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Abstract - Global coalitional games are TU cooperative games intended to model situations where the worth of 
coalitions varies across different partitions of the players. Formally, they are real-valued functions whose domain 
is the direct product of the subset lattice and the lattice of partitions of a finite player set. Therefore, the 
dimension of the associated vector space grows dramatically fast with the cardinality of the player set, inducing 
flexibility as well as complexity. Accordingly, some reasonable restrictions that reduce such a dimension are 
considered. The solution concepts associated with the Shapley value and the core are studied for the general (i.e., 
unrestricted) case. 
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1 Introduction
Traditional TU cooperative game theory deals with situations where each player
may decide whether to cooperate or not. Furthermore, attention is usually
focused on grand coalitions (i.e., player sets) within which monotonicity holds,
so that such grand coalitions must eventually form. Therefore, it is natural to
concentrate solely on the solution problem (i.e., how to share the ‘grand cake’).
In particular, the core concept is concerned with those additive coalitional games
(i.e., sharing rules) that, when considered as payoff vectors, make it rational
for each player to join the grand coalition (and for each coalition to join its
complement). Conversely, when monotonicity is relaxed, it comes natural to ask
what largest coalitions will form (and how will their worth get shared among
members). In other words, endogenous coalition formation enters the picture,
and nontrivial coalition structures (i.e., different from the grand coalition) do
result. In this paper, endogenous coalition formation is not directly approached;
yet, most of the concern is on the partition lattice of a finite player set.
Coalition structures are partitions of the players, and constitute the outcome

of many situations where cooperation displays synergies and yet the choice of
individual players does not merely reduce to whether to cooperate or not, but
also concerns the degree of cooperation. For example, in voting situations voters
may furnish a finite number of different support levels to the various bills, so
that these latter pass whenever a given majority rule is fulfilled by the partition
of the voter set obtained by putting any two voters furnishing the same support
level into the same block. More generally, Gilboa and Lehrer (1991a) defined
global games as real-valued functions whose domain is the partition lattice of
the player set, and proposed to use them to model situations where the global
(i.e., the world’s) welfare level depends on the (strategic) choice of each player
over what block to join. Nevertheless, such a modeling choice does not allow to
consider the possibility that for each admissible global welfare level there exist
several different distributions of such a welfare over the global population. In
order to do so, it is necessary to consider functions taking values on pairs con-
sisting of a coalition of players and a partition of the (whole) player set. Such an
approach was firstly adopted by Thrall and Lucas (1963) and subsequently by
Myerson (1977), even though they restricted attention to those pairs consisting
of a coalition and a partition embedding the former as one of its blocks. Such
a restriction is here abandoned, so that for each coalition a global game gets
defined. This implies that each coalition has the strategic possibility not only
of forming a corresponding unique block (of some ‘final’ partition), but also of
spreading its members over different blocks, possibly containing nonmembers
as well. From another viewpoint, this can be seen as an attempt to consider
situations where cooperation may occur at both quantitatively as well as qual-
itatively different levels. In other words, in global coalitional games players
may be seen as cooperating at qualitatively different levels when considered as
members of coalitions or else as members of blocks of partitions.
An important remark (applying to the approach here proposed as well as

to those of Thrall and Lucas (1963), Myerson (1977) and Gilboa and Lehrer
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(1991a)) is the following. For any arbitrarily large (finite integer) number n of
players, the cardinality of the associated subset lattice (that is, the power set of
the player set endowed with the set inclusion order relation) is 2n. Nevertheless,
there does not exist (as known to the author) an equivalent closed form in n for
the cardinality of the associated partition lattice (that is, the set of partitions of
the player set endowed with the ‘coarser than’ order relation). In number theory,
a partition of any integer n is any collection λ1, . . . , λm such that

Pm
j=1 λj = n,

all λj ’s being integers as well. The number p (n) of all such partitions was
determined by Hardy and Ramanujan, and can be found in Andrews (1976),
ch. 5. It is clearly much greater than 2n; furthermore, the number of partitions
of an n-set is much greater than p (n), in that each partition λ1, . . . , λm of
n corresponds to n! − m!

Qm
j=1 λj ! different partitions of an n-set. In fact,

the number Bn of partitions of an n-set is determined through recursion by
Bn =

Pn−1
k=0

¡
n−1
k

¢
Bk, with B0 := 1 (see Aigner (1979) on the Bell numbers).

Given the above remark, it is easily understood that any kind of n-players
game that makes use of the partition lattice becomes rapidly intractable as n
increases. In turn, this implies that, at least in terms of conceivable applications,
such games may be useful solely for modeling situations involving a reasonably
small number of players. In particular, Gilboa and Lehrer (1991a) propose to
model as global games “questions of art and historical treasures preservation,
a cure for cancer and AIDS, indeed, the progress of science and art in general,
and many other issues [that] -though not unrelated to nations’ political interests-
seem to be ‘global’, at least as a first approximation. [Their] paper models such
games and tries to cope with the question of their ‘solution’. [Their idea is that
any partition of the player set has an associated global worth (i.e., a worth for
the grand coalition), and that, in particular,] the payoff is defined for all players
together. (Or, if you will, that the utilities of the players coincide.)” (p. 129).
Firstly note that, as previously mentioned, by switching from global to global
coalitional games, one may relax this last assumption, i.e., that the utilities of
the players coincide. Secondly, consider that for all the above mentioned global
situations, one may assume that countries, and not individuals, are the actual
players, so that their number allows to model such situations in terms of (games
defined on) the partition lattice. Thirdly, in many of such situations it may
well be that coalitions of countries find it strategically optimal to cooperate, at
the partition level, by spreading their members over different blocks containing
nonmembers too.
Example 1: environmental clean-up and preservation. For air and water

pollutions migrate from polluting to nonpolluting countries, the globe deals with
environmental clean-up and preservation by means of international agreements.
Furthermore, in practice, at any given time each country signs at most one such
agreement and thus a partition of the country set results1 . Nevertheless, the
‘worth’ of any agreement (i.e., its efficacy) depends on the residual configura-

1Alternatively, if some countries had signed more than one agreement, it would still be
possible to define a partition of the country set by ranking agreements from tighter to looser
(i.e., in terms of the regulations they encode), and then considering each country only as a
member of the tighter agreement it has signed.
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tions of agreements (i.e., signed by nonmembers of the former). Furthermore,
consider (a coalition of) two important oil-producer countries facing the choice
of what agreement to sign. By signing each a different one, they may (try to)
achieve some loose regulation for the whole globe, rather than a looser one for
a restricted region only. Note that this does not entirely depend on strategic
matters. More precisely, such two countries have a common interest they can
pursue only at the international level. Furthermore, such an interest may be
best pursued by spreading over distinct agreements. In other words, the two
countries need not necessarily form a coalition in the usual sense, even though
they can definitely agree to do so.
Example 2: currency unions (and areas). When trying to model some

‘international monetary game’, it is rapidly realized that any configuration of
currency unions (and areas) within the world economy definitely results in both:
(i) a partition of the country set (simply regard any country with a free exchange
rate with respect to all other currencies as a one-player union), and (ii) some level
of global welfare level. Nevertheless, here again, the worth (however measured)
of any currency union does depend on the residual configuration of currency
unions. Furthermore, considering the current situation, the United States on
the one side, and the European ‘euro-countries’ on the other, typically consti-
tute (disjoint) coalitions, as their currencies are both anchors of two different
currency areas (and these latter define the blocks of the partition). Neverthe-
less, (in the absence of altruism) the utility level attained by their citizens is
definitely higher in such a situation than it would be if a unique currency for
the world economy was used. Yet, {BCE,FED} cannot be considered a typical
two-player coalition. In particular, it can be considered as a coalition that may
form at a level of cooperation that differs from that defining the partition2.
The paper is organized as follows. Section 2 contains a formalization of the

setting, identifies the vector space of global coalitional games and recalls some
general results of Gilboa and Lehrer (1991a) on lattice functions. Section 3
considers both the global games of Gilboa and Lehrer (1991a) and the games
in partition function form of Thrall and Lucas (1963) and Myerson (1977); in
particular, the Möbius transform of the latter is derived and expressed in terms
of the former’s one, so to show what vector (proper) subspace (i.e., of the vector
space of global coalitional games) the latter games belong to. Sections 4 and 5
deal, respectively, with the Shapley value and the core concepts. The Shapley
(1953) axioms are adapted to global coalitional games and shown (following
Weber (1988)) to characterize a unique value function. As previously mentioned,
any global coalitional game associates to each coalition a global game (i.e., a
number of real quantities that equals the number of partitions of the players),
so that defining the core may be (and has been so far) approached as a typical
aggregation problem, here solved by means of the Choquet integral. Section 6
contains some concluding remarks and possible future research topics.

2The application of global coalitional games (graph-restricted and in partition function
form; see section 3) to currency unions is done in a forthcoming paper. Furthermore, most
likely currency areas could be dealt with by means of the MLE (multilinear extension) of
global coalitional games, to be defined.
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2 Preliminary notations and results
A complete lattice is any set X endowed with an order (binary) relation <
satisfying reflexivity (x < x for all x ∈ X), antisymmetry (y < x, x < y ⇒ y = x
for all x, y ∈ X) and transitivity (z < y, y < x ⇒ z < x for all x, y, z ∈ X),
and such that there exist the least upper bound ∨x∈S ∈ X and the greatest
lower bound ∧x∈S ∈ X (with respect to <) for all S ⊆ X, in which case
x⊥, x

> ∈ X such that x⊥ 4 x, x> < x for all x ∈ X are bottom and top
elements respectively.
Any finite player set N = {1, . . . , n} defines two main complete lattices.

