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Expected optimal feedback with

Time-Varying Parameters

1 Introduction

The introduction of stochastic parameters in a control theory framework
frequently leads to the use of approximations of the dynamic programming
algorithm. For this reason researchers in the control field are often induced
to discuss in great details the approximation of their choice and treat im-
plicitly the alternative methods. For instance, Kendrick (1981, 2002) and
Tucci (1989, 1997, 2004) discuss at length the DUAL algorithm, but they fail
to spell out the effects of the introduction of system equations with time-
varying parameters on the computation of the familiar expected optimal
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feedback control. This paper aims to fill the gap. It is therefore an exten-
sion of Kendrick (1981, 2002, Chapter 6) which provides a similar derivation
for models with constant parameters.1

In the first section of this paper the problem is stated. Then the approxi-
mate optimal cost for periods N , N − 1 and a generic period j are derived.
The approximation is based on the information available at the beginning of
the planning horizon, that is time 0. It is worthwhile to point out that the
formulae associated with the time-varying parameters problem look exactly
the same as those in Kendrick (1981, 2002, Chapter 6), except for the fact
that now the expectation on the random quantities is conditional on the
information available at time 0, thus E0. Section 5 shows that this minor
notational difference has substantial computational consequences. Finally
the Beck and Wieland (2002) model is cast in the framework of this paper.
It is observed that for the parameter set used in Amman et al. (2007) and
Beck and Wieland (2002) the approximated optimal control is indeed the
optimal control, because the feedback matrices are independent of the future
path of the time-varying parameters.2

2 Statement of the Problem

A general quadratic linear control model can be stated as follows: select the
control vectors u0, . . . , uN−1 to minimize the criterion functional

J = E {CN} = E

{

LN (xN ) +
N−1
∑

k=0

Lk (xk,uk)

}

(1)

with E the expectation operator and with,

LN (xN ) =
1

2
x′

NWNxN + w′
NxN (2)

and

Lk (xk,uk) =
1

2
x′

kWkxk + w′
kxk + x′

kFkuk +
1

2
u′

kΛkuk + λ
′
kuk (3)

1In a discussion paper Amman and Kendrick (2001) consider the case where a subset
of parameters is stochastic and follows a first order Markov process with a time-varying
transition matrix, D, and covariance matrix. They suggest finding the EOF control using
an augmented state vector including both the states and the stochastic parameters. This
paper suggests an alternative approach to solve the same problem.

2This result is the same as in Beck and Wieland (2002, page 1365).
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subject to the system equations

xk+1 = Akxk + Bkuk + ck + vk k = 0, 1, ..., N − 1 (4)

where xk is the n-dimensional vector of states, uk the m-dimensional
vector of controls, the Wk, Λk, wk and λk are penalty weights, Ak, Bk and
ck are arrays of parameters of appropriate dimension and vk an additive
noise term.3 The expectation in (1) is taken over vk, Ak, Bk and ck. It
is assumed that these parameters follow a first-order Markov process of the
form

θk+1 = Dθk + ηk (5)

where D is a known matrix, ηk is a random vector and4

θk =





vec(Ak)
vec(Bk)
vec(ck)



 (6)

is of dimension (s × 1), with s = n × n + n × m + n.5

The noise vectors vk and ηk are assumed independently distributed with6

vk ∼ N (0, Q)
ηk ∼ N (0, G)

(7)

3 As discussed in Kendrick (1981, 2002, Chapter 2), the Wk and Λk may be interpreted
as penalty matrices on the deviations of the states and controls, respectively, from their
desired paths and the wk and λk as some known functions of the desired paths of the
state and controls, respectively. The wk and λk are zero when the desired paths of the
state and controls, respectively, are 0. In the engineering literature it is usually assumed
that the Wk are positive semidefinite symmetric matrices and the Λk are positive definite
symmetric matrices. See Bertsekas (2005, Chapter 4).

