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Abstract

From a given directed weighted network of knowledge links between technol-
ogy fields, the paper develops a multisector dynamic model of incremental
innovation and R&D activity in these fields. The model is focused on the
equilibrium share distribution of these variables, which is proved to be lo-
cally stable, with reference to a simple low dimensional case. Simulation
methods suggest that local, and also global, stability extend to any model
dimension. It is also shown how different network structures map to dif-
ferent asymptotic share distributions. Using the NBER patents and patent
citation data files, the analytical framework is then used to analyse some
general features of the pattern of knowledge creation and transfer in the
period 1975-1999. From a descriptive viewpoint, the changes in the share
distribution of innovation activity predicted by the model match reasonably
well the actual changes in the period.
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1 Introduction

A growing body of literature in the historical and theoretical analysis of
technological innovation points to the conclusion that technological search
activity typically operates on ‘rugged’ landscapes. This takes place as a
result of the relatively large number of the component ideas that define a
solution in a technology field, and of the fact that the way in which per-
formance in this field depends on the combined configuration of the compo-
nents, may well differ from the influence that the same configuration exerts
on performance in other fields. The potential tendency towards rising com-
plexity resulting from innovation accumulation (Kauffman [9], Caminati [1])
is however countered by a selection for modularity. The modular design of
the technological knowledge achieves and preserves the near-decomposability
of problem spaces into subspaces of relatively small dimension. Notably, a
specific technological lineage, such as electricity based lighting and motive
power, has a specific modular pattern, or hierarchy associated with it. This
hierarchy is a crucial factor explaining the ability of the given lineage to pre-
serve its evolvability, avoiding premature ‘lock-in’ on a poor local optimum
of the rugged landscape.

The first and major premise of this paper is that the hierarchic pattern
of the ruling technology system, understood as the network topology of its
constituents components, is mirrored in the organisation of the knowledge
flows between its diverse technology fields. Every change in the former cor-
responds to a change in the latter and vice versa. Historical instances of the
change in question can be associated with the advent of macroinventions
(Mokyr [10, chapter10]) introducing a completely new lineage, and entailing
the replacement of a pre-existing hierarchy with a new one. As in the case
of electricity, the change in design pertains not only to the organisation of
productive processes understood as ways of combining different pieces of
hardware and other productive inputs,1 but also to the organisation of tech-
nology understood as disciplinary knowledge (Rosenberg [14]). This implies
that a relevant dimension of the change has to do with re-designing the key
learning interfaces of the emerging knowledge hierarchy. The transition does
not pose serious problems, and negative side effects on productivity growth
can be avoided, if the new structure is smoothly integrated into the old.
Problems are more serious if the replacement between hierarchies requires a
structural change of a more discontinuous kind.

1Holding to this interpretation, Devine [4] referred to the design change imposed by
the electric power drive using the catch phrase ‘from shafts to wires’.
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This paper is motivated by the goal of clarifying some points pertaining
to the way in which the pattern of knowledge flows between technology fields
affects knowledge accumulation. In this way, it will also try to shed some
light on the smooth vs. discontinuous type of transition between modular
hierarchies. Finally, it will consider the influence that a given knowledge
hierarchy, or pattern, has on the long term distribution of R&D activity
across technology fields.

Let us consider a hierarchy of modular units connected by directed links.
In what follows, each modular unit is interpreted as a technology field. The
directed link represents a well designed interface standard, and the asso-
ciated interpretation is that information from the source module is ready
for useful recombination in the target module. Directed links can be also
interpreted as learning interfaces, such that target modules receive innova-
tion opportunities, or knowledge spillovers, from the source modules. It is
possible to think of the modular hierarchy as a network connecting a set of
technology fields, each representing a modular unit. Most important in the
network are the ‘core’ units of the structure. In a way strongly reminiscent
of Sraffa’s basic commodities [17], they are defined by the property that
there is a directed sequence of links connecting every core module to every
other core module and to every other module in the network. We shall refer
to this defining property of the core as its ‘closed-path connectivity’, in the
sense that there is at least one closed path of information links connect-
ing the modules in the core and the core is itself connected to every other
module of the network.

Closed-path connectivity enables the core to be the centre of cumulative,
self-sustaining positive feed-back mechanisms of information generation and
transmission. Modules that do not share this property may be called ‘periph-
ery’ modules for convenience. Characteristically, the topological structure
of network connections between core and periphery modules is asymmetric,
since the former send direct or indirect information links to the latter, but
the converse is not true. Since knowledge creation in the core is self sustain-
ing and sends ideas ready for useful recombination to periphery modules,
the core modules are those that collectively determine the asymptotic rate
of knowledge growth of the connected network. Moreover, if the ability
to achieve a self sustaining growth of innovation opportunities in the core
depends on the qualitative, topological property of closed path connectiv-
ity, the aggregate measure of this connectivity depends on the intensity of
links in the core, which is a property of the corresponding weighted network.
Among the possibly multiple core structures in the network, the distribution
of innovation activity is ultimately shaped by the ‘dominant’ core structure,
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achieving the highest measure of connectivity.
In this general setting we define an incremental dynamics in which the

number, N , of technologies and their weighted network structure of con-
nections is constant, and a structural dynamics in which the number of
technologies and their topological or weighted network structure is allowed
to change between every iteration of the former. The structural model, to
be developed in a future paper, will consider the exogenous and endogenous
factors that may be held responsible for the sequential formation/deletion,
weakening/strengthening of knowledge links and of the long-term evolution
in network structure.

In this paper we focus exclusively on the incremental dynamics, which
is driven by the opportunities for incremental innovations and by the flows
of R&D activity. We shall study how the asymptotic share distribution
of the knowledge stocks and of the R&D effort across technology fields is
determined by a given weighted network structure. We shall also consider,
and give examples, of the way in which different forms of that structure map
onto diverse asymptotic share distributions. The changes in distribution
induced by a sequence of radical and network innovations, come to depend
on the extent to which the mentioned global network properties are robust
with respect to local perturbations induced by such innovations.

In this context, we shall outline simple, toy-model examples of continuity
and discontinuity in the design of the learning interfaces. For instance, rad-
ical innovations may simply add components and links to the pre-existing
dominant core structure and to its periphery. In this way, the old structure is
simply embedded in the new one; the old network topology survives as part
of the new hierarchy of modular units. There is wider scope for specialisation
(modularity) within the larger structure and wider scope for self-sustaining
positive feedback mechanisms in the expanded ‘core’. In such instances, al-
though radical innovations will imply a change in some ‘key learning inter-
face’, such changes may be designed through ‘on-line’ adaptation by a local
competence base. In these instances, the local changes of the ‘key learn-
ing interfaces’ may easily lead to higher rates of knowledge creation, and it
may be said with Pavitt [12, p. 442] that the new pattern, or paradigm,
as Pavitt puts it, simply adds to the previous knowledge structure. A case
of technological discontinuity is offered by radical innovations entailing the
decomposition and replacement of the pre-existing dominant core structure.
The formation of a new (dominant) core around the emerging technology
fields may be a lengthy and resource consuming process, if it requires the
construction of learning interfaces according to new design principles that
impose a global change of the knowledge hierarchy. Paul David [3] mentions
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the drastic change in design principles imposed by the advent of electricity,
and the change of ‘key learning interfaces’ in the user sectors caused by the
information and communication technologies.

The paper is organised as follows. Section 2 develops a simple theoretical
model of incremental innovations. Section 3 contains some numerical exam-
ples that illustrate the dynamics of the model under different hypotheses
about the network connections. Then, the analytical tools envisioned in the
first sections of the paper are made operational in Section 4, where we try to
detect from U.S.A. patent and patent-citation data, the pattern of knowl-
edge transfer between technology fields during the last decades of the XXth
century. We shall also consider how the acceleration in the information-
communication revolution is reflected in this pattern and in the distribution
of innovation activity across technology fields.2 Section 5 concludes.

2 Spillover-network and the distribution of R&D:
a simple model of incremental innovations

2.1 The building blocks: an heuristic presentation

We think of the technological knowledge available in the economy as subdi-
vided into different technology fields, or simply fields. The word technology
will refer in the sequel to the union of such fields. Innovations can be incre-
mental, radical, or network. Radical innovations are understood as exoge-
nous events affecting the number and quality of technology fields. Network
innovations are changes in the matrix describing the active cross-field learn-
ing interfaces and the strength of these knowledge connections. Incremental
innovations are those additions to the knowledge stock originating in a spe-
cific field that do not affect the set of available fields or the design of cross
field interactions.

