
Hindawi Publishing Corporation
International Journal of Antennas and Propagation
Volume 2012, Article ID 474073, 9 pages
doi:10.1155/2012/474073

Research Article

Systematic Framework for Reflectarray Synthesis Based on
Phase Optimization
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A new systematic synthesis framework for reflectarray antennas is discussed. Optimization based on the Levenberg-Marquardt
algorithm is used to obtain the phase distribution of the reflection coefficients required on the reflectarray surface, in order to
achieve the pattern specifications. A Local Multipoint Distribution System (LMDS) base station working in the 24.5–26.5 GHz
frequency band has been proposed to evaluate the method. The 3D requirements are defined by the combination of the elevation
and templates and considering a maximum acceptable ripple in the beam shaping. Some illustrative results are obtained.

1. Introduction

Printed reflectarray antennas are very attractive alternatives
to classic reflectors and phased arrays in many applications,
such as beam shaping and electronic beam control [1]. They
present low profile, mass, and volume and offer an easy
manufacturing process. In general, a reflectarray consists
of a planar array of printed elements illuminated by a
primary feed, typically a horn antenna. Each element of the
reflectarray should introduce a phase shift into the impinging
wave from the feed, in order to obtain a beam shaped or
focused in a given direction. The amplitude of the field
reflected by each cell of the reflectarray is imposed by the
illumination provided by the primary feed and the ohmic
losses of the reflectarray.

The possibilities of contoured and focused beam reflec-
tarrays are interesting in a wide range of applications.
Multiple-beam antennas typically based on large-phased
arrays are used in radar and communications applications
[2, 3] or reflectors with feed-horn clusters and mechanical
devices [4]. Moreover, reflectarrays can be a suitable technol-
ogy for multibeam antennas, considering one feed per beam
in order to obtain focused beams [5]. Eventually, single offset
reflectarrays have been demonstrated for real DBS (Direct
Broadcast Satellite) mission requirements [6, 7].

Two tasks should be carried out in the design of a
contoured beam reflectarray. The phase distribution of the
reflection coefficient to obtain the required beam shaping
should be synthesized. Then, the dimensions of the elements
should be adjusted element by element in order to match
the phase shift requirements. Some phase-only synthesis
methods have been proposed in order to obtain the phase-
shift of the reflectarray cells, considering the large numbers of
unknowns in the problem and avoiding the local minima [8–
10]. However, these approaches do not provide a systematic
synthesis framework for reflectarrays, requiring different
combinations of techniques in order to adapt the method to
the problem to be addressed.

In this paper, a phase-only optimization method is
proposed as a systematic framework able to deal with general
reflectarray synthesis problems, avoiding the need to control
the process while the optimization is being carried out. In
order to evaluate its performance, it has been used to obtain
shaped-beam reflectarrays for a Local Multipoint Distribu-
tion Service (LMDS) base station application [11], squared
cosecant in elevation and sectored in azimuth. A reflectar-
ray has been synthesized at the central frequency of the
application band (25.5 GHz), considering the illumination
of a pyramidal horn antenna as primary feed. The synthesis
method is based on the definition of a proper cost function,
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where the allowed minimum and maximum levels at each
angular direction of the far field are previously established
[12, 13]. The function is then minimized according to the
required phase values, using an optimization method based
on the Levenberg-Marquardt (LM) algorithm [14]. Some
well-known optimization and random search algorithms
exist in the scientific literature able to solve this problem,
such as Newton-Raphson (NR) [15], Genetic Algorithms [16],
or Differential Evolution Algorithm [17], but LM has been
chosen as a reasonable tradeoff between complexity and
performance on synthesis tasks, due to its robustness in
the resolution of nonlinear least squared problems [18].
Moreover, this method has been found useful in some
synthesis problems, dealing with phase-only optimization
[19], or magnitude and phase synthesis of the feeding
weights [20] when it is applied to linear arrays. In this
paper, using and adequate cost function, the method can be
applied to a planar reflectarrays, subject to demanding full
2D requirements, such as the specifications of an antenna for
an LMDS central station.

The proposed synthesis technique provides the phase
of the reflection coefficients which obtains the shaped
beam required for this application, sectored in azimuth
and squared cosecant in elevation. The accuracy and time
efficiency of this technique are demonstrated using some
results over a 30 × 30 element reflectarray illuminated by a
feed horn. The radiation patterns of the entire antenna are
shown and compared with the required LMDS templates.

