
   

Università degli Studi di Siena 

DIPARTIMENTO DI ECONOMIA POLITICA 

  
GIULIO  ZANELLA 
  
         
         
       
 

Discrete Choice with Social Interactions  
and Endogenous Memberships 
 
 
 
 
          
 

 

 

   

n. 442 -  Novembre  2004 

 
 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7178897?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abstract - This paper tackles the issue of self-selection in social interactions models. I develop a theory of 
sorting and behavior, when the latter is subject to social influences, extending the model developed by Brock and 
Durlauf (2001a, 2003) to allow for equilibrium group formation. Individuals choose a group, and a behavior 
subject to an endogenous social effect. The latter turns out to be a segregating force, and stable equilibria are 
stratified. The sorting process may induce, inefficiently, multiple behavioral equilibria. Such a theory serves as a 
means to solve identification and selection problems that may undermine the empirical detection of social effects 
on individual behavior. I exploit the theoretical model to build a nonlinear (in the social effect) selection 
correction term. Such a term allows identification, and solves the selection problem that arises when individuals 
can choose the group whose effect the researcher is trying to disentangle. The resulting econometric model, 
although relying on strict parametric assumptions, indicates a viable alternative when reliable instrumental 
variables are not available, or randomized experiments not possible. 
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To choose a neighborhood is to choose neighbors

-Thomas Schelling, Dynamic Models of Segregation, 19711

1 Introduction

There is considerable interest in economics in models with social interactions
or neighborhood effects, i.e. models that allow for interdependencies, not
mediated by markets and enforceable contracts, between individual behavior
and the behavior and characteristics of other individuals within neighbor-
hoods, schools, or any other kind of reference group. This interest is mainly
due to the fact that these models allow us to incorporate rigorously into eco-
nomic theory concepts like social norms, social capital and peer effects, which
are often regarded as loose concepts by economists, but which may have im-
portant aggregate effects2. This in turn allows us to study theoretically and
empirically their economic effects addressing, respectively, endogeneity and
identification problems within equilibrium frameworks. Reciprocal feedbacks
between choice of behavior and choice of group are likely in presence of social
interactions. For instance, if parents know the persons their kids associate
with will somehow influence their behavior, they have a reason to carefully se-
lect the social environment their kids will mix with. Choosing a group means
choosing social interactions: for this reason, considerations of selection are
inescapable in models with social effects.
Yet, in the existing literature these two aspects of the problem are not

fully integrated into a framework that is flexible enough for both theoretical
and empirical analysis. A popular class of models has introduced the notion
of social interactions in a Tiebout-type framework. These models consider
group memberships as endogenous, in presence of social spillovers or com-
plementarities (in the sense of Cooper and John, 1988, and Milgrom and
Roberts, 1990), but either consider social interactions as exogenous in the
Manski (1993) sense (e.g. de Bartolome, 1990, Bénabou, 1996, and Durlauf,
1996), or limit heterogeneity to an observable type (e.g. Bénabou, 1993, and
Becker and Murphy, 2000). Other models offer an empirical framework for
the analysis of group membership in the presence of social effects, but do not
specify the structure of interactions at the micro level (e.g. Bayer and Tim-

1Quotation from Schelling (1971), p. 145.
2For an overview see Manski (2000) and Durlauf (2004).
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mins, 2005). Another well-known class of models, well represented by Brock
and Durlauf (2001a), uses a random utility framework to link theory and
econometrics of social interactions, but treats memberships as exogenous.
This paper is an attempt to bridge these models and produce an inte-

grated theory of social interactions and endogenous memberships that also
suggests useful econometric specifications. I describe a model of choice of
behavior subject to social interactions within groups, and choice between
costly memberships in alternative groups. The model is simply an extension
of Brock and Durlauf (2001a) to equilibrium group formation and of Ben-
abou (1993) to a richer structure of unobservables, as well as of Benabou
(1996) to endogenous social interactions. The goal of the paper is to illus-
trate the implications such integrated framework has for a complete theory
of social interactions, as well as for the possibility to correctly identify so-
cial effects. On the theoretical side, I develop an idea first devised by Brock
and Durlauf (2005) and use a special random utility model, the nested logit
model whose structure can nicely accommodate the process of sequential
and interdependent choice of group and behavior, to capture the essential
interconnection between sorting and behavior in the presence of social in-
teractions. The model implies that the sorting process and the social effect
feedback reciprocally and interact in characterizing the equilibrium distri-
bution of memberships and behaviors in the population. Positive spillovers
and complementarities between individual behaviors turn out to be a strat-
ifying force, a well known result in the endogenous neighborhood literature.
Equilibrium stratification, along an individual observable trait, is induced by
social interactions and is sustained by the equilibrium in the memberships
market. The sorting process may generate an endogenous change in the qual-
itative properties of the system, with the emergence of “social traps”. The
decentralized outcome of sorting is generally inefficient.
This model synthesizes the aforementioned research programs in a very

specific sense: it reduces to the Brock and Durlauf (2001a) model when in-
dividuals are not given a choice over memberships, and it reproduces the
relevant results of Benabou (1993 and 1996) and Durlauf (1996), concern-
ing the endogenous emergence of segregation and economic barriers between
groups, when the stochastic component of group preferences is shut off. On
the econometric side, such a synthesis indicates a way to solve in a micro-
founded way two major problems that typically arise in the empirical analysis
of social effects, namely identification failure in linear models and selection
bias. As suggested by Blume and Durlauf (2006), modelling selection within

2



the statistical analysis is preferable to merely instrumenting for the vari-
ables that are indirectly chosen through sorting, which is a popular choice in
the empirical social interactions literature. Another possibility to eliminate
selection-bias is to use natural experiments (e.g. Sacerdote, 2001, and Zim-
merman, 2003) or controlled experiments (e.g. Ichino and Falk, 2006), where
people are exogenously assigned to groups. However, a proper experimental
setting may not be available for particular applications, let alone extrapola-
tions from existing experimental evidence. The advantage of the procedure I
suggest is that it is derived from maximizing behavior, and equilibrium3. The
main drawback is that it relies on very restrictive parametric assumptions.
This is not much of a problem for theoretical purposes, but it may render
the identification strategy of limited use for empirical applications. I will ar-
gue that such parametric solution can be of help in two directions. First, in
performing a simple equilibrium-based selection test in applied work, which
is something typically neglected in non-experimental empirical studies, and
second, in thinking about semiparametric solutions to selection correction.
The paper is organized as follows. In section 2, I build the model in

a very simple setting: two types of random-utility maximizing individuals,
and a two-stage choice process: first one of two groups, on a competitive
memberships market with fixed supply, then a binary behavior subject to
social effects. In section 3, using the random utility maximization hypoth-
esis, I derive a nested logit model of choice under self-consistent (i.e. ratio-
nal) expectations. Section 4 analyzes the three components of an aggregate
equilibrium: memberships market equilibrium, sorting equilibrium, and be-
havioral equilibrium. I establish existence, elucidate the relation between
the three components of equilibrium, and discuss the conditions under which
the sorting process induces multiple behavioral equilibria. Section 5 char-
acterizes the sorting equilibrium. I show that the only stable equilibria are
characterized by stratification along the individual type and that, in equilib-
rium, groups are more stratified when interactions are stronger, and when
the unobservable determinants of sorting have low dispersion. Integration is
an equilibrium, but an unstable one. Section 6 discusses efficiency issues. It
is shown that integration may be the only efficient arrangement of individ-
uals across groups when these are similar enough, and that, in general, the

3The procedure has been implemented by Ioannides and Zabel (2004) to estimate a
model of social interactions in housing demand, but their approach is not based on equi-
librium sorting.
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decentralized equilibrium is inefficient. Finally, in section 7, I turn to the
econometric issues, and show how the theoretical model can help construct
econometric models to identify social interactions free of selection-bias, with-
out using instrumental variables. Section 8 concludes. A few formal details
and proofs are gathered in a technical appendix.