2A few words of qualification are necessary in this respect. The possibility of examining
the correlation between the modes of structural evolution outlined above, with historical
processes backed by empirical data, is conditioned by the operational definition of a tech-
nology field imposed by computation requirements, or embodied in the data available. If
the definition of a technology field is not thin enough, we shall hardly be able to detect
structural changes in the directed graph describing the topology of knowledge flows. Un-
der a manageable definition of a technology field, it may be the case that the resulting
aggregate representation of the directed graph is constant, or nearly so, in spite of the
structural changes that are taking place in reality, and that only a finer representation
would capture. Still, the changes in question may be signalled by quantitative changes in
the flows of knowledge transfer, giving rise to a new weighted network, within a relatively
constant directed network topology.
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The average number of incremental innovations per unit of time in a
given field depends on two main factors: in the first place, the set of innova-
tion opportunities available in that field, in the second place the innovation
effort in the same field. In this paper we assume that innovation oppor-
tunities are primarily determined by the progressive local knowledge base.
This consists of the subset of ideas that are known by R&D laboratories
currently operating in the given technology field and that are potentially
conducive to useful recombinations and developments leading to new disci-
plinary knowledge. Under a recombinant interpretation of knowledge growth
(Reiter [13], Weitzman [18]), the progressive knowledge base can be regarded
as the repertoire of recombination possibilities from which innovations will
originate. So defined, the progressive local knowledge base partly consists
of ideas originated from past innovations in the same technology field, but
will also partly consist of ideas originated from past innovations in other
fields and that are made available to the field in question by the knowledge
interfaces that are currently active across technologies. Again, what kind of
interfaces are or are not active in a given situation, and the degree of their
activation, is partly shaped by the specific kind of technological knowledge
available, but, not less importantly, is also shaped by the nature of institu-
tions. It follows from the above interpretation that network innovations in
this context may have to do with institutions not less than with technology.

To gain a better understanding of this point, it is worth stressing that the
network links envisaged in this paper are directed links connecting technol-
ogy fields. This marks a sharp difference with respect to the network models
of innovation and knowledge diffusion prevailing in the literature (see Cowan
[2] for an insightful review and related bibliography). The standard network
models of innovation study the way in which knowledge growth and diffu-
sion is affected by the network topology of knowledge interactions between
economic agents, mostly firms, or innovators. This has two immediate con-
sequences. Since the links in the network represent interactions, they are
typically undirected links. If agents a and b are connected, then the link
between them elicits a potential knowledge flow from a to b, from b to a,
or both, depending on circumstances. Also, it is within the power of eco-
nomic agents to decide to change their knowledge interactions. The possibly
changing structure of micro interactions between economic agents, and the
associated emergence of distinct network topologies, interpreted as different
institutional environments, is not in the focus of this paper. However, far
from being irrelevant, this micro structure is an exogenous institutional fac-
tor that contributes to explaining the degree of activation, or strength, of the
cross-field learning interfaces considered in the paper. In other words, the
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existence of a directed link from j to i, because knowledge created in field
j is relevant to field i, is largely shaped by technological factors. But the
extent to which field i will be in a position to exploit the knowledge created
in j will also depend on the nature of the exogenously evolving institutions,
among them, the prevailing network topologies of micro interactions.

The present study will proceed on the bold assumption that the qual-
itative influence of knowledge patterns on the distribution of incremantal
innovations, which is the focus of this paper, can be approximated by a
deterministic process. Moreover, innovation effort is assumed to depend
on innovation opportunities. To the extent that the latter are made to de-
pend on the progressive subset of the local knowledge base, innovation effort
is likewise affected by changes in this subset. The emphasis on the avail-
able knowledge-input supply in the process of knowledge creation makes our
treatment of innovation effort seemingly oblivious to Schmookler’s emphasis
[16] on the relation between R&D investment and demand. Although this
may be partly the case, it should be added that in a characteristic Schum-
peterian framework, the innovating firm creates its own demand. Demand
expectations are largely shaped by innovation opportunities.

2.2 A formal outline

We consider an economy with a finite set S = {1, ..., n} of known technol-
ogy fields, to study how the network of knowledge links affects the distri-
bution {Qj}, j = 1, ..., n, of the R&D effort across the n fields over time.
A field j is here understood as a (possibly infinite) set Tj of potential con-
figurations, or designs. The technological state of the economy is defined
by {G(S,L,C), A}. G(S,L,C) is a weighted directed graph, with a set S
of nodes, that are here interpreted as technology fields, a set L of directed
knowledge links between these nodes, and a connection matrix C of weights,
or intensity coefficients, attached to the links in question. cij is the strength
of the directed link from j to i. It is a measure of the extent to which ideas
developed in sector j are relevant to R&D in sector i, in the sense that Aj

expands the knowledge base of the latter.3 We can safely assume that some
of the knowledge produced by past innovations in one field is always relevant
to R&D activity in the same field, that is, cii > 0, i = 1, ..., n.

The weighted directed graph G(S,L,C) can be understood to derive
from the corresponding unweighted graph G(S,L) in the sense clarified by

3In our interpretation, cij = 1 if every idea developed in field j is a relevant knowledge
input to R&D activity aimed at developing a new idea in field i. Since ideas are non rival,
it may well be the case that cij > 1.
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the following definition:

Definition 1 Let C̃ be the n × n adjacency matrix of the directed graph
G(S,L). The connection matrix C of the weighted directed graph G(S,L,C),
associated with G(S,L), is obtained multiplying every element c̃ij of C̃ by
the corresponding measure cij ≥ 0. cij = 0 if and only if c̃ij = 0, so that
c̃ij = 1 implies cij > 0, i = 1, ..., n. For the reason explained above, the
diagonal elements of C are assumed to be strictly positive.

(A1, ..., An)
0 (here and throughout the paper, the symbol 0 is the trans-

pose operator) is the column vector of knowledge stocks and Aj , j = 1, ..., n,
is the number of designs of j that are known in the present state. The dis-
covery which brings j in the set S of known technologies, brings also the
knowledge stock Aj to its lower bound Aj = 1; after that, Aj grows as a
result of the cumulative flow of incremental-innovation arrivals in the tech-
nology field j, which, for the sake of simplicity is modelled as a continuous
process.

Aggregate R&D effort χ =
P

j Qj is not explained by the model. It
is assumed to grow at the exogenous exponential rate γ. Moreover, the
number n of technologies and application domains is assumed constant in
this section, but will be allowed to change in the examples that follow,
as a result of radical innovations. A radical innovation is understood as
a change in S, and a network innovation as a change in L, C, or both.
The introduction of these changes yields a ‘structural’ model, dealing with
the effects induced on the asymptotic incremental dynamics by recurrent
‘structural’ perturbations.

Consistent with the basic premise of the paper that the flow of useful
innovations in sector i depends on the repertoire of available ideas that are
the ‘building blocks’ of R&D in this sector, the stock Ai, j = 1, ...n, evolves
according to the differential equation:

Ȧi = σ
Qi

Ai

X
j

cijAj = σQipi(A) (1)

where σ is a parameter, Qi/Ai is effective R&D effort in field i, pi(A) is the
function

P
j cijAj/Ai with 0 ≤ cij .

Several points concerning expression (1) are worth stressing. The in-
novation flow depends on the effective R&D effort Qi/Ai , rather than the
absolute effort Qi, to allow for the fact that a larger stock Ai makes in-
novation in i more complex, hence more R&D intensive. cij is the generic
element of the n × n matrix C. Replacing every cij > 0 in C with 1, and
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leaving every zero element of C unchanged, we obtain the adjacency matrix
C̃ of the directed graph G(S,L).