This paper is organized as follows. Section 2 explains
the scheme and characteristics of reflectarray antennas. In
Section 3, the phase synthesis method is described, after
being adapted to the reflectarray synthesis problem. Finally,
Section 4 exposes the results for an LMDS base station
application, and some conclusions are remarked in Section 5.

2. Antenna Definition

A planar reflectarray is used to illustrate the proposed tech-
nique. The scheme of the considered antenna configuration
is shown in Figure 1. The reflectarray under study is a
multilayer flat structure of printed stacked patches over a
ground plane, with a horn antenna as primary feed. In order
to account for both structures, two coordinate reference
systems are established: a reflectarray reference system,
whose origin is placed at the centre of the reflectarray surface
and defined by (x̂R, ŷR, ẑR), and a feed reference system
located at the horn phase-centre and denoted by (x̂F , ŷF , ẑF).
The ẑF-axis identifies the pointing direction of the feed
horn. Moreover, each reflectarray cell can be identified by
the indexes n = 1 · · ·N and m = 1 · · ·M, to describe its
position in the x̂R-axis and the ŷR-axis, respectively, being
N ,M the number of elements in each direction.

The feed horn illuminates the reflectarray and produces
the incident field EX/Y

inc (xR[n], yR[m]) on each reflectarray cell
(denoted for simplicity by EX/Y

inc (n,m)). Although a near-
field can be used to accurately model the field radiated by
the feed horn, a far-field simple model based on cosq(θ)
function of the feed pattern can be used [21]. Since the feed is
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Figure 1: Scheme of the flat reflectarray.

Table 1: Font sizes for papers values of q factor used to model the
feed horn.

Frequency (GHz) 24.5 25.5 26.5

q-factor in E-plane 33 35 37
q-factor in H-plane 37 39 41
q in cosq(θ) (averaged) 35 37 39

a pyramidal horn, the beamwidth in E-plane and H-plane is
not the same, and therefore different q values are estimated in
each plane and an averaged value is used in the model. The q-
factor also depends on the frequency and has been calculated
at the central and extreme frequencies of the application
band [7], see Table 1. A vertical and horizontal polarizations,
XR and YR, can be considered, so the superindex X/Y denotes
this polarization of the feed, used to produce an electric field
mainly in the XR or YR direction. Note in Figure 1 that the
vertical polarization corresponds to XR-polarization, because
the electric field in the XR-direction is vertical, according
to the considered reference system. For each polarization,
the two components of the tangential electric field on the
reflectarray surface are calculated, so the incident field is
given by

�EX/Y
inc (n,m) = EX/Y

x,incx̂R + EX/Y
y,inc ŷR. (1)

The field reflected on the reflectarray surface is used for
the computation of the far-field radiation patterns of the
entire antenna. The reflected field can be written as

�EX/Y
ref (n,m) = EX/Y

x,refx̂R + EX/Y
y,ref ŷR. (2)

The relation between the incident and the reflected fields
in each element (n,m) of the reflectarray can be represented
as

[

EX/Y
x,refx̂R,EX/Y

y,ref ŷR
]T = R(n,m) ·

[

EX/Y
x,incx̂R,EX/Y

y,inc ŷR
]T

, (3)
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where (·)T indicates the transpose and R(n,m) is a complex
matrix, which refers to the reflection coefficient of each
reflectarray element:

R(n,m) =
(

ρxx(n,m) ρxy(n,m)
ρyx(n,m) ρyy(n,m)

)

. (4)

The R matrix characterizes the behavior of each reflectar-
ray element. The components ρxx(n,m) and ρyx(n,m) are the
direct and cross-reflection coefficients for an incident wave
with the tangential component of the electric field in the
XR direction, and ρyy(n,m) and ρxy(n,m) are the reflection
coefficients for the YR component. All of them depend on the
angle of incidence of the impinging wave coming from the
feed horn, and on the element geometry, adjusted to produce
the required phase-shift, so that the matrix is different for
each element of the reflectarray.

The calculation of the R matrix and the incident field
given in (1) should be properly obtained. Considering the
development in [9], the direct coefficient ρxx(n,m) in (4)
is the only used to calculate the copolar component of the
radiation pattern when linear XR-polarization is considered,
since the term of ρxy(n,m) can be neglected because of
its low contribution to the total radiated field. The same
criteria would be done over ρyy(n,m) and ρyx(n,m) for YR-
polarization. Given this assumption, the copolar reflected
field in each cell can be considered as

�EX/Y
ref (n,m) ∼= ρxx(n,m) · EX/Y

x,inc(n,m)x̂R. (5)

The phase of each reflection coefficient ρxx(n,m) is
achieved by adjusting the dimensions of the printed ele-
ments, and it must be obtained using an optimization
method, as the technique presented in the next section.

