, in fact, is that the differential payoff of the mutant 

strategy is higher than that provided by the dominant strategy. Considering 

the case of spiteful behaviour, for example,   this happens every time the 

individual adopts a specific strategy which yields him a lower payoff 

relative to other available strategies, but his choice will produce a decrease 

in the opponent’s payoff even greater than his own loss. This ensures that 
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the mutant strategy – which is not a best reply to itself – will survive in the 

long run and defeat the competing strategies/genes. 

If we consider a simple market game, where firms choose quantity 

strategies over a number of periods, it can be proved that the evolutionary 

stable equilibrium, which is enforceable as a consequence of spite or 

imitation is the Walrasian equilibrium, e.g., by choosing a Walrasian output, 

an individual firm may well decrease its own payoff with respect to a, say, a 

Cournot output, but it will always decrease its rival’s payoff even further 

(see F. Vega-Redondo 1996, 1997). On the other hand, for any Walrasian 

configuration, no firm will deviate from that output choice, since the 

deviation would not increase its own profit. In ED 3, we designed an 

experiment to measure the effects of these codes of behaviour.  

In (3) we report the equilibrium values of the Walrasian configurations in 

the three market models, and, subsequently, we state our final claim. 

  
;24

2
=−=

b
caqc

i      
24

2
)( =−=

b
caqcc

i ;      :0=bp 13   (3)                                                           

Claim III: In the duopoly experiments where participants received 

complete information on their rivals’ choices, (ED 3), output choices 

converge to the values reported in (3), and the Walrasian equilibrium 

solutions represent the correct prediction for the three market games.    

Table 2 reports the values of prices (quantity) and profits corresponding to 

the Nash solution and the two alternative theoretical benchmark we have so 

far considered. 
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TABLE 2: EQUILIBRIUM VALUES 
 

 BERTRAND COURNOT 
(H.P.) 

COURNOT (D.P.) 

 p q π p q π p q π 

WALRAS 0 24 0 0 24 0 0 24 0 

NASH 8 16 128 8 16 128 9.6 14.4 138.2 

JPM 12 12 144 12 12 144 12 12 144 

 
 

 

3. Experimental Designs and Financial Incentives 

The experiments were conducted in Siena (May-June 2002) and the 

subjects were recruited among undergraduate and graduate students of  

Law, Business and Economics. Participants received a fee for showing up 

(3 Euro) and they were paid according to their cumulative performance 

during the experiment (observed profits varied between 8 and 12 Euro per 

subject).  The instructions for the experiment were read aloud at the 

beginning of each session, but they could also be accessed at any time 

during the experiment hitting the appropriate key on the computer. There 

were three trial runs, and any aspect of the structure of the experiment was 

discussed by the experimenters. Each market game lasted 20 rounds14 of 

one to three minutes each (minimum to maximum time allowed) and time 

was given for questions or observations, so to minimise any 

misunderstanding on the working of the computer program. On average, 

each experiment lasted between 30 and 40 minutes.  

The number of participants varied between 16 and 22 (8 to 11 active 

markets in each period), and the experiments consisted of nine sessions 

(three for each information design and each market model),  
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In the instructions (available on request), participants were informed on 

the value of the demand parameters and costs. The information about 

profitability and rivals’ actions was described in the instructions for ED 2 

and 3, and, during the trial runs, examples were made on how to calculate 

individual profits, so to clarify the structure of the market games.  

Participants could choose quantities (prices) from a finite grid, and, in case 

of negative profits, which were never observed, it was explained to students 

that they would use their participation fee in order to pay up their losses. 

