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1. Introduction

The present work is devoted to the problem of how to determine the relative
desirability of di¤erent social outcomes, namely we achieve comparability between
populations of individuals with di¤erent characteristics (such as a vector of di¤er-
ent goods) with emphasis placed on their uneven distribution. Economic literature
on inequality measurement is mainly concerned with the comparison of univariate
indices of well-being, which record the di¤erences in distribution of income (and/or
wealth) within and between populations. However, such an approach is consid-
ered an inadequate basis for comparing individual disparities because people di¤er
in many aspects besides income. The analysis of di¤erent individual attributes is
indeed crucial to understand and evaluate inequality among persons. Therefore,
a very recent research trend is focused on the development of criteria for ranking
multivariate distributions of individual attributes.1 Unfortunately, few progress has
been made on extending the theory of inequality measurement from univariate to
the multivariate case (see e.g. [2], [3], [4], [7], [8]), the works on multidimensional
disparity comparisons are rather sparse and the problem is really complex. In the
present work, we follow the literature trend analyzing inequality in a context of
more than one (income) variable and addressing the problem to compare multi-
dimensional alternative distributions. In order to achieve our aim, we extend the
notion of generalized Lorenz (or dually weak majorization) preorder (see [5], [9]) to
a context of multiple individual attributes. In particular, we compare multivariate
distributions in terms of inequality when the means of their marginals di¤er. We
represent a multidimensional distribution as a matrix, whose generic entry consists
in the quantity of the kth good, k = 1; :::;m, allocated to the ith group of individ-
uals, i = 1; :::; n. A preorder of di¤erent distribution matrices is de�ned according
to their level of inequality and the properties of the preorder are provided. Using
certain tools of convex analysis, we show that such a preorder can be replaced by
the order de�ned as the inclusion of the columns (and of course of the rows) of
a distribution matrix in the convex hull de�ned by the set of all convex combina-
tions of the columns (and of course of the rows) of another distribution matrix and
analogously by a social evaluation function that records the level of inequality of
alternative individual distributions of goods.
Finally, we compare our preorder of matrix distributions with the main inequality

criteria for ranking multidimensional distributions discussed in economic literature
(see e.g. [2], [3], [4], [5], [7]).

2. Notation and definitions

We consider a �xed population of individuals N = f1; :::; ng, with n � 2, dis-
tinguished according to their level of income as follows: y1 � y2 � � � � � yn, with
yi the income of the ith individual in the distribution y 2 Rn. The concept that
the components of a distribution y are �more spread out�than the components of
a distribution x, has been studied, among others by Hardy, Littlewood and Polya
(HLP [1]), who showed that for any x, y 2 Rn, y is �less unequal than�x, denoted
y � x if and only if y = xP for some doubly stochastic matrix P ,2 or equivalently

1See Savaglio [8] for a survey.
2A doubly stochastic matrix is a square semipositive matrix, with the sum of all components

of each row or column equals to one.
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if and only if
Pn

i=1 g (xi) �
Pn

i=1 g (yi) holds for all continuous convex functions
g : R! R. It is well-known that the crucial assumption for the comparison of those
two distributions is that x and y have identical means.
Considerations on e¢ ciency (higher incomes are more desiderable than lower in-

comes) and international comparisons (GDP in France di¤ers from GDP in Italy)
forced researchers to check for conditions that enable us to compare distributions
where the total income distributed over di¤erent populations can di¤er. Scholars
have isolated the problem of comparing distributions with di¤erent mean by the
issue of analyzing income inequality among population with di¤erent sizes. Indeed,
let us suppose x, y 2 Rn are two vector distributions with means x and y respec-
tively, where x 6= y, and whose n components are ordered in terms of decreasing
incomes, then distribution x can be considered more unequal than y, denoted as
y �weak x, if and only if

(2.1)
kX
i=1

xi �
kX
i=1

yi, for k = 1; :::; n.

Condition 2.1 is referred to as distribution y is weakly majorized by x (see [5]
chapter 1) or dually we say that y is dominated by x according to the generalized
Lorenz preordering (see among others [9]). Morever, 2.1 is equivalent to say that:

(i): the set fy : y �weak xg is the convex hull of points obtained by permuting
the components of x, or that

(ii): the inequality
Pn

i=1 g (yi) �
Pn

i=1 g (xi) holds for all continuous convex
functions g : R! R (see [5] chapter 3).