3. Phase Synthesis Method

3.1. Far Field Radiation Pattern of the Reflectarray. Once the
reflectarray antenna is described, the aim of this section
is to obtain the phase of the reflection coefficient of each
reflectarray element in order to fulfill the required pattern
for the beam.

Considering the total field reflected by the reflectarray
calculated in (5), the radiation pattern of the antenna is
computed. Assuming the second principle of equivalence, the
radiated far field is given by

�EX/Y (u, v) =
M
∑

m=1

N
∑

n=1

�EX/Y
ref (n,m)e jn(2π/λ)dxue jm(2π/λ)dyv, (6)

where u = sin(θ) cos(φ), v = sin(θ) sin(φ) are the elevation

and azimuth angles, respectively, �EX/Y (u, v) is the far field
produced by the entire antenna in (u, v) direction, λ is
the wavelength in vacuum, and dx,dy are the distances
between radiating elements in the �xR and �yR axes of the
reflectarray.

Let �EX/Y
0 (u, v) be the radiation pattern of an element cell

located at the origin of the coordinate system (the centre of

the reflectarray), (6) can be rewritten using the formulation
of the array factor as

�EX/Y (u, v) = �EX/Y
0 (u, v)

×
M
∑

m=1

N
∑

n=1

(

|ωnm|e jϕ(ωnm)
)

e jn(2π/λ)dxue jm(2π/λ)dyv

= �EX/Y
0 (u, v)AF(u, v),

(7)

where ω(n,m) can be considered as the excitation at element
(n,m), which determines how the reflection on each cell
modifies the element radiation pattern �EX/Y

0 (u, v), and
ϕ(ωnm) specifies its phase. Since the far field produced by
the reflectarray is provided by the reflected distribution
originated in the fed horn and considering (5), the magni-
tude |ωnm| will be determined by the illumination of the
primary feed as explained in the previous section. On the
other hand, ϕ(ωnm) represents the phase of the reflection
coefficient ρxx(n,m). Thus, in order to obtain the required
phase terms ϕ(ωnm) that modify the shape of the final
radiation pattern, the synthesis process is only dependent on
AF(u, v).

3.2. Phase Synthesis Using Least Squares Optimization and
Levenberg-Marquardt Algorithm. The goal in many practical
synthesis problems is obtaining a radiated far-field distribu-
tion concentrated between a set of bounds specified using
a mask. One of the techniques for achieving this objective
is the use of optimization, defining a cost function which
penalizes the no-allowed field levels [12, 13]. This function
is given by defining the minimum and maximum bounds
for the field values at each direction, and if only a set of T
possible directions rt = (u, v)t, t = 1 · · ·T , is considered,
this cost function can be expressed as

F =
T
∑

t=1

Ft =
T
∑

t=1

Ct

[(

G2
M(rt)−

∣

∣

∣
�EX/Y (rt)

∣

∣
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2
)

×
(

G2
m(rt)−

∣
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∣
�EX/Y (rt)

∣

∣
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2
)

+
∣
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∣
G2
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∣
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∣
�EX/Y (rt)

∣
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∣

2
∣
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×
∣
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∣
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G2
m(rt)−

∣

∣
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2
∣

∣

∣

∣

]

,

(8)

where GM(rt), Gm(rt) are the maximum and minimum
values specified for the field radiated at the direction rt,
�EX/Y (rt) is defined in (7) and Ct ∈ R+ is introduced to
emphasize the error in some directions, useful when the field

values are very low. GM(rt), Gm(rt), and �EX/Y (rt) may be
normalized in order to facilitate the optimization. Ft in (8)
represents the error at rt, and it is null in those directions
where the radiated field is inbounds, showing a higher value
when an error exists:
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Ft =
⎧

⎪

⎨

⎪

⎩

0, ∀t|G2
m(rt) ≤

∣

∣

∣
�EX/Y (rt)

∣

∣

∣

2≤ G2
M(rt)

2Ct

(

G2
M(rt)−

∣

∣

∣
�EX/Y (rt)

∣

∣

∣

2
)(

G2
m(rt)−

∣

∣

∣
�EX/Y (rt)

∣

∣

∣

2
)

, otherwise.
(9)

Operating over (9), the error addends in F can be
expressed as a sum of differences, so Ft is written as