One is the subset lattice, that is 2N = {A | N ⊇ A}, which is in fact endowed
with the set inclusion relation ⊇ by definition. The other is the partition lat-
tice, i.e., P =

½
{A1, . . . , Am} ⊂ 2N\∅ | ∪

1≤j≤m
Aj = N, ∩

j∈J⊆{1,... ,m}
Aj = ∅

¾
en-

dowed with the coarser than relation ≥. Recall that for any P, P 0 ∈ P, with
P = {A1, . . . , Am} and P 0 = {A01, . . . , A0m0}, the order relation ≥ is defined by:
P ≥ P 0 if for each j0 ∈ {1, . . . ,m0} it holds A0j0 ⊆ Aj for some j ∈ {1, . . . ,m}.
Also recall that A ⊃ B ⇔ A ⊇ B,A 6= B for all A,B ⊆ N , as well as
P > Q ⇔ P ≥ Q,P 6= Q for all P,Q ∈ P. The subset lattice may be de-
noted

¡
2N ,∩,∪

¢
. Similarly, the partition lattice is usually denoted (P,∧,∨),

where P ∧ P 0 (P ∨ P 0) denotes the coarsest (finest) partition finer (coarser)
than both P, P 0 ∈ P. Formally, P ∧ P 0 =

©
Aj ∩A0j0 | Aj ∩A0j0 6= ∅

ª
and

P ∨P 0 =
½

∪
1≤j≤m,1≤j0≤m0

¡
Aj ∪A0j0

¢
| Aj ∩A0j0 6= ∅

¾
. The bottom elements are

∅ ∈ 2N and P0 = {{1} , . . . , {n}} ∈ P, while the top one is3 N ∈ 2N ,P. Coali-
tional and global games on N are 0-normalized and real-valued lattice functions
with domains 2N and P respectively, so that CN =

©
v : 2N → R | v (∅) = 0

ª
and GN = {f : P → R | f (P0) = 0} denote the sets of such games.
Now consider the Cartesian product 2N × P, and endow it with the order

relation4 < such that (A,P ) < (B,Q) if A ⊇ B,P ≥ Q for any two pairs
(A,P ) , (B,Q) ∈ 2N ×P. This assures that < satisfies reflexivity, antisymmetry
and transitivity, and thus that

¡
2N ×P,<

¢
is a well defined complete lattice, its

bottom and top elements being (∅, P0) and (N,N) respectively. The additional
binary relation5 Â∗, defined by (A,P ) Â∗ (B,Q) if (A,P ) Â (B,Q) but for no
(B0, Q0) it holds (A,P ) Â (B0, Q0) Â (B,Q), will also be useful.
A global coalitional game (grounded) on N is a 0-normalized lattice function

h : 2N × P → R; thus h (∅, P0) = 0. It is easily seen that h is an application
naturally embedding both: a number | P | of coalitional games (i.e., on 2N ), each
consisting of the collection

©
h (A,P ) | A ∈ 2N

ª
for P ∈ P, and a number 2n of

global games (i.e., on P), each consisting of the collection {h (A,P ) | P ∈ P}
for A ∈ 2N . In the sequel, the restriction h (∅, P ) = 0 for all P ∈ P is shown

3Parentheses for the coarsest partition {N} = N ∈ P are omitted whenever no confusion
is possible.

4The order relation < is denoted À in Myerson (1977).
5The binary relations ⊃∗ on 2N and >∗ on P used in the sequel are defined analogously.

In fact, Â∗ results to be the ‘sum’ of ⊃∗ and >∗.
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to result in no loss of generality. Let GCN denote the set of global coalitional
games on N , with the embedding implying CN ⊂ GCN ⊃ GN .

CN , GN and GCN can be treated as vector spaces. Concerning their di-
mensions, Shapley (1953) showed that the set

©
uA | A ∈ 2N\∅

ª
of unanimity

(coalitional) games, defined by uA (B) = 1 if B ⊇ A and 0 otherwise, consti-
tutes a basis of CN ⊆ R2n−1. Similarly, Gilboa and Lehrer (1991a) showed
that {gP | P ∈ P\P0}, where gP (Q) = 1 if Q ≥ P and 0 otherwise, is a basis
of GN ⊆ R|P|−1. Here the dimension of GCN clearly is | 2N × P | −1, and a
similar result obtains6.

Proposition 1 The set of games
©
gA,P | (∅, P0) 6= (A,P ) ∈ 2N ×P

ª
, defined

by gA,P (B,Q) = 1 if (B,Q) < (A,P ) and 0 otherwise for any two pairs
(A,P ) , (B,Q) ∈ 2N ×P, is a linear basis of GCN .

Proof. Following Gilboa and Lehrer (1991a), linear independence is shown
by considering that

P
(∅,P0)6=(A,P )∈2N×P αA,P gA,P = 0 iff αA,P = 0 for all pairs

(∅, P0) 6= (A,P ) ∈ 2N ×P, in that
P
(∅,P0)6=(A,P )∈2N×P αA,P gA,P (B,Q) = 0 iff

αB,Q = 0 for all (B,Q) Â∗ (∅, P0), and the argument proceeds by induction. For
its cardinality is in fact | 2N×P | −1, the set

©
gA,P | (∅, P0) 6= (A,P ) ∈ 2N ×P

ª
is now easily seen to be a basis of GCN .
Treating global coalitional games as generic lattice functions leads to define

any h ∈ GCN to be

nonnegative: if h (A,P ) ≥ 0 for all (A,P ) ∈ 2N ×P;

monotone: if (A,P ) < (B,Q) implies h (A,B) ≥ h (B,Q),

convex: if h (A,P ) + h (B,Q) ≤ h (A ∪B,P ∨Q) + h (A ∩B,P ∧Q),

additive: if its convexity holds with equality,

for all (A,P ) , (B,Q) ∈ 2N ×P;

m-positive: if for every (A1, P1) , . . . , (Am, Pm) ∈ 2N ×P

h

µ
∪

1≤i≤m
Ai, ∨

1≤i≤m
Pi

¶
≥

X
∅6=I⊆{1,... ,m}

(−1)|I|+1 h
µ
∩
i∈I

Ai, ∧
i∈I

Pi

¶
,

totally positive: if m-positivity holds for all m ∈ {2, . . . , 2n× | P |}.

Monotonicity is a standard assumption in cooperative game theory, for it
translates the idea that the larger the number of players that cooperate, the
greater the worth that gets produced through cooperation. Thus, such an as-
sumption is innocuous when referred to coalitional games. On the other hand,

6 In fact, the results reported in this section have been shown to hold for lattice functions
in general by Gilboa and Lehrer (1991a), and thus they are here merely reproduced for the
sake of completeness.
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global games associate a worth to each partition, so that coarser partitions
may be seen as corresponding to situations where cooperation occurs within
(collections of) larger coalitions. Yet, global coalitional games allow to com-
pare pairs such as

¡
A, {A} ∪ PAc

¢
and

¡
A, {A} ∪QAc

¢
, where Ac = N\A and

P (Ac) 3 PAc , QAc denotes the set of partitions of any Ac ⊂ N . Consider
the case PAc

0 ≤ PAc < QAc ≤ {Ac}, where PAc

0 , {Ac} ∈ P (Ac) constitute,
respectively, the finest and coarsest partition of Ac. For such pairs monotonic-
ity requires h

¡
A, {A} ∪ PAc

¢
≤ h

¡
A, {A} ∪QAc

¢
, even though the worth of

A, every time it constitutes a block on its own, might (intuitively) be greater
when the remaining players i ∈ Ac are more dispersed (i.e., over more blocks).
In fact, most likely h

¡
A, {A} ∪ PAc

¢
< h

¡
N, {A} ∪ PAc

¢
< h

¡
N, {A} ∪QAc

¢
.

Yet, players i ∈ Ac appear better organized for bargaining (i.e., displaying more
cohesion) under QAc rather than under PAc .

GCN can clearly be endowed with addition and (positive) scalar multipli-
cation in the usual manner, and any subset of global coalitional games that is
closed under such two operations constitutes a cone in R2n×|P|−1 ⊇ GCN . In
particular, following Shapley (1971), it can be noticed that the set of convex
games constitutes a cone that contains the subspace of additive games. Sim-
ilarly, following Gilboa and Lehrer (1991a), it can be noticed that the set of
totally positive and monotone games constitutes a cone that includes that of
convex games. The next two sections are devoted to define reasonable subspaces
of (and cones in) GCN .

Theorem 2 h ∈ GCN is totally positive and monotone iff αA,P (h) ≥ 0 for all
(A,P ) ∈ 2N ×P.

Proof. Consider the cone GCN
TPM ⊂ GCN of totally positive and monotone

global coalitional games. As in Gilboa and Lehrer (1991a), if global coalitional
unanimity games are such that gA,P ∈ GCN

TPM , then the ‘if’ part is proved.
For games gA,P are monotone by definition, they must be shown to be totally
positive, that is, any collection (A,P ) , (B1, Q1) , . . . , (Bm, Qm) ∈ 2N ×P must
satisfy

gA,P

µ
∪

1≤i≤m
Bi, ∨

1≤i≤m
Qi

¶
≥

X
∅6=I⊆{1,... ,m}

(−1)|I|+1 gA,P
µ
∩
i∈I

Bi, ∧
i∈I

Qi

¶
.

Let J ⊆ {1 ≤ j ≤ m | (A,P ) 4 (Bj , Qj)}, noting that if J = ∅ the right side
vanishes and the inequality holds. Otherwise,

gA,P

µ
∪

1≤i≤m
Bi, ∨

1≤i≤m
Qi

¶
−

X
∅6=I⊆J

(−1)|I|+1 gA,P
µ
∩
i∈I

Bi, ∧
i∈I

Qi

¶
=

= 1−
P
∅6=I⊆J (−1)

|I|+1 =
P

I⊆J (−1)
|I| = (1− 1)|J| = 0.

