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a b s t r a c t

A direct method using O(kn2) elementary operations to compute the k largest eigenvalues
of an r-convexity preserving n× nmatrix, for all r = 0, 1, . . . , k, is presented.
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1. Introduction

The computation of the eigenvalues of a matrix is one of the main topics of numerical linear algebra. This work considers
a class of matrices (r-convexity preserving matrices for all r ≤ k) that are important in many applications (see [1,4,5] or [6],
and Section 2). We present a direct method for computing the k largest eigenvalues of these matrices. In fact, we obtain
explicit formulae for the obtaining of these eigenvalues, and the computational cost of the corresponding method is O(kn2)
elementary operations for an n × nmatrix. In the particular case of an r-convexity preserving matrix for all r ≤ n − 1 we
provide a direct method using O(n3) elementary operations to compute all of its eigenvalues.

2. Explicit formulae and the direct method

Let us first present some basic definitions. Let k be a nonnegative integer. A vector v = (v1, v2, . . . , vn)T ∈ Rn is said to
be k-convex if∆kvi ≥ 0 for all i ∈ {1, . . . , n− k}, where

∆kvi :=

k∑
j=0

(
k
j

)
(−1)k−jvi+j.

Observe that a vector is 0-convex if and only if it is nonnegative and a vector is 1-convex if and only if it is monotonically
increasing. A matrix A is said to be k-convexity preserving if for any k-convex vector v, the vector Av is also k-convex. Let us
observe that A is 0-convexity preserving if and only if it transforms nonnegative vectors into nonnegative vectors, which is
equivalent to A ≥ 0. A matrix A is 1-convexity preserving if and only if it is monotonicity preserving.
We shall denote by E the lower triangular matrix

E :=


1 0 . . . 0
...

. . .
. . .

...
1 . . . 1 0
1 . . . 1 1

 , E−1 =



1 0 . . . . . . 0

−1 1
. . .

...

0 −1 1
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 −1 1

 . (1)
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For each j ∈ {1, . . . , n}, let Ej be the following n× nmatrix: E1 := E and for j ≥ 2,

Ej :=

(Ij−1 | 0

0 | E

)
, E−1j =

Ij−1 | 0

0 | E−1

 .
where Ij−1 is the (j− 1)× (j− 1)− identity matrix and E is the (n− j+ 1)× (n− j+ 1)-matrix given by (1).
The following result corresponds to Corollary 4.4 of [1] and shows an important property of r-convexity preserving

matrices for r = 0, 1, . . . , k (k ≥ 1).

Proposition 2.1. Let A be a r-convexity preserving matrix for r = 0, 1, . . . , k(k ≥ 1). Then

(E1 · · · Ek)−1A(E1 · · · Ek) =

(
Λk | ∗

0 | Ak

)

whereΛk is an upper triangular matrix whose diagonal elements λ1 ≥ λ2 ≥ · · · ≥ λk(≥ 0) are the largest eigenvalues of A, and
Ak is a nonnegative matrix with ρ(Ak) ≤ λk.

Observe that, by the previous result, the first k columns of E1 · · · Ek form a basis of the invariant subspace corresponding
to the k dominant eigenvalues of a matrix A which is r-convexity preserving for r = 0, 1, . . . , k(k ≥ 1). Let us recall that a
vector v is said to be k-concave if the vector−v is k-convex. By Remark 2.6 of [1], the first k columns of E1 · · · Ek form a basis
of the vector space formed by the vectors which are simultaneously k-convex and k-concave.
Matrices which are r-convexity preserving for r = 0, . . . , k arise in many practical and theoretical problems. The case

k = 1 corresponds to the important case of nonnegative matrices which are monotonicity preserving. A wide family of
totally positivematrices (matriceswith all theirminors nonnegative)which are r-convexity preserving for r = 0, 1, . . . , k is
presented in Corollary 3.5 of [1]. A source ofmany examples of r-convexity preservingmatrices is provided by the collocation
matrices of r-convexity preserving systems of functions. A function u : [a, b] → R is called k-convex if all kth-order divided
differences of u are nonnegative, that is, u[t0, . . . , tk] ≥ 0 for any a ≤ t0 < · · · < tk ≤ b. In particular, 0-convexity is
synonymous with u nonnegative, 1-convexity is synonymous with u increasing and 2-convexity coincides with the usual
assertion that u is convex. A system of functions (u0, . . . , un) defined on [a, b] is called k-convexity preserving if for any
k-convex vector c = (c0, . . . , cn)T the function

∑n
i=0 ciui is k-convex.