4It should be noticed that in Kendrick (1981, 2002) only the unknown parameters,
either time-varying or constant, are included in θk. To go from the θk as defined in the
paper to that used in Kendrick, say θK

k , it suffices to pre-multiply θk by the matrix T of
dimension r × s where r is the number of unknown parameters and s is as in the text.
Each row in T has 1 in the position associated with a certain unknown parameter and zero
elsewhere. As an example consider a situation where s = 5 but only the second and fourth
parameter of vector θk are unknown. Then the matrix T is 2× 5 with 1’s in position (1,2)
and (2,4) and 0 elsewhere.

5This formulation is general enough to model both time-varying and constant param-
eters. When a certain parameter, say the i-th parameter in θ, is assumed constant the
corresponding row in D has 1 in the i-th column and zero elsewhere and the corresponding
element in ηk is zero.

6When some of the parameters in θk are assumed known the corresponding elements in
ηk are zero and the associated variances and covariances are zero. Therefore, in general,
the matrix G is symmetric and positive semidefinite in (7).
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Furthermore, they are independent of the initial condition x0, assumed
given, and7

θ0 ∼ N(θ0|0, Σθθ
0|0). (8)

The s × s covariance matrix looks like

Σθθ
0|0 =







ΣAA
0|0 ΣAB

0|0 ΣAc

0|0

• ΣBB
0|0 ΣBc

0|0

• • Σcc

0|0







with8

ΣAA
0|0 = the

(

n2 × n2
)

covariance matrix of the parameters in A0;

ΣAB
0|0 = the

(

n2 × nm
)

matrix of covariances between the parameters in

A0 and B0;

ΣAc

0|0 = the
(

n2 × n
)

matrix of covariances between the parameters in

A0 and c0;

ΣBB
0|0 = the (nm × nm) covariance matrix of the parameters in B0;

ΣBc

0|0 = the (nm × n) matrix of covariances between the parameters in

B0 and c0;

Σcc

0|0 = the (n × n) covariance matrix of the parameters in c0

7When a certain parameter is constant and known the relative row and column in
Σθθ

0|0 have zeroes. When it is constant but unknown the same row and column contain the
covariances of its estimate at time zero included in θ0|0. Some authors, for instance Harvey
(1981, pages 104-106), prefer to use the notation (θ0 − θ0|0) ∼ N(0,Σθθ

0|0), in place of (8),
to indicate the distribution of a vector containing both fixed and random parameters. In
the presence of measurement error x0 is usually assumed normally distributed with mean
x0|0 and covariance Σxx

0|0. See, e.g., Kendrick (1981, 2002, Chapter 10).
8Equation (8) can be put in Kendrick’s (1981, 2002) notation and using the T matrix

defined in Footnote (3), that is θK
k ≡ Tθk ∼ N

(

Tθk,TΣθθ
0|0T

′
)

. In the example discussed

in that footnote the vector θK
k is defined as

Tθk =

[

0 1 0 0 0
0 0 0 1 0

]













θ1

θ2

θ3

θ4

θ5













and it should be noticed that θk ≡ T′θK
k . Therefore the same matrix can be used to

go from the notation of this paper to Kendrick’s (1981, 2002) and notation and in the
opposite direction. This is extremely convenient from a computational point of view.
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In the following pages this problem is solved by using dynamic program-
ming methods and working backward in time following the procedures used
in Kendrick (1981, 2002, Chapter 6) but with time varying parameters.
Given k = 0, first the problem is solved for period N and then for period
N − 1. This leads to the solution for a generic period j in the planning
horizon. Then the optimal control for period zero is determined and the
system is moved forward.