Our experimental design is closer in spirit to that of S. Huck, et al., 2000, 

as opposed to the experimental design reported in A. Bosch-Domenech and 

N. J. Vriend, 2003 – both papers dealing with the imitation hypothesis.  It 

has recently been argued (K. Ostmann, R. Selten, 2001) that the two 

settings yield different outcomes, with a higher cooperation rate in 

experiments where subjects had free access to the quantity/profit tables, 

rather than choosing quantities from finite grids. In our opinion, the reason 

why cooperation tends to emerge in the former settings is that, viewing the 

profit table, participants select a smaller set of strategies to play and some 

choices are never used. This behaviour affects the speed of convergence 

and the amount of cooperation in the late stages of the game, since players 

focus their choices on a set of strategies which is closer to the relevant 

market equilibria and dismiss the other ones right at the outset. 

Choosing prices and quantity from a finite grid may slow down the 

process of convergence, if the individual takes longer to learn which 

strategies may produce losses, but we believe it lowers the probability of 

creating framing effects in the experimental design. 

   

4. Results 

We now report the results from the market experiments, answering the 

claims that were enunciated in section 2. We will focus on each 

experimental design, examining first the issue of equilibrium convergence 

within each information setting (ED 1, ED 2 and ED 3).  Comparing the 
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data across the three designs for each market model, we will then try to 

assess whether information did matter and whether  it affected the process 

of equilibrium selection. 

• Experimental Design 1: Adaptive learning rules 

Figures 1 report the trend of the average quantities in the first 

experimental setting (ED 1), for each market model, throughout the 20 

periods experiments. 

INSERT FIGURE 1 HERE   

Observing the time series, it is possible to gain an initial insight on the 

process of equilibrium convergence in the three models. In all three cases, 

in fact, the average individual choice converged to values close to the Nash-

Cournot equilibrium, but with substantial differences in the Bertrand and 

Cournot model with differentiated products. 

In these two experiments, considering the last three periods of play, one 

can observe a significant divergence from the equilibrium values of 

quantity and price, respectively. Average output choices varied in fact 

between 16.6 and 16.4, exceeding the equilibrium value of 14.4, whilst, in 

the Bertrand setting, average prices settled around the equilibrium value of 

8 in the periods 13-17, and then increased in the final stages, reaching the 

value of 10 in periods 19-20.  

The same conclusion may be reached looking at the relative frequencies of 

play of the individual strategies (averaged over the last three period), in 

each model and reported in Figure 2. 

INSERT FIGURE 2 

In the first experiment (Fig. 2a), the relative frequencies are distributed on 

the interval 11-26, with a peak around the Nash value. In the second setting 

the peak is around the values of 17-18, which is considerably higher than 

the Nash equilibrium, and little cooperation is observed in the final stages.  

As far as the Bertrand experiment is concerned, there is an opposite 

situation, with a peak around the Nash value of 8, and a peak around the 

values 9-12, closer to the cooperative equilibrium. 
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Is there enough observational evidence to say that the Nash equilibrium is 

not a good prediction in these market games and claim 1 has to rejected? 

The answer is no, and we will examine the issue of equilibrium 

convergence reporting – where possible - the values of the mean square 

deviation (MSD)15: 

∑
−n

i t

tit

x
xx

n 2*

2*

)(

)(1

 
 

(where n is the number of players in the experiment) 

In table 4 we report the values of MSD statistics for the last 5 periods in 

the three experiments as a measure of convergence to the Nash equilibrium.   

 

 TABLE 4: CONVERGENCE TO NASH (MSD) 
 C.H. C.D. B.D. 

PERIODS    
16 0.133 0.067 0.069 
17 0.199 0.044 0.059 
18 0.193 0.038 0.079 
19 0.115 0.042 0.118 
20 0.055 0.052 0.238 

 

The table shows that there is a higher convergence to the Nash equilibrium 

in the second market model than in the final stages of the Bertrand game 

and than in the Cournot H.P. model.  

Table 5 completes our investigation, comparing the values of the MSD 

statistics calculated, for period 20, with regard to the three alternative 

equilibrium configurations (Nash, Collusion and Walrasian equilibrium), in 

the first experimental design. 