In what follows, we extend the notion of ordering between vectors in 2.1 and the
results mentioned above as (i) and (ii), to the case of rectangular matrices, namely
multidimensional distributions representing a population of n agents among which
real-valued attributes are distributed.
Indeed, we consider a �xed population of individuals N = f1; :::; ng with n � 2,

distinguished for a set M = f1; :::;mg of attributes with m � 2 in order to avoid
trivial quali�cations. A distribution matrix, denoted as X = (x1; :::; xm), which is
a collection of m column vectors, is a matrix where xj are all column vectors of
lenght n, of the following form:

(2.2)

a b ::: l ::: m  � attributes
people
#

z }| {

X =

26666664
x1;a x1;b ::: x1;m
:
:
:

:
:
:

xi;l

:
:
:

: : : :
xn;a ::: : xn;m

37777775
As mentioned above, we suppose that the element xi;j 2 X, represents the

quantity of the jth real-valued attributes (as e.g. the net annual �ow of the jth
commodity) belonging the the ith individual. The ith row of X is denoted rowi or
xi;�, the jth column colj or x�;j , and A � Rn;m is the real vector space of (n;m)
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matrices with non-negative real entries. A nonegative square matrix X (i.e. a
matrix such that xi;j � 0 for every xi;j 2 X and with the same number of rows and
columns) with all its row sums equal to 1 is said to be row-stochastic or Markovian
for its role in the theory of discrete Markov chains. When the sum of all components
of each row or column of a matrix is equal to one, a nonnegative square matrix X is
said to be double stochastic. If each row and column of a doubly stochastic matrix
has a single unit and all other entries are zero, matrix � is said to be a permutation
matrix.3

In order to establish when a given distribution X is more unequal than Y, the
economic literature on multidimensional inequality have introduced several notions
of matrix-ranking as the following:

De�nition 1. Let X, Y 2 A, then X is said to majorize Y, written Y � X, if
there exists a n� n doubly stochastic matrix P, such that PX = Y.

The foregoing de�nition extends the notion of majorization on integers and the
idea of transfer �rst introduced by Muirhead [6] for the unidimensional case to
multivariate distributions. It essentially means that the average is a smoothing-
operation, which makes the components of Y more spread out than components of
X. It is now well established (see e.g. Marshall and Olkin [5] and Koshevoy [3])
that Y � X is tantamount to require that the following inequality:

(2.3)
nX
i=1

f (xi) �
nX
i=1

f (i)

holds for any convex function f : Rm ! R de�ned on the real-vector space of the
columns of distribution matrix.

3. Results

In contrast to the ordering � discussed in the previous section, we introduce a
binary relational system that compares multidimensional distributions of individual
attributes with di¤erent means in terms of their relative inequality:

De�nition 2. Let X, Y 2 A be two matrices. Then Y is said to be w-majorized
by X, written Y �wX, if there exists a n � n row-stochastic matrix P, such that
PX = Y.

We illustrate the foregoing de�nition by considering the following:

Example 1. Let X, Y 2 R2;3 be two matrices representing a population of two
individuals endowed with the same three goods with di¤erent a uence and distrib-
ution:

X =

�
2 5 1
1 1 7

�
and Y =

�
1:8 4:2 2:2
1:5 3 4

�
Since there exists a row-stochastic matrix:

P =

�
0:8 0:2
0:5 0:5

�
such that PX = Y, Y �wX, then we conclude that X has a greater level of dispar-
ity than Y as each row of latter is a convex combinationof the rows of the former.

3Notice that the permutation matrices represent the extremal points of the set of doubly
stochastic matrices (see [5]).
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In words,if we interpret the rows of a matrix as individuals, it is as if we compare
a population with a set of attributes (the columns) in terms of inequality at di¤erent
periods of time, when individual relative a uence is changed. The ordering �w is
a preorder, i.e. a re�exive and transitive binary relation. It di¤ers from the ordering
� studied in [7], which compares matrices with a di¤erent number of rows (therefore
with di¤erent population units), but the same number of columns. Moreover, w-
majorization is equivalent, in the univariate case, to 2.1 for distributions with
di¤erent means and amounts to the replacement of each entry of a distribution
matrix by averages of the column distribution components of the latter. Finally, it
will be useful to notice that the following equivalence:

Claim 1. Y�wX if and only if there exists a row-stochastic matrix P such that
Px�;j = y�;j for any j = 1; :::;m,

always holds true.
In fact, it is easy to prove that the binary relation �w is nested between the

matrix majorization � and vp-majorization � analyzed in [7] (i.e. � implies �w,
which implies �). But, �w does not in general imply � as it is straightforward to
check in the Example 1 above. On the contrary, if X and Y have the same column
marginal distributions then �w implies � as it is shown by the following:

Proposition 1. Let X, Y 2 A and P be a square matrix with non-negative entries
and such that PX = Y. If Y�wX and etX = etY, then Y � X.