The R&D effort of sector i, namely Qi,changes according to the dynamic
equation:

Q̇i =

⎡⎣ρ
⎛⎝pi −

1

n

X
j

pj

⎞⎠+ γ

⎤⎦Qi (2)

Let ai = Ai/
P

j Aj , and ri = Qi/Ai. Then

pi(A) =

P
j cijAj

Ai
=

P
j cijaj

ai
= fi(a) (3)

where a = (a1, ..., an)0 and f(a) : K → Rn
+. Notice that a is so defined that

it belongs to the n − 1 dimensional simplex K in Rn, that is, 0 ≤ ai ≤ 1,P
j aj = 1. Indeed, since Ai ≥ 1, ai will approach zero if and only if

P
j Aj

goes to infinity with Ai finite. From (1) and (2) we obtain:

ȧi = σ

⎡⎣riX
j

cijaj − ai
X
h

rh
X
j

chjaj

⎤⎦ (4)

ṙi = ri

"
γ + (ρ− σri) fi(a)−

ρ

n

X
h

fh(a)

#
(5)

The following notation is now introduced: for every row n-dimensional
vector of real variables (x1, x2, ..., xn), the corresponding label x is the col-
umn vector (x1, x2, ..., xn)0 and X is the diagonal matrix with the elements
x1, x2, ..., xn on its main diagonal; moreover, z is the n dimensional unit
column-vector (1, 1, ..., 1)0. Now for the column vectors a = (a1, ..., an)

0,
r = (r1, ..., rn)

0 we generate the corresponding diagonal matrices A, R.
From the equations above we obtain the system of non-linear differential
equations:

ȧ = σ
£
RCa− ar0Ca

¤
(6)

ṙ = R
h
(ρI − σR) f(a) + z

³
γ − ρ

n
z0f(a)

´i
(7)

Our primary goal in this section is to study the system dynamics and to
relate it to the topological structure of the matrix C.
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Proposition 1 Let a∗ be the right eigenvector of C associated with the
Perron-Frobenius eigenvalue λ∗. Using a genericity argument, we can safely
assume that λ∗ has multiplicity 1 (Hirsch and Smale [6, pp. 153-157]).
(a∗, r∗) is a stationary state of equations (6)-(7), where r∗ is defined as fol-
lows. (i) If a∗ > 0, r∗ = (γ/σλ∗)z. (ii) If a∗ ≥ 0, let n1 < n be the number
of strictly positive components of a∗,and n2 = n−n1.Since in this case C is
reducible,there exists a permutation matrix P such that:

PCP 0 =

∙
C11 C12
0 C22

¸
Here C11 is a [n1×n1] non negative matrix, C22 is a [n2×n2] non negative
matrix, and λ∗(C) = λ∗(C11) > λ∗(C22).On the simplifying assumption that
the right eigenvector of C22 associated with λ∗(C22) is strictly positive, we
can write:

r∗i =
ρfi(a

∗) + γ − (ρ/n) (n1λ∗ + n2λ
∗(C22))

fi(a∗)σ
(8)

where, fi(a∗) = λ∗, if a∗i > 0, and fi(a
∗) = λ∗(C22) if a∗i = 0. If the

Perron-Frobenius eigenvector of C22 is not strictly positive, we can define r∗i
by iterating the argument above.

Conjecture 1 For generic initial conditions (a, r) such that a is in the
relative interior of K, and r > 0, the dynamics of (6)-(7) converges to
the fixed point (a∗, r∗) defined by the proposition above. On the generic
assumption that λ∗ has multiplicity 1, (a∗, r∗) is the unique stable attractor
of equations (6)-(7).

To illustrate the conjecture above we consider the following case:

Example 1

C =

∙
C11 C12
0 C22

¸
=

⎡⎢⎢⎣
c11 c12 0 c14
c21 c22 0 0
0 0 c33 c34
0 0 c43 c44

⎤⎥⎥⎦
where c11 = c22 = c33 = c44 = 1, c12 = c21 = 0.5, c34 = c43 = 0.2 and
c14 = 0.4. Here λ∗(C) = λ∗(C11) = 1.5 > λ∗(C22) = 1.2. With ρ = 0.05,
σ = 0.05 and γ = 0.1, the predicted attractor is (a∗, r∗), where (see Fig. 1):

a∗ = (0.5, 0.5, 0, 0)0
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Figure 1: Convergence to the equilibrium in Example 1

and:

r∗1 = r∗2 =
(1.5)ρ+ γ − (ρ/2) (2.7)

(1.5)σ
' 1.4333

r∗3 = r∗4 =
(1.2)ρ+ γ − (ρ/2) (2.7)

(1.2)σ
' 1.5417

2.3 Local analysis

The elements of the Jacobian matrix J(a, r) of system (6)-(7) evaluated at
(a∗, r∗), such that a∗ > 0, are easily computed recalling that fi(a∗) = λ∗,
i = 1, ..., n:

∂ȧi
∂ai

¯̄̄̄
(a∗,r∗)

=
³ γ

λ∗

´"
cii − λ∗ − ai

X
h

chi

#
i = 1, ..., n (9)

∂ȧi
∂aj

¯̄̄̄
(a∗,r∗)

=
³ γ

λ∗

´"
cij − ai

X
h

chj

#
i, j = 1, ..., n, j 6= i (10)

10



∂ȧi
∂ri

¯̄̄̄
(a∗,r∗)

= σλ∗ai (1− ai) i = 1, ..., n (11)

∂ȧi
∂rj

¯̄̄̄
(a∗,r∗)

= −σλ∗aiaj i, j = 1, ..., n j 6= i (12)

∂ṙi
∂ai

¯̄̄̄
(a∗,r∗)

=
³ γ

σλ∗

´"³
ρ− γ

λ∗

´µcii − λ∗

ai

¶
− ρ

n

ÃX
h

chi
ah
− λ∗

ai

!#
(13)

i = 1, ..., n

∂ṙi
∂aj

¯̄̄̄
(a∗,r∗)

=
³ γ

σλ∗

´"³
ρ− γ

λ∗

´ cij
ai
− ρ

n

ÃX
h

chj
ah
− λ∗

aj

!#
(14)

i, j = 1, ..., n, j 6= i

∂ṙi
∂ri

¯̄̄̄
(a∗,r∗)

=
h
γ + λ∗

³
ρ− γ

λ∗

´
− ρ

n
nλ∗

i
− γ

σλ∗
σλ∗ = −γ (15)

i = 1, ..., n

∂ṙi
∂rj

¯̄̄̄
(a∗,r∗)

= 0 i, j = 1, ..., n j 6= i (16)

Since a∗ is strictly positive, all the elements of J(a∗, r∗) are well defined.
The evaluation of J(a∗, r∗), for the more cumbersome case in which at least
one component of a∗ is zero, is still to be completed.

Direct computation with n = 2 (see Appendix A) shows that, if a∗ is
strictly positive, the real part of every eigenvalue of J(a∗, r∗) is negative and
the fixed point of system (6)-(7) is locally stable.

2.4 More results and definitions

Remark 1 Using the result that the Perron-Frobenius eigenvalue λ∗ having
multiplicity 1 is a generic property of the connection matrix C, in what
follows we ignore the possibly more complicated non-generic cases in which
the multiplicity of λ∗ is larger than 1.

Definition 2 A autocatalytic set (ACS) is a subgraph of G(S,L) such that
each vertex in the subgraph has at least one incoming link from some vertex
of the subgraph (Jain and Krishna [7]). Notice that our assumption cii >
0, i = 1, ..., n, implies that G(S,L) has n trivial ACSs. The dominant
ACS of G(S,L) is its largest subgraph with the property that the associated
connection matrix C∗ satisfies λ∗(C) = λ∗(C∗).

Definition 3 The subset S∗ ⊆ S of the vertices corresponding to the positive
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components of a∗, together with the subset L∗ ⊆ L of the links between them,
is the subgraph G(S∗, L∗) corresponding to the attractor a∗.

Proposition 2 Since λ∗ > 0, G(S∗, L∗) is the dominant ACS of G(S,L).

Considering the case where a∗i > 0, and substituting the stationary value
of r∗i into equation (1), we obtain the result that in dynamic equilibrium
the variables Ai and Qi grow at the exogenous rate γ. Still, every radical
innovation changing the structure of the C matrix in a way that increases the
Perron-Frobenius eigenvalue λ∗ causes a persistently higher ratio between
the level of R&D effort and its cumulated effects on knowledge. For the
same set of initial conditions concerning R&D effort, the considered change
in the C matrix would exert persistent ‘level effects’ on the knowledge stock.