TABLE 5: CONVERGENCE TO MARKET EQUILIBRIA (MSD) 

 C.H C.D. B.D 

NASH    0.055                0.052    0.238 

WALRAS    0.117   0.184    ----- 

JPM    0.247   0.110    0.103 



 14

 

In two cases out of three (with the exception of the Bertrand market), the 

Nash prediction provides a lower values of the MSD. It must be noticed 

that, since the values of the statistics range between 0 and 1, there is a 

significant difference in both Cournot markets, the Nash equilibrium being 

the best prediction for the games. As for the Bertrand experiment, if we 

consider the value of the long run profits16,  that is equal to 122,7, and the 

fact that the profits had a low growth rate throughout the experiment (1.09), 

it can be sustained that also in this case the Nash prediction is the most 

successful explanation for the individual behaviour.   

 What we have examined so far allows us to provide an answer to Claim 1: 

 Result 1: When players are not informed on their rivals’ actions nor on 

the average profitability, the Nash prediction results to be a robust 

prediction of the individuals’ behaviour in two cases out of three. In the 

Bertrand market, play converge to the Nash value during the experiment 

and then diverge in the final stages. 

• Experimental Design 2: Aspiration learning 

We will proceed now to study the second set of data, corresponding to ED 

2. As before, in Figure 3 and 4 we report, respectively, the output (price) 

trends and the relative frequencies of play, averaged over the last three 

periods in each session. 

INSERT FIGURE 3 AND 4 

Two things can immediately be noticed from Figure 3.  First, there is no 

indication that choices were converging towards the collusive equilibrium 

(in two cases, Cournot D.P. and Bertrand D.P. there was on the contrary a 

closer convergence to Nash – e.g., a decrease (increase) in competitiveness 

in the Cournot (Bertrand) model  in the final stages of the games). Second, 

the time series show a higher speed of convergence if compared to the first 

experimental design (ED 1). In the market model Cournot H.P. the average 

quantity (in the last three periods) was around the value of 17.8, and it was 

not significantly different from the value of the average output in the same 
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model in ED 1; in the second market model (Cournot D.P.), however, the 

average quantity was significantly lower than in the alternative information 

setting (ranging in ED 2 around the values of 14-15).   By the same token, 

in the Bertrand model, prices approached the Nash value of 8  (the average 

price varied around 7.6 and 8.3), while in ED 1 they ranged around the 

average value of 10.  

If we look at the relative frequencies of strategies’ play, averaged over the 

last three periods (Figure 4), there is a slightly different picture which can 

be gained from this set of data. In fact, in two cases out of three (both in the 

Cournot models),  we can actually see a significant increase – compared to 

the same model in the ED 1 design - in the proportion of subjects who were 

playing the strategies 11-12 (close to the Collusion value). In the Cournot 

model with homogeneous products, the cumulative frequency of 

participants playing strategies 11-12 increased from 1.8 per cent (ED 1) to 

almost 11 per cent (ED 2). In the second Cournot model, there was an 

increase in cooperation from 1.38 p.c. to about 16.7 p.c.. 

The increase in cooperation is however not sufficient to determine a 

convergence to the joint profit maximising outcome. As before, we analyse 

the process of convergence in Tables 6 and 7.  

TABLE 6: CONVERGENCE TO COLLUSION (ED 2) 
 C.H. C.D. B.D. 

PERIODS    
16 0.426 0.297 0.199 
17 0.511 0.296 0.186 
18 0.464 0.470 0.200 
19 0.408 0.270 0.144 
20 0.488 0.281 0.146 

  

TABLE 7: CONVERGENCE TO NASH (ED 2) 

 C.H. C.D. B.D. 

PERIODS    

19 0.108 0.100 0.192 

20           0.151 0.113           0.125 
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The comparison between the measures of convergence to the Nash 

equilibrium and to the Collusive equilibrium confirms what we have so far 

stressed, that is, information on the average industrial profitability does 

have an effect on cooperation, but there is no evidence of convergence to 

the JPM outcome. This can be stated as follows: 

Result 2: When players are informed on the average industrial 

profitability, the Nash prediction still results to be a robust prediction of the 

individuals’ behaviour in all three market models. However, in both the 

Cournot markets, there was a significant increase in the proportion of 

subjects playing strategies close to the JPM outcome. 