Proof. It is known (see e.g. [5] chapter 15 and [3]) that in a binary relational
system comparing rectangular matrices X, Y 2 Rn;m, if it adds a suitable cul-
umn vector e = (1; 1; :::; 1) to both matrices under consideration, then their rel-
ative ranking is preserved. In particular, if X, Y 2 A, then Y�wX if and
only if A = [Y; e]�w [X; e] = B. Now, suppose A�wB, then there exists a row-
stochastic matrix P such that PB = A. Postmultiplying both sides for the so-called
Moore-Penrose pseudoinverse A�1 of A, we get BA�1 = PAA�1. But AA�1 = O
is the orthogonal projection matrix onto A, then BA�1 = PO, with PO, that
has non-negative entries by assumption. Thus, we show tha PO (and then, of
course, BA�1) is doubly stochastic in order to get the result required, namely that
POe = e and etPO = et. Since Oe = e, then Pe, but Pe = e, because P is row-
stochastic, hence the thesis. On the other hand, etPO = etPAA�1 = etBA�1,
but etA = etB by assumption, then etAA�1 = etO = et, i.e the thesis. Therefore,
PO = BA�1 is doubly stochastic. Recalling that A�wB is equivalent to Y�wX
the required result. �

Recently, Koshevoy [3] has introduced standard tools of convex analysis in the
theory of inequality measurement. In fact, he de�nes the multivariate extension of
the Lorenz preordering as the inclusion between the zonotopes of two multivariate
distributions.4 More in general, if H = co f(zi;1; :::; zi;m) ; i = 1; :::; ng denotes the
convex hull of a matrix Z 2 Rn;m, namely the set of convex combinations of the
row-vectors of Z, then we say, given two matrices X;Y 2 Rn;m, that Y has lower
inequality than X if it lies in the convex hull of all column (and, of course, all row)
permutations of X. In particular, it holds true that:

4Notice that a zonotope is the �nite Minkowski sum of line segments in Rm, generated by the
column vectors of a matrix distribution.
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Proposition 2. Let X, Y 2 A, then Y�wX if and only if Y � co (X).

Proof. ()) Take Y�wX then PX = Y which is tantamount to:

rowi (Y) = [ri;1; :::; ri;d] =
dX
i=1

pi;k colk (X) =
X
i j

pi;k coli k for i = 1; :::; n,

i.e. row (Y) 2 co (col (X)) as required.
(() Assume Y � co (X), that is equivalent to rowi (Y) =

P
i j pi;k coli k, for

i = 1; :::; n. That is a system of n linear equation in d variables (with n � d), a
solution of which is a matrix P (with the constraint that

P
k pi;k = 1), such that

PX = Y, namely Y�wX. �

According to Kolm [2], a matrixY is said to be price-majorized byX ifXp � Yp
for all p 2 Rm, whereXp = ((x1;�;p) ; :::; (xn;�;p)) and � is interpreted in the sense
of standard majorization between vector distributions. Hence:

Corollary 1. Let X, Y 2 A, if X price-majorized Y then Y�wX.

Proof. Suppose X price-majorized Y but that Y is not w-majorized by X. This
implies that there at least a rowi (Y) =2 co (col (X)). Then, there exists a hyperplane
such that: hrowi (Y) ;pi � t and hrowj (X) ;pi < t, for all j = 1; :::; n, p 2 Rm and
t > 0, and such that h�i is the inner product of two vectors.
However, by de�nition of price-majorization we have that

y1 = row1 (Y)p � yi = rowi (Y)p �t > row1 (X)p = x1
a contradiction and therefore the required result. �

For each set S � f1; :::;mg, let ZS denote the submatrix of Z induced by the
columns indexed by the elements in S. Then, the preordering induced by the w-
majorization on set A satis�es the following properties:

Property D: If Y�wX, then YS�wXS for each S � f1; :::;mg;
Property C: If Y�wX, then rank (Y) � rank (X);
Property S: If Y�wX and R;Q 2 Rn;n are two permutation matrices, then
RY�wQX.

The foregoing properties are provided using elementary arguments on stochastic
matrix as it is shown by the following:

Proposition 3. For each X, Y 2 A, w-majorization �w satis�es Properties D,
C and S.