2 The model

Imagine a population of I individuals. Each individual is characterized by
an observable real parameter h ∈ Θ, referred to as the individual type.
Individual i’s type is denoted with hi, i = 1, ..., I. The set of possible types
is Θ = {H,L}, with H > L > 0. Types are distributed in the population
according to the discrete distribution fh. Each individual is member of a
group, indexed by g ∈ G, where G = {A,B}. The two groups have fixed
capacities, IA and IB, such that IA+ IB = I. Relative capacities are denoted
αA ≡ IA/I and αB ≡ IB/I. Groups are characterized by a set of exogenous
variables, which we can think of as amenities, summarized by an index kg.
Each group charges a “membership fee”, ρg, determined on a competitive
memberships market with fixed supply. Fees end up outside the model.
Denote with fhg the distribution of h-types in group g. By definition, the
distributions of types in the population and in any group g satisfy:

fH + fL = 1

(1)

fHg + fLg = 1.

Furthermore, the number of h-type individuals in groupA, equal to IAfhA,
plus the number of individuals of the same type in group B, IBfhB, must
be equal to the number of h-type individuals in the population, Ifh. This
implies that, for any type h:

αAfhA + αBfhB = fh. (2)

The individual problem is to choose a group g ∈ {A,B}, and a binary
behavior ω ∈ {−1, 1}. I assume there are interdependencies within groups:
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when choosing behavior, individuals influence each other, in the sense to be
specified below. Agents are assumed to be forward looking: when choosing
membership they will take into account that group composition will affect the
behavioral problem. Therefore choices over memberships are interdependent
too, which is a key feature of the model. Choice can be represented as a
two-stage process4, as illustrated in figure 1. First a group is chosen and
then behavior, given group composition. Choices are simultaneous across
the population at each stage.

 

-1 1 -1 1 

A B

(A,-1) (A,1) (B,-1) (B,1)

Figure 1. Individual decision tree.

In specifying preferences, I will extend the binary choice model with social
interactions of Brock and Durlauf (2001a), to accommodate the choice struc-
ture depicted in figure 1. It is an extension in the sense that the choice set in
their model is {−1, 1}, i.e. group composition is given, but is {A,B}×{−1, 1}
here, i.e. group composition is endogenous. Therefore the model reduces to
theirs when memberships are given. In models with social interactions, utility
is usually separable in a private and social component:

Vi (g, ω) = u (g, ω, hi) + s
¡
ω,me

ig

¢
+ ξigω (3)

In this case private utility has a deterministic type-specific part, u (.),
and an unobservable idiosyncratic component, ξ, and both depend on mem-
bership and behavior. Social utility, s (.), depends on one’s behavior and

4In what follows it doesn’t make any difference whether group and behavior are chosen
at once or sequentially. In many applications, the latter interpretation is more appropriate,
which is why I stress the sequential character of choice.
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expected mean behavior in the group, me
ig, which in turn depends on group

composition5. Agent i observes ξigω, but nobody else does. I also assume this
random term is identically and independently distributed across individuals,
and that something, to be specified in a moment, about this distribution is
common knowledge.
It may be useful to refer to a couple examples at this point. Think of

a household in which kids make a binary choice that influence their human
capital (e.g. drop out of school, study hard, go to college) or that exposes
them to risks (e.g. join a gang, commit crimes, use drugs, engage in risky
sexual behavior), subject to such social effects as role models in the neighbor-
hood or peer effects in schools. Parents can choose where to live or the school
their kids will attend, i.e. have some control over kids’ social interactions. In
this case the individual type may be parents’ human capital, private utility
reflects kids’ human capital or lifetime income as well as the amenities or
prestige of living or sending kids in a specific place or school for parents, and
the random term captures things like kids’ talent and parents’ attachment to
specific places or schools, e.g. for cultural or ideological reasons6. Or think
of an individual who chooses her or his social ties and then decides whether
to work or live on welfare, or whether to behave honestly or infringe the law,
when the social network is a source of job market information and welfare
stigma, or of sense of lawfulness. In this case the price of membership is
the cost of establishing connections, deterministic private utility is income
from work, welfare or crime, social utility reflects the effect of peer-referral
on the job market, information or stigma with respect to welfare dependency
or crime, and so on, and random private utility has the same interpretation
as in the parents-kids example. To further simplify the analysis I will use
Brock and Durlauf (2001a) “proportional spillovers” specification, where the
label refers to the special multiplicative form of social utility:

Vi (g, ω) = kg − ρg + hiω + Jgωm
e
ig + ξigω, (4)

5This way I’m assuming all social interactions are mediated by others’ behavior. This
may not be the best way to model relational influences on individual behavior, but has all
the practical advantages of an operational definition (see Manski, 2000, for a discussion).

6A more interesting parents-kids model actually requires specifying two objective func-
tions, since parents’ and kids’ preferences are not necessarily convergent: usually parents
want to maximize kids’ human capital and not the happiness they may derive from “bad”
social interactions. However, as will become clear later, the main conclusions of the model
I use would hold in a parents-kids model with diverging objectives.
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where Jg > 0 is a group-specific social interactions parameter. The difference
between amenities and price, kg − ρg, is the net deterministic private benefit
of membership. This specification of social utility captures the following
effect: as the majority in the group is expected to chooses ω = 1, so that
me

ig > 0, an individual has an incentive to choose ω = 1. In Manski’s (1993)
terminology, this is an endogenous social effect, as expected mean behavior
is determined in equilibrium. Therefore, a specification like (4) is useful to
model, for example, social norms that may affect welfare and illegal behavior,
or role models and peer effects that may affect investment in human capital7.
Denoting with peijg individual i’s subjective probability that individual j will
be a member of group g, withme

ij|g individual i’s subjective expectation of j’s
behavioral choice given that j is a member of group g, and assuming Ig > 1,
subjective expected mean behavior that appears in the utility function can be
written as the average expected behavior in the group, considering expected
group composition:

me
ig = (Ig − 1)−1

P
j 6=i

peijgm
e
ij|g. (5)

As suggested by Brock and Durlauf (2005), the logit structure of their
model with exogenous groups can be extended to the two-stage choice process
depicted in figure 1 using the nested logit model8. In the rest of this section
I will describe the parametric assumptions needed to derive such model, so
the reader who is familiar with discrete choice models can just browse the
new notation I introduce and jump to the next section. There are two equiv-
alent ways of deriving a nested logit model. The more popular one, due to
McFadden (1978), is to assume that the vector (ξiAω, ξiBω) has a generalized
extreme value (GEV) cumulative distribution, such as the following:

7However, such specification neglects inter-group interactions, which may be relevant in
some applications, as well as funding of local public goods. These aspects are considered,
for instance, by Benabou (1993 and 1996), whose models feature cross-group complemen-
tarities in production and within-group school funding. The model can be extendend to
include local public goods by reinterpreting and endogenizing kg. For instance, one can
write kg = fHgH + fLgL, i.e. the salient characteristics of the group are the mean charac-
teristics of the individuals who populate it. This would only reinforce the main theoretical
conclusions of the paper.

8The nested logit was devised to model situations in which elements of the choice
set share observed and unobserved attributes within nests, i.e. groups in this case. See
Ben-Akiva and Lerman (1985) and Train (2003) for a detailed exposition.
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F (ξiAω, ξiBω) = exp

Ã
−P

g

µP
ω

exp
¡−ξigω¢¶β

!
(6)

where β is the scale parameter. The second, which traces back to Ben-
Akiva (1973), is to decompose the model into two interrelated logit models.
First, decompose the random component of utility into 3 zero-mean random
variables:

ξigω = εigω + εig + εiω, (7)

where the last two terms represent the portion of unobserved utility that
varies, respectively, across groups and behaviors only. Also assume that (i)
the share of payoff due to unobserved elements varying only across behaviors
is negligible, i.e. var (εiω) = 0, and (ii) εigω and εig are independent for
all individuals, groups, and behaviors. Such assumptions, of course, are not
innocuous, and so deserve a word of comment. The first means that unob-
served utility from behavioral alternatives is specific to the social context.
The second means that the unobservable propensity to choose a certain be-
havior given membership is independent of the unobservable preference for
the group chosen at the first stage. Whether these assumptions are tenable
or not depends on the particular application. For instance, they are plausible
in the parents-kids example, since parents may be attached to a group for
reasons unrelated to kids’ talent, but less so in the work-welfare or crime
example, as people less willing to work or more inclined towards crime may
tend to join groups which are associated with welfare dependency or high
crime rates, in which case the assumption that for a given individual and
group εigω and εig are independent is implausible. Finally, assume that εigω
is extreme value (EV) distributed, with scale parameter normalized to 1, in
which case its cumulative density is