Using the standard results on non-negative matrices, we remark that a∗

is a strictly positive vector if the connection matrix C is indecomposable,
but may have some zero components if C is decomposable.

3 Selected examples

3.1 Core and periphery of the dominant autocatalytic set
(ACS)

Example 2 In this example we illustrate the notion of dominant ACS, and
of ‘core and ‘periphery’ of the ACS. To fix our ideas we consider a simple
case with n = 4, in which C admits the following block decomposition, where
λ∗(C) = λ∗(C11) > λ∗(C22):

C =

⎡⎢⎢⎣
c11 c12 0 0
c21 c22 0 0
c31 0 c33 0
0 0 0 c44

⎤⎥⎥⎦ = ∙ C11 0
0 C22

¸

It is understood that the elements cij of C that are not explicitly fixed
equal to 0 are strictly positive. The directed-graph structure corresponding
to this example is shown in Fig. 2, where vertices correspond to technologies
and directed links to spillovers across technologies.

Since the block C11does not send links to the block C22, and λ∗(C) =
λ∗(C11) > λ∗(C22), the dominant ACS G(S∗, L∗) consists of the vertices 1,
2, 3 and of the links between them. Moreover, we can distinguish within
G(S∗, L∗) between two structures. One is the core subgraph of the dominant
ACS, which is formed by vertices 1 and 2, and the links between them, with
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Figure 2: The directed-graph structure corresponding to Example 2

the defining property that starting from any vertex of the core, any other
vertex of the autocatalytic set can be reached following a sequence of directed
links. For the sake of later reference, this defining property of the core is
labelled closed path connectivity. Vertices in the autocatalytic set that do
not belong to its core, belong to its periphery. In our example the periphery
of G(S∗, L∗) consists of vertex 3, together with the link from vertex 3 to
itself.

λ∗(C) is a monotonic, strictly increasing function of the connection para-
meters cij attached to the links between the vertices in the core of G(S∗, L∗).
It is independent of the connection parameters cij attached to links outside
the core, in particular, attached to the links sent from the core of G(S∗, L∗)
to its periphery, or from the periphery to itself (c31 and c33 in our example).

As a matter of interpretation, the directed graph and the C matrix
corresponding to Example 2 can be viewed as the outcome of the coupling
between a radical and a network innovation acting upon a pre-existing struc-
ture described by the C11 block referred to above. The radical innovation
gives rise to the technology field 4 (vertex 4 in the graph of Fig. 2) and the
network innovation to the connection parameter c44. At the stage described
in Example 2, field 4 is isolated from the rest, because the design principles
embodied in its basic ideas are at variance with the design principles of the
pre-existing technology. The following examples will consider two different
ways in which the creation of the new technology field 4 may give rise to a

13
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Figure 3: Convergence to the fixed point in Example 2

modified technology pattern for the economy.

3.1.1 Simulation of Example 2

With ρ = 0.05, σ = 0.05, γ = 1 and

C =

⎡⎢⎢⎣
0.8 0.5 0 0
0.4 0.8 0 0
0.5 0 0.7 0
0 0 0 0.5

⎤⎥⎥⎦
such that λ∗ (C) = λ(C11) = 1.2472 > λ∗ (C22) = 0.5, the predicted attrac-
tor is (a∗, r∗), where (see Fig. 3):

a∗ = (0.35613, 0.31850, 0.32538, 0)0

r∗1 =
(1.2472) ρ+ γ − (ρ/4) (4.2416)

(1.2472)σ
' 1.7534 = r∗2 = r∗3

r∗4 =
(0.5) ρ+ γ − (ρ/4) (4.2416)

(0.5)σ
' 2.8792
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3.2 Expanded dominant ACS

This is a follow-up to Example 2. There we have a technology field, 4, which
does not belong to the dominant autocatalytic set G(S∗, L∗) and, as such,
does not participate in the growth process shaped by the structural relations
between the fields 1, 2 and 3.

Example 3 The present example refers to a smooth integration of field 4
within the pre-existing knowledge hierarchy. The integration takes place
through the creation of a new interface standard that brings in the reach
of field 4 knowledge inputs created in field 3, and through it, in the rest of
the economy:

C =

⎡⎢⎢⎣
c11 c12 0 c14
c21 c22 0 0
c31 0 c33 0
0 0 c43 c44

⎤⎥⎥⎦
The hardware components corresponding to these knowledge inputs are

labelled complementary inputs in the growth literature focused on general
purpose technologies. In the example at hand, the creation of the interface
standard and of the corresponding complementary inputs does not require
a strong modification of the design principles previously at work. The new
knowledge interface gives rise to a larger dominant autocatalytic set with
an expanded core, which comes to coincide with G(S,L). The relatively
smooth transition to the new hierarchy is brought about by the addition to
the pre-existing structure of connection parameters c14 and c43. Now the
dominant ACS G(S∗, L∗) and the core in it come to coincide with G(S,L).
The Perron-Frobenius eigenvalue λ∗(C) is strictly larger than in Example 2
and the attractor of the dynamics is the couple of strictly positive vectors
(a∗, r∗), with r∗i in Example 3 strictly lower than in Example 2, because
structural change has made R&D effort more productive in the former, so
that the ratio between Qi and the resulting knowledge stock Ai converges
to a persistently lower value.

3.2.1 Simulation of Example 3

With ρ = 0.05, σ = 0.05, γ = 1 and

C =

⎡⎢⎢⎣
0.8 0.5 0 0.5
0.4 0.8 0 0
0.5 0 0.7 0
0 0 0.6 0.8

⎤⎥⎥⎦
15
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Figure 4: Convergence to the fixed point in Example 3

such that λ∗ (C) = 1.4356, the predicted attractor is (a∗, r∗), where (see Fig.
4):

a∗ = (0.33887, 0.21328, 0.23038, 0.21748)0

r∗ =
γ

σλ∗ (C)
' 1.3931

3.3 Deep structural change: emergence of a new dominant
ACS

Example 4 This and the following Example 5 are a different follow-up to
Example 2. Taken together they attempt to capture the notion of a revolu-
tionary, as opposed to smooth, structural change. The revolution takes place
in two steps. The first step is described in Example 4, where C takes the
following form:

C =

⎡⎢⎢⎣
c11 c12 0 0
c21 c22 0 0
c31 0 c33 0
0 c42 0 c44

⎤⎥⎥⎦ = ∙ C11 0
C21 C22

¸
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This example is marked in the first place by the development of technol-
ogy field 4 — corresponding to a higher coefficient c44 and to the new con-
nection c42 — and in the second place by the saturation of the pre-existing
knowledge pattern identified by the core of G(S∗, L∗) in Example 2. The
saturation is mirrored by the lower value of the coefficients cij , i, j = 1, 2,
in Example 4. Two situations may now arise. If λ∗(C11) > λ∗(C22), then
G(S∗, L∗) = G(S,L) and a∗ > 0. If instead λ∗(C11) < λ∗(C22), G(S∗, L∗)
coincides with vertex 4 and the link to itself, then the notional incremental
dynamics of vector a generated by Example 4 converges to a∗ = (0, 0, 0, 1).