• Experimental Design 3: Imitation or Spite 

We finally explore the effects of imitation or spite in market models, by 

looking at the evidence in the third experimental design (ED 3) 

INSERT FIGURES 5 AND 6 

In both Figure 5 and 6, we report the average quantities (prices) and relative 

frequencies of play, averaged over the last three periods. The difference of 

results between this experimental design and the other two is immediately 

evident. In both the Cournot models, the average quantities ranged between 

20-24, e.g., closer to the Walrasian theoretical benchmark. In the Bertrand 

setting the average prices ranged around 5-7. 

Table 6 clarifies some aspects of the experiments. In the first Cournot 

model, average quantities were around 20-22, close to the Walrasian 

equilibrium output, and the relative frequencies show that, in the last three 

periods, the Walrasian choice (23-24) was the most used strategy among 

players. In the two remaining cases, there was a slower convergence to the 

Walrasian values, but the average quantity (20-21) and price (6-7) were 

significantly higher (lower) to the quantity and price achieved in  the 

alternative information contexts. Notice also that players chose actions 

closer to the Walrasian levels than to the Nash equilibrium. Table 8 and 9 

complete our analysis, examining the values of the MSD scores in the 
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Cournot settings, which appear to confirm the conclusions drawn from 

Figures 5 and 6. As before, we measure the process of convergence to the 

predicted outcome stated in Claim 3 and to the alternative equilibrium 

benchmark represented by the Nash equilibrium  

TABLE 8: CONVERGENCE TO WALRASIAN OUTCOMES (ED 3) 
 C.S. C.D.* B.D. 

PERIODS    
16 0.016 0.061 ---- 
17 0.025 0.059 ---- 
18 0.047 0.042 ---- 
19 0.027 0.045 ---- 
20 0.041 0.049 ---- 

* Periods 11-15 
 

 

TABLE 9: CONVERGENCE TO NASH (ED 3) 

 C.H. C.D. B.D. 

PERIODS    

19         0.137          0.132        0.091 

20         0.153            0.122        0.096 

 

The comparison among the different market models shows a marked 

difference between the Cournot duopolies and the Bertrand market. The 

long run profit value in the latter case was in fact equal to 111,6,  lower 

than the profit value estimated on the benchmark data (122.7), but 

significantly higher than the theoretical predicted value in the Walrasian 

setting. It must be added, however, that in the present setting the growth 

rate of profits in the Bertrand market was indeed negative (-0.98).   

 

Examining the tables and the values of the long run profit, we can 

conclude that in the two Cournot settings the imitation hypothesis work, 

and both markets are more competitive than in the previous experimental 

design. As for the Bertrand model, we do not find a significant difference in 
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final equilibrium values in ED 2 and ED 3, if not that in this third setting, 

prices tend to be lower than in both the alternative contexts.  

We are able now to state our third result and therefore to provide an 

answer to Claim 3: 

Result 3: When players are informed on their rivals’ past actions and 

success, the Walrasian equilibrium values result  to be a robust prediction 

of the individuals’ behaviour in both the Cournot markets, which are 

significantly more competitive than in the alternative designs. In the 

Bertrand model were lower than in the previous settings, but the long run 

value of the average profit was still close to Nash prediction. 

There is a final aspect of our investigation that we wish to underline, and it 

is related to the general impact of information on behaviour. Does 

information matter? How information affected the behaviour of the 

experimental subjects? We can answer to both questions by looking at the 

time series presented in this section. Information does affect individual 

behaviour: we performed a 
2χ  test to compare the ED 2 and ED 1 and ED 

3 and ED1, respectively, and we rejected the null hypothesis that there was 

no difference among the series (5% significance level). The question on 

how information affects behaviour is an interesting one and has two 

answers. First in Ed 2 and ED 3, there was a faster process of convergence 

to a market equilibrium (information affects the speed of convergence). 

