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1 Introduction

With the aim of illustrating the subject matter of this paper, consider the
following example. There are two areas, and in each of them several in-
vestment opportunities are available. Every agent has to decide where to
invest. The profitability of each investment opportunity depends (positively
or negatively) upon how many people make that choice. Agents make their
investment decisions by looking at other agents and imitating some of them,
for instance those who gain higher (or the highest) returns. However, not
all agents can be observed, but only those who invest in the same area.
With a very small probability agents make mistakes and choose whatever
investment in whatever area.

Suppose that there is a public authority which can intervene making the
return on any realized investment a public information. Is such a policy
welfare enhancing? Or instead is it better to leave the existing information
structure? The present paper tries to answer these questions with a certain
generality.

The question whether public information is socially beneficial has been
addressed in the literature since long time (Hirshleifer, 1971). Recently,
Morris and Shin (2002) show that in a model with complementarities public
information can be detrimental, since agents are very reactive to it and this
can magnify the damage done by any noise. In the investment game of
Angeletos and Pavan (2004) the frequent provision of public information is
instead beneficial, even if that may lead to an increase in volatility. Angeletos
and Pavan (2007) relate the ambiguous role played by more precise public
information to discrepancies between the effects on the equilibrium use of
information and the effects on the efficient use of information.

This paper faces a similar question from a radically different perspective.
Here there are no noisy signals representing private and public information.
Each agent has certain but incomplete information coming from her per-
sonal experience, that is her current choice. In this setting, complete (or
global, as generally denominated here) information can be interpreted as
the result of the disclosure of the whole of information by a public author-
ity. Furthermore, the model I build is not based on standard game theory
but is instead of evolutionary type, with individual behavior driven by the
imitation of successful agents. In some cases stochastic stability is applied
to get a unique prediction for the long run behavior of the system, as widely
used in economics since Young (1993) and Kandori et al. (1993) (see Young
(1998) for a comprehensive treatment). Probability distributions over states
relative to different information structures are then compared in order to
rank them, if possible, in terms of welfare.

The main issue in the paper is how information is used to solve a co-
ordination issue. Positive (negative) spillovers occur when the more people
choose an alternative, the higher (the lower) the individual payoff; further-
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more, spillovers are denominated pure if any two alternatives chosen by
the same number of agents are worth the same. It is self-evident that in
the presence of pure positive spillovers coordination is welfare enhancing,
and the converse is true in the presence of negative spillovers. Since agents
choose only what they are informed about, having the same information
is intuitively better when they have to coordinate, while having different
information is intuitively better when they have to miscoordinate. Indeed,
more information makes more agents behave according to the same rule,
but it can also change such rule from deterministic to probabilistic or, more
in general, it can disperse the mass of probability. This generates mixing
effects which counteract the previous intuition.

However, when working with the stochastically stable distributions these
mixing effects disappear since the recurrent states are homogeneous within
each information set. This allows to establish the welfare enhancing effect of
more (less) information in the presence of pure positive (negative) spillovers.

The final part of the paper deals with a more general class of interactions.
When preferences do not depend solely upon how many do something but
also upon what they choose, a selection issue emerges and the previous result
ceases to hold. The reasons of such a failure are exemplified and, then, a
general condition under which global information is never welfare superior
to local information is identified.

The next sections are an attempt to formalize these sketched issues and
to analize their interplay in shaping the results. More precisely, section 2
presents the model and introduces preliminaries. Section 3 compares differ-
ent information structures in the presence of pure negative spillovers, while
section 4 briefly does the same in the presence of pure positive spillovers.
Section 5 explores a more general class of interactions where a selection issue
emerges. Section 6 concludes.

2 The model

Consider the quadruple < M, C, I,<>, where M is a finite set of agents of
cardinality m, C is a finite set of choices (or alternatives) of cardinality n, I =
{I1, I2, . . . , Il} is a partition of C in information sets, and < is a preference
relation over C × {1, 2, . . . ,m}, with (a, k) < (b, h) to be interpreted as
“choosing alternative a when k agents choose alternative a is at least as
good as choosing alternative b when h agents choose alternative b”. The
relations � and ∼ are derived as usual.