Let {(B1, Q1) , . . . , (Bm, Qm)} =
©
(B,Q) ∈ 2N ×P | (A,P ) Â∗ (B,Q)

ª
for

each pair (A,P ) ∈ 2N ×P and consider any h ∈ GCN . The ‘only if’ part firstly
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requires the following result:

h (A,P )−
X

∅6=I⊆{1,... ,m}
(−1)|I|+1 h

µ
∩
i∈I

Bi, ∧
i∈I

Qi

¶
= αA,P (h) (∗) .

To see this, recall the representation

h (A,P ) =
X

(B,Q)∈2N×P
αB,Q (h) gB,Q (A,P ) =

X
(B,Q)4(A,P )

αB,Q (h) ,

so that (∗) is immediately seen to hold true asX
(B,Q)≺(A,P )

αB,Q (h)−
X

∅6=I⊆{1,... ,m}
(−1)|I|+1

X
(B0,Q0)4 ∩

i∈I
Bi, ∧

i∈I
Qi

αB0,Q0 (h) =

=
X

(B,Q)≺(A,P )
αB,Q (h)

⎛⎜⎜⎜⎝1− X
∅6=I⊆{1,... ,m}|(B,Q)4 ∩

i∈I
Bi, ∧

i∈I
Qi

(−1)|I|+1

⎞⎟⎟⎟⎠ =

=
P
(B,Q)≺(A,P ) αB,Q (h)

³
1−

P
∅6=I⊆JB,Q (−1)

|I|+1
´
= 0, in that JB,Q 6= ∅ for

all (B,Q) 6= (∅, P0), where JB,Q = {1 ≤ j ≤ m | (B,Q) 4 (Bj , Qj)}.
The proof ends by considering a totally positive and monotone game h and

(A,P ) Â∗ (B1, Q1) , . . . , (Bm, Qm). If m = 1, then nonnegativity is implied
by monotonicity, as (∗) yields αA,P (h) = h (A,P ) − h (B1, Q1). Otherwise,
nonnegativity is implied by (∗) and total positivity.
The product lattice

¡
2N ×P,<

¢
is rich, that is, whenever the level l (A,P )

of a pair is strictly greater than unity its degree d (A,P ) also is so, where
l (A,P ) = k such that

(A,P ) Â ∗ (B,Q)1 Â∗ (B,Q)2 Â∗ . . . Â∗ (B,Q)k = (∅, P0) ,
while d (A,P ) = |

©
(B,Q) ∈ 2N ×P | (A,P ) Â∗ (B,Q)

ª
| .

For d (∅, P0) = l (∅, P0) = 0, each (A,P ) has l (A,P ) > 1 ⇒ d (A,P ) > 1
holding. In particular, observation 3.4 of Gilboa and Lehrer (1991a) applies.

Proposition 3 For any h ∈ GCN such that h (∅, P ) 6= 0 for at least one P ∈ P,
there exists a ∅-normalized game h∅ ∈ GCN such that h∅ (∅, P ) = 0 for all P ∈ P
and h∅ (A,P )− h∅ (B,P ) = h (A,P )− h (B,P ) for all P ∈ P and A,B ⊆ N .

Proof. For h ∈ GCN , define h∅ (A,P ) = h (A,P ) −
P

Q≤P α∅,Q (h) for all
(A,P ) ∈ 2N × P; then h∅ (∅, P ) = h (∅, P )− h (∅, P ) = 0 for all P ∈ P, as well
as h∅ (A,P )− h∅ (B,P ) =

= h (A,P )− h (∅, P )− (h (B,P )− h (∅, P )) = h (A,P )− h (B,P )

7



for all P ∈ P and A,B ⊆ N .
Let R(2

n−1)×|P|
+ ⊇ GCN

∅ ⊂ GCN denote the set of ∅-normalized and non-
negative global coalitional games; its dimension is (2n − 1)× | P | for a basis
clearly is

©
gA,P | (A 6= ∅, P ) ∈ 2N ×P

ª
⊂
©
gA,P | (∅, P0) 6= (A,P ) ∈ 2N ×P

ª
.

3 Global games and the partition function form
Different reasonable approaches may be adopted for reducing the dimension of
GCN
∅ , one of whose basis is in fact

©egA,P | (A 6= ∅, P ) ∈ 2N ×Pª defined byegA,P (B,Q) = 1 if (B,Q) = (A,P ) and 0 otherwise. An important reduction
occurs through the partition function form approach adopted by Thrall and
Lucas (1963) and Myerson (1977). Let E =

©
(A,P ) ∈ 2N ×P | A ∈ P

ª
denote

the subset of pairs where the partition embeds the coalition. Then, an ‘n-
person game in partition function form’ is any function bh : E → R, and it can
be extended as bhext : 2N × P → R to the whole domain of global coalitional
games by letting {(B1, Q1) , . . . , (Bm, Qm)} = {(B,Q) ∈ E | (A,P ) < (B,Q)}
for each (A,P ) ∈ 2N ×P. In fact, this allows to define both the set of indices

JA,P =

½
1 ≤ j ≤ m | (Bi, Qi)

4
or ¨ (Bj ,Qj) , i ∈ {1, . . . ,m} \ {j}

¾
and the extension bhext (A,P ) = P

j∈JA,P
bh (Bj , Qj) for all (A,P ) ∈ 2N × P.

Thus, {(Bj , Qj) | j ∈ JA,P } denotes the set of pairs such that: (i) Bj ∈ Qj ,
(ii) (A,P ) < (Bj , Qj), and (iii) there is no (Bi, Qi) Â (Bj , Qj) , i ∈ {1, . . . ,m}
satisfying (i) and (ii). In other terms, the pairs (Bj , Qj) , j ∈ JA,P are <-
maximals of {(B1, Q1) , . . . , (Bm, Qm)}. First note that, apart from the trivial
case J∅,P = ∅ for all P ∈ P, it may be either | JA,P |= 1, or else | JA,P |> 1. In
particular, for any (A 6= ∅, P ) ∈ 2N ×P, let PA ∈ P (A) denote the partition of
A induced by

©
B1, . . . , B|P |

ª
= P ∈ P, that is

©
A ∩B1, . . . , A ∩B|P |

ª
. Note

that | PA |=| JA,P |= 1 either when (A,P ) ∈ E, or else when A ⊂ Bj ∈ P

for some 1 ≤ j ≤| P |. In the former case bhext (A,P ) = bh (A,P ), while in
the latter bhext (A,P ) = bh ¡A,PA ∪ PAc

¢
, in that PA = {A} ∪ {Bj\A} and

thus
¡
A,PA ∪ PAc

¢
∈ E. On the other hand, | PA |=| JA,P |> 1 impliesbhext (A,P ) =PA∈PA
bh³ bA,PA ∪ PAc

´
. Also note that, from another perspec-

tive, one may regard the extension bhext of games bh in partition function as the
restriction of global coalitional games h ∈ GCN that coincide with bh on E .
Definition 4 The E-restriction (in partition function form) of h ∈ GCN is

h/E (A,P ) =
X

j∈JA,P
h (Bj , Qj) for all (A,P ) ∈ 2N ×P.

Clearly, h/E ∈ GCN
∅ for any h ∈ GCN . Also, the vector space GCN

E of
E-restricted global coalitional games constitutes a (proper) subspace of GCN

∅ ;
in fact, its dimension is shown to be | E |< (2n − 1)× | P | in the sequel.
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Global games have been already introduced as 0-normalized partition func-
tions f : P → R | f (P0) = 0. Note that a E-restricted global coalitional game
h/E can be treated as a mapping that associates to each nonvoid coalition A

a global subgame fA : P (Ac) → R defined by fA
¡
PAc

¢
= h/E

¡
A, {A} ∪ PAc

¢
(and h/E

¡
A, {A} ∪ PAc

¢
= h

¡
A, {A} ∪ PAc

¢
) for all PAc ∈ P (Ac). Neverthe-

less, this clearly requires to abandon the assumption of 0-normalization, i.e.,
fA
¡
PAc

0

¢
R 0. The remainder of this section focuses on the Möbius transforms

of these latter global subgames (i.e., the sets of reals
©
αPAc (fA) | PAc ∈ P (Ac)

ª
for each nonvoid A; see Gilboa and Lehrer (1991a)), and on the Möbius trans-
form of h/E (i.e., the set of reals

©
αA,P

¡
h/E

¢
| (A,P ) ∈ 2N ×P

ª
as defined by

(∗) in the proof of theorem 2).
For any

©
B1, . . . , B|P |

ª
= P ∈ P, let {Q1, . . . , QkP } = {Q ∈ P | P >∗ Q}

denote the set of partitions covered by P . Then, any Qj , 1 ≤ j ≤ kP has form
Qj = PBc

i ∪QBi
j , with Q

Bi
j ∈ P (Bi)

(2) and P (Bi)
(2) = {Q0 ∈ P (Bi) | 2 =| Q0 |}

denoting the set of 2-block partitions of Bi ∈ P (and Bc
i = N\Bi). In words,

any Qj covered by P must equal this latter for all blocks Bi0 6=i, while dividing
some block Bi, 1 ≤ i ≤| P | in two (new) blocks, i.e., {B0

i, Bi\B0
i} = QBi

j with
∅ 6= B0

i ⊂ Bi. In particular, each P ∈ P covers kP = − | P | +
P

B∈P 2
|B|−1

partitions Qj , 1 ≤ j ≤ kP (see Aigner (1979), ex. I.4 #6, p. 29), and clearly
the same applies to any PA ∈ P (A) for nonvoid A. Thus, any (A,P ) ∈ 2N ×P
covers pairs either of the form (B,Q) = (A\i, P ) with i ∈ A (i.e., A ⊃∗ B), or
else of the form (B,Q) = (A,Qj) with P >∗ Qj and 1 ≤ j ≤ kP as above. For
there are | A | +kP such covered pairs, let {(Bj , Qj) | 1 ≤ j ≤| A | +kP} =

{(B,Q) | (A,P ) Â∗ (B,Q)} =
©
(B1, P ) , . . . ,

¡
B|A|, P

¢
, (A,Q1) , . . . , (A,QkP )

ª
for each (A,P ) ∈ 2N × P. Also recall that any coalitional game v ∈ CN has
Möbius transform

©
αA (v) | A ∈ 2N

ª
given by

αA (v) =
X
B⊆A

(−1)|A\B| v (B) = v (A)−
X

∅6=I⊆{1,... ,|A|}
(−1)|I|+1 v

µ
∩
i∈I

Bi

¶
,

where A ⊃∗ Bi = A\i for each i ∈ A when A = {1, . . . , | A |} ⊆ N . Analogously,
any global game f ∈ GN has Möbius transform {αP (f) | P ∈ P} given by

αP (f) = f (P )−
X

∅6=I⊆{1,... ,kP }
(−1)|I|+1 f

µ
∧
i∈I

Qi

¶
,

where {Q1, . . . , QkP } = {Q ∈ P | P >∗ Q} as above.