G (εigω) = exp (− exp (−εigω)) , (8)

and that εig is distributed such that the maximum of utility with respect
to behavior is EV distributed with scale parameter β, i.e. with cumulative
density such that

Γ
³
max
ω

Vi (g, ω)
´
= exp

³
− exp

³
−βmax

ω
Vi (g, ω)

´´
. (9)
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Although apparently more cumbersome, this second way is more useful
because it allows one to express directly choice probabilities as the product
of marginal and conditional probabilities, which has an immediate interpre-
tation in terms of the two stages of choice (see Train, 2003)9. For this reason
I will follow the second way and work with the following utility function:

Vi (g, ω) = kg − ρg + hiω + Jgωm
e
ig + εigω + εig. (10)

3 Choice

Each individual maximizes utility, i.e. solves:

max
g,ω

Vi (g, ω) (11)

subject to10 (g, ω) ∈ {A,B} × {−1, 1}. As illustrated above, this problem is
solved in two stages. I will denote with (gi, ωi) individual i’s choice. At the
first stage, each individual chooses a group, given that optimal behavior will
be chosen at the second stage, and given beliefs on other individuals’ choices
over groups, peijg, for each j 6= i and each g:

gi = argmax
g

h
kg − ρg + εig +max

ω

¡
hiω + Jgωm

e
ig + εigω

¢i
. (12)

At the second stage, each individual chooses behavior, given member-
ship in group g, the distribution on others’ memberships and expected mean
behavior, me

ig:

ωi = argmax
ω

¡
hiω + Jgωm

e
ig + εigω

¢
. (13)

While individuals choose a specific group and a specific behavior, ev-
erybody, ex-ante, can only figure out a probability distribution over others’
choices. Such distribution is then used to form expectations about group
composition and mean behavior, as required by self-consistent or rational

9The two ways are equivalent since the marginals of a GEV distribution are EV.
10In order to simplify the analysis, I ignore the budget constraint. The introduction of

such constraint would only reinforce the main conclusions I reach, as long as observable
types and income are correlated, such as when the individual type is human capital.
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expectations. Our parametric assumptions allow the derivation of objective
choice probabilities, proceeding backward from the lower level of the decision
tree. Since the difference between two EV random variables is logistically dis-
tributed, rule (13) implies that the probability individual i chooses behavior
ω, given membership in group g, denoted piω|g, is equal to the probability
that Vi (g, ω) is greater or equal to Vi (g,−ω), i.e.

piω|g =
exp

¡
hiω + Jgωm

e
ig

¢
exp

¡
hi + Jgme

ig

¢
+ exp

¡−hi − Jgme
ig

¢ . (14)

In the context of a nested logit model this is known as the “lower model”
(see figure 1), and is the model studied by Brock and Durlauf (2001a). So
the model I use reduces to theirs when memberships are given. The “upper
model”, involving rule (12), is simplified by the fact that the maximum of
an EV random variable is itself EV distributed. It can be shown (see tech-
nical appendix) that the expected value of maximum utility with respect to
behavior appearing in equation (12) is simply the log of the denominator in
(14), plus Euler’s constant (denoted γ):

Emax
ω

¡
hiω + Jgωm

e
ig + εigω

¢
= log

P
ω exp

¡
hiω + Jgωm

e
ig

¢
+ γ. (15)

DefiningW e
ig ≡ log

P
ω exp

¡
hiω + Jgωm

e
ig

¢
, rule (12) and distribution (9)

imply that the probability that individual i chooses group g is

pig =
exp

¡
β
¡
kg − ρg +W e

ig

¢¢
exp (β (kA − ρA +W e

iA)) + exp (β (kB − ρB +W e
iB))

. (16)

The quantity W e
ig, derived by Ben-Akiva (1973) and known as inclusive

utility, is a key object since it links upper and lower models. It is the appro-
priate value of membership, up to amenities, since it is the expected value
of the behavioral “choice situation” once in group g. For an individual,
the inclusive utility of a group carries to the first stage, where membership
is chosen, the relevant information about the endogenous characteristics of
that group. These include expected social interactions at the second stage,
where behavior is chosen. This point is the key to the whole model, since
expected social interactions, through expected behaviors, turn out to be a
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crucial determinant of group composition, and actual behaviors11. The joint
probability of being a member of group g and choosing behavior ω is then
simply pigω = pigpiω|g. Notice that the ratio between such joint choice prob-
abilities for any two alternatives is independent of the attributes of other
alternatives within but not across groups. This property is know as indepen-
dence from irrelevant nests (IIN), a relaxation of the more stringent inde-
pendence from irrelevant alternatives (IIA), which would be an implication
of the model if the alternatives in the choice set were not nested12. To close
the model, we need to specify how the subjective beliefs appearing in equa-
tion (5) are formed. Since the model produces objective choice probabilities,
rational agents must form their expectations using them, and assume that
other agents will do the same. In other words, I am assuming rational ex-
pectations, an easy way to close the model: subjective beliefs must be equal
to the objective probabilities generated by the model. As for membership,
the probability individual i attributes to j being a member of group g must
be equal to the probability in (16):

peijg = pjg ∀i, j. (17)

As for behavior, individual beliefs are determined by the mathematical
expectation with respect to the binary distribution in (14):

me
ij|g = E (ωj|g) =

¡
pj1|g − pj−1|g

¢ ∀i, j.

Therefore, subjective expected mean behavior in group g is equal to the
objective mean: me

ig = mig, where

11The nested logit model is affected by a complication: choice rules (12)-(13) are con-
sistent with random utility maximization only if certain restrictions on β are imposed.
This means we need to restrict β if we want the probability of choosing an alternative to
(weakly) increase with the desirable attributes of that alternative. This is equivalent to
the requirement that the density of εigω + εig be non negative, which is not obvious in
general, since the sum of two EV random variables is not itself EV distributed. A sufficient
condition for this is 0 ≤ β ≤ 1, known as the Daly-Zachary-McFadden condition, which
has been shown to be unnecessarily strong by Borsch-Supan (1990). A simple necessary
and sufficient condition when there are two stages of choice and each nest contains less
than four alternatives, has been devised by Herriges and Kling (1996). To keep the model
going, I simply assume 0 ≤ β ≤ 1, which can be tested in empirical applications.
12The IIA property generates choice paradoxes such as the red bus/blue bus paradox

(Debreu, 1960).
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mig = (Ig − 1)−1
P
j 6=i

E (ωj|g) pjg, (18)

i.e. the self consistent version of equation (5). When group size is large
enough, this expectation is well approximated by the average of individual
expected behaviors in the group, mg:

mg = I−1g

P
i

E (ωi|g) pig. (19)

With the imposition of rational expectations all heterogeneity is now due
to the individual type. Therefore, we can replace the individual index i with
the type index h and rewrite (19) as

mg = α−1g
P
h∈Θ

fhE (ωh|g) phg. (20)

The right hand side of equation (20) will turn out to have a very con-
venient expression once the memberships market equilibrium condition is
imposed. For the moment, we can rewrite choice probabilities in objective
form:

phω|g =
exp (hω + Jgωmg)P

ω=−1,1
exp (hω + Jgωmg)

(21)

phg =
exp

¡
β
¡
kg − ρg +Whg

¢¢P
ν=A,B

exp (β (kν − ρν +Whν))
, (22)

where

Whg = log
P
ω

exp (hω + Jgωmg) . (23)

4 Equilibrium

In this economy an equilibrium is defined in the standard way: a set of
prices {ρ∗A, ρ∗B}, a set of expected mean behaviors {m∗

A,m
∗
B}, and a set of

membership probabilities {p∗hA, p∗hB}h∈Θ, such that the memberships market

12



clears and, for each individual, expectations are self-consistent and utility is
maximized. In this section I analyze in detail these three components of the
equilibrium and their interplay. I refer to them, respectively, as memberships
market equilibrium, behavioral equilibrium, and sorting equilibrium13.