Define global information as the partition Ig with a unique information
set comprising all alternatives. An information structure1 I1 is said to be

1Please note that information structures in this framework have nothing to do with
information structures in game theory, as originating from the seminal work of Aumann
(1976).
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more detailed than an information structure I2 when I2 is a strictly finer
partition than I1.

The preference relation is said to exhibit negative spillovers if for any a ∈
C, for any 1 ≤ k < m, (a, k) � (a, k+1). Analogously, the preference relation
is said to exhibit positive spillovers if for any a ∈ C, for any 1 ≤ k < m,
(a, k + 1) � (a, k).2 The preference relation is said to exhibit pure negative
spillovers (pure positive spillovers) if it exhibits negative spillovers (positive
spillovers) and (a, k) ∼ (b, k) for any a, b ∈ C and for any 1 ≤ k ≤ m.

A state of the system is defined as a function x : M −→ C assigning a
choice to every agent.

Given a state x, an agent r observes any agent s such that x(r) and x(s)
belong to the same information set. Call Or(x) the set of agents observed
by r in state x and, with some abuse of notation, let x[Or(x)] be the set of
their choices. By definition r ∈ Or(x) and hence x(r) ∈ x(Or(x)) for any x.

Consider the following class of imitation rules.

Imitation rule. The behavioral rule of agents satisfies the following two prop-
erties:

(P1) if an alternative is chosen by agent r with positive probability at the
next time then it belongs to x(Or(x));

(P2) if an alternative is maximally preferred within x(Or(x)) then it is cho-
sen with positive probability by r.3

Note that non-maximally preferred alternatives in x(Or(x)) can be cho-
sen with zero probability. This class encompasses virtually all forms of
imitation and mixtures between imitation4 and inertia.5 As particular cases
there are most of the imitation rules used in economics, such as the imita-
tion of those who performed the best (Vega-Redondo, 1997) the imitation
of those who performed better with a probability increasing in the payoff
differential (Schlag, 1998, 1999) and the imitation of anyone with a proba-
bility increasing in the observed payoff (Schlag, 1999). Every agent in M is

2These definitions are adapted from Cooper and John (1988).
3This last condition allows to avoid cycles of imitative behaviors.
4One can think about imitation as naturally leading to copy out the observed best

alternative. However, agents might be able only to compare their own choices with an
observed choice, but not observed choices between them. In such a case it would not be
possible to determine the best, and agents might be reasonably supposed to copy any
better choice with positive probability. The last imitation rule is also plausible when an
agent can potentially observe any agent in her own information set, and she is randomly
matched with only one of them, choosing to copy her choice if not inferior. As an extreme
case, agents might be unable even to compare observed choices with their own, and hence
they might imitate anyone they observe with positive probability.

5Inertia can be included by simply assuming that agents always keep on making their
own choice with a certain probability. Note that pure imitation is admitted but pure
inertia not.
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assumed to follow the same behavioral rule in this class. Actually, any re-
sult of the paper holds even under heterogeneous behavioral rules. However,
it is clear that more information can hinder coordination if people use the
additional information differently. What I want to point out is that even if
people adopt the same behavioral rule, still another kind of hindrance exists
due to the possible increase in the dispersion of choices.

The dynamic process so defined is a Markov chain, call it M0. Define
X∗ as the set of states which are homogeneous within each information set,
formally X∗ = {x ∈ X : ∀r, s ∈ M, (∃Ii ∈ I : x(r) ∈ Ii ∧ x(s) ∈ Ii) ⇒
x(r) = x(s)}. The following lemma is easily established.

Lemma 1. The recurrent classes of the Markov chain M0 are the singletons
containing the states in X∗.

Proof. Clearly the states in X∗ are absorbing states of M0, since any
agent observes nothing different to imitate.