3 Period N

Using the notation in Kendrick (1981, 2002, Chapter 6) the optimal expected
cost to go at period 0, with N periods remaining, is written as

J∗
N = min

u0

E







... min
uN−2

E







min
uN−1

E
{

CN |PN−1
}

|PN−2







· · · |P0







(9)

where Pj , for j = 0, . . . , N − 1, is defined as the means and covariances
of the unknown parameters at time j. Alternatively equation (9) can be
written as9

J∗
N = min

u0

E0

{

· · · min
uN−2

EN−2

{

min
uN−1

EN−1 {CN}

}

· · ·

}

(10)

where the subscript on the expectation operator indicates that the ex-
pectation is conditional on the information available at that time, that is

EN−1 {CN} ≡ E
{

CN |PN−1
}

From the nested expression (10) it follows that each control uj must be
chosen with the information available through time j.

The typical situation when Pj , for j = 0, . . . , N − 1, is known at time

9In general at time j, with N − j periods remaining, the summation in Equation (1)
goes from k = j to N − 1 and the associated cost is denoted by CN−j . Then Equation
(10) looks like

J
∗
N−j = min

uj

Ej

{

· · · min
uN−2

EN−2

{

min
uN−1

EN−1 {CN−j}

}

· · ·

}
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0, is when the parameters are identically and independently distributed.10

When the parameters are modeled as in Equations (5)-(6) this is clearly
not true and an approximation to the dynamic programming algorithm is
needed. The approximation presented in these pages uses all the informa-
tion available at time zero, namely x0 and the distribution associated with
θ0, and replaces Equation (10) with11

J∗
N = min

u0

E0

{

· · · min
uN−2

E0

{

min
uN−1

E0 {CN}

}

· · ·

}

. (11)

As discussed in Kendrick (1981, Chapter 2) in dynamic programming
problems, for any arbitrary time period j, the optimal cost-to-go with N − j

periods remaining will equal the minimum over the choice of the control at
time j of the cost incurred during period j plus the optimal cost-to-go with
N −(j + 1) periods remaining. Therefore the approximate optimal feedback
rule for problem (1)-(8) is solved starting from the last period and working
backward toward the initial period.

In period N no control is chosen and from Equation (2) it follows that
the optimal cost is

J∗
0 =

1

2
x′

NWNxN + w′
NxN (12)

In general, see e.g. Kendrick (1981, 2002, Chapter 2), the optimal cost-
to-go for the quadratic linear problem, sometimes called the regulatory prob-

lem, in a certain period is a quadratic function of the state of the system
in that period. So the expected cost-to-go with zero periods to go may be
written as

J∗
0 =

1

2
x′

NKNxN + p′
NxN + νN (13)

where the scalar νN , the vector pN , and the matrix KN are the parame-
ters of the quadratic function to be determined recursively in the optimiza-
tion procedure.12

Then comparing Equation (12) with Equation (13) one obtains the ter-
minal conditions for the Riccati equations, namely

10This is the case considered in Kendrick (1981, 2002, Chapter 6) and usually discussed
in the engineering literature. See Bertsekas (2005, Chapter 4).

11Chow (1973) uses a similar approximation when dealing with unknown constant pa-
rameters.

12The term ν is sometimes omitted because “it does not affect the optimal control path
but only the optimal cost-to-go” (Kendrick (1981, page 48))
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KN = WN , pN = wN and νN = 0 (14)

4 Period N − 1

The optimal cost-to-go in period N − 1 can be written as

J∗
1 = min

uN−1

E0 {J
∗
0 + LN−1 (xN−1,uN−1)} (15)

where J∗
0 is the optimal cost-to-go with 0 periods remaining and

LN−1 (xN−1,uN−1)

is the cost incurred in period N − 1. Substituting Equation (3) and
Equation (13), with νN = 0, into Equation (15) yields

J∗
1 = min

uN−1

E0

{

1
2x

′
N
KNxN + p′

NxN + 1
2x

′
N−1WN−1xN−1 + w′

N−1xN−1

+x′
N−1FN−1uN−1 + 1

2u
′
N−1ΛN−1uN−1 + λ

′
N−1uN−1

}

(16)
This expression gives the optimal cost-to-go in terms of (xN , xN−1, uN−1).