Ft =
⎧

⎨

⎩

0, ∀t|G2
m(rt) ≤

∣

∣

∣
�EX/Y (rt)

∣

∣

∣

2≤ G2
M(rt),

yt − ft(α), otherwise,
(10)

where yt identifies the objective value for the direction t, and
ft(α) is the function to fit by calculating the set of parameters
α, so that F becomes minimal:

ft(α) = 2Ct

∣

∣

∣
�EX/Y (rt)

∣

∣

∣

2
(

G2
M(rt) + G2

m(rt)−
∣

∣

∣
�EX/Y (rt)

∣

∣

∣

2
)

yt = 2Ct
(

G2
M(rt)G2

m(rt)
)

.
(11)

The vector α contains the variables to be synthesized, that
is, the phase values ϕ(ωnm), n = 1 · · ·N ,m = 1 · · ·M, and
it is represented as

α =
[

α1 · · ·αp · · ·αP
]

, p = 1 · · ·P,

αp = tg
(

ϕ(ωnm)
) = Im(ωnm)

Re(ωnm)
,

(12)

where P = N · M is the dimension of α, and
Re(ωnm), Im(ωnm) are the real and imaginary parts of ωnm.
In spite of the fact that the unknowns of the above problem
are the phases ϕ(ωnm), the elements of α in (12) are the
tangent of each phase, in order to avoid problems related to
the periodicity in the solutions.

This synthesis process requires the use of an optimization
algorithm able to minimize F. In this paper, the well-
known Levenberg-Marquardt (LM) algorithm [14] has been
selected for this purpose, as a tradeoff between accuracy and
simplicity. LM is an iterative algorithm able to solve certain
nonlinear cost functions. One of the minimization problems
where LM achieves good results arises in least squares. In
order to apply the LM algorithm to (8), the cost function
must be expressed as a least squares quadratic function, so
the real cost function to implement needs to be defined as

FLM =
T
∑

t=1

F2
t , (13)

where Ft is defined in (10). Note that the meaning of F and
FLM are the same, even though the squared addends.

The LM method requires the calculation of a Jacobian
matrix, denoted as J, so that FLM can be minimized. It is
a T × P matrix whose elements are calculated using the
partial derivatives over Ft, respect to each element of α. Thus,

considering (10), each element of J is either null (for those

tth rows where |�EX/Y (rt)| is in bounds, i.e., Ft = 0) or defined
as

J
(

t, p
) = ∂f

∂α

∣

∣

∣

∣

t,p
= ∂ ft(α)

∂αp

= 4Ct

∣

∣

∣
�EX/Y

0 (rt)
∣

∣

∣

2
[

Re(AF(rt))
∂Re[AF(rt)]

∂αp

+ Im(AF(rt))
∂ Im[AF(rt)]

∂αp

]

·
[

(

G2
M(rt) + G2

m(rt)
)− 2

∣

∣

∣
�EX/Y (rt)

∣

∣

∣

2
]

(14)

in those directions rt where |�EX/Y (rt)|
2
< G2

m(rt) or

|�EX/Y (rt)|
2
> G2

M(rt). Note that |AF(rt)|2 = [Re(AF(rt))]2 +
[Im(AF(rt))]2, and each partial derivate is directly
demonstrated from (7) as

∂Re(AF(rt))
∂αp

=
M
∑

m=1

N
∑

n=1

− Re(ωnm)

×
[

cos
(

n
2π
λ
dxu(rt)

)

sin
(

m
2π
λ
dyv(rt)

)

+ sin
(

n
2π
λ
dxu(rt)

)

cos
(

m
2π
λ
dyv(rt)

)]

,

∂ Im(AF(rt))
∂αp

=
M
∑

m=1

N
∑

n=1

Re(ωnm)

×
[

cos
(

n
2π
λ
dxu(rt)

)

cos
(

m
2π
λ
dyv(rt)

)

− sin
(

n
2π
λ
dxu(rt)

)

sin
(

m
2π
λ
dyv(rt)

)]

,

(15)

where u(rt), v(rt) represent the u, v values determined by the
rt direction. Once the Jacobian matrix is calculated, the LM
algorithm can be applied iteratively over FLM as

[

JTi · Ji + μi · diag
(

JTi · Ji
)]

