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Design Limits in Regime-Switching cases

Beatrice Pataracchia�

Abstract

This paper characterizes the derivation and the assessment of design limits
of monetary policies in the case of a regime-switching economy. The object
of the analysis of design limits is to derive the restrictions on how feedback
rules, the Taylor-type rules typically used in monetary economics, a¤ect the fre-
quency �uctuations underlying the state variable of interest (Brock and Durlauf
(2004)). The presence of switching modi�es the characteristics of design limits
of linear frameworks in two main aspects. First, model speci�cation, in terms
of both coe¢ cients and transition probabilities, a¤ects the measure of design
limits. In general, in presence of high unconditional probability of switching,
the variance minimizing rule is associated to important exacerbations of de-
sign limitations. On the contrary, when the probability of switching is quite
low and the Markov Switching framework is suitable to represent model uncer-
tainty, the robust policy rule smoothes important frequency peaks alleviating
frequency speci�c tradeo¤s. Second, design limits are a¤ected by the particular
policy rule chosen. It follows that, while in linear cases they are regarded as
a constraint of the stabilizing control problem, in regime switching cases they
can be considered an externality generated by the policy rule.
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1 Non technical summary

The paper explores the restrictions on the e¤ects of stabilizing policies on �uctuations
from the perspective of the frequency domain. Brock and Durlauf (2004) and Brock,
Durlauf and Rondina (2008a) - from now on, respectively, BD and BDR - BDR have
de�ned such restrictions design limits. The object of the analysis is the study of some
fundamental limitations regarding frequency-speci�c e¤ects that alternative monetary
policy rules may imply.1 All the existing studies have focused on the linear contexts.
In this paper we extend the notion of design limits to a non linear framework which
can account for a quite structured form of model uncertainty using Markov Switching
ARMA models. Zang and Iglesias (2003) have shown that design limitations can be
interpreted by means of information entropy (or Shannon entropy), a notion which
has recently received a renewed interest in macroeconomics due to the literature
on robustness as a way to deal with model misspeci�cation, rigorously developed
in Hansen and Sargent (2008): in contexts of model uncertainty the policymaker,
seeking to robustify against model misspeci�cation, minimizes the entropy associated
to the economic model. It seems natural then to extend the theory of design limits
to contexts which account for an additional source of uncertainty regarding the true
economic model.
Design limits are relevant in the decision process of a monetary authority as long as

there may be reasons to consider frequency-speci�c e¤ects produced by the policy rule,
as an alternative or in addition to the conventional object of monetary policy, namely,
the minimization of the overall variability of the macroeconomic aggregates under
control. For instance, it seems plausible to suppose that the central bank is more
interested in the business cycle performance of its decisions (medium frequencies)
rather than the long run (or low-frequency) e¤ects.
After describing the general procedure, the paper focuses on the simple case of

a Markov Switching model composed by two simple AR(1) models and considers
the problem of a stabilizing policymaker who cannot observe the true state of the
economy. While this is an extremely simplifying case, it is signi�cant because it allows
to grasp the main novelties due to the hidden switching between potential models.
This non-linearity modi�es the characteristics of design limits of linear frameworks
in two main aspects. First, contrary to linear cases, design limits depend on the
policy rule. It follows that they may be thought of an externality generated by the
policymaker�s action, rather than a constraint. Second, the probability of switching
plays an important role in the determination of the frequency speci�c restrictions. In
general, we observe that the more frequent the switching, the higher are the frequency
speci�c tradeo¤s associated with a variance minimizing rule.
The paper is structured as follows. Section 2 introduces the notion of design

limits. Section 3 presents the derivation of the analysis in the regime-switching case.

1Related contributions and monetary policy applications are Brock et al.(2007), Brock et al.
(2008b).

2



In Section 4 we present simple examples of a Markov Switching AR(1) models in
order to shed light on the main novelties of the analysis in regime switching contexts.
Section 5 presents a monetary policy application and Section 6 concludes.