Theorem 5 Any h ∈ GCN is E-restricted (that is, h ∈ GCN
E or, equivalently,

h = h/E) iff αA,P (h) = αPAc (fA) −
P

B⊂A αPBc (fB) for all (A,P ) ∈ E and
αA,P (h) = 0 for all (A,P ) /∈ E.
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Proof. Firstly consider the ‘if’ part for (A,P ) ∈ E , in which case7

αA,P
¡
h/E

¢
= h (A,P )−

|A|+kPX
k=1

(−1)k+1
X

I∈{1,... ,|A|+kP }(k)
h/E

µ
∩
i∈I

Bi, ∧
i∈I

Qi

¶
=

= h (A,P )−
k
PA

cX
k=1

(−1)k+1
X

I∈{1,... ,kPAc}(k)
h

µ
A, ∧

i∈I
Qi

¶
+

−
|A|+kPX
k=1

(−1)k+1
X

I∈{1,... ,|A|+kP }(k)

A/∈ ∧
i∈I

Qi

∩
i∈I

Bi

h/E

µ
∩
i∈I

Bi, ∧
i∈I

Qi

¶
,

where each Qi, 1 ≤ i ≤ kPAc has form Qi = {A} ∪ QAc

i with PAc >∗ QAc

i .
Thus, the first line equals αPAc (fA). On the other hand, the second line groups

all terms such that h/E

µ
∩
i∈I

Bi, ∧
i∈I

Qi

¶
6= h

³
A, eQ´ for some eQ ∈ P, in thatµ

∧
i∈I

Qi

¶ ∩
i∈I

Bi

denotes the partition of ∩
i∈I

Bi induced by ∧
i∈I

Qi. Now, for any

B ⊂ A, consider all I ⊆ {1, . . . , | A | +kP } such that±h
¡
B,PB ∪ PBc¢

appears
as a summand in the second line. Firstly, this occurs for | I |= 1, i.e., I = {i01},
when (a) Bi01

= A and Qi01
= PB ∪ PBc

= {B} ∪ {A\B} ∪ PAc , and thus
with sign −. Secondly, it occurs for | I |=| A\B |, i.e., I =

©
i1, . . . , i|A\B|

ª
(and thus with sign (−1)|A\B|+1), when (b) Bij = A\j, with j ∈ A\B and
1 ≤ j ≤| A\B | (and thus A\B = {1, . . . , | A\B |} ⊂ N), while Qij = P
for all ij ∈ I. Thirdly (and lastly), it occurs for (c) | I |=| A\B | +1, i.e.,
I = {i01}∪

©
i1, . . . , i|A\B|

ª
(and thus with sign (−1)|A\B|+2). Clearly, cases (b)

and (c) cancel out, in that they display opposite sign for any | B |. Therefore,
αA,P

¡
h/E

¢
= αPAc (fA)−

P
B⊂A h

¡
B,PB ∪ PBc¢

+

−
|A|+kPX
k=1

(−1)k+1
X

I∈{1,... ,|A|+kP }(k)

A/∈ ∧
i∈I

Qi

∩
i∈I

Bi

(B,PB∪PBc) 6= ∩
i∈I

Bi, ∧
i∈I

Qi for all B⊂A

h/E

µ
∩
i∈I

Bi, ∧
i∈I

Qi

¶
=

7For any finite set S, in combinatorics S(k) denotes the k-th level set of 2S , i.e., the set of
all k-cardinal subsets of S, thus | S(k) |= |S|

k
. Also, note that (∅, P ) /∈ E for all P ∈ P.
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= αPAc (fA)+

−
X
B⊂A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
h
³
B,PB ∪ PBc

´
−

k
PB

cX
k=1

(−1)k+1
X

I∈{1,... ,|A|+kP }(k)

∧
i∈I

Qi

B

=PB

PBc>∗QBc

i for all i∈I

h

µ
B, ∧

i∈I
Qi

¶
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

= αPAc (fA)−
P

B⊂A αPBc (fB) as desired.
Secondly, the ‘if’ part for (A,P ) /∈ E requires to distinguish between case

(i) | PA |=| JA,P |= 1, and case (ii) | PA |=| JA,P |> 1. For the former case,
let JA,P = {jA,P } and bJA,P = ©1 ≤ j ≤| A | +kP | (Bj , Qj) <

¡
BjA,P , QjA,P

¢ª
,

noting that bJA,P 6= ∅ for all (A,P ) /∈ E such that | PA |> 1. Therefore,

αA,P
¡
h/E

¢
= (1− 1)|JA,P | αBjA,P ,QjA,P

¡
h/E

¢
= 0,

where αBjA,P ,QjA,P

¡
h/E

¢
=

= h
¡
BjA,P , QjA,P

¢
−

X
∅6=I⊆ 1,... ,|BjA,P |+kQjA,P

(−1)|I|+1 h/E
µ
∩
i∈I

Bi, ∧
i∈I

Qi

¶
,

while (1− 1)|JA,P | = 1 +
P
∅6=I⊆JA,P 6=∅ (−1)

|I|
= 0. Similarly, for case (ii), let

JA,P =
n
j1A,P , . . . , j

|PA|
A,P

o
as well as

bJ iA,P = n1 ≤ j ≤| A | +kP | (Bj ,Qj) <
³
BjiA,P

, QjiA,P

´o
for 1 ≤ i ≤| PA |, noting that bJ iA,P 6= ∅, all i. Therefore,

αA,P
¡
h/E

¢
=

|PA|X
i=1

(1− 1)|J
i
A,P | αB

ji
A,P

,Q
ji
A,P

¡
h/E

¢
= 0

as for the previous case.
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Eventually, concerning the ‘only if’ part, note that if h ∈ GCN has Möbius
transform as defined by the theorem, then h (A,P ) =

=
X

(B,Q)4(A,P )
αB,Q (h) =

X
j∈JA,P

X
E3(B0,Q0)4(Bj ,Qj)

αB0,Q0 (h) =

=
X

j∈JA,P

X
E3(B0,Q0)4(Bj ,Qj)

Ã
αQ0B0c (fB0)−

X
B00⊂B0

αQ0B00c (fB00)

!
=

=
X

j∈JA,P

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

h (Bj ,Qj)−
P
∅6=I⊆

⎧⎨⎩1,... ,kQBcj
j

⎫⎬⎭
(−1)|I|+1 h

µ
Bj , ∧

i∈I
Qi

¶
+

−
P

B0⊂Bj αQB0c
j
(fB0)+

+
P

E3(B,Q)≺(Bj ,Qj)

⎛⎝αQBc

¡
fB
¢
−
P
B⊂B

α
QB

c

³
f
B

´⎞⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

=
P

j∈JA,P h (Bj , Qj) as wanted.
The idea that the larger cooperation the greater the worth that gets pro-

duced, which is roughly captured by monotonicity, is made more precise and
enforced by convexity, and even more by total positivity. In particular, in a con-
vex global coalitional game any two disjoint coalitions A,B, considered under
any two partitions P,Q, always find it convenient to merge under P ∨Q. Thus,
merging must be (weakly) convenient even when (P ∨Q)A∪B = PA∪B = QA∪B.
Nevertheless, in such a case solely (A ∪B)c, and not A∪B, increases its cohesion
by switching from P,Q to P ∨Q. More generally, the representation coefficients
αA,P (h) quantify the net surplus of worth produced by (A,P ) with respect to
all (B,Q) ≺ (A,P ). Therefore, a totally positive and monotone game describes
a situation where cooperation most widely displays synergies, making it inter-
esting to consider the intersection of GCN

TPM with subspaces of GCN
∅ . In fact,

GCN
TPM ∩ GCN

E is the cone consisting of those h that for all (A,P ) ∈ 2N × P
satisfy αA,P (h) ≥ 0 if A ∈ P and αA,P (h) = 0 if A /∈ P . In particular, if
a ∈ R+ and h, h0 ∈ GCN

TPM ∩GCN
E , then ah (A,P ) =

P
j∈JA,P ah (Bj , Qj) and

(h+ h0) (A,P ) =
P

j∈JA,P (h+ h0) (Bj , Qj), as well as αA,P (ah) = aαA,P (h)

and αA,P (h+ h0) = αA,P (h) + αA,P (h
0) for all (A 6= ∅, P ) ∈ 2N × P, imply-

ing ah, (h+ h0) ∈ GCN
TPM ∩GCN

E . It is also evident that GC
N
E corresponds to

the subspace spanned by
©
gA,P (or egA,P ) | (A 6= ∅, P ) ∈ E ⊂ 2N × Pª, and thus

with dimension
P

P∈P | P |=| P | +
P

P∈P (| P | −1) =| E |< (2n − 1)× | P |.
Interestingly, h ∈ GCN

TPM ∩GCN
E implies αPAc (fA) ≥

P
B⊂A αPBc (fB) for all

(A,P ) ∈ E, as well as monotonicity and total positivity (i.e., total monotonicity)
of coalitional games v ∈ CN imply v (A) ≥

P
B⊂A αB (v) for all A ⊆ N .