Take a state out of X∗. Choose in each information set a homogeneous
group of agents who are choosing a maximally preferred alternative therein.
Each of those agents has a positive probability to keep on making the same
choice, by (P2). Any other agent imitates one of them with positive prob-
ability, again by (P2). Since the number of agents is finite, from any state
there is a positive probability to reach in a single period a state in X∗. �

The initial condition clearly matters for establishing the final state. For
instance, if the system starts from whatever absorbing state, it will remain
there forever. In other words, the system is not ergodic. In order to get a
unique prediction and to add a layer of realism, perturbations of individual
choices are introduced. In particular, at any time each agent with probabil-
ity ε > 0 makes a random choice, with any alternative in C equally probable.
This perturbed dynamic process, which will be denoted by M ε, is an irre-
ducible and aperiodic Markov chain.6 Let µt,ε(x|x0) be the probability to
be in state x at time t given x0 as initial state. By known results, as time
goes to infinity the system converges to the unique stationary distribution,
denoted by µ∗,ε, irrespectively of the initial condition. More precisely, if X is
the state space, i.e. the set containing any conceivable function x : M−→ C,
then µε is a probability distribution over X, where µε(x) represents, as time
goes to infinity, both the proportion of time that the system will have spent
on x and the probability that the system will be exactly at x.

However, being the stationary distribution hard to compute in general,
it has become standard to consider its limit for a vanishing ε. By so do-
ing the stochastically stable distribution is obtained, denoted by µ∗, and

6A Markov chain is said irreducible when there is a positive probability of moving from
any state to any other state in a finite number of periods, and it is said aperiodic when
for every state x unity is the greatest common divisor of the set of all the integers r such
that there is a positive probability of moving from x to x in exactly r periods.
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some techniques have been developed to determine which states are visited
with positive probability in such distribution (Young, 1993; Kandori et al.,
1993; Ellison, 2000). Hereafter, I will use the pedices 1, 2 and g for prob-
ability distributions to refer them to the information structures I1, I2, Ig

respectively.
The following lemma provides a characterization of the stochastically

stable states of any information structure different from global information,
independently of the preference relation.

Lemma 2. If the information structure is different from global information,
then the stochastically stable states of the perturbed Markov chain M ε are
the states in X∗.

Proof. By lemma 1 it is known that a state out of X∗ cannot be
stochastically stable, since it is neither an absorbing state.

At least one state in X∗ must be stochastichally stable. Call it x∗. It
is known (see, for instance, Lemma 1 in Ben-Shoham et al. (2004)) that if
the edge (x1, x2) has resistance 1,7 x1 is stochastically stable and x2 is an
absorbing state, then x2 is stochastically stable. Therefore, it is sufficient
to prove that there is a path of absorbing states from x∗ to any other state
x′ in X∗ with the resistance of any edge equal to 1. Let d be the distance
between x∗ and x′, that is the number of agents who make in x∗ a different
choice from x′. I will show how to find an appropriate path of absorbing
states which reduces the distance to x′ by 1. Then the result follows by
induction.

Suppose x∗(r) = a 6= x′(r) = b, with a ∈ Ii and b ∈ Ij . Case i): if no
agent in x∗ makes a choice in Ij different from b, then a single perturbation
can make agent r choose b, so reaching an absorbing state with only d − 1
agents making a different choice with respect to x′. Case ii): if instead other
agents in x∗ make a choice in Ij different from b, first note that those agents
cannot make the same choice in x′, otherwise x′ would not be homogeneous
within each information set. Second, note that there exists an information
set different from Ij since the information structure is different from global
information. Then each of those agents can move out of Ij with a single
perturbation, every time reaching an absorbing state with no more than d
agents making a different choice with respect to x′. At most, when all of
them have left, the same reasoning as in case i) applies. �

In the following sections, welfare evaluations are made comparing distri-
butions over states. In particular, a distribution µ1 is said welfare superior
to a distribution µ2 when for every agent µ1 first-order stochastically domi-
nates µ2.

7The resistance from state x1 to state x2 is defined as the minimum number of pertur-
bations required to move from x1 to x2 with positive probability.
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3 Pure negative spillovers

In the presence of pure negative spillovers, coordination on the same choice is
harmful. It seems intuitive that the more detailed the information structure,
the more agents observe each other and coordinate through imitation on the
same choice. The following example illustrates.