2 The theory of Design Limits

Conventional monetary policy�s objectives consist of the minimization of the overall
unconditional variance of a vector of state variables of interest. Suppose that in a
backward looking context, the policymaker wants to stabilize the model

xt = A (L)xt�1 +B(L)ut + "t (1)

where xt is a vector of state variables, ut is the control variables vector, "t is the dis-
turbance vector which we suppose, for simplicity, to be a vector of independent and
identically normally distributed zero mean shocks with known and constant covari-
ance matrix.2 The matrices A (L) and B (L) are lag polynomials matrices, where L,
the lag operator, is such that Laxt = xt�a: When ut = 0 we are in the free dynamics
case: the model evolves independently from the control of the policymaker and the
autoregressive part of the system depends only on A (L) : For convenience, we label
this case NC, standing for �no-control�, C otherwise.
Suppose for simplicity that xt is a scalar. There is an important relation between

the unconditional variance of a stationary stochastic process, var (xt jC ) ; and its
spectral density function fxjC (!):

var (xt j C) =
�R
��
fxjC (!) d!

The area under the spectral density function, fxjC (!) ; de�ned in the real interval
[��; �], corresponds to the overall variance of the process. The spectral density and
the variance convey the same information about the second order moments of xt: The
frequency domain, however, adds additional information: the area under the spec-
trum between two frequencies represents the contributions of that frequency interval
to the overall variance. The total variability can indeed be considered as the weighted
average of the spectral density across the frequencies. Therefore, the frequency do-
main is relevant as long as the policymaker associates di¤erent losses to di¤erent
frequency ranges. There may be di¤erent situations in economics where this may
be the case. A central banker can focus primarily on the business cycle frequencies,
rather than on the very low frequencies corresponding to cycles longer than ten years.
The recent economic turmoil o¤ers a second example, leading �nancial institutions
and policy makers to focus mainly on short term �uctuations, while many wonder
about the lower frequency e¤ects of such policies. Further, nonseparable preferences

2The disturbance vector, "t, can have, in general, its own moving average representation.
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for policymakers can lead to di¤erent losses for di¤erent frequency-speci�c �uctua-
tions. Examples of this property are found in Otrok (2001) and Otrok, Ravikumar
and Whiteman (2002).
Let�s start the discussion with a simple example. Let�s consider a univariate

AR(1) model with A (L) = 0:5 and "t being a simple white noise with unit variance.
The correspondent spectral representation is plotted against the frequency in �gure
1 and represented by the solid line: the spectral density function presents a peak
at the low frequencies and decreases at the high frequencies.3 Let�s suppose now
that B(L) = 1 and ut = �fxt�1, where f is set by the policymaker. In order to
stabilize the economy, the policy will be set so to kill o¤ all the temporal dependences
(f = 0:5) and obtain a white noise or a rectangular spectrum (the �at dashed line in
�gure 1): we are reducing, by construction, the overall variance (the variance of the
controlled process is unity, the part of the variation deriving from the shock process
that the policymaker cannot control). However the high frequency �uctuations are
exacerbated. As in BD, we refer to those e¤ects as frequency trade-o¤s. If we were
able to control the process in the way represented by the dashed-dotted line, C*, in
�gure 1, then uncertainty about preferences would not be a great deal: no matter
frequency speci�c trade-o¤s, C* would constitute an improvement. Unfortunately,
in backward looking contexts, C* is not feasible. This idea has constituted the main
content of BD who �rst introduced the notion of the Bode�s integral in macroeconomic
contexts. In what follows, we brie�y explain its technical background4.
Suppose we consider the scalar version of (1):

xt = A (L)xt�1 �B (L)ut + "t (2)

where xt is a zero mean, second order stationary process and "t is a zero-mean white
noise with variance �2". The control rule is a typical Taylor type feedback rule

ut = F (L)xt�1

The optimal policy requires the control removes all the temporal dependences so that
xt is shaped into a white noise, namely, A(L)xt�1 � B(L)F (L)xt�1 = 0: In general,
however, every non destabilizing control rule, even if not optimal, allows to shape
the autoregressive representation of the model into a moving average one. In other
words, every solution may be expressed in the form:

xt = D
C (L) "t

3Notice that the domain of the spectral representation is the close interval [��; �]. The spectral
representation is always symmetric with the respect to the frequency 0, so that, alternatively it can
be completely de�ned just in the close interval [0; �] :

4We invite the interested reader to refer to Brock and Durlauf (2004) and Brock, Durlauf and
Rondina (2006) for an introduction to the control literature on the Bode�s integral applied to eco-
nomic contexts and for the extension to forward looking environments.
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Figure 1: The spectral representation for the model xt = 0:5xt�1 + "t (solid line)
with var ("t) = 1: The dashed line shows the spectral representation of the optimally
controlled process which reduces to a white noise. The dashed-dot line reproduces an
unfeasible result.

where DC (L) is de�ned the transfer function.5 Equivalently, in the frequency do-
main, we can state that every control rule shapes the spectral representation of the
unconstrained model

fxjNC =
�2"
2�
DNC

�
e�i!