4 The Shapley value
A solution is any function φ : GCN

∅ → ACN . In words, a solution φ associates
an n-dimensional payoff vector φ (h) = (φi (h))i∈N ∈ Rn (that is, an additive

12



coalitional game φ (h) ∈ ACN ) to each h ∈ GCN
∅ . Attention is usually placed

on solutions satisfying certain requisites; in particular, consider the following
axioms:
linearity: φ (h+ h0) = φ (h) +φ (h0) and φ (ah) = aφ (h) for all h, h0 ∈ GCN

∅
and a ∈ R;
nonnegativity: φi (h) ≥ φi (h

0) ≥ 0 for all i ∈ N and for all h, h0 ∈ GCN
WM

such that h ≥ h0 (i.e., h (A,P ) ≥ h0 (A,P ) for all (A,P ) ∈ 2N ×P);
symmetry: φ (h) = πφ (πh) for all π ∈ ΠN , where ΠN denotes the set of

permutations of N and game πh is defined by πh (πA, πP ) = h (A,P ) for all
(A,P ) ∈ 2N ×P;
dummy: if h (A,P ) = h

¡
A\i, {i} ∪ PN\i¢ + h ({i} , P0) for i ∈ N and all

(A,P ) ∈ 2N × P such that i ∈ A, then φi (h) = h ({i} , P0), and i ∈ N is a
dummy player in h;
efficiency:

P
i∈N φi (h) = h (N,N).

Linearity, symmetry, efficiency and dummy are as usual. In particular, this
latter axiom simply formalizes the idea of a dummy player in a global coalitional
game. Also note that πP = {πB1, . . . , πBm} when P = {B1, . . . , Bm} as well
as πφ (πh) = (φπi (πh))i∈N . On the other hand, nonnegativity is somehow new.
It is clearly intended to substitute the traditional monotonicity axiom, in that
restricting attention to monotone global coalitional games has the above men-
tioned undesired implications. In particular, in the presence of nonnegativity
of h ∈ GCN

∅ , weak monotonicity seems sufficient for requiring nonnegativity of
each player’s payoff, while the implication h ≥ h0 ⇒ φ (h) ≥ φ (h0) is theoreti-
cally acceptable as well as technically useful in a proof. Following Weber (1988),
solutions satisfying linearity, dummy and nonnegativity may be defined to be
probabilistic. Furthermore, probabilistic solutions that also satisfy symmetry
may be defined to be semivalues, while adding efficiency leads to the class of
values. In the sequel, let C+⊆GCN

∅ be any cone.

Theorem 6 If φ : C+ → Rn satisfies linearity, then there exist real constants©bpiA,P | (A 6= ∅, P ) ∈ 2N ×Pª for each i ∈ N such that

φi (h) =
X

(A6=∅,P )∈2N×P
bpiA,Ph (A,P ) .

Proof. See Weber (1988), theorem 1, p. 104.
This enables to immediately concentrate on the dummy axiom.

Theorem 7 If φ : C+ → Rn satisfies linearity and dummy, then there exist
real constants

©
piA,P | (A,P ) ∈ 2N ×P, A 3 i

ª
for each i ∈ N such that

φi (h) =
X

(A,P )∈2N×P|A3i
piA,P

h
h (A,P )− h

³
A\i, {i} ∪ PN\i

´i
and

P
(A,P )∈2N×P|A3i p

i
A,P = 1.
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Proof. Firstly note that linearity alone implies φi (gN,N ) = bpiN,N , while
dummy and linearity together imply

φi
¡
gN\i,{i}∪{N\i}

¢
= 0 = bpiN,N + bpiN\i,N + bpiN,{i}∪{N\i} + bpiN\i,{i}∪{N\i},

that is bpiN,N = −³bpiN\i,N + bpiN,{i}∪{N\i} + bpiN\i,{i}∪{N\i}´, for all i ∈ N (where

{i} ∪ {N\i} = {i,N\i} ∈ P(2) = P(2) (N)). Secondly, consider any A ⊆ N\i
and P ∈ P with {i} ∈ P , so that

0 = φi (gA,P ) =
X

(B,Q)<(A,P )
bpiB,Q =

=
X

(B,Q)<(A,P )|B3i

³bpiB,Q + bpiB\i,Q + bpiB,{i}∪QN\i + bpiB\i,{i}∪QN\i

´
,

and thus, by induction, bpiB,Q = −³bpiB\i,Q + bpiB,{i}∪QN\i + bpiB\i,{i}∪QN\i

´
for all

(B,Q) ∈ 2N × P such that B 3 i. Also, {i} ∈ Q implies bpiB,Q = −bpiB\i,Q, and
in particular bpi{i},P0 = −bpi∅,P0 , where bpi∅,P0 may be arbitrarily set. Therefore,
simply set pi{i},P0 = bpi{i},P0 for all i ∈ N as well as

piA,P = bpiA,P = −³bpiA,{i}∪PN\i + bpiA\i,P + bpiA\i,{i}∪PN\i

´
for all (A,P ) ∈ 2N ×P such that A 3 i. Eventually, noting that

φi
¡
g{i},P0

¢
= 1 =

X
(A,P )∈2N×P|A3i

piA,P

for all i ∈ N completes the proof.

Theorem 8 If φ : C+ → Rn satisfies linearity, dummy and nonnegativity, then
there exist real constants

©
piA,P | (A,P ) ∈ 2N ×P, A 3 i

ª
for each i ∈ N such

that

φi (h) =
X

(A,P )∈2N×P|A3i
piA,P

h
h (A,P )− h

³
A\i, {i} ∪ PN\i

´i
,

P
(A,P )∈2N×P|A3i p

i
A,P = 1 and piA,P ≥ 0 for all P ∈ P.

Proof. For any player i ∈ N , consider any (possibly void) coalition A ⊆ N\i
and any partition P ∈ P, and let games bgA,P and bbgA,P be defined by
bgA,P (B,Q) = ½ 1 if B ⊃ A,Q ≥ P

0 otherwise
, bbgA,P (B,Q) = ½ 1 if B ⊃ A,Q > P

0 otherwise
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for all (B 6= ∅, Q) ∈ 2N×P. Note that both bgA,P and bbgA,P are weakly monotone
and that bgA,P (B,Q) ≥ bbgA,P (B,Q) for all (B 6= ∅, Q) ∈ 2N × P. Thus, when
{i} ∈ P , nonnegativity requires

φi (bgA,P ) = X
Q≥P

piA∪i,Q ≥ φi

³bbgA,P´ = X
Q>P

piA∪i,Q ≥ 0,

implying piA∪i,P ≥ 0 for all A ⊆ N\i, P ∈ P, {i} ∈ P . Similarly, {i} /∈ P yields

φi (bgA,P ) = X
B⊃A,B3i
Q≥P

piB,Q ≥ φi

³bbgA,P´ = X
B⊃A,B3i
Q>P

piB,Q ≥ 0,

so that piB,P ≥ 0 for all B ⊆ N,B 3 i, P ∈ P, {i} /∈ P as wanted.
As already mentioned, these last three results enable to characterize the class

of probabilistic solutions. In fact, such solutions may actually be defined as those
satisfying linearity, dummy and nonnegativity (see Weber (1988), theorems 4
and 5), and clearly identify situations where i’s payoff is the expectation of
random variable

©
h (A,P )− h

¡
A\i, {i} ∪ PN\i¢ | (A,P ) ∈ 2N ×P, A 3 i

ª
with

respect to i’s subjective probability
©
piA,P | (A,P ) ∈ 2N ×P, A 3 i

ª
, all i ∈ N .

Attention is now focused on the symmetry and efficiency axioms. In par-
ticular, the former characterizes semivalues by requiring the piA,P ’s to depend
solely on A’s, P ’s, and P ’s blocks’ cardinalities (i.e., | A |, | P | and | Bj |
for 1 ≤ j ≤| P |), while the latter characterizes values by means of an addi-
tional normalization condition. In particular, this latter results to be very much
similar to the normalization condition found by Gilboa and Lehrer (1991a) as
characterizing their Shapley value of global games.

Theorem 9 Any probabilistic solution satisfying symmetry has constants piA,P
that depend solely on | A |= a, | P |= m, {| B1 |, . . . , | Bm |} = {bj}1≤j≤m, i.e.,

piA,P =

⎧⎨⎩ p
{i}∈
(a,m,{bj}1≤j≤m)

for all A ⊆ N,A 3 i and P ∈ P such that {i} ∈ P ,

p
{i}/∈
(a,m,{bj}1≤j≤m)

for all A ⊆ N,A 3 i and P ∈ P such that {i} /∈ P .

Furthermore,

p
{i}∈
(a,m,{bj}1≤j≤m)

= p
{j}∈
(a,m,{bj}1≤j≤m)

= p∈
(a,m,{bj}1≤j≤m)

p
{i}/∈
(a,m,{bj}1≤j≤m)

= p
{j}/∈
(a,m,{bj}1≤j≤m)

= p/∈
(a,m,{bj}1≤j≤m)

for all i, j ∈ N
and A ⊆ N,P ∈ P.