Example 1. Suppose C = {a, b}, m = 2 and the preference relation ex-
hibits pure negative spillovers. Furthermore, assume an imitation rule which
in case of ties provides to choose between the alternatives with equal prob-
ability. Define I1 = {{a}, {b}}.

If both agents are making the same choice in the initial state x0, then
µ1,ε

g (·|x0) = µ1,ε
1 (·|x0). Let α be the probability they miscoordinate un-

der such unique distribution. If instead the agents are making different
choices in the initial state, then the probability β1 to miscoordinate under
I1 is larger than the probability βg to miscoordinate under Ig (since β1 =
(1− ε/2)2 +(ε/2)2 > 1/2 = βg). Call pt

1 and pt
g the probability to miscoordi-

nate after t periods under, respectively, I1 and Ig. These probabilities can
be defined recursively: pt+1

1 = pt
1β1 +(1− pt

1)α and pt+1
g = pt

gβg +(1− pt
g)α,

with p1
1 ≥ p1

g since they are either both equal to α or p1
1 = β1 and p1

g = βg.
So, pt

1 > pt
g for any t ≥ 2 and µt,ε

1 (·|x0) turns out to be welfare superior to
µt,ε

g (·|x0) for t ≥ 2 whatever the initial state.

However, the class of imitation rules that is considered in this paper is
large enough for the previous intuition to be proven incorrect. In particular,
a more detailed information structure does not necessarily yield a welfare
inferior distribution when the time horizon is finite. More detailed informa-
tion makes more agents align their expected choices at the next time. This
per se favors coordination. However, more information can also cause the
behavioral rule to share out the probability of the next choice among more
alternatives. In such a case, the increase in the dispersion of choices reduces
coordination. Examples 2 and 3 provide some simple instances. Such ex-
amples are arranged so that you can use behavioral rules where only not
inferior choices are copied with positive probability. This to be convinced
that the source of problems would not be eliminated by the restriction to
this kind of rules.

Example 2. Take C = {a, b}, m = 3, a preference relation with pure
negative spillovers and I1 = {{a}, {b}}. Suppose also that the imitation
rule of every agent is such that she keeps on making her previous choice
with some positive probability. To simplify calculations, let ε be so small to
be negligible. Take as initial condition a state x0 where two agents choose
a and one agent chooses b. The probability that one of the agents initially
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choosing a finds herself alone under µ1,ε
g (·|x0) is positive, while the same

probability is zero under µ1,ε
1 (·|x0). For such an agent µ1,ε

1 (·|x0) does not
first-order stochastically dominate µ1,ε

g (·|x0).

Example 3. Consider C = {a, b, c}, m = 6, a preference relation with
pure negative spillovers and I1 = {{a}, {b}, {c}}. Assume an imitation rule
without inertia where every observed choice strictly better than her own
is imitated with positive probability. Take an initial state where an agent
chooses a, two agents choose b and the remaining three agents choose c.
Let ε be so small to be negligible. The probability that one of the agents
initially choosing c finds herself alone is positive under µ1,ε

g (·|x0) and zero
under µ1,ε

1 (·|x0). Clearly µ1,ε
1 (·|x0) does not first-order stochastically domi-

nate µ1,ε
g (·|x0) for such an agent.

The previous examples raise some doubts about the choice of first-order
stochastic dominance for welfare comparisons. Is it too demanding to be
of any help for the evaluation of information? The following proposition
shows this is not the case, at least when working with the stochastically
stable distributions. Intuitively, the states where mixing effects are present
occur with negligible probability in the very long run in the presence of rare
perturbations. In fact, they are not recurrent since the only recurrent states
are those which are homogeneous within each information set. Therefore
those states become irrelevant and the welfare superiority of less detailed
information structures can be established.

Proposition 1. Suppose the preference relation exhibits pure negative spill-
overs. If I1 is more detailed than I2, then µ∗2 is welfare superior to µ∗1.