�
DNC

�
ei!
�
6 (3)

into

fxjC =
�2"
2�
DC

�
e�i!

�
DC

�
ei!
�

(4)

where the frequency ! belongs to the closed interval [��; �] ; e�i! is a complex num-
ber, DNC (e�i!) and DC (e�i!) represent the Fourier transforms, the analogues of the
transfer functions in frequency domain.7 Formulas (3) and (4) can be equivalently
expressed

fxjNC =
�2"
2�

��DNC
�
e�i!

���2
5Given the model xt = Dc (L) "t, the transfer function is the mapping from the shock (input),

"t; to the target vector (output), xt.
6This expression represents the covariance generating function of the process in terms of the

coe¢ cients of DNC (L) and the variance of the white noise "t (Sargent (1987), page 244).
7The interested reader is invited to refer to chapter 13 of Sargent (1987) for a comprehensive

introduction to the theory of Fourier transform.
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and

fxjC =
�2"
2�

��DC
�
e�i!

���2
where j�j2 denotes the complex and conjugate product operator.
We are now ready to de�ne the object of interest of the Bode�s integral, called

sensitivity function:

S
�
e�i!

�
, DC (e�i!)

DNC (e�i!)
: (5)

From (3) and (4) it follows that ��S �e�i!���2 , fxjC
fxjNC

(6)

which helps in understanding the role of S (e�i!): it describes how the spectrum of
the unconstrained process is shaped into the controlled one. A stabilizer policymaker
would always choose the policy rule such that S (e�i!) = 0; 8!: This is naturally
not possible because the realizations of the driving process do not belong to the
policymaker�s information set. Furthermore, there exists a more stringent feasibility
constraint described by the celebrated Bode�s integral Theorem8 that we state after
de�ning the Bode�s integral.

De�nition 1 Given a stochastic model, as described by (2), and a feasible, stabilizing
rule F; with associated sensitivity function S (e�i!) ; as de�ned in (6), the Bode�s
integral (KB) is de�ned as follows

KB =

Z �

��
log
��S �e�i!���2 d!:

Theorem 2 Let us consider the process (2). If the roots of A(L)� the eigenvalues
of the free dynamics of (2)� are stable, then

�R
��
log
��S �e�i!���2 d! = 0

Proof. See Wu and Jonckheere (1992).

This theorem states that, in backward looking environments, even if the policy-
maker is able to stabilize the state variable of interest, the variance contributions at
some frequencies will necessarily exacerbate since the sensitivity function, S (!) ; 9

cannot be less than one at all the frequencies: in other words, it must be that

fxjC (!) > fxjNC (!) for some !:

8The original result is stated in Bode (1945)�s classical monograph.
9Trough the paper, we frequently switch from the equivalent notations S

�
e�i!

�
and S (!). The

former is more formal, the latter is more intuitive and synthetic: in covariance stationary cases,
the spectral representation and, consequently, the sensitivity function, are always real objects and
functions of the frequency, !:
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Figure 2: The spectral representation of the process xt = 0:5xt�1+ "t (solid line) and
for the optimally controlled process which reduces to a white noise (dashed line). The
dotted line represents the process resulting from a feasible control. The dashed-dot
line reproduces an unfeasible result.

Notice that, for all the stable free dynamics, the value of the Bode�s integral is always
zero and independent of the particular model under investigation. Further, it is
independent of the policy rule. Figure 2 proposes again the spectral representation of
a stable autoregressive process (the solid line) and the spectrum of the process when a
variance minimized rule is adopted (the dashed line). As anticipated before, Theorem
2 ensures that the dashed-dotted line constitutes an unfeasible control. Further, it
shows that any randomly chosen feasible control (represented, for instance, by the
dotted line), even if able to lower the overall variance, produces some frequency trade-
o¤s.
There exists also a second formulation related to the Bode�s integral for unstable

cases.