After replacing xN with the system equations given in Equation (4), Equa-
tion (16) looks like

J∗
1 = min

uN−1

E0

{1

2
(AN−1xN−1 + BN−1uN−1 + cN−1 + vN−1)

′KN

× (AN−1xN−1 + BN−1uN−1 + cN−1 + vN−1)

+p′
N (AN−1xN−1 + BN−1uN−1 + cN−1 + vN−1) +

1

2
x′

N−1WN−1xN−1

+w′
N−1xN−1 + x′

N−1FN−1uN−1 +
1

2
u′

N−1ΛN−1uN−1 + λ
′
N−1uN−1

}

(17)

which depends only on xN−1 and uN−1. Multiplying the various terms
in (17) and taking expectations conditional on the information available at
time 0, that is based on x0 and θ0, yields
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J∗
1 = min

uN−1

{

1

2

[

x′
N−1E0

(

A′
N−1KNAN−1

)

xN−1

+x′
N−1E0

(

A′
N−1KNBN−1

)

uN−1

+x′
N−1E0

(

A′
N−1KNcN−1

)

+ u′
N−1E0

(

B′
N−1KNAN−1

)

xN−1

+u′
N−1E0

(

B′
N−1KNBN−1

)

uN−1 + u′
N−1E0

(

B′
N−1KNcN−1

)

+E0

(

c′N−1KNAN−1

)

xN−1 + E0

(

c′N−1KNBN−1

)

uN−1

+E0

(

c′N−1KNcN−1

)

+ E0

(

v′
N−1KNvN−1

)]

+p′
NE0 (AN−1)xN−1 + p′

NE0 (BN−1)uN−1 + p′
NE0 (cN−1)

+
1

2
x′

N−1WN−1xN−1 + w′
N−1xN−1 + x′

N−1FN−1uN−1

+
1

2
u′

N−1ΛN−1uN−1 + λ
′
N−1uN−1

}

(18)

with the expectations involving only vN−1 and the covariances between
vN−1 and the time-varying parameters omitted because they are 0 by as-
sumption.

Minimizing Equation (18) with respect to the vector of controls yields the
first order condition, namely

E0 (B′
N−1KNAN−1)xN−1 + E0 (B′

N−1KNBN−1)u
∗
N−1

+E0 (B′
N−1KNcN−1) + E0 (B′

N−1)pN+
F′

N−1xN−1 + ΛN−1u
∗
N−1 + λN−1 = 0,

(19)

which implies that the cost minimizing control, or feedback rule, for time
N − 1 is

u∗
N−1 = GN−1xN−1 + gN−1 (20)

where

GN−1 = −[ΛN−1 + E0(B
′
N−1KNBN−1)]

−1

×[E0(B
′
N−1KNAN−1) + F′

N−1] (21)

gN−1 = −[ΛN−1 + E0(B
′
N−1KNBN−1)]

−1

×[E0(B
′
N−1KNcN−1) + E0(B

′
N−1)pN + λN−1](22)

which resembles the ‘standard’ stochastic case, that is the case where
the parameter matrices are assumed either identically and independently
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distributed or unknown but constant, except for the fact that here the ex-
pectations are conditional on the information available at time 0. The feed-
back rule (20), (21) and (22) provide the optimality condition sought for
period N − 1. The optimal cost-to-go is obtained replacing the feedback
rule in the cost functional. Then substituting Equation (20) into Equation
(18) one obtains

J∗
1 =

{

1

2
[x′

N−1E0(A
′
N−1KNAN−1)xN−1

+x′
N−1E0(A

′
N−1KNBN−1)(GN−1xN−1 + gN−1)

+x′
N−1E0(A

′
N−1KNcN−1)

+(GN−1xN−1 + gN−1)
′E0(B

′
N−1KNAN−1)xN−1

+(GN−1xN−1 + gN−1)
′E0(B

′
N−1KNBN−1)(GN−1xN−1 + gN−1)

+(GN−1xN−1 + gN−1)
′E0(B

′
N−1KNcN−1)