Proof. I consider I1 and I2 such that I1 = {I1, I2, . . . , Ii, . . . , Il},
I2 = {I ′

1, I
′′
1 , I2, . . . , Ii, . . . , Il} with I1 = I

′
1 ∪ I

′′
1 . In fact, any compari-

son between more/less detailed information structures can be reduced to a
sequence of such simpler comparisons. To simplify the following exposition,
define p(A, a|µ) and p(A,B|µ) as the probability under distribution µ that
all and only the agents in set A ⊆M choose, respectively, alternative a and
alternatives in B ⊆ C; define also p(A1, a1;A2, a2|µ) as the probability under
distribution µ that all and only the agents in A1 choose alternative a1 and
all and only the agents in A2 choose alternative a2.

Take whatever initial state x0 and whatever non-empty subset A of
agents. Then p(A, a|µ1,ε

1 ) = p(A, a|µ1,ε
2 ) for any a ∈ Ii 6= I1. This is so

because any agent currently choosing out of Ii will make choice a with prob-
ability ε/n independently of the rest, while agents currently choosing in Ii

will make choice a depending on the state of the system restricted to Ii

(which is the same under the two distributions). Being this true for any
subset A of players and for any a ∈ Ii, the probability distribution over the
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states of the system restricted to Ii at the next time is the same under I1

and I2. Therefore the same reasoning can be applied indefinitely obtaining
that p(A, a|µt,ε

1 ) = p(A, a|µt,ε
2 ) for any a ∈ Ii 6= I1 and for any t. As a conse-

quence, this is still true in the limit for t →∞, i.e. p(A, a|µ∗,ε1 ) = p(A, a|µ∗,ε2 ),
and in the limit for ε → 0, i.e. p(A, a|µ∗1) = p(A, a|µ∗2).

Similarly, p(A, I1|µt,ε
1 ) = p(A, I1|µt,ε

2 ) for any t, and hence p(A, I1|µ∗1) =
p(A, I1|µ∗2) too. In fact, any agent choosing out of I1 makes a choice in I1

with probability ε||I1||/n independently of the rest, while agents choosing in
I1 keep on choosing in I1 with probability 1− ε(n− ||I1||)/n independently
of the rest.

Now, by lemma 1 the following two equalities hold, and by lemma 2 each
term of the sum in the right-hand side of the second equality is positive:

p(A, I1|µ∗1) =
∑
a∈I1

p(A, a|µ∗1)

p(A, I1|µ∗2) =
∑

A1∪A2=A,
A1∩A2=∅

∑
a1∈I

′
1,

a2∈I
′′
1

p(A1, a;A2, b|µ∗2)

Finally, take any agent r and consider every subset Ar of players con-
taining r. Therefore:

p(Ar, a|µ∗1) = p(Ar, a|µ∗2) if a /∈ I1∑
a∈I1

p(Ar, a|µ∗1) =
∑

A1∪A2=Ar,
A1∩A2=∅

∑
a1∈I

′
1,

a2∈I
′′
1

p(A1, a1;A2, a2|µ∗2)

Now, since by the assumption of pure negative spillovers agent r is better
off in any state where the agents in Ar are actually split into alternatives
a1 and a2 instead of being all grouped in a single alternative, first-order
stochastic dominance follows. �

The following proposition weakens the assumption on the preference re-
lation, which is no more required to exhibit pure negative spillovers glob-
ally. In fact, what is now required is that when all the m agents make
the same choice they get the least preferred outcome whatever the choice.
Note that there is no requisite about the preference relation restricted to
C × {1, 2, . . . ,m − 1}. Hence, for example, a group of m − 1 agents can be
better off than an isolated agent.