Theorem 3 Let us consider the process (1). If at least one root of A (L) is greater
than 1 in absolute value (unstable), then

�R
��
log jS (!)j2 d! = 4�

P
i

jlog pij

where pi are the unstable roots of A(L):
Proof. See Wu and Jonckheere (1992).

The economic intuition is straightforward. Stabilization has some costs in terms
of performance. In backward looking contexts Theorem 3 implies that the Bode�s
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integral may take either zero or positive values, meaning that frequency-speci�c trade-
o¤s are unavoidable. This is the reason why the Bode�s integral has been termed �the
Bode�s integral constraint�in BD and in Brock and Dulrauf (2005) who provide an
example of a formal control problem including the Bode�s integral as a constraint.
Notice that a positive Bode�s integral depends only on the unstable roots of the free
dynamics and not on the policy rule.
The time domain computation of the Bode�s integral may sound more familiar to

economists. It has been proved that the Bode�s integral corresponds to the exacerba-
tion of the information-theoretic entropy of the model due to the policy rule (Zang
and Iglesias (2003)). In other words, the higher the value of the Bode�s integral, the
higher the entropy associated to a particular policy intervention. BDR show that
the Bode�s integral may also take negative values in forward looking models. This
is due to agents�expectations which enrich the information set of the policymaker.
However, the feasible rules which could, in principle, minimize the variance at all
frequencies are, not always, the optimal response.
In this paper, we provide an extension of the Bode�s integral in presence of model

uncertainty: the policymaker knows that the economy may be represented by di¤erent
potential models, whose probabilities of occurrence and switching are described by an
ergodic and irreducible Markov Chain. We consider a static problem where Markov
Chain�s realizations are not observed. For a simple interpretation, we analyze a
model independent policy rule, but the methodology presented is su¢ ciently �exible
to handle model dependent reactions. The computation procedure relies on the fact
that the sensitivity function is derived from the knowledge of the spectral densities
as described in (6), rather than from the transfer function, as it is usually done in
linear frameworks.

3 Design Limits for MSARMA models

3.1 The Spectral Representation of MSARMA models

Following Pataracchia (2008), we consider a MSARMA(p,q) model of the following
type:

xt =
pP
i=1

ai (�t)xt�i + "t +
qP
j=1

bj (�t) "t�j (7)

where xt is a zero mean purely indeterministic process in RK , "t � WN (0, 
),
�t = 1; 2 is an irreducible, aperiodic and ergodic two states Markov Chain with �-
nite space � = f1; 2; :::; dg with stationary transition probabilities denoted by pij =
pr
�
�t = j j �t�1 = i

�
and unconditional (or steady state) probabilities �i = pr (�t = i),
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1 � i � d, where
Pd

i=1 �i = 1:
10 Neither the noise ("t) nor the Markov Chain (�t) are

observed (the latter is said to be hidden).
We brie�y summarize the computation of the spectral representation for (7)11.

We de�ne the K (p+ q)�K (p+ q) matrix

� (�t) =

26666666666666664

a1 (�t) � � � ap (�t) b1 (�t) � � � bq (�t)
IK 0 � � � 0 0 � � � 0
0 IK � � � 0 0 0
...

. . . . . . . . .
...

...
. . . . . .

...
0 � � � IK 0 0 � � � 0 0
0 � � � 0 0 � � � 0
0 � � � 0 IK 0 � � � 0
0 � � � 0 0 0 IK � � � 0
...

. . . . . .
...

...
...

. . . . . .
...

0 � � � 0 0 0 � � � IK 0

37777777777777775
The spectral representation of the second order stationary MSARMA model (7) is
given by

Fx (!) =
1X

�=�1
(e0 
 f 0)P �j� jW (0) fe�i!�

where

P � =

26664
p11� (1) p21� (1) � � � pd1� (d)
p12� (2) p22� (2) � � � pd2� (d)

...
...