+E0(c
′
N−1KNAN−1)xN−1 + E0(c

′
N−1KNBN−1)(GN−1xN−1 + gN−1)

+E0(c
′
N−1KNcN−1) + E0(v

′
N−1KNvN−1)]

+p′
NE0(AN−1)xN−1 + p′

NE0(BN−1)(GN−1xN−1 + gN−1)

+p′
NE0(cN−1) +

1

2
x′

N−1WN−1xN−1 + w′
N−1xN−1

+x′
N−1FN−1(GN−1xN−1 + gN−1)

+
1

2
(GN−1xN−1 + gN−1)

′ΛN−1(GN−1xN−1 + gN−1)

+λ
′
N−1(GN−1xN−1 + gN−1)

}

(23)

At this point, using Equation (14) and simplifying and rearranging the
terms gives
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J∗
1 =

1

2
x′

N−1

{

WN−1 + E0(A
′
N−1WNAN−1)

2 [E0(A
′
N−1WNBN−1) + FN−1]GN−1

+G′
N−1[E0(B

′
N−1WNBN−1) + ΛN−1]GN−1

}

xN−1

+x′
N−1

{

[E0(A
′
N−1WNBN−1) + FN−1]gN−1

+G′
N−1[E0(B

′
N−1WNBN−1) + ΛN−1]gN−1

+E0(A
′
N−1WNcN−1) + E0(A

′
N−1)wN

+G′
N−1[E0(B

′
N−1WNcN−1) + E0(B

′
N−1)wN + λN−1] + wN−1

}

+
1

2

{

g′
N−1[E0(B

′
N−1WNBN−1) + ΛN−1]gN−1

+2g′
N−1[E0(B

′
N−1WNcN−1) + E0(B

′
N−1)wN + λN−1]

+2w′
NE0(cN−1) + E0(c

′
N−1WNcN−1) + E0(v

′
N−1WNvN−1)

}

(24)

But from Equations (21) and (22) it follows that

G′
N−1

[

E0

(

B′
N−1WNBN−1

)

+ ΛN−1

]

GN−1 =

−
[

E0

(

B′
N−1KNAN−1

)

+F′
N−1

]′
GN−1

G′
N−1

[

E0

(

B′
N−1WNBN−1

)

+ ΛN−1

]

gN−1 =

−
[

E0

(

B′
N−1KNAN−1

)

+F′
N−1

]′
gN−1

G′
N−1

[

E0

(

B′
N−1WNcN−1

)

+ E0

(

B′
N−1

)

wN + λN−1

]

=
[

E0

(

B′
N−1KNAN−1

)

+F′
N−1

]′
gN−1

g′
N−1

[

E0

(

B′
N−1WNBN−1

)

+ ΛN−1

]

gN−1 =

−g′
N−1

[

E0

(

B′
N−1WNcN−1

)

+ E0

(

B′
N−1

)

wN + λN−1

]

Therefore Equation (24) can be rewritten as

J∗
1 =

1

2
x′

N−1KN−1xN−1 + x′
N−1pN−1 + νN−1 (25)

10



with13

KN−1 = WN−1 + E0(A
′
N−1KNAN−1)

−[E0(A
′
N−1KNBN−1) + FN−1][ΛN−1 + E0(B

′
N−1KNBN−1)]

−1

×[E0(B
′
N−1KNAN−1) + F′

N−1] (26)

pN−1 = E0(A
′
N−1KNcN−1) + E0(A

′
N−1)pN + wN−1

−[E0(A
′
N−1KNBN−1) + FN−1][ΛN−1 + E0(B

′
N−1KNBN−1)]

−1

×[E0(B
′
N−1KNcN−1 + E0(B

′
N−1)pN + λN−1] (27)

νN−1 =
1

2

{

− [E0(B
′
N−1KNcN−1) + E0(B

′
N−1)pN + λN−1]

′

×[ΛN−1 + E0(B
′
N−1KNBN−1)]

−1

×[E0(B
′
N−1KNcN−1) + E0(B

′
N−1)wN + λN−1]

+2p′
NE0(cN−1) + E0(c

′
N−1KNcN−1) + E0(v

′
N−1KNvN−1)

}

(28)

Again the Riccati equations (26), (27) and (28) are the same as in the
standard stochastic parameter case except for the expectation being con-
ditional on the information available at time 0, that is x0 and θ0.