Proposition 2. Suppose the preference relation is such that (a, k) � (b, m) ∼
(c,m) for any a, b, c ∈ C and for any 1 ≤ k < m. If I1 6= Ig, then µ∗1 is
welfare superior to µ∗g.
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Proof. Suppose I1 = {I1, I2, . . . , Il}. Let A = {A1, A2, . . . , Al} be
a generic partition of set M in l subsets (some of them possibly empty).
Define p(A1, a1;A2, a2; . . . ;Al, al|µ) as the probability under distribution µ
that all and only the agents in A1 choose alternative a1 and all and only the
agents in A2 choose alternative a2 and . . . and all and only the agents in Al

choose alternative al.
By lemma 1 the following two equalities hold, and by lemma 2 each term

of the sum in the right-hand side of the second equality is positive:

1 =
∑
a∈C

p(M,a|µ∗g)

1 =
∑
A

∑
a1∈I1,a2∈I2,

...,al∈Il

p(A1, a1;A2, a2; . . . ;Al, al|µ∗1)

Since by hypothesis any agent is better off when grouped with less than
other m− 1 agents, first-order stochastic dominance follows. �

4 Pure positive spillovers

This section is specular to the previous one and therefore I will be much
shorter in explanations. The same intuition as before applies to the coordi-
nation issue, with the only difference that in the presence of pure positive
spillovers coordination is beneficial.

The following examples are simple modifications of those used for pure
negative spillovers and illustrate analogous points. Again, you can use be-
havioral rules where only not inferior choices are copied with positive proba-
bility. Obviously, the conclusions are reversed but the same ambiguity about
the evaluation of information over finite time horizons follows.

Example 1′. Consider example 1 after substituting pure negative spill-
overs with pure positive spillovers. All the reasoning remains exactly the
same, with just the opposite result due to the different assumption on the
preference relation.

Example 2′. Take C = {a, b}, m = 5, a preference relation with pure
positive spillovers and I1 = {{a}, {b}}. Suppose also that the imitation rule
of every agent is such that she keeps on making her previous choice with
some positive probability. To simplify calculations, let ε be so small to be
negligible. Take as initial condition a state x0 where two agents choose a
and three agents choose b. The probability that one of the agents initially
choosing a finds herself alone under µ1,ε

g (·|x0) is positive, while the same
probability is zero under µ1,ε

1 (·|x0). For such an agent µ1,ε
g (·|x0) does not

first-order stochastically dominate µ1,ε
1 (·|x0).
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Example 3′. Consider C = {a, b, c}, m = 9, a preference relation with
pure positive spillovers and I1 = {{a}, {b}, {c}}. Assume an imitation rule
without inertia where every observed choice strictly better than her own is
imitated with positive probability. Take an initial state where four agents
choose a, three agents choose b and the last two agents choose c. Let ε be so
small to be negligible. The probability that one of the agents initially choos-
ing c finds herself alone is positive under µ1,ε

g (·|x0) and zero under µ1,ε
1 (·|x0).

Clearly µ1,ε
g (·|x0) does not first-order stochastically dominate µ1,ε

1 (·|x0) for
such an agent.

Again, the stochastically stable distributions allow to rank information
structures more easily. The following propositions 1′ and 2′ are the counter-
part of propositions 1 and 2.

Proposition 1′. Suppose the preference relation exhibits pure positive spill-
overs. If I1 is more detailed than I2, then µ∗1 is welfare superior to µ∗2.

Proof. The same as for proposition 1, with the reversed conclusion due
to pure positive spillovers. �

Proposition 2′. Suppose the preference relation is such that (a, k) ≺ (b, m) ∼
(c,m) for any a, b, c ∈ C and for any 1 ≤ k < m. If I1 6= Ig, then µ∗g is
welfare superior to µ∗1.

Proof. The same as for proposition 2, with the reversed conclusion due
to pure positive spillovers. �

5 Selection

Most of the analysis in the previous two sections has been carried out under
the simplyfying assumption of a preference relation which depends uniquely
upon the number of agents making a choice, not upon the choice itself. It
is potentially interesting to investigate whether the previous results hold
under weaker assumptions and, if it is not the case, what type of problems
emerges. All the discussion in this section is developed considering only be-
havioral rules where inferior choices are not copied. This allows to interpret
selection as standard in evolutionary theories: what has proven better tends
to spread. Moreover, since this section mainly provides counterexamples,
having restricted the class within which looking for strengthens the results.
Finally, note that proposition 3 holds under general behavioral rules.