· δi = JTi · Ft,i, (16)

where the subindex i represents each iteration, diag(·) is
the diagonal matrix, Ji is the Jacobian matrix of αi (in each
iteration i), μi is a convergence parameter that depends on i,
and Ft,i is a T × 1 vector which represents the T samples
of Ft in (9) for each i. Note that either Ji or Ft,i present
null samples which do not contribute in the optimization,
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Figure 2: Pattern requirements in azimuth (a) and elevation (b). Maximum (dashed lines) and minimum (solid lines) templates.

because of the fact that there is no error in those directions;
moreover, the directions rt where the field is inbounds are
different depending on the iteration, and should increase
as the algorithm progresses. Finally, δi is an update vector
satisfying the equality, which is calculated as the solution of
the normal equation associated to the previous least square
problem as

δi =
(

BT
i · Bi

)−1 · BT
i · bi, (17)

where matrix Bi = [JTi · Ji + μi · diag (JTi · Ji)], vector bi =
JTi · Ft,i, and (·)−1 indicates the inverse matrix. Vector δi is
iteratively updating the solution as

αi+1 = αi + δi. (18)

Note that the solution for the phases in each iteration is
given by tg−1(αi+1) according to (12).

LM requires certain operations over a high dimensional
matrix Ji. The Jacobian matrix inversion may have an
important temporal cost, or an ill-conditioned matrix Ji
might lead to instability in (17). As a result, a gradient
descent technique, such as the Conjugate Gradient Squared
(CGS) method [22], is implemented to calculate δi (given Bi

and bi) and prevent this issue.
In order to achieve convergence, the starting parameters

should be chosen to provide a valid solution. As it will be
shown in the next section, the priori knowledge of the LMDS
bounds can provide initial values of α which accelerates the
optimization process. Moreover, the parameter μ controls
the speed of convergence, so it must be selected carefully
to avoid divergence. It defines the steps size to achieve the
minimum, closer to the gradient descent direction. One
of the most extended techniques to choose this parameter
consists in starting with μ0 proportional to the maximum
value of diag (JTi · Ji) [18], and defining a real parameter

β > 1, so that μi+1 = μiβ or μi+1 = μi/β if the cost
function increases or decreases, respectively, each iteration i
[19]. The high number of variables in the current reflectarray
problem requires an exhaustive control of μi, so its increase is
only allowed when the cost function decreases in more than
five iterations consecutively, forcing a decrease every time
FLM,i goes higher. Note that μi = 0 converts LM into the
Gauss-Newton’s method [19], easy to diverge in a nonlinear
problem with a high number of unknowns, so this value
must be disregarded.

4. Simulations and Results

In this section, the proposed technique is demonstrated by
the phase-only synthesis of a reflectarray designed for LMDS
applications. This antenna must be synthesized to fulfill the
coverage specifications of a central station of LMDS service
in the 24.5–26.5 GHz band, where a shaped beam both
in elevation (squared cosecant) and in azimuth (sectored)
[11] is required. The templates of minimum and maximum
requirements are shown in Figures 2 and 3. To achieve
this beam shaping and gain, a reflector surface is defined.
Since the bandwidth of the application is about 8% (24.5
to 26.5 GHz), a two-layer printed reflectarray working at
central frequency of the band (25.5 GHz) is considered [9].
The grating lobes are avoided or negligible in the entire
frequency band. This flat reflectarray is composed of 30× 30
rectangular patches of variable size arranged in a regular
mesh, with a periodic cell dx × dy defined as 5.88× 5.88 mm
(half a wavelength at the central frequency). The phase
centre of the feed-horn is placed at (−94, 0, 214) mm in
the reflectarray reference system. The resulting f /D of the
antenna is 1.2.
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Figure 3: Pattern requirements GM(rt) (a) and Gm(rt) (b), in all the considered directions rt = (u, v)t .
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Figure 4: Synthesized phase distribution of the reflection coeffi-
cient for the XR-polarization (degrees).

The phase distribution of the reflection coefficient is
obtained using the method described in Section 3. The
incident field that defines |ωnm|, n = 1 · · ·N , m = 1 · · ·M,
is determined by the cosq(θ) (see Table 1), and the bounds
GM(rt), Gm(rt) are the required in LMDS [11], shown in
Figure 3.

The resulting phase distribution for XR-polarization after
applying the technique that is discussed in the previous
section is shown in Figure 4, being the corresponding to YR-
polarization very similar. The small difference between both
phase distributions is the result of slight differences in the
incident field for both linear polarizations.