14 This
process can be repeated backward for periods N − 1, N − 2, . . . and so on
and so forth.

5 Period j

For a generic period j in the planning horizon, from period 0 to N − 1, the
optimal cost-to-go can be written as

J∗
N−j = min

uj

E0

{

J∗
N−(j+1) + Lj (xj ,uj)

}

(29)

where J∗
N−(j+1) is the optimal cost-to-go with N − (j + 1) periods re-

maining. Proceeding as in the case j = N − 1 yields

u∗
j = Gjxj + gj (30)

where

13The term E0(c′N−1KNcN−1) in equation (28) is incorrectly given as
2E0(c′N−1KNcN−1) in Kendrick (1981, page 46).

14See, e.g., Equation (6.29) in Kendrick (1981, 2002).
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Gj = −
[

Λj + E0

(

B′
jKj+1Bj

)]−1 [

E0

(

B′
jKj+1Aj

)

+F′
j

]

(31)

gj = −
[

Λj + E0

(

B′
jKj+1Bj

)]−1

×
[

E0

(

B′
jKj+1cj

)

+E0

(

B′
j

)

wj+1 + λj

]

(32)

And the optimal cost-to-go can be rewritten as

J∗
j =

1

2
x′

N−jKN−jxN−j + x′
N−jpN−j + νN−j (33)

with

Kj = Wj + E0(A
′
jKj+1Aj)

−[E0(A
′
jKj+1Bj) + Fj ][Λj + E0(B

′
jKj+1Bj)]

−1

×[E0B
′
jKj+1Aj) + F′

j ]

(34)

pj = E0(A
′
jKj+1cj) + E0(A

′
j)pj+1 + wj − [E0(A

′
jKj+1Bj) + Fj ]

×[Λj + E0(B
′
jKj+1Bj)]

−1[E0(B
′
jKj+1cj) + E0(B

′
j)pj+1 + λj ]

(35)

νj =
1

2

{

− [E0(B
′
jKj+1cj) + E0(B

′
j)pj+1 + λj ]

′

×[Λj + E0(B
′
jKj+1Bj)]

−1[E0(B
′
jKj+1cj) + E0(B

′
j)pj+1 + λj ] +

2p′
j+1E0(cj) + E0(c

′
jKj+1cj) + E0(v

′
jKj+1vj)

}

(36)

As in the previous section, the only difference with respect to the stan-

dard stochastic case is that the expectation is conditional on the information
available at the beginning of the planning horizon.

In summary, similarly to the constant parameter case considered in Kendrick
(1981, page 49), the problem at period zero is solved using the terminal con-
ditions KN = WN , pN = wN and vN = 0 in Equations (34), (35) and (36)
to integrate the Riccati equations backward in time. Then the G and g

elements can be computed for all time periods. Using the initial conditions
for the state vector x0 and the parameters, the feedback rule is applied to
compute u0. As soon as the new observation on the state x1 becomes avail-
able the estimate of the parameter vector can be updated15 and the exercise

15For comparison reasons, DUALPC uses the same procedure both in EOF and DUAL
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is repeated for period k = 1 with all the expectations conditional on the
information on x1 and θ1 available at time 1, then for period k = 2 with all
the expectations conditional on the information on x2 and θ2 available at
time 2 and so on until k = N − 1.