Second, information lowered the variance of the individuals’ choices. This 

implies that subjects used all types of information we provided to build up 

their decisional routines. We feel that this is a good result in support of the 

evolutionary models. 

 

5. Changing regimes: the study of aspiration learning 

 

The results of the previous section indicate that aspiration rules fail the 

convergence test, e.g., we do not observe convergence to the Collusive 
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equilibrium outcome in the three duopoly markets under investigation. This 

result poses the question as to whether aspiration rules are plausible codes 

of behaviour in complex environments, as market games, and how common 

they became among the subjects engaged in the ED 2 experiments.  

We addressed both questions by estimating Markov-switching 

autoregressive models (henceforth MS-AR) on the individual data set of the 

50 subjects participating in the three sessions in Ed 2.   We recall here that 

the rationale beyond aspiration rules is that the probability that individuals 

change their choice increases with the profit differential between their 

payoff and the observed previous period average payoff. In the following, 

we assume that the dynamic of the discrete shifts follows a two state 

Markov process with an AR(1) component for each player. 

Formally, the decision rule may be expressed as a MSM(2)-AR(1) model17 

of the form: 

[ ] ttsttst yy εµαµ +−=− − )1()(       ,   ),0( 2σε Nt ≈  
 

where ty  represents the difference between the individual profit and the 

average market profit; and the unobserved random variable )(ts , is a 

generic ergodic Markov chain defined by the transition probabilities: 

( )itsjtsPpij =−== )1()(  and ∑ = 1ijp
; )2,1(, ∈∀ ji  

Specifically, )(ts  takes the values of 1 if a player is in a low profit state 

(which means the subject tries new strategies- experimentation state) and 2 

if a player is in a high profit regime (the subjects does not try new 

strategies- no experimentation state); the conditional mean, )(tsµ , switches 
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The transition probabilities provide the probability of moving from one 

state to another. Our hypothesis is that the above process follows a 2-state 

Markov chain. It is then possible to collect the transition probabilities in a 

22 ×  transition matrix: 









=

2221

1211

pp
pp

P
 

 

where ijp  represents the probability of moving from state i to state j. In 

other words, 12p  is just the fraction of the times that the system is in state 1 

and moves to state 2. 

Maximum Likelihood Estimates (MLE) provide the estimates of the 

models’ coefficients and of the unobserved Markov chain, testing the 

existence of the two regimes in the individuals’ decision process. 

In Tables 10, 11 and 12 (see Appendix) the whole MLE estimates are 

reported for the two Cournot experiments and the Bertrand market, 

respectively. The signs of the estimated coefficients for the conditional 

mean in the first state are for each player negative, representing therefore 

the experimentation state. 

The estimated transition probabilities in column 4 and column 5 of table 

10, 11 and 12, representing the probability of moving from one state to 

another are, for almost all players, very low. This means that the two 

regimes are estimated to be very persistent.    

Figures 7, 8 and 9 complete our investigation reporting the individual 

smoothing probability of regime 1 together with the observed values of ty . 

The Figures report the estimated probabilities for each player in different 

contexts. In particular, the figures do not report the smoothed probabilities 

for player 15 in Bertrand, player 16 in Cournot DP and players 13, 14 and 

17 in Cournot HP. For those players the Wald test does not support the 

existence of two states operating during the experiments. 
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 The overall picture which can be gained by our hypothesis testing is that18 

the aspiration rule is adopted in the large majority of the cases. From the 

Figures is possible to observe that the probability of being in the 

experimentation state is relatively high each time the difference between the 

individual profit and the average market profit is lower than zero.  

The significance of the parameters estimated by maximum likelihood is 

tested by applying standard Wald test. 

In particular, a further step of the analysis consists of testing whether there 

have been two regimes operating over the sample period. Implementing the 

following Wald test can assess this hypothesis: 

 

22110 1 ppH −==   
 

( )[ ]
( ) ( ) ( )21212121

2
1221

cov2varvar
1

pppp
pp
++

−−

 
  

where the above statistic is distributed as a ( )12χ . 