Proof. All properties can be deduced directly from the de�nition of �w , consid-
ering that the set of row-stochatic matrices is closed under matrix products. �

Following the traditional approach in economic literature on inequality measure-
ment, we now introduce welfare considerations into the present multidimensional
framework. We de�ne a set �(Rm) as the set of all real-valued convex functions
de�ned over a nonempty compact convex set C � Rk;m. We establish a counterpart
of the result 2.3 mentioned above:

Proposition 4. Let X, Y 2 A. Then the following statements are equivalent:
(i) Y�wX;
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(ii) For each integer 1 � k � n and  2 �k (Rm), we have that
(3.1) max

k
 (xk) � max

k
 (yk)

Proof. ()) According to Proposition 2 above, w-majorization �w is equivalent
to row (Y) � co (row (X)). Now, row (Y) is convex, because any rowi (Y) =Pn

j=1 pi;j rowj (X), where pi;j are the entries of some row-stochastic matrix P
such that Y�wX, and co (row (X)) is also convex by de�nition. Then, follow-
ing [10], we know that given two convex sets A and B, A � B if and only if
maxz2A � (z) � maxz2B � (z) for every convex function de�ned over A[B � Rk;m
and z 2 Rm. Hence, the result required.
(() Let us assume that maxk  (xk) � maxk  (yk) for every real-valued convex

function  2 �k (Rm). That is equivalent to say that the set of all rows of Y is
convex and it is a subset of the convex set of all rows of X. But, this is tantamount
to co (row (Y)) � co (row (Y)), namely Y�wX. �
Inequality 3.1 can be interpreted as a function that evaluates the inequality

of each person in a society. Moreover, it could be considered the dual of a cor-
responding (multidimensional) inequality index. Finally, convexity of  captures
the inequality aversion when consider a distribution X more �spreading out�than
distribution Y.
In [7], we have characterized the support functions, namely real-valued sublinear

functions, as the class of functions preserving the preordering � (see [7], Therem
3) . In fact, w-majorization �w represents a subordering of the ranking induced
by � (i.e. �w implies �). Then, it implies that the class of functions preserving
the binary relation �w must be larger than the latter one, as it is provided by the
following:

Proposition 5. Let X, Y 2 A, then the following conditions are equivalent:
(a) Y�wX;
(b) 	 (Y) � 	(X) holds for any 	 : A ! R of the following form,for each

Z 2 A, 	(Y) = maxk 'z (xk), with 1 � k � n, where 'z : Rm ! R, is a
linear function de�ned by 'z (z) = hz; vi for every v 2 Rm.

Proof. ()) According to Proposition 2 above, w-majorization �w is equivalent to
row (Y) � co (row (X)), which is tantamount to maxi hxi; vi � hrow (Y) ; vi for any
v 2 Rm. The latter expression implies maxi hxi; vi � maxi hyi; vi or equivalently
that 'z (xi) � 'z (yi) as required.
(() maxi hxi; vi � maxi hyi; vi for any v 2 Rm implies that the rows of matrix

Y rely in the convex hull of all rows of X, hence the thesis. �
An important problem to be considered concerns the characterization of the

linear operators that preserve the w-majorization �w in the sense explained by
the following:

De�nition 3. Let L be a linear space of rectangular matrices, let = be a linear
operator de�ned on L and let < be a relation on L. We say = preserves < if:

< (= (X) ;= (Y)) whenever < (X;Y) .
In fact, we guess, for the moment, that:

Theorem 1. A linear operator = : A ! A preserves w-majorization if and only if
= (Z) = SZP for all Z 2 A and S 2 Rn;n and P a m�m permutation matrix.
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4. Conclusions and final remarks

We explored the possibility to theoretically extend inequality analysis from the
univariate to the multivariate setting. Our main aim was to provide a multidimen-
sional counterpart of the generalized Lorenz preorder for the case in which people
di¤er in many attributes besides income.
We know that the approach that analyzes multidimensional inequality by using

measure indices is very problematic because it requires judgements regarding the
relative importance of the various individual attributes, the degree of substitution
between them and the degree of inequality aversion in society. At the same time,
the approach to multidimensional inequality via stochastic dominance introduces
further layers of complexity to the measurement of disparity in several dimensions
as pointed out in [8], drawbacks that need to be resolved in order to use of multi-
dimensional inequality analysis in comparative studies.
On the contrary, this work, using simple tools of convex analysis, shows how our

approach can be of some interest for the analysis of inequality when several indi-
vidual characteristics are simultaneously considered and o¤ers a signi�cant scope
for further developments in the study of multidimensional inequality.
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