4.1 Memberships market equilibrium

The expected demand for membership in any group g is equal to the sum
of the individual choice probabilities over that group, given by (22). On
the other side of the market, the supply is fixed, and equal to Ig. Walras’
law implies we can focus on one of the two groups only, say group A whose
relative capacity is αA. Therefore, market clearing requires:

fHpHA + fLpLA = αA (24)

Proposition 1 A unique set of membership prices, {ρ∗A, ρ∗B}, solving equa-
tion (24) exists, for any pair of expected mean behaviors, {mA,mB}.
Proof. See Technical Appendix.

As one might expect, the market clearing difference between membership
prices depends on social interactions, i.e. contains a social premium. This is
easily derived in the special case14 of types equally distributed in the popu-
lation (fH = fL =

1
2
) and groups of equal capacity (αA = αB =

1
2
). In this

case, replacing (22) into (24) and solving for the market clearing difference
in prices, we have

ρ∗A − ρ∗B = (kA − kB) +
1
2
[(WHA −WHB) + (WLA −WLB)] . (25)

The first term on the right hand side reflects the difference in amenities,
and the second term is the social premium. The latter reflects the different
value of social interactions in the two groups for the two types15. In the
13Of course this separation is fictitious and put forth for the sake of exposition, as the

equilibrium is determined as a whole.
14The general case involves a quadratic whose roots cannot be recovered analytically.
15When individuals do not interact, i.e. JA = JB = 0, or social interactions have the

same utility in the two groups, i.e. JAmA = JBmB, inclusive utilities in (25) cancel out
and the social premium is zero.
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special case that leads to (25), the social premium is the average difference
between inclusive utilities of groups A and B for the two types, or the aver-
age evaluation of how better individuals will do in group A compared with
B. This in turn reflects the average evaluation of social interactions in the
population. It may appear odd that this average uses equal weights, since
different types have different propensities to choose different groups. The
reason is that when the proportion of types and group size is the same, the
two groups are ex-ante (before sorting takes place and behavior is chosen)
identical, up to different amenities. As can be seen rearranging the terms
in the social premium above, a group commands a positive social premium
if it offers, on average across types, the “best interactions”, which are asso-
ciated with the highest value of the choice situation in the two groups, i.e.
max {(WHA +WLA) , (WHB +WLB)}. Referring to the parents-kids exam-
ple, a school will charge higher tuitions if it has good teachers (high kg) but
also if it offers a social environment that favors effort, for instance through
peer-pressure or peer-aid, to students from any kind of family. As I will show
in the next section, the social premium plays a critical role in sustaining
stratified groups. This is a standard feature of sorting models with social
effects. The boundary values of the price difference with respect to the pro-
portion of H-types in the population, derived for general group size using
equation (24), offer useful insights into the social premium:

(ρ∗A − ρ∗B) |fH=0 = β−1 log
αB

αA
+ (kA − kB) + (WLA −WLB) (26)

(ρ∗A − ρ∗B) |fH=1 = β−1 log
αB

αA
+ (kA − kB) + (WHA −WHB) (27)

The first term on the right hand side is a size premium, normalized by the
scale of utility, and depends on relative group size only. Such premium exists
because of the stochastic utility of membership, since there is a positive prob-
ability that many individuals have a high evaluation for the smaller group.
The last term is again the social premium. When the population is homoge-
neous, it reduces to the difference between inclusive utilities across groups, for
the only type. It is tempting to think of the social premium as the weighted
average across types of differences in inclusive utilities, but in the general
case the relation between equilibrium price differential and proportions of
types in the population is not linear. However, a simple thought experiment
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can establish such relation is weakly monotonic. Consider a sorting equilib-
rium with fH = 0. Now introduce an H-type individual and withdraw an
L-type one. The group the H-type chooses with higher probability becomes
more attractive to everybody and so the social premium rises in absolute
value. If the H-type instead is equally likely to choose the two groups, the
social premium does not move. At the new equilibrium, repeat the thought
experiment until fH = 1. This proves that the social premium moves mono-
tonically between the extremesWLA−WLB andWHA−WHB. When β =∞,
the price differentials (26)-(27) reduce to the equilibrium differentials in Ben-
abou’s (1993) model, where utility is deterministic and equilibria are fully
stratified. Therefore, since the variance of an EV distribution goes to zero as
the scale parameter increases, this model reduces to his when we eliminate
randomness in group preference, i.e. shut off εig.

4.2 Behavioral equilibrium

The number of h-type individuals demanding membership in group g is
Ifhphg. Dividing this by group size, we obtain the proportion of h types
demanding membership in the group, α−1g fhphg. When equilibrium condi-
tion (24) holds, such fraction determines the distribution of types in group
g:

fhg = α−1g fhphg (28)

Substituting this expression into (20), expected mean behavior in group
g can be conveniently expressed as16

mg =
P
h∈Θ

fhgE (ωh|g)
=

P
h∈Θ

fhg tanh (h+ Jgmg) . (29)

A behavioral equilibrium in group g is a fixed point of such equation, i.e.
a value m∗

g solving:

16The second equality derives from the convenient expression of the conditional expec-
tation in the binary model, E (ω|g) = ph1|g − ph−1|g, and uses the definition tanh (X) =
eX−e−X
eX+e−X .
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m∗
g = fHg tanh

¡
H + Jgm

∗
g

¢
+ (1− fHg) tanh

¡
L+ Jgm

∗
g

¢
(30)

Since the tanh function is continuous andmg : [−1, 1]→ [−1, 1], existence
of a behavioral equilibrium is a direct consequence of Brouwer’s fixed point
theorem:

Proposition 2 For any arrangement of individuals across the two groups,
there exists an equilibrium set of expected mean behaviors, {m∗

A,m
∗
B}.

This is the extension of one of the results in Brock and Durlauf (2001a)
to the case of two types and two endogenous groups. Since H and L are
positive, the following two propositions, illustrated in figure 2, exhaust the
possible behavioral equilibrium configurations17.

(U) Equation (30) has a unique root, m∗
g,1 > 0.

(M) Equation (30) has three roots, m∗
g,1 > 0, m

∗
g,2 < 0 and m∗

g,3 < 0.

Two additional results which are central to the analysis extend to this
model: in case of multiple equilibria the intermediate one is dynamically
unstable18, and the stable equilibria are Pareto-rankable19. Here, since H
and L are positive, the best equilibrium is the positive root of (30).

17Equation (30) cannot have more than three roots. Notice that the second derivative
of the function on the right hand side of (30) changes sign at most once over the interval
[−1, 1], i.e. the function has at most one inflection point, which implies equation (30) has
at most three roots.
18Imagine that at equilibrium one perturbs behavioral choices. The adjustment process

can be thought of as governed by the dynamic version of equation (30):

m∗g,t = fHg tanh
¡
H + Jgm

∗
g,t−1

¢
+ (1− fHg) tanh

¡
L+ Jgm

∗
g,t−1

¢
and the same argument in Brock and Durlauf (2001a) applies.
19This is easy to verify using inclusive utility (equation 23), which expresses utility

before behavior is chosen and so is the appropriate welfare index (I will return on this
point in section 6). When H = L = 0, inclusive utility is symmetric about zero, and so
the two extreme equilibria are Pareto-equivalent. But since H and L are positive, its value
at mg,1 is larger than at mg,3 for both types, and mg,1 is Pareto-superior.
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expected neighbors’ behavior 

mg 

mg,1

Figure 2. Unique and multiple behavioral equilibria.

What this work elucidates in addition is that the possibility of multiple
equilibria not only depends on the relation between private and social utility,
but also on the sorting process when the population is heterogeneous. This
link between multiple equilibria and choice of membership is immediate from
equation (30), since the fraction ofH-types in the group, fHg, is endogenously
determined. This can be stated formally as follows.

Proposition 3 Suppose Jg, H and L are such that fHg = 1 implies (U) and
fHg = 0 implies (M). Then there exists a unique threshold efH such that if
fHg > efH, then (U) holds, and if fHg < efH, then (M) holds.
Proof. See Technical Appendix.