The results of Wald tests are reported in the last column of Table 10-11-

12. In particular, for each player the table report whether the test cannot 

reject the existence of the two states (YES in Tables) at 95% confidence 

level or, on the contrary, the test reject the null hypothesis (NO in Tables).  

 As we can see from Table 10 – 11 - 12 the Wald tests easily reject 

the hypothesis of having only one state operating during the sample period 

for a large number of players. In particular, in the Bertrand experiment, for 

7 player out of 16 the test reject the presence of two regimes while for the 

Cournot DP and Cournot HP models the number of tests that reject the null 

hypothesis is respectively 6 and 3. These results corroborate the evidence 

coming from the previous section: the players operating in the Cournot 

models are more competitive with respect to the player in the Bertrand 

model.     
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From what we have said so far, the aspiration rule can be seen as a 

successful prediction for individuals’ behaviour, although there is no 

sufficient evidence that aspiration leads to Pareto outcomes in oligopoly 

games. 

 
 

Conclusion 

In this paper we have tried to assess the importance of information on 

learning behaviour in several experimental markets. We have considered 

three informational settings and we have studied the equilibrium 

convergence process in three market models, for each of the alternative 

scenarios. Our investigation has provided some relevant insights in the 

problem. First, information does matter: the process of equilibrium 

convergence is, in fact, quite different in the alternative contexts. Second, 

information strongly affect the selection of the final equilibrium, as shown 

by the experimental evidence. Third, information affects the process of 

individual learning, as it is proved by our analysis of the aspiration rule. 

These three conclusions are, in our opinion, a positive, though not 

conclusive, test for the recent evolutionary theory on individual learning 

and bounded rationality. Our work leaves, in fact, two unresolved puzzles. 

First, though pervasive, aspiration rules do not lead to collusion. Moreover, 

we do not attempt a comparison among the different rules, nor it is possible 

to test which information (e.g., individual firms’ data or information on the 

average industrial profitability) would be more relevant for the individual 

choice process. We believe that both problems should attract attention in 

the future, in order to provide complete tests of the alternative rationality 

paradigms.   
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Endnotes 
 

 
                                                 

1 S. Huck, H.-T. Normann, J. Oechssler, 2000. 
2 See S. Huck, H.-T. Normann, J. Oechssler, 2000, for a survey of  European and 

American anti-trust  policies on the  publication of individual firms’ data. 
3 The study of learning and behaviour in oligopoly has a long standing tradition in the 

experimental field of research. On the specific issue of information and behaviour, we 

recall here the seminal work of  C. Fouraker and S. Siegel (1963); for a more general 

survey on experimental oligopoly, see C. A. Holt (1995). 
4 It must be said that the divergences between the results of two papers can be partly 

explained by the different experimental settings and models.  The two experiments, in fact, 

differ in the number of firms in the market (two rather than four) and the design (in S. 

Huck et al., 2000 players chose actions from a finite grid; in A. Bosch-Domenech and N. 

Vriend, players could view the quantity/profit table before making their own choice). 
5 X. Vives (1985) showed that Bertrand settings are more competitive than Cournot 

settings, and this result is confirmed in experimental analyses on oligopoly markets (S. 

Huck, et al., 2000).  We examine this point in a duopoly context, that is proved to be less 

competitive than 4-firms market, as in S. Huck et al., 2000.  
6 C. Holt, 1995. 
7 S. Rassenti, S. S. Reynolds, V. L. Smith. and F. Szidarovszky, 2000;  R. Nagel and N. 