Proof. Let A ⊆ N\i, P ∈ P and consider a permutation π ∈ ΠN such that
πi = i. Also let B = πA,Q = πP and games bg,bbg be defined as before. Then

φπi

³
πbbgA,P´ = φπi

³bbgπA,πP´ = φi

³bbgB,Q´ = φi

³bbgA,P´ ,
15



with the last equality following from symmetry. Firstly consider the case where
i constitutes a block on her own in P (and thus in Q as well), i.e., P 3 {i} ∈ Q,
yielding

φi

³bbgB,Q´ = X
Q0>Q

piB∪i,Q0 = φi

³bbgA,P´ = X
P 0>P

piA∪i,P 0 .

Nevertheless, for game bg symmetry imposes
φi (bgB,Q) = X

Q0≥Q
piB∪i,Q0 = φi (bgA,P ) = X

P 0≥P
piA∪i,P 0 ,

so that

φi (bgB,Q)− φi

³bbgB,Q´ = φi (bgA,P )− φi

³bbgA,P´
implies piB∪i,Q = piA∪i,P for all A,B ⊆ N\i such that | A |=| B | and for all
P,Q ∈ P such that Q = πP, {i} ∈ P,Q. On the other hand, if {i} /∈ P,Q, then

φi

³bbgB,Q´ =
X

B0⊃B,B03i
Q0>Q

piB0,Q0 = φi

³bbgA,P´ = X
A0⊃A,A03i

P 0>P

piA0,P 0

φi (bgB,Q) =
X

B0⊃B,B03i
Q0≥Q

piB0,Q0 = φi (bgA,P ) = X
A0⊃A,A03i

P 0≥P

piA0,P 0 ,

so that φi (bgB,Q) − φi

³bbgB,Q´ = φi (bgA,P ) − φi

³bbgA,P´ implies piB0,Q = piA0,P

for all A0, B0 ⊆ N,A0, B0 3 i such that | A0 |=| B0 | and for all P,Q ∈ P such
that {i} /∈ P,Q. These results show that both when {i} ∈ P as well as when
{i} /∈ P the piA,P ’s depend solely on A’s, P ’s and P ’s blocks’ cardinalities for

all i ∈ N . Therefore, the next step consist in showing that pjA∪j,P = piA∪i,P
for all i, j ∈ N whenever (A,P ) ∈ 2N × P is such that i, j /∈ A and either
{i} , {j} ∈ P , or else {i} , {j} /∈ P . In words, i and j must be considered when
each of them (separately) joins some (possibly void) coalition A ⊆ N\ {i, j},
and for any partition P where either they both constitute a 1-element block,
or else each of them belongs to some larger block (that is, {i, j} ⊆ B ∈ P
or i ∈ B ∈ P 3 B0 3 j, with | B |, | B0 |≥ 2). Let π ∈ ΠN be such that
πi = j, πj = i, πk = k for k ∈ N\ {i, j}. Also let A ⊆ N\ {i, j}, implying
πA = A, and firstly consider the case where {i} , {j} ∈ P ∈ P. Then symmetry
requires

φπi

³
πbbgA,P´ = φπi

³bbgπA,πP´ = φj

³bbgA,P´ = φi

³bbgA,P´ = φπj

³
πbbgA,P´ ,

where the third equality follows from symmetry. Therefore,

φj

³bbgA,P´ =
X
P 0>P

pjA∪j,P 0 = φi

³bbgA,P´ = X
P 0>P

piA∪i,P 0

φj (bgA,P ) =
X
P 0≥P

pjA∪j,P 0 = φi (bgA,P ) = X
P 0≥P

piA∪i,P 0 .
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Thus, φj (bgA,P )−φj ³bbgA,P´ = φi (bgA,P )−φi ³bbgA,P´ implies pjA∪j,P = piA∪i,P for

all A ⊆ N\ {i, j} , P ∈ P, {i} , {j} ∈ P . Now consider that when {i} , {j} /∈ P
symmetry imposes

φj

³bbgA,P´ =
X

A0⊃A,A03j
P 0>P

pjA0,P 0 = φi

³bbgA,P´ = X
A0⊃A,A03i

P 0>P

piA0,P 0

φj (bgA,P ) =
X

A0⊃A,A03j
P 0≥P

pjA0,P 0 = φi (bgA,P ) = X
A0⊃A,A03i

P 0≥P

piA0,P 0 ,

so that pjA∪j,P = piA∪i,P for all A ⊆ N\ {i, j} , P ∈ P, {i} , {j} /∈ P . Clearly, the
coarsest partition such that {i} , {j} /∈ P is P = N ∈ P, thus let

piN,N = pjN,N = φi (gN,N ) = φj (gN,N ) = p/∈(n,1,{1})

for all i, j ∈ N . On the other hand, the finest partition such that {i} , {j} ∈ P is
P = P0. Thus, for each i ∈ N let pi{i},P0 = φi

¡
g{i},P0

¢
−
P

(A,P )∈2N×P
(A,P )Â({i},P0)

piA,P =

= 1−

⎛⎜⎜⎝ X
(A,P )Â({i},P0)

{i}∈P

p∈
(a,m,{bj}1≤j≤n)

+
X

(A,P )Â({i},P0)
{i}/∈P

p/∈
(a,m,{bj}1≤j≤n)

⎞⎟⎟⎠ .
By symmetry, φi

¡
g{i},P0

¢
= φj

¡
g{j},P0

¢
for all i, j ∈ N , so that the proof gets

complete simply by setting pi{i},P0 = p∈⎛⎜⎝1,n,
⎧⎪⎨⎪⎩1, . . . , 1| {z }

n

⎫⎪⎬⎪⎭
⎞⎟⎠
for all i ∈ N .

Theorem 10 Any probabilistic solution satisfying efficiency has constants piA,P
satisfying

X
i∈A

piA,P =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if A = N,P = N

0 if
½

A = N,P 6= N or
A 6= N, {j ∈ Ac | {j} ∈ P} = ∅P

j∈Ac
{j}∈P

P
Q≥P

{j}∪QN\j=P

pjA∪j,Q if A 6= N, {j ∈ Ac | {j} ∈ P} 6= ∅

for all (A 6= ∅, P ) ∈ 2N ×P.

Proof. Efficiency implies 1 =
P

i∈N φi (gN,N ) =
P

i∈N piN,N . Furthermore,
φi (gN,P ) = piN,N +

P
N 6=Q≥P piN,Q for all i ∈ N and P 3 P < N , so that

1 =
X
i∈N

φi (gN,P ) =
X
i∈N

piN,N +
X
i∈N

X
N 6=Q≥P

piN,Q = 1 +
X
i∈N

X
N 6=Q≥P

piN,Q,

17



and thus
P

i∈N
P

N 6=Q≥P piN,Q = 0 by efficiency, and
P

i∈N piN,P = 0 for all
P 6= N by induction. Next consider thatX

i∈N
φi (h) =

X
i∈N

X
(A,P )∈2N×P

A3i

piA,P

h
h (A,P )− h

³
A\i, {i} ∪ PN\i

´i
=

=
X

(A,P )∈2N×P
h (A,P )

⎡⎢⎢⎣X
i∈A

piA,P −
X
j∈Ac
{j}∈P

X
Q≥P

{j}∪QN\j=P

pjA∪j,Q

⎤⎥⎥⎦
for all h, so that any probabilistic solution satisfying the conditions of the the-
orem is also efficient. Now consider any (A,P ) ∈ 2N ×P such that Ac 6= ∅ and
{j ∈ Ac | {j} ∈ P} = ∅, so that (gA,P − bgA,P ) (N,N) = 0 =X

i∈A

X
(B,Q)<(A,P )

piB,Q +
X
j∈Ac

X
(B,Q)Â(A,P )

B3j

pjB,Q +

−
X
i∈A

X
(B,Q)Â(A,P )

B⊃A

piB,Q +
X
j∈Ac

X
(B,Q)Â(A,P )

B3j

pjB,Q,

and therefore
P

i∈A
P

Q≥P piA,Q = 0, implying
P

i∈A piA,P = 0 for all such pairs
(A,P ) by induction. On the other hand, if Ac 6= ∅ 6= {j ∈ Ac | {j} ∈ P}, then
define eegA,P by eegA,P (B,Q) = 1 if B ⊃ A,Q ≥ P or B ⊇ A,Q > P or both, and

0 otherwise, so that
P

i∈N φi

³eegA,P´ =
X
i∈A

⎛⎜⎜⎝ X
(B,Q)Â(A,P )
B⊇A,Q>P

piB,Q +
X

(B,Q)Â(A,P )
B⊃A,Q≥P

pjB,Q −
X

(B,Q)Â(A,P )
B⊃A,Q>P

pjB,Q

⎞⎟⎟⎠+
+
X
j∈Ac
{j}/∈P

X
(B,Q)Â(A,P )

B3j

pjB,Q +
X
j∈Ac
{j}∈P

X
Q≥P

{j}∪QN\j=P

pjA∪j,Q + ,

and thereforeX
i∈N

φi

³
gA,P − eegA,P´ = 0 =X

i∈A
piA,P −

X
j∈Ac
{j}∈P

X
Q≥P

{j}∪QN\j=P

pjA∪j,Q

for all such pairs (A,P ) as wanted.

Theorem 11 Any probabilistic solution satisfying symmetry and efficiency has
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constants piA,P satisfying

piA,P =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
n = p/∈(n,1,{1}) if (A,P ) = (N,N)

0 if
½

A = N,P 6= N or
A 6= N,P 6= {A} ∪ PAc

0
1

n(n−1n−a)
= p/∈⎛⎜⎜⎝a,n−a+1,

⎧⎪⎪⎨⎪⎪⎩1, . . . , 1| {z }
n−a

,a

⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠
if A 6= N,P = {A} ∪ PAc

0

for all (A 6= ∅, P ) ∈ 2N ×P, i ∈ A.