What can be said by assuming only negative spillovers instead of pure
negative spillovers? Unfortunately, very little, as the next two examples
show.
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Example 4. Suppose there is an action in C, call it a, which is very bad, so
bad that (a, 1) ≺ (b, m) for any b ∈ C. Suppose also that the preference re-
lation exhibits negative spillovers. Assume an imitation rule where observed
inferior choices are not copied. Consider global information. From the state
where all agents choose a, call it x̃, a single perturbation is sufficient to move
the system away, while from any other homogeneous state m perturbations
are required to move the system to x̃. By a mutation counting argument
it is intuitive that x̃ is not a stochastically stable state under global infor-
mation. By lemma 2 instead, under any less detailed information structure
each agent has a positive probability to choose a in the stochastically stable
distribution. Therefore, µ∗g is not welfare inferior to any other stochastically
stable distribution.

One could argue that the crucial point in the previous example is that
alternative a is dominated, and that therefore a single perturbation is not
sufficient to move the system to x̃. One could hope that by requiring (a, 1) �
(b, m− 1) the welfare superiority of less detailed information structures can
be reasserted. Such a hope vanishes when considering the following example.

Example 5. Take C = {a, b}, m = 4, a preference relation with negative
spillovers and I1 = {{a}, {b}}. Suppose also that (a, 2) � (b, 2), (b, 1) �
(a, 3) and that the least preferred case is (b, 4), which happens in state x̃.
Assume an imitation rule where observed inferior choices are not copied and
which provides to keep on making the same choice with probability (1− β).

By symmetry, every state has the same probability in µ∗1, therefore
µ∗1(x̃) = 1

16 .
Under global information the stochastically stable states are x̃ and the

state where every agent chooses a, call it x̂. In fact, they are the only
recurrent states by lemma 1, and a single perturbation is sufficient to move
the system from one them to the other and viceversa. In the following I
try to establish how large is their probability in the stochastically stable
distribution.

It is known (Freidlin and Wentzell, 1984) that

µ∗,εg (x̃)
µ∗,εg (x̂)

=

∑
Fx̃∈Fx̃

L(Fx̃)∑
Fx̂∈Fx̂

L(Fx̂)

where for a generic state x, Fx is an x-tree, that is a tree with vertex x and
X as set of nodes, Fx is the set containing all x-trees, L(Fx) is the likelihood
of the x-tree Fx, that is L(Fx) =

∏
(x1,x2)∈Fx

Tx1x2 with Tx1x2 the transition
probability from x1 to x2. When ε tends to zero, the relevant trees for the
previous ratio become those with the minimum number of perturbations.
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The following figure represents the only type of x̂-tree and the only type of
x̃-tree which minimize the number of perturbations and, conditional to that,
minimize the number of imitations of different behaviors. By (k, m − k) in
the figure I mean a state where k agents choose a and m−k agents choose b.
Beside each arrow there is the relevant term (without coefficient) expressing
such transition probability.

x̂-tree x̃-tree

β2 β3

β ββ ε

ε β

(4, 0)

(2, 2)

OO

(3, 1)

;;wwwwwwww
(1, 3)

ccGGGGGGGG

(0, 4)

OO

(0, 4)

(3, 1)

OO

(2, 2)

;;wwwwwwww
(4, 0)

ccGGGGGGGG

(1, 3)

OO

Figure 1: Stochastically stable distributions.

In
∑

Fx̃∈Fx̃
L(Fx̃) the term ε is multiplied by a polynomial in β whose

lower term has degree 5. In
∑

Fx̂∈Fx̂
L(Fx̂) the term ε is instead multiplied

by a polynomial in β whose lower term has degree 4. Therefore, when iner-
tia is sufficiently high, that is when β is sufficiently close to 0, µ∗g(x̃)/µ∗g(x̂)
can be made as small as desired. In particular, when µ∗g(x̃)/µ∗g(x̂) < 1/15,
µ∗g(x̃) < 1/16, so showing that µ∗1 is not welfare superior to µ∗g.