Vriend, 1999; S. Huck, H. Normann and J. Oechssler, 1999, P. Lupi, P. Sbriglia, 2003. 
8  Aspiration might however be linked to alternative statistics of the payoff distribution, 

such as the mode or the median; the authors prove that , also in these alternative settings,  

the model converges to a similar long run equilibrium.    
9 The “switching rate” is positively related to the magnitude of the profit differential. 
10 For this reason, H. Dixon defines his model a model of  “social” learning. 
11 The equilibrium values of output and prices are the same in the Bertrand and the 

Cournot settings (S. Martin, 2002). 
12 See F. Vega-Redondo, 1996, chapter 2;  M. Schaffer, 1989.   
13 For the equilibrium values in the differentiated products models we follow S. Huck, et 

al., 2000. The values are calculated maximising the profit differential between firm i  

choosing strategy qi  and firm  j choosing strategy 
'
jq , that is:  
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),(),(),( '''
ijjiji qqqqqq ππ −=∆ . 

14 In one case (Cournot D.P., ED 3) the experiment lasted 15 rounds, due to software 

failures. We include this data because, as our tests show, there was convergence to a 

market equilibrium even within this shorter session.  
15 There are several measure of the previsional success of  learning theories. The MSD 

statistics has been used in several experimental paper (see for reference: I.  Erev and A. 

Roth, I., 1998; C. Camerer and Teck-Hua Ho, 1999).   
16 The long run profit values are computed by estimating  an asymptotic unit root model . 

The model consists of the estimation of equations of the form:  

εβα ++= −1tt LnXLnX ;     where  Xt is  the average profit in period t (t= 

1,2,…20). It is easy to check that: 

    









−
=

∞→ β
α

1
expt

t
XLim

. 
17 These models, studied by Hamilton J. (1990), have been extensively used for their ability in 

replicating business cycle features. In particular, as in MS-AR models the regime shift governing 

process generates dynamic factor structures, they synthesize both non-linear and dynamic factors 

modelling for evaluating the macroeconomic fluctuations. The non-linearity of the MSM arises 

because the process is subject to discrete shift in the mean, between the two  states. 
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Table 10: Maximum Likelihood Estimates of Parameters
(Bertrand)

Test
Player 1 -76.25 2.97 -0.20 0.00 0.45 Yes
Player 2 -5.84 29.30 -0.01 0.26 0.08 Yes
Player 3 -30.14 25.86 -0.28 0.09 0.01 Yes
Player 4 -0.24 57.90 -0.26 0.59 0.15 Yes
Player 5 -119.34 6.79 0.12 0.01 0.25 Yes
Player 6 NOT ERGODIC
Player 7 -2.31 108.91 0.13 0.72 0.08 No
Player 8 -5.56 1.44 0.35 0.35 0.28 No
Player 9 -89.11 -5.14 -0.33 0.35 0.09 Yes
Player 10 17.94 100.12 0.08 0.50 0.01 No
Player 11 -112.25 19.40 -0.03 0.04 0.33 Yes
Player 12 -57.16 7.25 -0.48 0.08 0.49 Yes
Player 13 -16.84 71.09 -0.32 0.24 0.02 Yes
Player 14 -11.83 -11.30 0.25 0.33 0.28 No
Player 15 4.40 4.68 -0.42 0.32 0.33 No
Player 16 1.33 69.30 -0.66 0.82 0.26 Yes

1µ 2µ 1α 12p 21p

Table 11: Maximum Likelihood Estimates of Parameters
(Cournot DP)

Test
Player 1 11.69 14.01 -0.35 0.57 0.31 No
Player 2 -102.46 1.70 -0.05 0.12 0.80 Yes
Player 3 -10.40 17.18 -0.12 0.50 0.24 No
Player 4 -1.18 19.15 -0.20 0.04 0.64 No
Player 5 -63.76 4.29 -0.84 0.32 0.66 Yes
Player 6 -11.41 38.88 -0.41 0.20 0.08 Yes
Player 7 -1.68 44.78 -0.34 0.89 0.11 Yes
Player 8 -15.46 20.66 -0.48 0.60 0.26 Yes
Player 9 -96.72 11.52 -0.23 0.00 0.17 Yes
Player 10 -3.86 4.39 -0.32 0.27 0.32 No
Player 11 -85.23 3.15 -0.18 0.02 0.50 Yes
Player 12 -25.73 8.45 -0.43 0.06 0.25 Yes
Player 13 -82.55 4.02 -0.01 0.22 0.62 Yes
Player 14 -4.82 54.95 -0.15 0.56 0.03 Yes
Player 15 -1.36 4.05 -0.02 0.31 0.27 No
Player 16 -13.45 13.37 -0.48 0.32 0.38 No