...
p1d� (d) p2d� (d) � � � pdd� (d)

37775
is a dK (p+ q)� dK (p+ q) square matrix, e = (1; :::; 1)0 2 Rd and f 0 = (IK ; 0; :::; 0)
is a K � K (p+ q) matrix. The matrix W (0) is the dK (p+ q) � K (p+ q) matrix
whose ith block, for i = 1; ::; d; is given by �iE (ztz0tj�t = i), associated with the second
order moments of (7). The spectral densities of each element of the state variable
vector xt correspond to the diagonal elements of Fx (!) :
For example, in the simple univariate case of a MSAR(1) with two potential states

(d = 2)
xt = a (�t)xt�1 + "t; var ("t) = �

2
" (8)

10On the calculation of the ergodic probabilities �i see Hamilton (2004), page 684. In the simple

two-states case, given the Markov Chain M =

�
p11 p21
p12 p22

�
; the steady state probabilities are such

that �1 =
(1�p22)

(2�p11�p22) and �1 + �2 = 1:
11See Pataracchia(2008) for details on the computation.
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the spectral density function can be written as

fx
�
e�i!

�
=
�2"
2�

 
H1

1

(1+�21�2�1 cos!)
+

H2
1

(1+�22�2�2 cos!)

!
(9)

where H1 and H2 are functions of a (i) and pij; 8i; j = 1; 2.
In order to appreciate the well behaving properties of (9), let�s recall the linear

framework. Any second order stationary ARMA model with the Wold representation

yt = G (L) �t

where �t is a zero mean white noise with known and constant variance �
2
�, possesses

the following spectral representation

fy
�
e�i!

�
=
�2�
2�

��G �e�i!���2 (10)

Comparing (9) and (10) we notice that the structure of the spectral density of Markov
Switching model (with a model independent shock process) is similar to any other
linear stationary ARMA models. Indeed, rewriting (9) as follows

fx
�
e�i!

�
=
�2"
2�
A (!) (11)

we can state that A (!) �plays the role� of the complex and conjugate product in
(10).
In what follows we exploit (11) to characterize the design limits of regime switching

models. While we recognize that the MSAR(1) is a very simple example which hardly
allows a relevant economic application, we think it is important to consider it as a
starting point because, while calculations remain tractable, it allows to derive quite
general considerations peculiar of regime switching cases.

3.2 Design Limits for MSAR(1)

Let us consider again the following MSAR(1) model:

xt = a (�t)xt�1 + ut + "t (12)

where ut = Fxt�1 is the control variable and where, for simplicity, F (L) = F so that
we remain in the convenient MSAR(1) framework

xt = (a (�t)� F )xt�1 + "t = (13)

= aC (�t)xt�1 + "t

where aC (�t) = a (�t)� F . In the simple case of d = 2;we compare:
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fxjNC
�
e�i!

�
=
�2"
2�

 
HNC
1

1

(1��NC1 e�i!)(1��NC1 ei!)
+

HNC
2

1

(1��NC2 e�i!)(1��NC2 ei!)

!
with

fxjC
�
e�i!

�
=
�2"
2�

 
HC
1

1

(1��C1 e�i!)(1��C1 ei!)
+

HC
2

1

(1��C2 e�i!)(1��C2 ei!)

!
where C and NC correspond, respectively, to the case in which we suppose the
policymaker intervenes and the case in which ut = 0. We are interested in these
two cases because, as we showed before, the Bode�s integral represents an aggregate
measure of design limitations the policymaker must face with respect to the case
without control.
In linear time invariant (LTI) frameworks (for instance, in the analysis of model

(11)), we are used to consider fyjNC (e�i!) and fyjC (e�i!) in the following forms:

fyjNC (!) = f� (!) j GNC (!) j2 (14)

and
fyjC (!) = f� (!) j GC (!) j2 (15)

where f� (!) = �2� and j GNC (!) j2and j GC (!) j2 represent, respectively, the complex
and conjugate products of the transfer functions of the unconstrained and constrained
systems. As described in (5), in linear frameworks, the sensitivity function is usually
derived by the knowledge of the transfer functions of the controlled and uncontrolled
models. In our case, even if we deal with nonlinear objects, we can still de�ne the
complex and conjugate product of the sensitivity function via the knowledge of the
spectra, as described in (6), where

fxjC (!)

fxjNC (!)
=

 
HC
1

1

(1��C1 e�i!)(1��C1 ei!)
+

HC
2

1

(1��C2 e�i!)(1��C2 ei!)