Proof. It is clear that efficiency and symmetry together imply

1
n = p/∈(n,1,{1}) = piN,N = φi (gN,N ) and
0 = p/∈or ∈

(n,m,{bj}1≤j≤m)
= piN,P if P 6= N

for all i ∈ N .

Thus, let j ∈ N , noting that
P

i∈N\j p
i
N\j,{j}∪{N\j} = pjN,{j}∪{N\j} + pjN,N by

efficiency. Adding symmetry leads to p/∈(n−1,2,{1,n−1}) =
1

n−1
¡
0 + 1

n

¢
= 1

n(n−11 )
.

On the other hand, efficiency alone clearly implies piN\j,P = 0 for all P ∈ P
such that {j} /∈ P , for all i ∈ N\j. Eventually, note thatX

i∈N\j
piN\j,{j}∪PN\j = pj

N,{j}∪PN\j +
X

B∈PN\j

pj
N,{B∪j}∪PN\(B∪j) = 0

for all {N\j} 6= PN\j ∈ P (N\j). Therefore, piN\j,P = 0 for all P 6= {j}∪{N\j},
for all i ∈ N\j. In order to use induction, assume the theorem holds true for all
A0 6= N such that | A0 |≥ a0, and consider any A 6= N such that | A |= a = a0−1,
with P ∈ P. Then

P
i∈A piA,P =

P
j∈Ac|{j}∈P

P
Q≥P |{j}∪QN\j=P pjA∪j,Q by

efficiency, but pjA∪j,Q = 1
n( n−1

n−a−1)
if Q = {A ∪ j} ∪ PAc∪j

0 and 0 otherwise by

assumption, therefore
P

i∈A piA,P =
P

j∈Ac p
j

A∪j,{A∪j}∪PAc∪j
0

if P = {A} ∪ PAc

0

and 0 otherwise. Adding symmetry leads to

ap/∈⎛⎜⎜⎝a,n−a+1,
⎧⎪⎪⎨⎪⎪⎩1, . . . , 1| {z }

n−a

,a

⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠
= (n− a)

1

n
¡

n−1
n−a−1

¢ ,

and thus p/∈⎛⎜⎜⎝a,n−a+1,
⎧⎪⎪⎨⎪⎪⎩1, . . . , 1| {z }

n−a

,a

⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠
= n−a

a
1

n( n−1
n−a−1)

= 1
n(n−1n−a)

as wanted.

Let φSh : GCN
∅ → Rn denote the Shapley value of global coalitional games
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as obtained above. It is clear that φShi (h) =

=
X
A⊆N
A3i

(a− 1)! (n− a)!

n!

h
h
³
A, {A} ∪ PAc

0

´
− h

³
A\i, {A\i} ∪ PAc∪i

0

´i

=
X
A⊆N
A3i

(a− 1)! (n− a)!

n!

⎡⎢⎣ X
(A\i,{A\i}∪PAc∪i

0 )≺(B,Q)4(A,{A}∪PAc
0 )

αB,Q (h)

⎤⎥⎦
for all i ∈ N and all h ∈ GCN

∅ . It is also evident that

φShi (gA,P ) = φShi

µ
g
Dc
A,P ,{Dc

A,P}∪P
DA,P
0

¶
=

(
1

|Dc
A,P |

if i ∈ Dc
A,P

0 otherwise

for all (A 6= ∅, P ) ∈ 2N × P, where DA,P = {j ∈ Ac | {j} ∈ P} is the set of
dummy players in gA,P , while Dc

A,P = N\DA,P .
Thus, as in Gilboa and Lehrer (1991a)8, the Shapley value of any global

coalitional game h ∈ GCN
∅ coincides with the Shapley value of the coalitional

game evh ∈ CN defined by evh (A) = h
¡
A, {A} ∪ PAc

0

¢
for all ∅ 6= A ⊂ N andevh (N) = h (N,N). As shown above, this means that φSh is determined by a

proper subset of
©
αA,P (h) | (A,P ) ∈ 2N ×P

ª
. Therefore, such a solution seems

inappropriate when applied to global coalitional games, in that it (arbitrarily)
reduces these latter to coalitional games, making it somehow useless to formalize
the cooperative situation in terms of the partition lattice.

5 The core
The core CCN (v) of any coalitional game v ∈ CN is the set of additive coalitional
games φ = (φi)i∈N ∈ ACN ⊆ Rn such that φ (A) =

P
i∈A φi ≥ v (A) for A ⊆ N ,

with equality for A = N , that is CCN (v) =
©
φ ∈ ACN | v ≤ φ, v (N) = φ (N)

ª
(thus CCN : CN ³ ACN , with ³ denoting a correspondence). In terms of
bargaining, this means that each coalition A will accept to cooperate so to
form the grand coalition N = A ∪ Ac only if its (coalitional) payoff is greater
than ‘the best payoff it can achieve without help from other players’ (Shap-
ley (1971), p. 13; see also footnote 3 p. 11), that is v (A). Nevertheless,
such a definition does not straightforwardly apply here. In fact, as observed
by Gilboa and Lehrer (1991a), any partition of N involves all the n players,
and thus defining what coalitions can achieve without help from other players
becomes arbitrary. In general, defining the core of any global coalitional game
h amounts to define some lower-bound coalitional game vh such that vh (A)
represents the minimum coalitional payoff required by any coalition A ⊆ N
for joining any coalition B ⊆ Ac. This general problem was obviously dealt

8See theorem 5.1.1 and remarks 5.1.2 and 5.1.3, pp. 143-4.
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with by Gilboa and Lehrer (1991a), who mapped any f ∈ GN into the (lower-
bound) coalitional game vf defined by vf (A) = f

¡
{A} ∪ PAc

0

¢
. In fact, such

a mapping is the analogue of one of the three methods considered by Myerson
(1977)9 for obtaining coalitional games from (global coalitional) games h ∈ GN

E
in partition function form, i.e., evh (A) = h

¡
A, {A} ∪ PAc

0

¢
. The other two

such methods are eevh (A) = h (A, {A,Ac}) and eeevh (A) = min
P∈P|A∈P

h (A,P ), with

evh (N) = eevh (N) = eeevh (N) = h (N,N). Note that, for all A ⊂ N , in each of
the three methods a unique element from the set {h (A,P ) | A ∈ P} is selected
and used for defining the corresponding lower-bound coalitional game. Thus,
an alternative approach may consist in using some aggregation function, i.e.,
the Choquet (discrete) integral, for mapping the whole set above (or even the
larger one {h (A,P ) | P ∈ P}) into a unique real quantity.
When any coalition ∅ 6= A ⊂ N considers what best payoff it can achieve

without help from other players, a first (stricter) interpretation of these words
leads to the following reasoning. If each player i ∈ A does not cooperate (nei-
ther coalitionally, nor at the partition level) with any player j ∈ Ac, then A
(as a whole) forces the ‘final’ partition to be some P ≤ {A,Ac} by choos-
ing some PA ∈ P (A). Correspondingly, this will determine some final parti-
tion PA ∪ PAc = P , with PAc ∈ P (Ac) depending on Ac’s choice. In other
words, without any kind of cooperation with players j ∈ Ac, coalition A may
force its (coalitional) payoff to lie between min {h (A,P ) | P ≤ {A,Ac}} and
max {h (A,P ) | P ≤ {A,Ac}}, that is

min {h (A,P ) | P ≤ {A,Ac}} ≤ vh (A) ≤ max {h (A,P ) | P ≤ {A,Ac}} .

Thus, in general, a number | {h (A,P ) | P ≤ {A,Ac}} |=| P (A) | × | P (Ac) |
of real quantities may be considered for defining vh (A), and therefore some
reasonable operation of aggregation is required. In particular, the problem
may be conceptually approached by defining some expectation (to be placed
= vh (A)) of random variable {h (A,P ) | P ≤ {A,Ac}}, and the ‘probability’ to
be used should depend on the features displayed by the strategic game between
A and Ac, with strategy spaces P (A) and P (Ac) respectively. Nevertheless,
weak monotonicity has strong strategic implications, as shown hereafter.
First of all, consider the set PA,Ac

∗ ⊂ {P ∈ P | P ≤ {A,Ac}} of best re-
sponses, or pure-strategy Nash equilibria, defined by

PA,Ac

∗ =

⎧⎨⎩
P∗ = PA

∗ ∪ PAc

∗ | PA
∗ ∈ P (A) , PAc

∗ ∈ P (Ac) such that
max

©
h
¡
A,PA ∪ PAc

∗
¢
| PA ∈ P (A)

ª
= h

¡
A,PA

∗ ∪ PAc

∗
¢
and

max
©
h
¡
Ac, PA

∗ ∪ PAc
¢
| PAc ∈ P (Ac)

ª
= h

¡
Ac, PA

∗ ∪ PAc

∗
¢
⎫⎬⎭ .