In words, proposition 3 states the following. Suppose that the model
parameters are such that a group populated only by H types has a unique
behavioral equilibrium, while a group populated only by L types has multiple
behavioral equilibria. That is, when H types are segregated, their private
incentives to choose ω = 1 are stronger than social pressure, for any possible
behavior chosen by their neighbors, while when L types are segregated there
is a range of neighbors’ mean behavior over which the reverse is true. Then,
there exists a unique critical mixed group composition, generating a unique
stable behavioral equilibrium, such that if we marginally increase the frac-
tion of H types then multiple stable equilibria appear. Referring again to the
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parents-kids example, this means that in the presence of endogenous neigh-
borhood effects it is possible that when enough H-type households (whose
kids have stronger private incentive not to engage in risky behavior) move
away from a neighborhood, this may end up in a bad behavioral equilibrium -
for instance high rates of school dropout, teenage pregnancy, or youth crime -
even if the neighborhood was previously in a good state, as kids’ social incen-
tives to behave in a socially desirable way drop while their private incentives
are given. The characterization of the sorting equilibrium will allow us to
establish under which conditions this kind of transition may endogenously
occur.

4.3 Sorting equilibrium

The third component of equilibrium, sorting equilibrium, is trickier that the
previous two, because of the possibility of multiple behavioral equilibria.
This possibility implies that inclusive utility of membership in a group is not
uniquely determined. This can be seen in equation (23): if more than one
fixed point exists, then Whg can assume more than one value in equilibrium.
Since the model does not suggest which behavioral equilibrium will be se-
lected, the natural thing to do is to consider beliefs over behavioral equilibria
in the two groups before sorting takes place, and then use expected inclusive
utility to find a sorting equilibrium. It is possible to generate such beliefs
reinterpreting the model in a dynamic sense. Imagine we allow individuals,
at random times, to revise their behavior in response to realized mean be-
havior in the group. Then, as shown in Blume and Durlauf (2003), when the
population is large enough the invariant distribution of the stochastic process
generated by such revisions converges to a distribution on the stable equilib-
ria generated by equation (30). In other words, the stable equilibria of the
static model become basins of attraction in a dynamic specification. The be-
liefs of rational individuals over behavioral equilibria should agree with such
distribution, i.e. the dynamics introduce a form of coordination20. Using this

20Of course when multiple equilibria exist but this dynamic reinterpretation is not ap-
propriate, for instance because in a particular application choices cannot be revised, in-
dividuals beliefs can be anything and it’s impossible to pin down both behavioral and
sorting equilibria, unless one introduces some other coordination mechanism. In many
applications of social interactions models, coordination mechanisms may be easy to find:
after all, the hallmark of sociality is that people are able to coordinate. For instance, if a
school is known for the education achievements of its former students, the high equilibrium
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argument, I proceed under the assumption that beliefs over behavioral equi-
libria are represented by a common distribution µ

¡
m∗

g,z

¢
, where z = 1, 2, 3

indexes the three possible equilibria represented in figure 2. Notice that since
the intermediate equilibrium is dynamically unstable, the previous argument
implies µ

¡
m∗

g,2

¢
= 0: individuals believe the system will not remain for a

long time at an unstable equilibrium. Under these assumptions, equilibrium
inclusive utility can be rewritten in expected utility form:

W ∗
hg =

P
z

µ
¡
m∗

g,z

¢
log
£
exp

¡
h+ Jgm

∗
g,z

¢
+ exp

¡−h− Jgm
∗
g,z

¢¤
(31)

Since each behavioral equilibrium solves equation (30), each m∗
g,z, using

equation (28), is an implicit function of the endogenous variable phg, for any
h. Using this fact into (31), we can rewrite equation (22) as:

phg =
exp

¡
β
¡
kg − ρ∗g +W ∗

hg (phg)
¢¢P

ν=A,B

exp (β (kν − ρ∗ν +W ∗
hν (phν)))

(32)

This is the equilibrium probability function over individual membership.
Since phA + phB = 1, the right hand side of equation (32) can be seen as
a function of phg only, mapping the interval [0, 1] into itself. Therefore,
existence of a sorting equilibrium follows directly from Brouwer’s fixed point
theorem:

Proposition 4 Given a pair of probability distributions µ
¡
m∗

g,z

¢
, g = A,B,

over the set of behavioral equilibria, a set of equilibrium choice probabilities
over groups, {p∗hA, p∗hB}, exist for each type h.

Given the distribution of types in the population, a sorting equilibrium
determines an equilibrium distribution of types across groups, {f∗hA, f∗hB},
according to equation (28). Therefore, based on propositions 1, 2 and 4, we
can establish the existence of a general equilibrium:

Proposition 5 An equilibrium, i.e. a triplet {ρ∗A, ρ∗B}, {p∗hA, p∗hB}h∈Θ, and
{m∗

A,m
∗
B}}, exists in the binary choice model with two endogenous groups.

is a focal point, in which case it should be assigned probability 1.
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In the next two sections I explore three questions which are central in any
sorting model, and that elucidate further the feedback between endogeneity
of memberships and social influences. The three question, in the order I
address them, are: (i) is there a tendency towards stratification along the
individual type? (ii) is the sorting equilibrium unique? (iii) Is the decentral-
ized equilibrium efficient? Section 5 addresses the first two, showing that the
answers are respectively “yes” and “no”, and section 6 addresses the third,
showing that the answer depends on the parameters.

5 Characterizing sorting equilibria

I will tackle the stratification question first, defining the economy integrated,
or not stratified, when the composition of groups and population are the
same, i.e. fhg = fh, which in turn implies phg = αg, for all g and h. At the
other extreme, the economy is said to be segregated, or fully stratified, when
fhg = 0 for at least one type h and one group g, which implies phg = 0. Any
intermediate case is associated with some degree of stratification. Since there
are only two groups and two types, we can define a stratification index for
this economy focusing on a single type, as maxg |fHg − fH |, which lies in the
interval [0, fH ]. Since membership probabilities map into such an interval, a
convenient way to proceed is to define, for each type h, isoprobability curves
in themg-ρg space. This is a natural extension of bid-rent analysis, as used for
instance in Benabou (1996), to a random utility setting. Isoprobability curves
are sets of price-expected mean behavior combinations such that membership
probability is constant, with higher loci associated with lower probability
levels. The slope of a curve at any point is the marginal rate of substitution
between membership price and mean behavior at that point, for a certain
probability level. This has a simple expression in the binary case:

MRSh
mρ = −

∂phg/∂mg

∂phg/∂ρg
= 2Jg tanh (h+ Jgm) (33)

In the presence of positive social interactions (Jg > 0) such a ratio is
increasing in h, i.e. isoprobability curves exhibit the single crossing property,
as illustrated in figure 3.
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Figure 3. Isoprobability curves of the two types.

In the figure, two curves for types H and L and one group are sketched.
When the behavioral equilibrium is unique, the intersection at equilibrium
probability levels locates a general equilibrium, since it’s the only point where
individuals in the same group face identical price and expected mean behav-
ior. However, such graphical interpretation of the equilibrium is not possi-
ble when multiple behavioral equilibria exist21. In either case isoprobability
curves represent preferences: when they are U-shaped in the interval [−1, 1],
which happens when H and L are small enough, a ratio increasing in h
means that the H-types have a higher willingness to pay than the L-types
to be members of a group with higher expected mean behavior at high levels
of mg. However, at low levels, agents are actually willing to pay for lower
expected mean behavior. This happens because social effects and private
incentives work in opposite directions and the former offsets the latter, in
which case the L-types are willing to pay more, since their private incentives
are the weakest. On the other hand, when H and L are large enough, iso-
probability curves are increasing over [−1, 1] and the H-types always have
a higher willingness to pay for membership in high expected mean behavior
groups. Single crossing is sufficient for equilibrium stratification, since types
are publicly observed. Expression (33) also shows that the slope of isoprob-
ability curves increases in the magnitude of social interactions, Jg: the more
important interactions are in a group, the more individuals are willing to

21The reason is that in this case individuals face more than one level of expected mean
behavior in equilibrium, while price is still uniquely determined by equation (24), using
expected inclusive utility.
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pay for extreme values of expected mean behavior in that group. This in
turn will affect the degree of stratification in equilibrium. In terms of the
parents-kids example, in this model better educated parents have a higher
willingness to pay for memberships in neighborhoods and schools with higher
expected mean behavior, which offer interactions for their kids that favor ef-
fort and so high human capital. Since education and income are positively
correlated, this is sufficient to generate rich and poor neighborhoods, and
schools for well off and less well off families. Such separation will become
more pronouced the more interactions are important for performance. I will
now turn to question (ii): how many sorting equilibria exist?