The previous discussion concerned negative spillovers. What about posi-
tive spillovers? At first one could be tempted to assert that more information
is even better from a welfare point of view in the presence of a selection is-
sue, implicitly assuming that a larger amount of information helps selecting
a better choice. Indeed, such a hasty conclusion would represent a serious
mistake. Stochastic stability is able to select what is evolutionarily efficient,
that is - to say that in biological terms - the best against invasions by mu-
tants. It is well known (Young, 1993, 1998) that stochastic stability does not
ensure efficiency. However, one could hope that it is at least able to select a
better choice under global information than under less detailed information
structures, which are substantially based on some kind of randomization.
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The following example shows this is not true.

Example 6. Again, take C = {a, b}, m = 4, a preference relation with
positive spillovers and I1 = {{a}, {b}}. Suppose that (a, 2) � (b, 2), (b, 3) �
(a, 1) and that the most preferred case is (b, 4), which happens in state x̃.
Call x̂ the state where every agent chooses a. Assume whatever imitation
rule.

Under global information, the recurrent states are x̃ and x̂. Note that
3 perturbations are required to move the system from x̂ to x̃, while only
2 perturbations are required to move the system from x̃ to x̂. By a muta-
tion counting argument the unique stochastically stable state under global
information is x̂.

Since state x̃ is homogeneous within each information set under infor-
mation structure I1, then by lemma 2 it is stochastically stable under I1.
Therefore µ∗g is not welfare superior to µ∗1.

Example 6 is just a particular case of the following proposition, which is
the unique analytical result I have been able to provide for a generic pref-
erence relation. Note in fact that there is no requirement on preferences,
hence proposition 3 applies not only to cases of positive spillovers and neg-
ative spillovers but to any conceivable case.

Proposition 3. If there is some agent who reaches the maximum of her
preferences in no stochastically stable state under global information, then
Ig is not welfare superior to any information structure I1 6= Ig.

Proof. Suppose agent r does not reach the maximum of her preferences
in any stochastically stable state under global information. Consider the
information structure I1 6= Ig. Suppose one of her most preferred outcomes
is (a, k), with a ∈ Ii. Take a state x̃ where agent r and other k − 1 agents
choose a, and all other agents are grouped in an alternative out of the
information set Ii (which is possible, since I1 6= Ig). State x̃ is homogeneous
within each information set in I1, therefore by lemma 2 µ∗1(x̃) > 0, so proving
that µ∗g does not first-order stochastically dominate µ∗1 for agent r. �

6 Conclusions

This paper has attempted to analyze the welfare implications of information
in an evolutionary framework. When agents adopt behavioral rules based
on imitation, is the disclosure of information about others’ performances
welfare enhancing?

The answer to such a question is “maybe”over finite time horizons, while
in the long run with rare perturbations it tends to be “yes” in a pure coor-
dination game (i.e. in the presence of pure positive spillovers) and “no” in a
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pure anti-coordination game (i.e. in the presence of pure negative spillovers).
This can be explained as follows. More information makes more agents

align their choices in expectation. This favors coordination. More informa-
tion can also provide more alternatives to copy, so dispersing the probability
of the choice at the next time and spacing out agents’ actual choices. This
hinders coordination. However, this last effect disappears when considering
the stochastically stable distributions, since the only recurrent states are
homogeneous within each information set and hence no mixing effects are
possible.

When a selection issue is introduced, by letting the preference relation to
depend not only upon how many agents choose an alternative but also upon
the kind of alternative itself, the answer to the former question is “maybe”
even when working with the stochastically stable distributions. More infor-
mation allows evolutionary forces to operate more freely. At a first glance
this seems to favor global information over local information. However,
evolutionary selection does not always prove superior to random selection.
This fact can be thought of as an instance of the ambiguous relation between
welfare and evolutionary efficiency.

As a project for future research, I consider potentially interesting further
analyses about the welfare implications of information under behavioral rules
different from imitation and in volatile setups of the model (multi-armed
bandits).
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