Given a system of functions (u0, . . . , un) defined on [a, b], the matrices

M
(
u0, . . . , un
t0, . . . , tm

)
:= (uj(ti))i=0,...,m;j=0,...,n, a ≤ t0 < t1 < · · · < tm ≤ b,

are usually called collocation matrices.
The next proposition, corresponding to Proposition 2.10 of [1], shows the relationship between k-convexity preserving

system of functions and k-convexity preserving matrices.

Proposition 2.2. Let u0, . . . , un ∈ C[a, b]. Then (u0, . . . , un) is k-convexity preserving if and only if all the collocation matrices

M
(

u0, u1, . . . , un
s0, s0 + h, . . . , s0 + nh

)
, h ∈

(
0,
b− a
n

]
, s0 ∈ [a, b− nh],

are k-convexity preserving.

Many systems used in approximation theory, statistics or computer aided geometric design (GAGD) are r-convexity
preserving (see [1,4,7,5] or [6]). In CAGD, the fact that (u0, . . . , un) is k-convexity preserving can be interpreted as follows.
If the control polygon P0 · · · Pn is the graph of a k-convex function, then the graph of u =

∑n
i=0 ui Pi is a k-convex function.

Finally, let us recall that the Bernstein basis is r-convexity preserving for all r and theB-spline basis of the space of polynomial
splines of degree m with equally spaced knots is r-convexity preserving for r = 0, . . . ,m (see [1]). Let us also recall that
spectral properties of the Bernstein operator have been deeply studied in the literature (see [2]).
First we need an auxiliary result on combinatorial numbers.

Lemma 2.3. For all m ≥ 0,

m∑
j=0

(
k+ j
k

)
=

(
k+ 1+m
k+ 1

)
. (2)
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Proof. Let us prove the result by induction onm ≥ 0. Form = 0 it is obvious. Now let us suppose that formula (2) holds for
m ≥ 0 and let us show that it also holds form+ 1. We can write

m+1∑
j=0

(
k+ j
k

)
=

[
m∑
j=0

(
k+ j
k

)]
+

(
k+m+ 1

k

)
.

By the induction hypothesis we have that
m∑
j=0

(
k+ j
k

)
=

(
k+ 1+m
k+ 1

)
.

Then by the two last formulas and the usual properties of combinatorial numbers we deduce

m+1∑
j=0

(
k+ j
k

)
=

(
k+ 1+m
k+ 1

)
+

(
k+m+ 1

k

)
=

(
(k+ 1)+m+ 1

k+ 1

)
and (2) holds form+ 1. �

Given an square matrix A of order n the following results provide, respectively, explicit expressions for the columns of
Bk := AE1 · · · Ek and the rows of (E1 · · · Ek)−1A(E1 · · · Ek) in terms of the columns of A and of the rows of Bk.

Proposition 2.4. Let A be an square matrix of order n with columns A1, . . . , An, k < n and Br := A E1 · · · Er for r = 1, . . . , k.
Let us denote by B1r , . . . , B

n
r the columns of Br . Then, for each j ∈ {1, . . . , r − 1},

Bjr =
n∑
i=j

(
i
j− 1

)
Ai (3)

and, for each j ∈ {r, . . . , n},

Bjr =
n∑
i=j

(
r − 1+ i− j
r − 1

)
Ai. (4)

Proof. Let us prove formulas (3) and (4) by induction on r ∈ {1, . . . , k}. For r = 1 we have by the definition of E1 that

B1 = A E1 = (A1, A2, . . . , An) E1 =

(
n∑
i=1

Ai,
n∑
i=2

Ai, . . . ,
n∑
i=n

Ai
)
.

Then Bj1 =
∑n
i=j A

i for all j ∈ {1, . . . , n} and therefore formulas (3) and (4) hold for r = 1. Let us suppose that (3) and (4)
hold for r ∈ {1, . . . , k− 1} and let us prove them for r + 1. We can write

Br+1 = A E1 · · · Er+1 = (A E1 · · · Er)Er+1.