Proposition 6 In presence of positive social interactions (Jg > 0), there
exist three sorting equilibria, for any initial arrangement of the population
into groups. One of them is integrated, and is unstable. The other two
are stratified by some degree, and are stable. Furthermore, the degree of
equilibrium stratification increases with the interactions parameter, Jg, and
decreases with the dispersion of preferences over memberships, β−1.

This result is well known in the endogenous neighborhoods literature that
focuses on two groups, e.g. Benabou (1993 and 1996) and Becker andMurphy
(2000). The fact that social interactions are a stratifying force when individ-
uals can choose their reference group, and complete stratification along the
individual type are recurring results in these models. However, segregation
is not a necessary condition for equilibrium here: because of the stochas-
tic part of utility, in equilibrium groups are stratified but imperfectly so.
Heterogeneity along more than one dimension (observable type and unob-
servable preferences here) is sufficient for imperfect stratification, as shown,
for instance, in Epple and Platt (1998). In addition to being more realistic,
this feature of the model offers two advantages. First, it is possible to do
comparative statics on the degree of equilibrium stratification. For instance,
proposition 6 says that the equilibrium degree of stratification is small if ei-
ther of the following holds: (i) Jg → 0 (i.e. interactions are weak): when
the endogenous social effect is negligible, group composition does not affect
utility much, and so the incentive to segregate is weak; (ii) β → 0 (i.e. max-
imum utility with respect to behavior has high dispersion): individuals have
a possibly strong unobservable preference for a certain group, and this com-
ponent, rather than prices and expected mean behavior, drives membership
probabilities. The second advantage is that the model is directly useful for
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empirical purposes. The rest of the section is devoted to proving proposition
6: this offers further insights into the properties of the model.
Consider the integrated economy first. As illustrated above, this is defined

by phg = αg, for both types and groups, which implies mA = mB. In order
for this to be an equilibrium we need to find a pair of prices consistent
with the following two properties: different types have equal probabilities of
being members of a given group, and expected mean behavior is equal across
groups. Notice that the latter implies WhA =WhB. Therefore, no group can
command a social premium, and it is enough to choose a pair of prices such
that their difference only reflects different amenities and size. So integration
is an equilibrium.
However, it is unstable if we introduce some dynamics. To see this, it

is sufficient to perform the following thought experiment. Start at integra-
tion, and perturb the equilibrium so that, for some small , pHA = αA +
and pHB = αB − , i.e. the H-type now has a higher probability of being
member of group A and a corresponding smaller probability of being member
of group B. Now allow individuals to revise their membership choice. All
we have to do is to show that the system will not revert to the integrated
equilibrium. Following the perturbation, the fraction of H-types in group A
and of L-types in B, fHA and fLB, increase according to equation (28). Since
H > L, the properties of the tanh function imply that the value of the stable
roots of (30) move in the same direction fHA moves22, so the equilibrium
value (or values) of mA and mB, respectively, increases and decreases. This
implies that expected inclusive utility increases in group A and decreases in
group B for both types23. This generates a positive social premium on the
memberships market, but because of single crossing the implied pHA and pLA
diverge. So membership probabilities cannot revert to the integrated equi-
librium where pHA and pLA are equal. The adjustment process will continue,
repeating these steps, with fHA, mA and pHA increasing. Since expected
mean behavior and membership probabilities are bounded, the system must
reach a new equilibrium with stratification. The adjustment process in group
B is symmetric, with the notable difference that since fHB is falling, mul-

22The reader can convince herself or himself considering the proof of proposition 3 and
drawing a few tanh fucntions along with the 45 degree line.
23This is obvious if the behavioral equilibrium in either group is unique, and follows from

the fact that H and L are positive if multiple equilibria exist (since in case of multiplicity
inclusive utility varies more when evaluated at the positive mg than at the negative mg)
and from the assumption µ

¡
m∗g,2

¢
= 0.
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tiple behavioral equilibria may appear in group B even if the equilibrium
was unique under integration, which causes a discontinuous drop in inclusive
utility of group B and a rapid increase in stratification. The properties of
the logistic function in equation (32) imply that we cannot have more than
three equilibria, so if we repeat the experiment starting at full stratification
(fHA = 1) the same equilibrium is necessarily reached, which establishes sta-
bility. The existence of another stable equilibrium with stratification follows
immediately if we invert the roles of groups A and B in the thought exper-
iment24. This completes the proof of the first part of proposition 6, whose
meaning is illustrated in figure 4, where the two sides of equation (32) are
depicted. So, the two stable equilibria can be thought of as the steady states
of a dynamic adjustment process when we start from arbitrary group compo-
sitions. To return to the previous example, as an initial small group of rich
families move out of an integrated neighborhood, a cascade is triggered with
more and more rich families leaving in search of better interactions for their
kids, until neighborhoods are stratified.

 

pig 

1/(1-exp(.)) 

1/2  

 

phg 

bisecting line 

αg 

Figure 4. Fixed points of the membership probability function

The different curves in figure 4 correspond to different preference parame-
ters. Specifically, steeper curves, which generate higher degrees of equilibrium
stratification, are associated with a larger value of the interactions parameter,
Jg, and with smaller dispersion of preferences over memberships, i.e. larger

24The two stratified equilibria are not symmetric in general, since amenities may differ,
i.e. kA 6= kB.
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β, as can be seen on the right hand side of (32), which completes the proof
of proposition 6. In particular, stratification is maximal as β → ∞, and so
the sorting equilibrium in Benabou (1993 and 1996) and Durlauf (1996) is
the limiting case of this model.

6 Welfare analysis

This section analyzes question (iii): is the decentralized equilibrium efficient?
To answer, we must figure out how a social planner with an objective func-
tion reflecting individual preferences would choose group compositions and
subsequent behavior. The planner internalizes both first stage externalities
(when choosing a group, individuals do not take into account the effect of
their choice on others’ inclusive utility) and second stage externalities (when
choosing behavior, individuals do not take into account the effect of their
choice on others’ social utility). Like the decentralized problem, the plan-
ner’s problem can be decomposed into two stages: first choose behavior as
a function of group composition, then choose group composition. The first
of these choices was analyzed by Brock and Durlauf (2001a) under the as-
sumption that planner’s objective function is itself extreme value distributed.
Under the specification of social utility I use here, i.e. proportional spillovers,
the planner chooses the positive root of the single-type analog of equation
(30) when the interactions coefficient is 2Jg. I will denote mo this root, and
in general use superscript o for variables evaluated at the social optimum.
Therefore, subsidizing the choice of ω = 1 at the second stage, so that social
utility is doubled, allows to decentralize the planner’s solution.
Given that we can decentralize efficient behavior, how should the planner

choose group composition? The appropriate measure of social welfare with
respect to group composition is the sum of equilibrium inclusive utilities and
amenities, i.e. the aggregate value of memberships before behavior is chosen
and given that each individual will behave optimally under the subsidy at sec-
ond stage. This criterion is the stochastic equivalent of Benabou’s (1993 and
1996), who considers aggregate surplus generated by the two communities,
since inclusive utility can also be interpreted as expected individual surplus
from membership. So the planner maximizes

P
h

P
g kg + Whg

¡
mo

g

¢
with

respect to group composition, or equivalently, dropping amenities (which are
constant across types) and simplifying notation, the planner solves:
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max
fHA

fHAW
o
HA + (1− fHA)W

o
LA + fHBW

o
HB + (1− fHB)W

o
LB

s.t. αAfHA + αBfHB = fH .