This solution has been obtained after 3900 iterations
of the proposed algorithm, where T = 16384 considered
directions (taking 128 samples uniformly in u, v ∈ [−1, 1]),
and less than a minute per iteration on an Intel Core 2

Duo PC with 2.4 GHz processor. The parameter Ct =
1/(GM(rt) − Gm(rt)), so the directions with demanding
restrictions are more penalized. The convergence parameter
has been empirically set at μ0 = 5, a value which allows a soft
descent toward the solution. This value has been modified as
it was explained in 3.1, with β = 1.2, so μ ε (0.13, 331.24)
in the different iterations of the algorithm. On the other
hand, the starting point of the synthesis process (initial phase
distribution) is chosen to have a high value at the maximum
of the azimuth and elevation masks, which allows a useful
initial point to begin the optimization process. The algorithm
stops at iteration 3900, when FLM,i < FLM,i−50/2 and FLM,i <
0.01. The final error in the synthesis process is FLM = 0.56 ·
10−2, and FLM = FLM/T = 3.42 · 10−7 if all directions T
are considered, even the ones with no error, which means
that the field is inbounds in most of the directions. It is a
low value, which represents the convergence of the iterative
algorithm.

The obtained phase distribution is used to calculate
the three-dimensional radiation pattern, which has been
simulated at the central frequency of the band (25.5 GHz),
for dual linear polarization (vertical and horizontal polar-
izations), see Figure 5. The final phases for each polarization
X/Y are not equal, due to the difference in the illumination
of the reflectarray produced by the feed for the two
polarizations. Note that the projection of the incident field
on the reflectarray cells is different for the two orthogonal
linear polarizations.

Main cuts of the beams (elevation and azimuth) are also
depicted in Figure 6. Although ideal phase-shift elements
have been assumed as reflectarray elements, the radiation
patterns have been computed considering the illumination
and spillover efficiency of the antenna and they are given in
gain (dBi). The results show good agreement with require-
ments in both polarizations, particularly in the coverage
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Figure 5: Simulated three-dimensional radiation patterns considering the synthesized phase distribution; vertical (a and c) and horizontal
(b and d) polarizations for copular (a and b) and crosspolar (c and d) components.

regions. The beam shaping is achieved, and the gain require-
ments are fulfilled in a high percentage of the coverage.
However, small disagreement is found in noncoverage zone
but with low side-lobe level. In elevation (Figure 6(b)), the
beam shaping requirement is more restrictive and shows a
higher gain than required or some ripple is obtained in the
region defined by negative elevation angles. Moreover, those
negative elevation angles are outside the coverage region of
the central station and some error can be acceptable. The
pointing directions towards the Earth surface are defined
by the positive elevation angles, which correspond to the
squared cosecant pattern. Thus, this error is not critical
for the station performances. The most critical direction
is the zero angle in elevation, where an interference with
other LMDS base stations may exist. However, the radiation
pattern in this direction produces a deep null, avoiding
the potential interference. In spite of those limitations, the
squared cosecant in elevation is properly achieved and the

radiated field is inbounds in almost all the pointing angles.
Moreover, the obtained results are similar in quality to LMDS
radiated patterns achieved with traditional methods [9], with
the advantage of the use of a systematic framework for
optimizing the required phases. These features demonstrate
the success of the proposed method.

5. Conclusions

A phase-only synthesis technique for shaped beams has
been discussed and proposed for the systematic synthesis
of reflectarrays, providing a framework suitable for general
reflectarrays synthesis problems. It has been shown to lead
to excellent results when used in the presented examples
with antennas in LMDS central stations or Direct Broadcast
Satellite (DBS) antennas applications.

Using a cost function properly defined and the Lev-
enberg-Marquardt optimization algorithm, the reflection
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Figure 6: Simulations (vertical and horizontal polarizations) at the central frequency. Main cuts in azimuth (a) and elevation (b), compared
with the maximum and minimum required gains (solid red and blue lines).

coefficients of each reflectarray element are obtained. The
technique has been applied to the synthesis of a LMDS
central station antenna covering 30-degree azimuth sector.
The results match with the application requirements. More-
over, the required squared cosecant in the elevation plane
is properly obtained, which demonstrates the capabilities
of the proposed method to synthesize stringent-shaped
beams with low time requirements. Thus, avoiding either
the combination of other synthesis techniques or the control
on the algorithm while the optimization progresses, the
proposed framework provides proper results in LMDS
applications.

Finally, this phase-only synthesis technique can be
applied to other reflectarray configurations, with more
feed horns or different number of reflectarray elements.
Only defining the incident beam and specifying the needed
bounds, this method provides the synthesized values which
fulfill demanding requirements without the need of any
adaptation of the method.
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