6 Computing the conditional expectations

To compute the mean of the product of matrices appearing in the feedback
rule, in the Riccati equations and in the optimal cost-to-go it is customary to
exploit the fact that the Riccati matrices are not stochastic. When the pa-
rameters in A and B are assumed identically and independently distributed,
it is possible to show that the mean of each element of the resulting matrix,
say R with R = A′KB, takes the form16

E(rij) ≡ E(a′
iKbj) = E(a′

i)KE(bj) + tr[KΣbjai ] (37)

where E(a′
i) is the mean of the elements appearing in the i-th row of

matrix A′, or in the i-th column of matrix A, E(bj) the mean of the j-th
column of B, Σbjai the covariance between the elements in bj and a′

i and
tr[.] the trace operator. On the other hand if the parameters in A and B

are modeled as in (5) and (6), the expectations needed to compute KN−1

at time 0 take the form E0(A
′
N−1KNBN−1) and Equation (37) is replaced

by

E0 (rij,N−1) ≡ E0

(

a′
i,N−1KNbj,N−1

)

= E0(a
′
i,N−1)KNE0(bj,N−1) + tr[KNΣ

bjai

0,N−1] (38)

where E0

(

a′
i,N−1

)

is the mean of the elements appearing in the i-th

row of matrix A′
N−1, or in the i-th column of matrix A, conditional on the

information on the parameters available at time 0, E0(bj,N−1) the mean
of the j-th column of BN−1 similarly defined, KN = WN a deterministic

matrix by assumption and Σ
bjai

0,N−1 is defined as

Σ
bjai

0,N−1 ≡ E0

{

[bj,N−1 − E0(bj,N−1)][a
′
i,N−1 − E0(a

′
i,N−1)]

}

(39)

to update the estimate and the covariance of the parameters. This procedure is based on
Kalman Filter. See, for instance Kendrick (1981, page 104), for details.

16See, e.g., pp. 49-50 and Appendix B in Kendrick (1981, 2002).
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The mean and variance of the rows and columns of A and B appearing
in Equation (38) and (39) have not been explicitely defined so far. However
it is apparent that the i-th column of matrix A can be written as Siθ with
Si a selecting matrix of dimension n×s defined as

Si = [Si,1 ... Si,n Si,n+1 ... Si,n+m Si,n+m+1] (40)

where the Si,j block of dimension n×n is equal to the identity matrix if i

=j and the null matrix O otherwise. Then for i going from 1 to n, Si selects
the elements of θ corresponding to the i-th column of A, for i going from
n + 1 to n + m it selects the (i − n)-th column of B and for i = n + m + 1
it selects the parameters in c.

Equations (5) and (6) describe the behavior of all the parameters and can
be used to compute the mean and variance of the parameters at time N −1,
given the mean and variance of θ0 at time 0, namely17

E0 (θN−1) = DN−1E0 (θ0) = DN−1θ0|0 (41)

E0

{

[θN−1 − E0 (θN−1)] [θN−1 − E0 (θN−1)]
′} =

DN−1Σθθ
0|0

(

DN−1
)′

+ DN−2G
(

DN−2
)′

+ ... + G (42)

Then using the Si matrix, the mean and variance of the individual
columns of A and B can be promptly isolated, that is

E0

(

a′
i,N−1

)

= SiD
N−1E0 (θ0)

E0

(

b′
j,N−1

)

= Sn+jD
N−1E0 (θ0)

for i = 1, . . . n and j = 1, ..., m. Similarly Equation (39) can be rewritten
as

Σ
bjai

0,N−1 ≡ E0

{

Sn+j

[

θN−1 − DN−1E0 (θ0)
] [

θN−1 − DN−1E0 (θ0)
]′

S′
i

}

= Sn+j

[

DN−1Σθθ
0|0

(

DN−1
)′

+ DN−2G
(

DN−2
)′

+ ... + G
]

S′
i

(43)

17Equation (41) and (42) follow directly from (5). In the special case N = 3, they look
like

E0 (θ3−1) = D
(

Dθ0|0

)

= D2θ0|0

E0

{

[θ2 − E0 (θ2)] [θ2 − E0 (θ2)]
′} = D2Σθθ

0|0

(

D2
)′

+ DGD′ + G.
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Again the role of the S matrix is to isolate, in this case from the s×s co-
variance matrix Σθθ associated with the whole parameter vector θ, the n×n

matrix of covariances associated with the parameters in the i-th column of
A and the j-th column of B.