Then by the induction hypothesis we have

Br+1 = (B1r , B
2
r , . . . , B

n
r )Er+1.

where Bjr are given by (3) for j ∈ {1, . . . , r − 1} and by (4) for j ∈ {r, . . . , n}. By the definition of Er+1 and the induction
hypothesis we have that

Bjr+1 = B
j
r =

n∑
i=j

(
i
j− 1

)
Ai

for j ∈ {1, . . . , r}. Therefore (3) holds for j ∈ {1, . . . , r}. Analogously, by the definition of Er+1 and the induction hypothesis
we deduce

Bjr+1 =
n∑
i=j

Bir =
n∑
i=j

n∑
m=i

(
r − 1+m− i
r − 1

)
Am

for j ∈ {r + 1, . . . , n}. Reordering the terms in the previous formula it can be written as

Bjr+1 =
n∑
m=j

[
m∑
i=j

(
r − 1+ i− j
r − 1

)]
Am.
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Changing the index of the inner sum in the previous formula we have that

Bjr+1 =
n∑
m=j

[
m−j∑
i=0

(
r − 1+ i
r − 1

)]
Am.

Finally, applying Lemma 2.3 we deduce

Bjr+1 =
n∑
m=j

(
r +m− j
r

)
Am.

Hence formula (4) also holds for j ∈ {r + 1, . . . , n} and the induction follows. �

Proposition 2.5. Let k < n, N0 := Bk be the matrix defined in Proposition 2.4, with rows Bk,1, . . . , Bk,n, and let Nr :=
(E1 · · · Er)−1Bk for r ∈ {1, . . . , k}. Let us denote by Nr,1, . . . ,Nr,n the rows of Nr . Then, for each i ∈ {1, . . . , r},

Nr,i = 5i−1 Bk,i =
i−1∑
j=0

(−1)j
(
i− 1
j

)
Bk,i−j (5)

and, for each i ∈ {r + 1, . . . , n},

Nr,i = 5r Bk,i =
r∑
j=0

(−1)j
(
r
j

)
Bk,i−j, (6)

where5 is the usual backward difference5fi := fi − fi−1.

Proof. Performing E−1s Ns−1 for all s ∈ {1, . . . , k} consists of subtracting from the rows s + 1, . . . , k of Ns−1 the rows
s, . . . , k − 1 of Ns−1, respectively. Therefore, we have that, for each i ∈ {1, . . . , r}, Nr,i = 5i−1 Bk,i, and that, for each
i ∈ {r+1, . . . , n},Nr,i = 5r Bk,i. Finally, the combinatorial formulas in (5) and (6) arewell known formulas for the backward
difference5. �

From Propositions 2.1, 2.4 and 2.5 we derive the following result.

Corollary 2.6. Let k be a positive integer less than n, let A be an r-convexity preserving matrix for r = 0, 1, . . . , k (k ≥ 1) and
let Nk = (mij)1≤i,j≤n be the matrix defined in Proposition 2.5. Then m11,m22, . . . ,mkk are the largest eigenvalues of A satisfying
m11 ≥ m22 ≥ · · · ≥ mkk ≥ 0, and the remaining n − k eigenvalues of A are the n − k eigenvalues of the nonnegative matrix
(mij)k+1≤i,j≤n.

Let us observe that, by Corollary 2.6, the explicit formulae of Propositions 2.4 and 2.5 allow us to calculate the k largest
eigenvalues of a matrix A r-convexity preserving for r = 0, 1, . . . , k. By Corollary 2.6, the k largest eigenvalues of A are the k
first diagonal entries of the matrix Nk. By Proposition 2.5, each of the last k− 1 mentioned diagonal entries can be obtained
as a linear combination of the entries above them in the matrix Bk of Proposition 2.4 and the first mentioned diagonal entry
coincides with the corresponding one in Bk. Finally, the involved elements (i, j) (with 1 ≤ i ≤ j ≤ k) of Bk can be obtained
by Proposition 2.4 as a linear combination of the entries to the right of them in the matrix A. In conclusion, the k largest
eigenvalues of A = (aij)1≤i,j≤n only depend on the entries aij with 1 ≤ i ≤ k and i ≤ j ≤ n. If A is an r-convexity preserving
matrix for r = 0, 1, . . . , n − 1, then by Corollary 2.6 all its eigenvalues only depend on the entries of the upper triangular
part of A.
The explicit formulae of Propositions 2.4 and 2.5 for calculating the k largest eigenvalues of a matrix A r-convexity