The first order necessary condition for a maximum reduces to:

I−1A

·
W o

HA −W o
LA +

µ
fHA

∂W o
HA

∂mA
+ (1− fHA)

∂W o
LA

∂mA

¶
∂mo

A

∂fHA

¸
(34)

= I−1B

·
W o

HB −W o
LB +

µ
fHB

∂W o
HB

∂mB
+ (1− fHB)

∂W o
LB

∂mB

¶
∂mo

B

∂fHB

¸

This condition balances across groups the effect on total inclusive util-
ity of a 1% increase in the fraction of H-types, normalized by group size.
What does this imply for optimal group composition? First of all, notice
that since the optimal m is unique and has the same sign as type, the left
hand side is increasing and the right hand side is decreasing in fHA, and
so optimal group composition is unique. Next, consider a simple intelligible
case: suppose groups have equal capacity, IA = IB, and equal intensity of
interactions, JA = JB. Under these conditions, one immediately sees that
the integrated economy satisfies (34)25. So in this case, integration is the
optimal arrangement and the decentralized equilibrium is inefficient. Now
suppose IA > IB. Then efficiency requires a larger fraction of H-types in
group A, i.e. the planner moves individuals with the strongest private in-
centives to the largest group, where they can benefit more people via social
interactions. If on the other hand JA > JB, since the marginal effect of
expected mean behavior increases in the interactions parameter, the plan-
ner optimally moves some H-types to the group with weakest interactions.
The intuition is that fewer H-types are needed to provide positive social ef-
fects if interactions are strong enough. In the general case, we can conclude
that decentralized decision-making generates inefficiently large stratification
whenever groups are similar enough. When groups differ considerably, al-

25Under integration, inclusive utilities are equal for a given type across groups, and
under equal interactions they are equal at the margin as well.
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though the decentralized equilibrium is generally inefficient, we cannot say
whether stratification is too high or too low. A special and interesting case
in which the equilibrium is inefficient occurs when the planner has powers
limited to group composition. An example is a school board that can choose
class composition but cannot subsidize students’ effort in the presence of peer
effects. In this case multiple behavioral equilibria are possible again, and de-
centralized sorting will lead to inefficiently high stratification whenever the
parameters are such that the behavioral equilibrium is unique under inte-
gration but multiple equilibria appear under equilibrium stratification. The
reason is that expected inclusive utility drops discontinuously in a group as
multiple equilibria appear.

7 Econometrics

The reason why endogenous memberships are a concern in empirical social
interactions work is that - in absence of genuinely randomized experiments -
individuals plausibly self-select on unobservables into the groups that com-
pose the sample. This violates the orthogonality condition between error and
regressors required in regression analysis. The natural solution to this prob-
lem is to use instrumental variables. However, as discussed in Blume and
Durlauf (2006), valid instruments are usually hard to find, and it is prefer-
able to model self-selection explicitly within the statistical analysis. In this
section I will suggest two ways the theoretical framework developed in this
paper can be useful to model self-selection, based on general equilibrium26.
First, notice that the choice model of section 3 is tantamount to a sample
selection model. Referring to the notation introduced in that section, the
behavioral equations, for given group gi chosen optimally at first stage, are:

y∗iω = Vi (gi, 1)− Vi (gi,−1) (35)

yiω = 1 [y∗iω > 0] ,

where 1 [A] is the indicator function assuming value one if A is true and zero
otherwise, and ω = 1 if and only if yiω = 1. The selection equations are:

26There are several alternatives to regression analysis to test the presence of social inter-
actions, and good reasons to pursue them. However, this does not mean regression models
are useless, especially if one considers the availability of increasingly detailed microdata.
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y∗ig = max
ω

Vi (g, ω)−max
ν 6=g

max
ω

Vi (ν, ω) (36)

yig = 1
£
y∗ig > 0

¤
,

with individual i observed in group g if and only if yig = 1. Dubin and Rivers,
(1989/1990) have studied this model as a way to eliminate selection bias in
discrete choice settings. It turns out that the log likelihood function they
derive from a model like (35)-(36) is equivalent to the log likelihood function
generated by the nested logit model, i.e.

L =
P
i

P
ω

yiω log piω|gi +
P
i

P
g

yig log pig, (37)

which suggests a fully parametric empirical route. We first need to general-
ize the theoretical framework developed above. For the sake of tractability,
this was based on binary choice, two groups and two types. In order to con-
struct a useful econometric model, I will stick to binary choice for behavior
(ω = −1, 1) but allow multinomial choice for group (g = 1, ..., G) and a
continuum of types, summarized in a vector of individual characteristics Xi.
Also consider a vector of group-specific variables, Yg, previously collapsed
into the kg index, and allow these to affect behavior as well as membership.
Finally, sample size is normally such that we need to assume a unique J com-
mon to all groups. Then, introducing a constant a and vectors of coefficients
c, d, b and δ, equations (21)-(23) can be rewritten as follows:

piω|g =
exp (aω + c0ωXi + d0ωYg + Jωmg)P

w

exp (aw + c0wXi + d0wYg + Jwmg)
(38)

pig =
exp

¡
βbρg + βδ0Yg + βWig

¢P
ν

exp (βbρν + βδ0Yν + βWiν)
(39)

Wig = log
P
ω

exp (aω + c0ωXi + d0ωYg + Jωmg) (40)

The problem is to maximize (37) with respect to (a, b, c, d, δ, J, β) subject
to (38)-(40). The fully parametric character of this selection correction pro-
cedure may be unsatisfactory. However, since it maps into an equilibrium
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model, it can be useful to perform a robustness test in applied work involving
binary choice and possibly self-selection27.

Second, it is possible to exploit the theory to correct semiparametric
linear models, which are popular tools in the empirical social interactions lit-
erature. For instance an increasing number of applied studies uses the linear
probability model to identify social interactions. Such model approximates
linearly the response of an underlying binary choice ω = 0, 1. In terms of the
notation used here the model is:

Pri (ω = 1) = a+ c0Xi + d0Yg + Jme
ig + εi. (41)

As well known, this model suffers from several problems28. The most
popularized is what Manski (1993) labeled the reflection problem, a special
case of non identification due to the possible collinearity between contextual
effects and mean individual effects29. A second difficulty is the selection prob-
lem: in presence of sorting the orthogonality condition E

¡
εi|Xi, Yg,m

e
ig

¢
= 0

required for (41) to be a valid regression equation is violated. A third major
problem is the possibility of unobserved group effects, which can be solved
using panel data, but I which I will not consider here30. Brock and Durlauf
(2001b) show that reflection and selection problems can be solved at once
modelling selection into groups. Essentially, if individual i has chosen group
g according to some selection rule of the kind Ri

¡
Xi, Yg,m

e
ig, εi

¢
> 0, then

model (41) must be corrected using an estimate of E (εi|Ri > 0) as an addi-
tional regressor, a procedure pioneered by Heckman (1979). The theoretical
model developed in this paper provides such selection rule in equation (12),
and so allows to construct a correction term based on equilibrium behavior.
Denoting with gi the group optimally chosen in equilibrium by individual i,
the selection rule was:

gi = argmax
g
max
ω

Vi (g, ω) = argmax
g

¡
kg − ρg +Wig + εig

¢
. (42)

27The nested logit model can be easily estimated by maximum likelihood using common
statistical packages.
28See Brock and Durlauf (2001b) and Blume and Durlauf (2005) for an exhaustive

exposition.
29The problem can be seen imposing the self-consistency condition me

ig = E (ω) and
rewriting (41) in reduced form.
30See Blume and Durlauf (2005).
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So, using the notation I introduced above, the correction term is:

E
¡
εi|βbρg + βδ0Yg + βWig > ηg

¢
, (43)

where

ηg = max
ν 6=g

(βbρν + βδ0Yν + βWiν + εiν)− εig. (44)

Following Lee’s (1983) extension of Heckman’s (1979) procedure to the
multinomial case, this term can be estimated parametrically in two steps.
First, estimate model (38)-(40) and use estimates cβb, cβδ, and [βWig to esti-
mate pig in (39). Second, assume the error εi in equation (41) is normally
distributed with standard error σ, and denote with rg the correlation between
σεi and the transformed random variable Φ−1 (maxν 6=gmaxω Vi (g, ω)− εigν),
where Φ is the standard normal cdf. The estimate of the conditional expec-
tation in (43) is rgσφ (Φ−1 (cpig)) (cpig)−1, where φ is the standard normal pdf.
As shown in Brock and Durlauf (2001b), as long as rg is not zero, using this
term in equation (41) eliminates selection-bias and allows identification. This
procedure integrates the two approaches to modelling selection proposed by
Brock and Durlauf (2005), but of course is fragile because of its reliance on
parametric assumptions. If an estimate of inclusive utility of groups can
be obtained (for instance using the method of Ioannides and Zabel, 2004),
then various semiparametric methods can be applied to obtain an estimate
of (43). Newey et al. (1990) discuss and use two such methods: one relies
on estimating the distribution of ηg using kernel methods, and the other on
estimating a series approximation of the correction term (43).