1µ 2µ 1α 12p 21p
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Table12: Maximum Likelihood Estimates of Parameters
(Cournot  HP)

Test
Player 1 -15.93 38.35 -0.38 0.26 0.31 Yes
Player 2 -17.09 8.41 0.32 0.23 0.26 No
Player 3 -51.63 41.83 -0.56 0.45 0.48 Yes
Player 4 -36.66 40.78 -0.51 0.64 0.31 Yes
Player 5 -16.04 72.78 0.21 0.65 0.35 Yes
Player 6 -5.09 4.99 -0.63 0.42 0.35 No
Player 7 -53.05 15.33 -0.64 0.13 0.75 Yes
Player 8 -14.86 10.99 -0.28 0.14 0.02 Yes
Player 9 -9.29 79.06 -0.17 0.56 0.09 Yes
Player 10 -20.20 16.45 -0.49 0.18 0.35 Yes
Player 11 -7.81 58.26 -0.61 0.24 0.25 Yes
Player 12 -30.40 8.60 -0.49 0.14 0.42 Yes
Player 13 -8.75 14.43 -0.04 0.31 0.48 Yes
Player 14 -22.58 22.24 -0.31 0.35 0.32 Yes
Player 15 -15.45 56.33 -0.29 0.94 0.06 Yes
Player 16 -34.73 42.40 0.15 0.68 0.32 Yes
Player 17 -4.22 4.28 -0.03 0.23 0.34 No
Player 18 -27.14 55.18 0.13 0.38 0.28 Yes

1µ 2µ 1α 12p 21p
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Figure 7: Smoothed Probabilities of Regime 1 (Bertrand)
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Figure 8: Smoothed Probabilities of Regime 1 (Cournot DP)
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Figure 9: Smoothed Probabilities of Regime 1 (Cournot HP)
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FIGURE 1: AVERAGE QUANTITIES (ED 1) 
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FIG. 1A: COURNOT MARKET  (H.P.) 
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FIG. 1B: COURNOT MARKET (D.P.) 
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FIG. 1C: BERTRAND MARKET (D.P.) 

 

 



 
 

FIGURE 2: FREQUENCY OF STRATEGIES (ED1) 
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FIG. 1A: COURNOT MARKET  (H.P.) 
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FIG. 2B: COURNOT MARKET (D.P.) 
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FIG. 2C: BERTRAND MARKET (D.P.) 
 

 



 
FIGURE 3: AVERAGE QUANTITIES (ED 2) 
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FIG. 3A: COURNOT MARKET  (H.P.) 
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FIG. 3B: COURNOT MARKET (D.P.) 
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FIG. 3C: BERTRAND MARKET (D.P.) 



 
FIGURE 4: FREQUENCY OF STRATEGIES (ED 2) 
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FIG. 4A: COURNOT MARKET  (H.P.) 
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FIG. 4B: COURNOT MARKET (D.P.) 
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FIG. 3C: BERTRAND MARKET (D.P.) 



FIGURE 5: AVERAGE QUANTITIES (ED 3) 
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FIG. 5A: COURNOT MARKET  (H.P.) 
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FIG. 5B: COURNOT MARKET (D.P.) 
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FIG. 5C: BERTRAND MARKET (D.P.) 



 
FIGURE 6: FREQUENCIES OF STRATEGIES (ED 3) 
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FIG. 6A: COURNOT MARKET  (H.P.) 
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FIG. 6B: COURNOT MARKET (D.P.) 
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FIG. 6C: BERTRAND MARKET (D.P.) 