preserving for r = 0, 1, . . . , k comprise two phases: the first phase corresponds to the calculation of entries above and
to right of the first diagonal entries of Bk = A(E1 · · · Ek) (Phase I) and the second one corresponds to the calculation of the
first diagonal entries of Nk = (E1 · · · Ek)−1Bk (Phase II).
Let us now analyze the computational cost of both phases through the explicit formulae of Propositions 2.4 and 2.5.

Observe that both formulae use combinatory numbers of the form
(m
i

)
, 0 ≤ i ≤ m ≤ n. Nowadays, we can assume we

have stored such numbers with as high an accuracy as we want. Anyway, we can also calculate them directly through the
well known construction of the Tartaglia triangle, which needs n(n − 1)/2 sums. Taking into account that, for j = 1, all
coefficients in formula (3) are 1, the additional cost of Phase I corresponds to the calculation of the first k entries of the first
row of Bk, the entries 2, . . . , k of the second row of Bk, and so on until the k-th entry of the k-th row of Bk is reached, having a
computational cost of (2n−k−1)k/2 sums and (2n−k)(k−1)/2 products, (2n−k−2)(k−1)/2 sums and (2n−k)(k−1)/2
products, and so on up to n− k sums and n− k+ 1 products, respectively. So, Phase I requires O(nk2) sums and products.
The cost of Phase II corresponds to the calculation of the entries (2, 2), . . . , (k, k) of Nk, which require k(k− 1)/2 sums and
(k− 1)2/2 products.
We say that we perform an accurate computation if the relative error of the computation is bounded byO(ε), where ε is

the machine precision. Given an algebraic expression defined by additions, subtractions, multiplications and divisions and
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assuming that each initial real datum is known to high relative accuracy, then it is well known that the algebraic expression
can be computed accurately if it is defined by sums of numbers of the same sign, products and quotients (cf. p. 52 of [3]).
Observe that the formulae of Proposition 2.4 corresponding to Phase I can be computed accurately.
As for Phase II, the size of the elements appearingwhen using formulae of Proposition 2.5 can be very large in comparison

with the elements of Bk. In order to avoid this negative property, which could lead to overflow, let us present an alternative
to Phase II. Let us first recall that the growth factor is an indicator of the numerical stability of a numerical algorithm and it
measures the size of intermediate and final quantities relative to initial data. Then we can obtain the elements of the first k
diagonal entries of Nk without increasing the size of the corresponding elements of Bk. Since A is 0-convexity preserving, it
is clearly nonnegative, and so Bk = A(E1 · · · Ek) is also nonnegative. Performing E−11 Bk consists of subtracting from each row
of Bk the previous one. Since by applying Proposition 2.1 for r = 0, 1, we obtain that the (2, 2) entry of Nk (which coincides
with the (2, 2) entry of E−11 Bk) is nonnegative, and since it has been obtained by subtracting two nonnegative numbers, we
deduce that this entry is not greater than the same entry of Bk. In fact this happenswith all entries of E−11 Bk. We can continue
analogously with E−12 (E

−1
1 Bk) to deduce that its (3, 3) entry (which coincides with the (3, 3) entry of Nk) is not greater than

the same entry of Bk. We can continue the previous procedure until we obtain the (k, k) entry of Nk. This direct method
controls the growth factor because all intermediate quantities are nonnegative numbers obtained through the subtraction
of nonnegative numbers. This method has k steps of the elimination procedure. In the first step, we subtract from each row
2, . . . , k of Bk the previous one. In the second step, we subtract from each row 3, . . . , k of the obtained matrix the previous
one. We continue up to step k − 1, in which we subtract from the k-th row of the matrix obtained in the previous step
the previous row. This alternative procedure has clearly a computational cost of higher order: O(k3) elementary operations,
instead of k(k−1)/2 sums and (k−1)2/2 products required by performing Phase II through the formulae of Proposition 2.5.
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