8 Conclusion

In this paper I have analyzed a model of choice subject to endogenous so-
cial interactions, when memberships into the groups exerting the social effect
are also endogenous, and individuals differ in observables as well as unob-
servables. The main findings concern: (1) the equilibrium relation between
expected social interactions and expected group composition, which implies
imperfect and inefficient stratification sustained by a social premium on the
memberships market, and (2) the econometric implications of the theory, as
this indicates ways of performing equilibrium-based selection correction. As
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such, the model either brings existing work closer to empirical implementa-
tion, or enriches its theoretical foundations. Of course the model is affected
by several shortcomings, which suggest directions for future research. Two
of them are particularly important. The first is the model reliance on strin-
gent parametric assumptions. Ideally, one wants to work with general dis-
tributions and identify or at least partially identify social interactions after
considering non-random assignment to groups, at no further cost in terms of
parametric assumptions. Brock and Durlauf (2004) suggest a number of pos-
sibilities in this direction, which have not been applied in empirical work yet.
The second is the unobservability of the choice set at the first stage: in the
data we have actual memberships, but not the alternatives one could have
chosen. This means we need a theory of how people search and select mem-
berships among alternative groups. This in turn can suggest instruments for
the unobserved choice set.
Despite these shortcomings, the model can be applied to study, theo-

retically and in a tentative way empirically, several interesting cases that
possibly involve stratification based on social interactions, such as parents
spending resources to secure good associations to their kids in schools and
neighborhoods, scholars trying to join stimulating departments, people join-
ing clubs and social networks in general, employers selecting and stratifying
the workforce, to mention a few. Many instances of social and economic
inequality hinge upon the selection mechanism I have described, which also
suggests equality and efficiency need not be traded off as one enlarges the
perspectives of economic analysis. More importantly, this contribution is
hopefully a useful stage in furthering an integrated study of economic and
social phenomena.

9 Technical appendix

A1. Derivation of equations (15)-(16).

The argument here follows Ben-Akiva and Lerman (1985, pp. 287-288).
The key fact is that if X1 and X2 are two independent extreme value (EV)
random variables, with common scale parameter equal to 1, andmeans µ1 and
µ2, thenmax (X1,X2) is EV distributed, with scale parameter equal to 1, and
position parameter (corresponding to the mode) equal to log [exp (µ1) + exp (µ2)].
Therefore, maxω

¡
hiωi + Jgωim

e
ig + εigω

¢
is EV distributed, with position pa-
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rameter equal to log
P

ω exp
¡
hiωi + Jgωim

e
ig

¢
and scale parameter equal to

1. Since the expected value of an EV random variable is its mode plus Euler
constant, γ, divided by the scale parameter, we have:

Emax
ω

¡
hiωi + Jgωim

e
ig + εigω

¢
= log

P
ω

exp
¡
hiωi + Jgωim

e
ig

¢
+ γ

= Wig + γ.

The probability that individual i chooses group g is:

pig = Pr(kg − ρg + εig +max
ω
(hiωi + Jgωim

e
ig + εigω)

≥ kg0 − ρg0 + εig0 +max
ω
(hiωi + Jg0ωim

e
ig0 + εig0ω)).

A random variable is equal to its mean plus the stochastic part, therefore:

max
ω

¡
hiωi + Jgωim

e
ig + εigω

¢
=Wig + γ +eεig,

and pig can be rewritten as follows:

pig = Pr(kg − ρg +Wig + εig + eεig
≥ kg0 − ρg0 +Wig0 + εig0 +eεig0).

The purpose of the apparently obscure assumption that εig is distributed
such that the maximum of Vi (g, ω) is EV is to assure that εig + eεig is EV
distributed, with parameter β. This leads to equation (16).

A2. Proof of Proposition 1

Since the distribution of the random component of utility is continuous
and differentiable, phA, h = H,L, is continuous and differentiable in ρA, and
so is fHpHA+fLpLA. Equilibrium requires equality between the latter and αA,
the relative capacity of group A. Define zA (ρA, ρB) ≡ fHpHA+fLpLA−αA as
the excess demand for membership in group A. This function is continuous,
and furthermore, for any finite ρB
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lim
ρA→+∞

zA (ρA, ρB) = −αA < 0

lim
ρA→−∞

zA (ρA, ρB) = 1− αA > 0

By the intermediate value theorem, there exists a pair of prices (ρ∗A, ρ
∗
B)

such that zA (ρ∗A, ρ
∗
B) = 0. By Walras’ law, the excess demand for member-

ship in group B, zB (ρA, ρB), is also zero at (ρ
∗
A, ρ

∗
B). Therefore, the latter

is a pair of prices clearing the memberships market. This proves existence.
To prove uniqueness, one needs to show that the excess demand zg

¡
ρg, ρg0

¢
,

g = A,B, g 6= g0 is monotonic in ρg given ρg0, which implies it crosses the
horizontal axis only once for any ρg0. This is in fact the case, since

∂zg
¡
ρg, ρg0

¢
∂ρg

=
∂ (fHpHg + fLpLg)

∂ρg
= β

P
h=H,L

fhphg (phg − 1) < 0

Q.E.D.

A3. Proof of Proposition 3

We can consider either of the two groups and omit the group index, g.
The right hand side of equation (30) represents an ordered set of functions,
indexed by fH . Such functions are convex combinations of the two functions
tanh (H + Jm) and tanh (L+ Jm). The tanh function is strictly increasing,
and H > L > 0. This has two implications. First, these two functions are,
respectively, the upper and lower bound of the set, i.e.

tanh (H + Jm) > fH tanh (H + Jm)+(1− fH) tanh (L+ Jm) > tanh (L+ Jm) ,

for fH ∈ (0, 1). Second, for every f 0H > fH ,

f 0H tanh (H + Jm) + (1− f 0H) tanh (L+ Jm) (45)

> fH tanh (H + Jm) + (1− fH) tanh (L+ Jm)

i.e. the functions lie one above the other and do not cross, with “higher”
functions associated with higher values of fH . Based on the properties of the
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tanh function, propositions (U) and (M) can be rephrased in more detail as
follows:

(U) Equation (30) has a unique root m1 > 0, such that the difference be-
tween the RHS and the LHS is positive for m < m1, and negative for
m > m1

(M) Equation (30) has three roots, m1 > 0, m2 < 0 and m3 < 0, such that
the difference between the RHS and the LHS is positive for m < m3

and m2 < m < m1 and negative for m > m1 and m3 < m < m2.

By assumption we have that

fH = 1⇒ (U)

fH = 0⇒ (M)

Suppose there exist f 000H > f 00H > f 0H such that

fH = f 000H ⇒ (M)

fH = f 00H ⇒ (U)

fH = f 0H ⇒ (M)

Then there exists roots m0
3 < 0 and m000

3 < 0 such that

f 00H tanh (H + Jm0
3) + (1− f 00H) tanh (L+ Jm0

3)−m0
3

> f 0H tanh (H + Jm0
3) + (1− f 0H) tanh (L+ Jm0

3)−m0
3 = 0

and

0 = f 000H tanh (H + Jm000
3 ) + (1− f 000H ) tanh (L+ Jm000

3 )−m000
3

< f 00H tanh (H + Jm000
3 ) + (1− f 00H) tanh (L+ Jm000

3 )−m000
3

The second inequality contradicts condition (45), since f 000H > f 00H . Such con-
tradiction implies that the unit interval can be partitioned into two disjoint
subsets M and U , with µ < υ for each µ ∈M and υ ∈ U , such that fH ∈M

34



implies (M) and fH ∈ U implies (U). Therefore, by the separating hyperplane
theorem, there exists a unique value efH such that

fH > efH ⇒ (U)

fH < efH ⇒ (M)

Q.E.D.
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