3.3.1 Simulation of Example 4

• First case
With ρ = 0.05, σ = 0.05, γ = 1 and

C =

⎡⎢⎢⎣
0.6 0.5 0 0
0.4 0.6 0 0
0.5 0 0.4 0
0 0.5 0 0.7

⎤⎥⎥⎦
such that λ∗ (C11) = 1.0472 > λ∗ (C22) = 1, the predicted attractor is
(a∗, r∗), where (see Fig. 5):

a∗ = (0.25283, 0.22614, 0.19534, 0.32570)0

r∗ =
γ

σλ∗ (C)
=

0.1

0.05× 1.0472 ' 1.909

• Second case:
With ρ = 0.05, σ = 0.05, γ = 1 and

C =

⎡⎢⎢⎣
0.2 0.1 0 0
0.1 0.2 0 0
0.5 0 0.2 0
0 0.5 0 0.8

⎤⎥⎥⎦
such that λ∗ (C11) = 0.3 < λ∗ (C22) = 0.8, the predicted attractor is (a∗, r∗),
where (see Fig. 6):

a∗ = (0, 0, 0, 1)0

r∗1 =
(0.8) ρ+ γ − (ρ/4) (1.7)

(0.8)σ
= 2.9688 = r∗2 = r∗3

r∗4 =
(0.3) ρ+ γ − (ρ/4) (1.7)

(0.3)σ
= 6.25
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Figure 5: Convergence to the fixed point in the first case of Example 4
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Figure 6: Convergence to the fixed point in the second case of Example 4
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3.4 Structural Integration

Example 5 The revolutionary change is completed in phase 2, when tech-
nology field 4 comes to be integrated with the rest of the network by a new
emerging hierarchy brought about by the new links c14 > 0 and c34 > 0:

C =

⎡⎢⎢⎣
c11 0 0 c14
0 c22 c23 0
c31 0 c33 c34
0 c42 0 c44

⎤⎥⎥⎦
As a result, there is a new dominant autocatalytic set G(S∗, L∗), which co-
incides with the whole network G(S,L). This occurs in spite of the fact that
the links c12 and c21 have vanished, with the result that the way in which
technologies 1 and 2 participate in the knowledge hierarchy is completely
mutated with respect to Example 2. Our conjecture predicts that a converges
to a stationary, strictly positive vector a∗.

3.4.1 Simulation of Example 5

With ρ = 0.05, σ = 0.05, γ = 1 and

C =

⎡⎢⎢⎣
0.4 0 0 0.6
0 0.4 0.6 0
0.5 0 0.5 0
0 0.6 0 0.8

⎤⎥⎥⎦
such that λ∗ (C) = 1.2632, the predicted attractor is (a∗, r∗), where (see Fig.
7):

a∗ = (0.19428, 0.2158, 0.31042, 0.27949)0

r∗ =
γ

σλ∗ (C)
' 1.5833

4 The pattern of knowledge flows

The second half of the 20th century witnessed the information and communi-
cation technology (ICT) revolution, most notably in the advanced countries
and the USA in particular. Beside this major change, other new technology
fields, such as biotechnology, experienced unprecedented dynamism. More
traditional fields, such as chemicals or mechanical engineering, reached ma-
turity. In this section, the analytical framework developed so far is set to
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Figure 7: Convergence to the fixed point in Example 5

work with the aim of offering a synthetic representation of the knowledge
pattern induced by the technological evolution taking place in the advanced
economies during the middle and late 20th century. The primary focus of
the analysis is on the way in which the distribution of innovation activity is
influenced by the structure of knowledge links between technology fields, as
primarily shaped by technological and institutional factors that are largely
common across the advanced nations. More to the point, we shall consider
how far the changes concerning the cumulated innovation flow distribution,
that are predicted by the highly stylised model of Section 2, match the
changes suggested by empirical data on knowledge flows and innovation.

Partly as a result of the level of aggregation (detailed in the sequel) at
which the analysis is carried out, the notion of core of the dominant ACS,
introduced in Section 3.1, will be replaced in this section with the looser
notion of core of the knowledge pattern. The latter is the smallest subset S
of technology fields, and the mutual connections between them, such that
(i) the property of closed path connectivity is met; (ii) the subset measure
of connection intensity λ∗(S) ≈ λ∗(C).

The data source for our exercise is the NBER Patent-Citations data file,
as made available in Jaffe and Trajtenberg [8]. The main data set PAT63_99
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contains all utility patents4 granted by the U.S. Patent and Trademark Of-
fice (PTO) between January 1, 1963 and December 30, 1999. Among the
variables that the PTO originally assigns to each patent, most relevant for
us, in addition to the grant year, is the main U.S. patent class.5 There were
417 patent classes in the classification in use in 1999. The ‘original’ variables
assigned by the PTO to the various patents are enriched by the authors of
the dataset with a number of ‘constructed variables’. In particular, the 417
classes are aggregated by the authors into 36 technological subcategories
and these further aggregated into 6 categories (‘Chemical’, ‘Computers &
Communications’, ‘Drugs & Medical’, ‘Electrical & Electronic’, ‘Mechani-
cal’, and ‘Others’). The data set PAT63_99 can be profitably matched with
a second data set, namely, CITE75_99, which contains all citations made
to patents in PAT63_99 by patents issued between January 1, 1975 and
December 30, 1999.

The first aim of our exercise is to obtain from the citations data just de-
scribed, a computationally viable description of the knowledge flows between
technology fields, and of the changes thereof. For our computation endow-
ments, the technological classification according to the 417 3-digit classes
proved far too demanding. Therefore, we had to resort to the description
of technology fields according to their partition into 36 subcategories. To
evaluate the intensity of knowledge spillovers across technology fields, we
studied how far patenting in a subcategory xy in a time interval [t, t + z]
was followed by citations to xy by patents issued in every other subcategory
in the time interval [t + s, t + z]. In this way, for each subcategory xy, we
obtained a 36 dimensional vector of citations. The corresponding vector of
spillover intensity from xy to the other subcategories was obtained by divid-
ing the citations vector by the number of patents issued in xy in the period
[t, t+ z]. Proceeding in this way for each xy in the set of 36 subcategories,
we arrived at a matrix of spillover intensity which is the empirical analogue
of the matrix C in our model. To detect structural change, if any, in the
pattern of knowledge spillovers in the period under study, we divided the
latter into two sub-periods and obtained a corresponding analogue of matrix

4Utility patents constitute the overwhelming majority of patents, which include, in
addition, design, reissue and plant patents. Cfr. Hall, Jaffe and Trajtenberg [5, p. 407, n.
4].

5The reason for the qualification ‘main’ is that each patent is assigned by the PTO
to a 3-digit patent class and to a subclass, but also to any number of ‘subsidiary’ classes
and subclasses that seem appropriate. Moreover, the system is continuously updated with
new classes being added and others being reclassified or discarded. In this case, the PTO
retroactively assigns patents to patent classes, according to the most recent clasification
system. Cfr. Hall, Jaffe and Trajtenberg [5, p. 415.]

21



C for each sub-period.
The actual procedure followed was complicated by two types of consid-

eration that have to do with those characteristics of the available data set,
that are most relevant to our exercise.

The first relevant characteristic is that the number of citations in a fi-
nite time interval is affected by truncation effects related to backward and
forward citation lags (Hall, Jaffe and Trajtenberg [5, pp. 421-424]). This
imposed a choice of the subperiods in a way that comparisons between them
were least affected by the unavoidable distortions introduced by truncation
effects. In particular, the parameter s was held constant between the sub-
periods (s = 12) and differences in z were negligible (z = 23 in the first
subperiod, z = 24, in the second). The corresponding choices for t were
t = 1963 and t = 1975, respectively. For the sake of later reference, the in-
tervals [t+s, t+z] = [1975−1986] and [t+s, t+z] = [1987−1999] are referred
to below as first window (W1) and second window (W2), respectively.

The second relevant characteristic is that there is a sharp rising trend,
largely common across categories, in the mean number of citations, per
patent. This trend reflects, to a large extent, an increasing propensity to
cite by PTO officers, as a result of the easier access to larger data sources
brought about by computerisation of the PTO during the 1980’s. Although
the rising citations trend may not be entirely a pure artifact of the changed
PTO practices, in the absence of a better alternative, construction of the
connection matrix for the second window was carried out using discounted
citations data. In particular, the number of citations made by patents issued
in subcategory xy in the second window, was discounted by the xy growth
rate of citations-made per patent between the first and second window.

There is a third potentially distorting characteristic in the data set,
namely, the rising trend in the yearly number of patents issued since 1983.
This feature is at least partly taken care of by our procedure, since according
to our estimate of the connection matrix, the number of citations made by
subcategory xy patents, issued in window [t + s, t + z], to subcategory hk
patents issued in [t, t + z], is divided by the number of hk patents granted
in [t, t+ z].

4.1 Connection matrices as knowledge flows

A visual representation of the connection matrices C(W1) and C(W2) for
the two windows is given in Fig. 8 and 9, where colours identify different
ranges of the connection coefficients. In particular, the cell corresponding to
cij is coloured red if cij ≥ 1, yellow if 1 > cij ≥ 0.1, white if 0.1 > cij ≥ 0.01,
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and blue if cij < 0.01.