Note that weak monotonicity of h entails not only {A,Ac} ∈ PA,Ac

∗ , but also

9See example pp. 26-7.
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strategic independence, that is

max
n
h
³
A,PA ∪gPAc

´
| PA ∈ P (A)

o
= h

³
A, {A} ∪gPAc

´
max

n
h
³
Ac, fPA ∪ PAc

´
| PAc ∈ P (Ac)

o
= h

³
Ac, fPA ∪ {Ac}

´
for all gPAc ∈ P (Ac) , fPA ∈ P (A). Therefore, it seems particularly desirable to
have vh (A) = h (A, {A,Ac}) whenever h is weakly monotone. To this end, for
each ∅ 6= A ⊂ N , consider the fuzzy measure µA : 2P → [0, 1] defined by

µA ({P1, . . . , Pm}) =
(

max{h(Ac,P )|P∈{P1,... ,Pm}}
max{h(Ac,P )|P∈PA,Ac∗ } if {P1, . . . , Pm} ⊆ PA,Ac

∗

0 otherwise
,

so that the lower-bound coalitional game vh may be defined as

vh (A) =

|PA,Ac∗ |X
j=1

£
h
¡
A,P(j)

¢
− h

¡
A,P(j−1)

¢¤
µA
³n

P(j), P(j+1), . . . , P(|PA,A
c

∗ |)

o´

with h
¡
A,P(0)

¢
= 0 and h

¡
A,P(1)

¢
≤ h

¡
A,P(2)

¢
≤ · · · ≤ h

³
A,P(|PA,A

c
∗ |)

´
.

It may be recognized that the right-hand side equals CµA (h (A, •)), that is the
Choquet integral of h (A, •) : PA,Ac

∗ → R+ with respect to µA : 2P
A,Ac

∗ → [0, 1].
Such an aggregation function has well-known, interesting properties10 , and in
particular here satisfies

h weakly monotone ⇒ CµA (h (A, •)) = vh (A) = h (A, {A,Ac}) .

As already explained, vh (A) must quantify the minimum payoff coalition A
requires for cooperating with any ∅ 6= B ⊆ Ac. In the context of global
coalitional games such a minimum payoff may be interpreted as an expecta-

tion of random variable
n
h (A,P ) | P ∈ PA,Ac

∗
o
. In particular, each segment

h
¡
A,P(j)

¢
− h

¡
A,P(j−1)

¢
is expected (and therefore required) by A with (sub-

jective and fuzzy) probability µA
³n

P(j0) | j ≤ j0 ≤| PA,Ac

∗ |
o´
. Furthermore,

µA is defined by considering the profitability for Ac (and not A, for this latter al-
ways plays best responses) of choosing any P ∈ {P1, . . . , Pm} ⊆ PA,Ac

∗ . Also set
vh (N) = max

P∈P
h (N,P ), noting that h ∈ GCN

WM entails max
P∈P

h (N,P ) = h (N,N).

This allows to define a first core CGCN : GCN
∅ ³ ACN of global coalitional

games as CGCN (h) =
©
φ ∈ ACN | vh ≤ φ, vh (N) = φ (N)

ª
.

10Note that here µA varies with h ∈ GCN
∅ , and thus CµA (h (A, •)) fails to satisfy the

SPL (i.e., stability under admissible positive linear affine transformations ) condition used by
Marichal (2000), pp. 251 and 256, for characterizing the (traditional) Choquet integral.
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The idea of an expected lower-bound coalitional payoff (that character-
izes CGCN ) may be used for extending the above argument to the whole set
{h (A,P ) | P ∈ P} (and such an extension is particularly desirable for those
global coalitional games h ∈ GCN

∅ \GCN
E that are not in partition function

form). In fact, if max {h (A,P ) | P ∈ P} > max {h (A,P ) | P ≤ {A,Ac}}, then
players i ∈ Amay decide to cooperate, at the partition level, with players j ∈ Ac

so to get some coalitional payoff bvh (A) > max {h (A,P ) | P ≤ {A,Ac}}. For-
mally, for all ∅ 6= A ⊂ N , let P\P(A,Ac) = {P ∈ P | P £ {A,Ac}} denote the
set of partitions that intersect {A,Ac} (i.e., such that P∨{A,Ac} = N ∈ P), and
define bµA : 2P\P(A,Ac) → [0, 1] by bµA ({P1, . . . , Pm}) = max{h(Ac,P )|P∈{P1,... ,Pm}}

max{h(Ac,P )|P∈P\P(A,Ac)}
for all {P1, . . . , Pm} ⊆ P\P(A,Ac). Eventually, let bvh (A) =
=

|P\P(A,Ac)|X
j=1

£
h
¡
A,P(j)

¢
− h

¡
A,P(j−1)

¢¤ bµA ³nP(j), P(j+1), . . . , P(|P\P(A,Ac)|)o´

with h
¡
A,P(0)

¢
= 0 and h

¡
A,P(1)

¢
≤ h

¡
A,P(2)

¢
≤ · · · ≤ h

³
A,P(|P\P(A,Ac)|)

´
.

This allows to consider a further core correspondence bCGCN : GCN
∅ ³ ACN

defined by bCGCN (h) =
©
φ ∈ ACN | max {vh, bvh} ≤ φ, vh (N) = φ (N)

ª
. Note

that φ ≥ max {vh, bvh}⇒ φ ≥ vh, thus bCGCN ⊆ CGCN refines11 CGCN .
CGCN might be regarded as the core of weakly monotone games in parti-

tion function form, in that CGCN (h) = CCN (vh) and weak monotonicity entails
vh (A) = h (A, {A,Ac}); also, (A, {A,Ac}) , (Ac, {A,Ac}) ∈ E for all ∅ 6= A ⊂ N .
On the other hand, bCGCN may be regarded as the core of global coalitional games
h ∈

¡
GCN
∅ \GCN

E
¢
∩GCN

WM , in which case φ ∈ bCGCN (h) entails φ (A) ≥ h (A,N)
for all ∅ 6= A ⊂ N , and φ (N) = h (N,N). Apart from weak monotonicity,
CGCN (h) and bCGCN (h) result to be nonempty iff the Bondareva-Shapley condi-
tions (see Shapley (1967)) are satisfied by coalitional games vh and max {vh, bvh}
respectively (in that CGCN , bCGCN : GCN

∅ → CN ³ ACN ). On the other hand,
it may well be that such coalitional games are (both) convex, and yet the Shap-
ley value φSh (h) of the originating global coalitional game does not belong to
neither CGCN (h) nor bCGCN (h) (see Shapley (1971)), in that φSh (h) = φSh (evh),
and vh (A) 6= evh (A) 6= max {vh (A) , bvh (A)} for ∅ 6= A ⊂ N . Eventually, it is
evident that, in the absence of weak monotonicity, determining the lower-bound
coalitional game involves an high level of computational complexity. In particu-
lar, for CGCN such a level depends on the number | PA,Ac

∗ | (for all ∅ 6= A ⊂ N)
of pure-strategy Nash equilibria defined above.

11Notice that players i ∈ A, after collectively deciding not to coalitionally cooperate with
any j ∈ Ac, must decide whether or not to (try and) cooperate with players j ∈ Ac at the
partition level. In particular, they cannot do both (i.e., cooperating and noncooperating at
the partition level), so that (vh + vh) cannot substitute max {vh, vh}.
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6 Concluding Remarks
A first remark concerns weak monotonicity. As already mentioned, such a con-
dition enables to avoid the undesired implications of monotonicity. Yet, it is
sufficient (as the traditional monotonicity of coalitional games) for pushing the
system towards the formation of the grand coalition and coarsest partition, in
that it entails h (N,N) ≥ h (A,P ) for all (A,P ) ∈ 2N × P. Furthermore, both
convexity and total positivity might be weakened by defining (additional) condi-
tions to be satisfied by both (i) the unions and intersections of coalitions, and/or
(ii) by the partitions of the unions and intersections of coalitions induced by the
finest coarser than and the coarsest finer than (whole) partitions. Furthermore,
even though global coalitional games probably constitute a better instrument
than (traditional) coalitional games for studying endogenous coalition forma-
tion, yet, in order to do so, it is necessary either to abandon weak monotonicity,
or to assume some cooperation restrictions preventing the grand coalition and
the coarsest partition to form. In this latter case, it might be interesting to
start by considering matroid-restricted games. In particular, assume that only
coalitions A ∈ M ⊂ 2N are feasible, where M is a matroid. This allows to
define the set A ⊂ 2N ×P of admissible pairs, where (A,P ) ∈ A if A ∈M and
P = {B1, . . . , Bm} satisfies Bj ∈M for all 1 ≤ j ≤ m. As a special case, the
intersection A∩E might also be considered as identifying a (more restricting) set
of feasible pairs. Eventually, note that studying endogenous coalition formation
by means of global coalitional games does not need any so-called ‘rule of order’
identifying who plays before who.
Secondly, concerning ‘value theory with efficiency only’, consider the solu-

tion φMy
i (h) =

P
(A,P )|A3i

αA,P (h)
|A| . In fact, such a solution is easily seen to

satisfy efficiency, and parallels the Shapley value of games in partition func-
tion form derived by Myerson (1977). It depends on the whole set of values
assumed by the Möbius transform (i.e., as a lattice function), and not only on
a proper subset like the Shapley values derived here and in Gilboa and Lehrer
(1991a). Nevertheless, Myerson (1977) did not have the dummy and nonneg-
ativity axioms, thus these latter (and the probabilistic form in general) might
be responsible for the undesired features displayed by the Shapley value derived
here. (Note that φMy

i (gA,P ) = (| A |)−1 if i ∈ A and 0 otherwise for all global
coalitional ‘unanimity’ games gA,P .)
A final remark concerns the core. In fact, it would be tempting to define

the core of any global coalitional game h as the set of additive global coalitional
games φ ∈ AGCN

∅ satisfying φ (A,P ) ≥ h (A,P ) for all (A,P ) ∈ 2N × P, with
equality if (A,P ) = (N,N). Nevertheless, it is not clear if such a definition
would have any meaning at all. In particular, it is not known (to the author)
what is the dimension of the vector (sub)space AGCN

∅ of (∅-normalized) additive
global coalitional games. And even if such a dimension was a multiple β of n,
with β > 1 finite integer, how should one interpret the generic φ ∈ Rβn in the
core? (Note that exactly the same remark, with β0 < β and AGN in place of β
and AGCN

∅ respectively, applies to global games f ∈ GN .)
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