At this point the riccati matrix KN−1, and pN−1, can be computed. Both
KN−1 and pN−1 are deterministic because they are functions of the means
and variances of random variables. Therefore the procedure sketched in this
section can be used to compute KN−2, and pN−2, and so on and so forth
until K1, and p1, needed to compute the feedback rule for the control at
time 0.

7 The Beck and Wieland model

In this section we will the Beck and Wieland (2002) model, can be cast into
the above framework. Furthermore we will show that, when the parameters
are as in Beck and Wieland (2002) and Amman et al. (2007), this model is
a special case and the optimal control is identical to that obtained following
the presentation of Kendrick (1981, 2002, Chapter 6 and 7).

Following Beck and Wieland (2002) the decision maker is faced with a linear
stochastic optimization problem of the form18

Min
[uk]N−1

k=0

E

[

δN (xN−x̂N )2+

N−1
∑

k=0

δk{(xk − x̂k)
2 + ω(uk − ûk)

2}| (x0, b0, v
b
0)

]

(44)

subject to the equations

xk+1 = α + βkuk + γxk + ǫk (45)

βk+1 = βk + ζk (46)

where δ is a discount factor, ǫk ∼ N(0, σǫ) and ζk ∼ N(0, σζ). It is
assumed that x0 is given and the model contains one uncertain parameter

18In an earlier strand of literature, going back to the early Seventies, a similar model
and approach is discussed. See, MacRae (1972, 1975).
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β, with an initial estimate of its value at k = 0, E0(β0) = b0, and an initial
estimate of its variance at time k = 0, V AR0(β0) = υb

0. The parameters α

and γ are constant. Beck and Wieland assume in their paper that N → ∞.
In contrast we will assume that the planning horizon is finite, hence N < ∞.
Furthermore, we have adopted the timing convention from Kendrick (1981,
2002) where the control, uk, has a lagged response on the state, xk. More-
over the desired path for the state and the control, and the penalty weight
on the latter, is zero.

With this set of assumptions, the above model can be fitted with little
effort into the format of Equations (2)-(8) when Ak =γ, Bk = βk, ck = α,
vk =vk, ηk = ζk and

θk =





γ

βk

α



 , ηk =





0
ζk

0



 (47)

and D is an identity matrix. In this case the covariance matrices are
Q ≡ σ2

v and

G =





0 0 0
0 σ2

η 0

0 0 0



 (48)

Furthermore it is assumed that x0 is given and

θ0|0 =





γ

b0

α



 , Σθθ
0|0 =





0 0 0
0 vb

0 0
0 0 0



 . (49)

In this case the only relevant Si is S2 = [0 1 0] and the optimal cost can
be expressed as

J∗
j =

1

2
x′

N−jKN−jxN−j (50)

because the desired paths for the state and control are 0, α = 0, ω =
Λj = 0 and Fj = 0. The optimal control at time 0 is

u∗
0 = G0x0 (51)

where
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G0 = −
[

E0

(

B′
0K1B0

)]−1
E0

(

B′
0K1A0

)

= −
[

K1

(

b2
0 + vb

0

)]−1
[K1γb0] = −

(

b2
0 + vb

0

)−1
γb0 (52)

This means that the optimal control is solely a function of the current in-
formation about the stochastic parameter. Hence, in the Beck and Wieland
(2002) case, the time varying parameter solution can be obtained using the
framework of Kendrick (1981, 2002, Chapter 6 and 7).

8 Summary

In this paper we derived the closed loop form of the Expected Optimal Feed-

back rule with time varying parameter. As such this paper extents the work
of Kendrick . Furthermore, we showed that the Beck and Wieland model
can be cast into this framework and basically can be treated as a special
case of this solution.
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