CW1 blue < 0.01 ≤ white < 0.1 ≤ yallow < 1 ≤ redC(W1)

Figure 8: Relative citation flows of patents issued in a column technology-field, by
patents issued in the row technology-fields: 1975-1986.

In our matrix representation, the ordering of technological categories,
embodied in the NBER data set, is changed through a permutation of rows
and columns aimed at stressing structural properties. The permutation
shifts category 3 (‘Drugs & Medical’, including subcategory 33, ‘Biotech-
nology’) between category 1 (‘Chemical’) and category 2 (‘Computers &
Communications’). The resulting structure of C(W1) and C(W2) is simi-
lar, in many respects.

4.1.1 Every subcategory is strongly connected with itself

The great majority of the cells on the main diagonal, but none of the cells
outside the main diagonal, are red. The only main diagonal exceptions (3
in W1, 2 in W2) refer to connection coefficients that are in any case not far
from 1. In both windows, the least self connected subcategories belong to
the traditional category ‘Chemical’.
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CW2 blue < 0.01 ≤ white < 0.1 ≤ yallow < 1 ≤ redC(W2)

Figure 9: The same as in Fig. 8 for the period 1987-1999.

4.1.2 Connection matrices are nearly decomposable into blocks
of categories

All the main categories tend to be more tightly connected with themselves
than with the others. Most significantly, as will turn out shortly, in both
periods ‘Drugs & Medical’ (3) are least connected with ‘Computers & Com-
munications’ (2), and vice versa.

Figures 10(a) and 10(b) show the main-diagonal submatrices C3,2 for
the periods W1 and W2, respectively. Since blue numbers are negligibly
different from zero, each submatrix C3,2 has a quasi positive diagonal block
structure, with blue areas in the top-right and bottom-left corners.

There are however groups of categories with relatively tight mutual con-
nections, that give rise to near-blocks on the main diagonal of C(W1) and
C(W2). This holds true, in particular, for the category group “‘Computers
& Communications’ (2), ‘Electrical & Electronic’ (4)” and for the group
“‘Chemical’ (1), ‘Drugs & Medical’ (3)”.

Figures 11(a) and 11(b) show a blown up version of the blocks C2,4(W1)
and C2,4(W2).The strengthening of the mutual connections between cate-
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(a) (b)

Figure 10: Mutual citation flows between subcategories in ‘Computers and
Communications’ (2) and ‘Drugs and Medical’ (3) for the period 1975−1986
(a) and 1987− 1999 (b)

gories 2 and 4 in the second window is not limited to these categories, but
is part of a more general trend, which is not a mere artifact of the rising
patenting and citation propensity in the second period. As a result, in spite
of the fact that, at the aggregation level adopted, there is considerable con-
tinuity in the structure of C(W1) and C(W2), the near decomposability of
the connection matrix into blocks is weaker in the second window.

4.2 Perron-Frobenius eigenvalues and knowledge patterns

The model in Section 2 suggested that the Perron-Frobenius eigenvalue λ∗

of a connection matrix, C, is an indicator of the intensity of knowledge
spillovers between technology fields, and showed how it affects knowledge
accumulation. Table 1 shows the λ∗ values, that is the aggregate, between—
and-within-category spillover intensity, in the two periods of interest. It also
shows the intensity of within-category knowledge-transfer, namely, the λ∗

value of the main-diagonal block Ci of C(W1) and C(W2) that corresponds
to technological category i, for i = 1, ..., 6. The same table shows the λ∗

value of the main-diagonal blocks C2,4 and C2,3 corresponding to the aggre-
gation of categories 2,4 and 2,3, respectively. It may be worth stressing that
what matters is not the absolute, but the relative, size of the eigenvalues.
To emphasise this, the last two columns in the table show the ratios between
each diagonal block eigenvalue λ∗(Ci) and the corresponding matrix eigen-
value λ∗(C). Finally, the column W2/W1 gives a measure of the λ∗ rate of
change between W1 and W2.
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(a) (b)

Figure 11: Mutual citation flows between subcategories in ‘Computers and
Communications’ (2) and ‘Electrical and Electronic’ (4) for the period 1975−
1986 (a) and 1987− 1999 (b)

W1 W2 W2
W1 W1: λ∗(Ci)

λ∗(C) W2: λ∗(Ci)
λ∗(C)

λ∗(C) 2.572 3.693 1.436 1.000 1.000
λ∗(C1) 2.023 2.092 1.034 0.787 0.567
λ∗(C2) 2.452 3.584 1.462 0.953 0.971
λ∗(C3) 2.487 3.227 1.298 0.967 0.874
λ∗(C4) 2.386 3.231 1.354 0.928 0.875
λ∗(C5) 1.677 1.897 1.131 0.652 0.514
λ∗(C6) 1.873 1.955 1.044 0.728 0.529

λ∗(Ĉ2,4) 2.523 3.669 1.454 0.998 0.994
λ∗(C2,3) 2.493 3.586 1.440 0.969 0.971

Table 1

The table shows a sharp difference between a group of traditional tech-
nological categories, ‘Chemical’ (1), ‘Mechanical’ (5) and ‘Others’ (6), and
a group of progressive technologies, namely, ‘Computers & Communica-
tions’ (2), ‘Drugs & Medical’ (3), ‘Electrical & Electronic’ (4). The former
is characterised by a lower intensity of knowledge transfer in each window
[1975 − 1986] and [1987 − 1999] , and by a lower acceleration of within-
category knowledge transfer between window W1 and W2. During W1, the
category ‘Drugs & Medical’. gains the top ranking in the rate of within-
category knowledge transfer, followed by ‘Computers & Communications’.
The table clearly reveals the considerably faster relative development of
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‘Computers & Communications’ during period W2, followed by ‘Electrical
& Electronic’ (4) and ‘Drugs & Medical’ (3), in this order.

Are we to conclude that there is a change, fromW1 toW2, in the subset
of technology fields that crucially determine the aggregate measure of con-
nection intensity λ∗(C)? To answer this question, let us loosely define the
near core of the knowledge pattern to be the smallest subset of technology
fields, such that the subset measure of connection intensity best approxi-
mates the aggregate measure λ∗(C). In the light of the above definition,
a closer look at Table 2 suggests the following tentative conclusion. The
very weak mutual connections between categories 2 and 3, and the resulting
quasi positive diagonal block structure of C2,3 in both periods W1 and W2,
have relevant implications: λ∗(C2,3) is negligibly different from λ∗(C3) in
window W1, and from λ∗(C2) in window W2. In both periods, neither C3
and C2, taken in isolation, nor their aggregation C2,3 can be convincingly
identified with the near core of the ruling pattern of knowledge transfer. In
this respect, a much more convincing candidate is the quasi diagonal block
C2,4 of Fig. 11(a) and 11(b). In both periods, the block in question explains
more than 99% of the aggregate measure of spillover intensity. This may
be taken as clear evidence of the prominent position reached by the ICT
revolution in these periods.

4.3 Perron-Frobenius eigenvectors and the distribution of
knowledge accumulation

The model of Section 2 predicts that the notional dynamics of the knowl-
edge stocks distribution, corresponding to a constant connection matrix C
converges asymptotically to the right Perron-Frobenius eigenvector of C.
Since the model is highly stylised and admittedly, abstracts from demand
factors and other real world features that exert a non negligible influence
on innovation flows, it would be highly inappropriate to expect an empirical
corroboration of a point prediction of the model. Moreover, the model pre-
dictions refer to asymptotic outcomes, which may differ from transitional
outcomes, not only as a result of a possibly slow convergence, but also be-
cause of the non monotonic convergence paths displayed in our simulations.
At best, we may expect some degree of conformity between the directions
of change predicted by the model and the directions of change signalled by
innovation data (see Table 2).6

To check this hypothesis, we compared the sign of the first differences

6For a recent restatement of a similar point about method, see Samuelson [15].
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between two couples of vectors: on the one hand, the difference ∇a∗ =
a∗(W2)− a∗(W1) between the model generated attractors (the normalised
right Perron-Frobenius eigenvectors of C(W1) and C(W2)), on the other,
the difference ∇a = a(W2) − a(W1) between the cumulated flow distrib-
ution of patents in the two windows W1 and W2. The sign conformity is
spelled out in the penultimate column of Table 2, where only 8 out of 36
subcategories have non corresponding signs.

Table 2

As a further descriptive check on our hypothesis, for each subcategory i,
we computed the growth rates:

gi(a
∗) =

∇a∗i
a∗i

, gi(a) =
∇ai
ai
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Figure 12: Least-squares regression line between model-generated (pred.)
growth rates and actual growth rates.

In this way, we obtained n = 36 pairs of measurements gi(a∗), gi(a),
and regressed the actual growth rates gi(a) on the model-generated growth
rates gi(a∗). The resulting regression equation, that bears only a descriptive
statistical interpretation,7 is gi(a) = 0.51+ (1.0507)gi(a)+ εi, with an R2 =
0.598. As Fig. 12 illustrates, from a graphical perspective, the model fits
the data reasonably well.

5 Conclusions

The last part of the paper considers patent activity and citations in the
period 1975-1999, to compare the directions of change predicted by the the-
oretical model developed in Section 2, with the actual directions of change
in the distribution of innovation accumulation between technology fields.
Great caution in the interpretation of our results is suggested not only by
the highly stylised model structure, which fully abstracts, for instance, from
demand effects on innovation opportunities, but also by the fact that we
are taking patent citations between technology fields as indicators of knowl-

7The reason is that our computation procedure makes the model generated growth
rates non independent of the actual growth rates.
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edge links between these fields. Further caution, and moderate predictive
success, is also suggested by the fact that the model generated changes
are obtained by comparing the asymptotic attractors of each incremental
dynamics corresponding to the average network structure in the sub-period
concerned. For this reason, the incremental dynamics admits only a notional
interpretation. Moreover, our simulations show that convergence paths to
the asymptotic-equilibrium distributions may not be monotonic. In spite of
these limitations and qualifications, we conclude that the model generated
changes fit the actual changes reasonably well.

Our paper was not concerned with the detection of radical or network
innovation and morphogenesis in the real world patterns of discovery, or with
the factors explaining the formation of their structural properties. These
objectives will be addressed in our future work.

A Appendix

In the simplified case with only two sectors and two known technologies
(n = 2), the dynamical system (6)-(7) reduces to:

ȧ1 = σ {r1 (c11a1 + c12a2)

−a1 [r1 (c11a1 + c12a2) + r2 (c21a1 + c22a2)]} (17)

ȧ2 = σ {r2 (c21a1 + c22a2)

−a2 [r1 (c11a1 + c12a2) + r2 (c21a1 + c22a2)]} (18)

ṙ1 = r1

∙
γ +

(ρ− σr1) (c11a1 + c12a2)

a1

−ρ
2

µ
c11a1 + c12a2

a1
+

c21a1 + c22a2
a2

¶¸
(19)

ṙ2 = r2

∙
γ +

(ρ− σr2) (c21a1 + c22a2)

a2

−ρ
2

µ
c11a1 + c12a2

a1
+

c21a1 + c22a2
a2

¶¸
(20)

The strictly positive fixed points of the system are found by imposing
ȧ1 = ȧ2 = ṙ1 = ṙ2 = 0 in the system of equations (17)-(20), i.e. by solving:

r∗1 (c11a
∗
1 + c12a

∗
2)− a∗1 [r

∗
1 (c11a

∗
1 + c12a

∗
2) + r∗2 (c21a

∗
1 + c22a

∗
2)] = 0 (21)

r∗2 (c21a
∗
1 + c22a

∗
2)− a∗2 [r

∗
1 (c11a

∗
1 + c12a

∗
2) + r∗2 (c21a

∗
1 + c22a

∗
2)] = 0 (22)
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γ +
(ρ− σr∗1) (c11a

∗
1 + c12a

∗
2)

a∗1
− ρ

2

µ
c11a

∗
1 + c12a

∗
2

a∗1
+

c21a
∗
1 + c22a

∗
2

a∗2

¶
= 0

(23)

γ +
(ρ− σr∗2) (c21a

∗
1 + c22a

∗
2)

a∗2
− ρ

2

µ
c11a

∗
1 + c12a

∗
2

a∗1
+

c21a
∗
1 + c22a

∗
2

a∗2

¶
= 0

(24)
Notice that from (23) and (24) we obtain:

r∗1 =
ρ

σ

∙µ
a∗1

c11a∗1 + c12a∗2

¶µ
γ

ρ
− c21a

∗
1 + c22a

∗
2

2a∗2

¶
+
1

2

¸
(25)

r∗2 =
ρ

σ

∙µ
a∗2

c21a∗1 + c22a∗2

¶µ
γ

ρ
− c11a

∗
1 + c12a

∗
2

2a∗1

¶
+
1

2

¸
(26)

Then, inserting in (21) and (22):∙
a∗1

µ
γ

ρ
− c21a

∗
1 + c22a

∗
2

2a∗2

¶
+
(c11a

∗
1 + c12a

∗
2)

2

¸
(1− a∗1)

−
∙
a∗2

µ
γ − c11a

∗
1 + c12a

∗
2

2a∗1

¶
+
(c21a

∗
1 + c22a

∗
2)

2

¸
a∗1 = 0

∙
a∗2

µ
γ

ρ
− c11a

∗
1 + c12a

∗
2

2a∗1

¶
+

c21a
∗
1 + c22a

∗
2

2

¸
(1− a∗2)

−
∙
a∗1

µ
γ

ρ
− c21a

∗
1 + c22a

∗
2

2a∗2

¶
+
(c11a

∗
1 + c12a

∗
2)

2

¸
a∗2 = 0

from which it follows that in equilibrium we must have:

a∗1
c11a∗1 + c12a∗2

=
a∗2

c21a∗1 + c22a∗2
(27)

Then, inserting in (25) and (26), we find:

r∗1 =
γ

σ

µ
a∗2

c21a∗1 + c22a∗2

¶
=

γ

σ

µ
a∗1

c11a∗1 + c12a∗2

¶
= r∗2 = r∗ (28)

Summarising, the fixed points of the dynamical system of our model are
given by:

(a∗1, a
∗
2, r

∗
1, r

∗
2) = (a

∗
1, 1− a∗1, r

∗, r∗)

where a∗1 and a∗2 must satisfy condition (27).
Expressing the same condition in terms of a∗1 only, we obtain:

(c12 + c22 − c11 − c21) a
∗2
1 − (2c12 + c22 − c11) a

∗
1 + c12 = 0
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We must distinguish different cases, according to whether c12 + c22 6=
c11 + c21 or c12 + c22 = c11 + c21. When c12 + c22 6= c11 + c21, we find:8

a∗1 =
2c12 + c22 − c11 −

√
∆

2 (c12 + c22 − c11 − c21)
(29)

a∗2 = 1− a∗1 =
−2c21 + c22 − c11 +

√
∆

2 (c12 + c22 − c11 − c21)
(30)

where ∆ = (c22 − c11)
2 + 4c12c21, whereas, when c12 + c22 = c11 + c21:

a∗1 =
c12

c12 + c21
(31)

a∗2 =
c21

c12 + c21
(32)

These results imply that, in the special case such that c12 = c21, namely,
in the case of perfect reciprocity of knowledge spillover across technology
fields, we have:

0 ≤ a∗1 =
2c12 + c22 − c11 −

√
∆

2 (c22 − c11)
≤ 1

0 ≤ a∗2 =
−2c12 + c22 − c11 +

√
∆

2 (c22 − c11)
≤ 1

when c11 6= c22, whereas:

a∗1 = a∗2 =
1

2

when c11 = c22.
To derive the conditions of local asymptotic stability of the fixed point,

we consider the Jacobian matrix of the system evaluated at (a∗1, a
∗
2, r

∗
1, r

∗
2):

J =

⎡⎢⎢⎣
j11 j12 j13 j14
j21 j22 j23 j24
j31 j32 j33 0
j41 j42 0 j44

⎤⎥⎥⎦
8The solution (a∗1, a

∗
2) = (a

∗
1, 1− a∗1), where:

a∗1 =
2c12 + c22 − c11 +

√
∆

2 (c12 + c22 − c11 − c21)

must be disregarded because, as it easily proved, such solution always gives values of a∗1
greater than 1 when c12 + c22 > c11 + c21 or negative when c12 + c22 < c11 + c21.
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where, given (9)-(16), we know that:

j11 =
∂ȧ1
∂a1

¯̄̄̄
(a∗1,a∗2,r∗,r∗)

=
³ γ

λ∗

´
[c11 − λ∗ − a∗1 (c11 + c21)]

= −
³ γ

λ∗

´∙c12a∗2
a∗1

+ a∗1 (c11 + c21)

¸
< 0

j12 =
∂ȧ1
∂a2

¯̄̄̄
(a∗1,a∗2,r∗,r∗)

=
³ γ

λ∗

´
[c12 − a∗1 (c12 + c22)] =

³ γ

λ∗

´
(c12a

∗
2 − c22a

∗
1)

j13 =
∂ȧ1
∂r1

¯̄̄̄
(a∗1,a∗2,r∗,r∗)

= σλ∗a∗1a
∗
2 > 0

j14 =
∂ȧ1
∂r2

¯̄̄̄
(a∗1,a∗2,r∗,r∗)

= −σλ∗a∗1a∗2 = −j13 < 0

j21 =
∂ȧ2
∂a1

¯̄̄̄
(a∗1,a∗2,r∗,r∗)

=
³ γ

λ∗

´
[c21 − a∗2 (c11 + c21)] = −j11 − γ

j22 =
∂ȧ2
∂a2

¯̄̄̄
(a∗1,a∗2,r∗,r∗)

=
³ γ

λ∗

´
[c22 − λ∗ − a∗2 (c12 + c22)] = −j12 − λ

j23 =
∂ȧ2
∂r1

¯̄̄̄
(a∗1,a∗2,r∗,r∗)

= −σλ∗a∗2a∗1 = j14 = −j13 < 0

j24 =
∂ȧ2
∂r2

¯̄̄̄
(a∗1,a∗2,r∗,r∗)

= σλ∗a∗2a
∗
1 = j13 > 0

j31 =
∂ṙ1
∂a1

¯̄̄̄
(a∗1,a∗2,r∗,r∗)

=
³ γ

σλ∗

´ ∙³
ρ− γ

λ∗

´µc11 − λ∗

a∗1

¶
− ρ

2

µ
c11
a∗1
+

c21
a∗2
− λ∗

a∗1

¶¸
= r∗

∙
−ρ
2

µ
c21
a∗2
+

c12a
∗
2

a∗21

¶
+

σc12a
∗
2r
∗

a∗21

¸
j32 =

∂ṙ1
∂a2

¯̄̄̄
(a∗1,a∗2,r∗,r∗)

=
³ γ

σλ∗

´ ∙³
ρ− γ

λ∗

´ c12
a∗1
− ρ

2

µ
c12
a∗1
+

c22
a∗2
− λ∗

a2

¶¸
= r∗

∙
ρ

2

µ
c12
a∗1
+

c21a
∗
1

a∗22

¶
− σc12r

∗

a∗1

¸
= −

µ
a∗1
a∗2

¶
j31

j33 =
∂ṙ1
∂r1

¯̄̄̄
(a∗1,a∗2,r∗,r∗)

= −γ < 0

j41 =
∂ṙ2
∂a1

¯̄̄̄
(a∗1,a∗2,r∗,r∗)

=
³ γ

σλ∗

´ ∙³
ρ− γ

λ∗

´ c21
a∗2
− ρ

2

µ
c11
a∗1
+

c21
a∗2
− λ∗

a1

¶¸
= r∗

∙
ρ

2

µ
c21
a∗2
+

c12a
∗
2

a∗21

¶
− σc21r

∗

a∗2

¸
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j42 =
∂ṙ2
∂a2

¯̄̄̄
(a∗1,a∗2,r∗,r∗)

=
³ γ

σλ∗

´ ∙³
ρ− γ

λ∗

´µc22 − λ∗

a∗2

¶
− ρ

2

µ
c12
a∗1
+

c22
a∗2
− λ∗

a∗2

¶¸
= r∗

∙
−ρ
2

µ
c21a

∗
1

a∗22
+

c12
a∗1

¶
+ σ

c21a
∗
1

a∗22
r∗
¸

= −
µ
a∗1
a∗2

¶
j41

j44 =
∂ṙ2
∂r2

¯̄̄̄
(a∗1,a∗2,r∗,r∗)

= −γ < 0

Thus, the characteristic equation of the system is given by:¯̄̄̄
¯̄̄̄ j11 − λ j12 j13 −j13
−j11 − γ −j12 − γ − λ −j13 j13

j31 − (a∗1/a∗2) j31 −γ − λ 0
j41 − (a∗1/a∗2) j41 0 −γ − λ

¯̄̄̄
¯̄̄̄

= − (γ + λ)2
£
−λ2 − (γ + j12 − j11)λ− γ (j12 − j11)− (1/a∗2) (j41j13 − j31j13)

¤
= 0

which implies that two eigenvalues are equal to γ:

λ1 = λ2 = −γ < 0

while the remaining two (λ3 and λ4) are the roots of:

λ2 + (γ + j12 − j11)λ+ γ (j12 − j11) +
j13 (j41 − j31)

a∗2
= 0

The following two conditions guarantee that λ3 and λ4 are negative if
real and have negative real parts if complex and therefore that the fixed
point of the system is locally stable:

γ + j12 − j11 > 0 (33)

γ (j12 − j11) +
j13 (j41 − j31)

a∗2
> 0 (34)

In terms of the parameters of the model, condition (33) can be written
as:

γ+j12−j11 =
³ γ

λ∗

´ ∙c21a∗1 + c22a
∗
2 (1− a∗1)

a∗2
+ c12a

∗
2 +

c12a
∗
2

a∗1
+ a∗1 (c11 + c21)

¸
> 0

which is always true.
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Moreover, in (34), we have:

γ (j12 − j11) =

µ
γ2

λ∗

¶ ∙
c12a

∗
2 − c22a

∗
1 +

c12a
∗
2

a∗1
+ a∗1 (c11 + c21)

¸
= γ [σr∗ (c12a

∗
2 − c22a

∗
1)− σr∗ (c11a

∗
2 − c21a

∗
1) + γ] = γ2

∙
c11a

∗
1 + 2c12a

∗
2 − c22a

∗
1

c11a∗1 + c12a∗2

¸
and

j13 (j41 − j31)

a∗2
= σλ∗a∗1

³ γ

σλ∗

´ ∙³
ρ− γ

λ∗

´ c21
a∗2
− ρ

2

µ
c11
a∗1
+

c21
a∗2
− λ∗

a1

¶
−
³
ρ− γ

λ∗

´µc11 − λ∗

a∗1

¶
+

ρ

2

µ
c11
a∗1
+

c21
a∗2
− λ∗

a∗1

¶¸
= γ (ρ− σr∗)

µ
c21a

∗
1

a∗2
+

c12a
∗
2

a∗1

¶

Thus, in terms of the parameters of the model, the second condition for
local stability can be expressed as:

γ

µ
c11a

∗
1 + 2c12a

∗
2 − c22a

∗
1

c11a∗1 + c12a∗2

¶
+ (ρ− σr∗)

µ
c21a

∗
1

a∗2
+

c12a
∗
2

a∗1

¶
= γ

µ
c11a

∗
1 + 2c12a

∗
2 − c22a

∗
1

c11a∗1 + c12a∗2

¶
+ ρ

µ
c21a

∗
1

a∗2
+

c12a
∗
2

a∗1

¶
− γ

µ
a∗2

c21a∗1 + c22a∗2

¶
c21a

∗
1

a∗2
− γ

µ
a∗1

c11a∗1 + c12a∗2

¶
c12a

∗
2

a∗1

= γc22

∙
a∗2 (c11a

∗
1 + a∗2c12a

∗
2)− a∗1 (c21a

∗
1 + a∗2c22)

c11a∗1 + c12a∗2 (c21a
∗
1 + c22a∗2)

¸
+ ρ

µ
c21a

∗
1

a∗2
+

c12a
∗
2

a∗1

¶
= ρ

µ
c21a

∗
1

a∗2
+

c12a
∗
2

a∗1

¶
> 0

which is also always true.
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