!
�

�
 
HNC
1

1

(1��NC1 e�i!)(1��NC1 ei!)
+

HNC
2

1

(1��NC2 e�i!)(1��NC2 ei!)

!�1

The Bode�s integral can now be computed

KB =
�R
��
log j S (!) j2 d!:

Taking the log of j S (!) j2, we end up with an expression on the form

log j S (!) j2= logXC (!) + log Y NC (!)� log Y C (!)� logXNC (!)

11



where

XC (!) = HC
1

�
1� �C2 e�i!

� �
1� �C2 ei!

�
+

HC
2

�
1� �C1 e�i!

� �
1� �C1 ei!

�
Y NC (!) =

�
1� �NC1 e�i!

� �
1� �NC1 ei!

�
��

1� �NC2 e�i!
� �
1� �NC2 ei!

�
Y C (!) =

�
1� �C1 e�i!

� �
1� �C1 ei!

�
��

1� �C2 e�i!
� �
1� �C2 ei!

�
XNC (!) = HNC

1

�
1� �NC2 e�i!

� �
1� �NC2 ei!

�
+

HNC
2

�
1� �NC1 e�i!

� �
1� �NC1 ei!

�
:

The Bode�s constraint can therefore be rewritten as

KB =
�R
��
logXC (!) d! +

�R
��
log Y NC (!) d! �

�R
��
log Y C (!) d! �

�R
��
logXNC (!) d!:

The terms Y NC (!) and Y C (!) appear familiar because they characterize the transfer
functions of LTI models: By simple algebra we can write

logY NC (!) = log
�
j 1� �NC1 e�i! j2j 1� �NC2 e�i! j2

�
= log

�
j ei! � �NC1 j2j ei! � �NC2 j2

�
which allows to immediately apply the Wu and Jonckheere lemma (see Brock et al.
(2006) for details).

Lemma 4
�R
��
log j ei! � r j2 d! = 0 if j r j< 1; = 2� log j r j2 otherwise.

Now we can write

�R
��
log Y NC (!) d! = 4�

P
vi

log j �NCvi j; i 2 vi if j �NCi j> 1;8i = 1; 2:

Similar observations apply to Y C (!), so that

�R
��
log Y NC (!) d! �

�R
��
log Y C (!) d! =

4�

�P
vi

log j �NCvi j �
P
ri

log j �Cri j
�
; (16)

i 2 vi if j �NCi j> 1; i 2 ri if j �Ci j> 1;8i = 1; 2:
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From (16) one is tempted to conclude that one part of the design limits formula re-
sembles the linear framework�s result: the Bode�s integral is zero in case of a (global)
stable free dynamics. Notice, however, that, contrary to BDR, we used the notion
of the spectral representation to get the complex and conjugate product of the sen-
sitivity function and the condition of stationarity is necessary to derive the spectral
representation.12 Therefore, the condition of global stationarity must hold in both
the uncontrolled and controlled model. This observation does not necessarily rule out
interesting comparisons with positive Bode values in the underlying models: instabil-
ities in each AR(1) model are neither a necessary nor a su¢ cient condition for global
instability (Costa et al. (2005)).
We are now left with the terms XC (!) and XNC (!) : Let�s start from the former.

XC (!) = KC
�
1� �C2 e�i!

� �
1� �C2 ei!

�
+

HC
�
1� �C1 e�i!

� �
1� �C1 ei!

�
which is on the form

XC (!) = AC +BC cos!

so that
�R
��
logXC (!) d! =

�R
��
log
�
AC +BC cos!

�
d! (17)

where

AC = KC(1 + �C22 ) +H
C
�
1 + �C21

�
(18)

BC = �2
�
KC�C2 +H

C�C1
�
:

Similarly,
�R
��
logXNC (!) d! =

�R
��
log
�
ANC +BNC cos!

�
d! (19)

From Gradshteyn and Ryzhik (1980)13

�R
��
log (a+ b cos!) d! = 2� log

a+
p
a2 � b2
2

(20)

so that
�R
��
logXC (!) d! �

�R
��
logXNC (!) d! =

�R
��
log
�
AC +BC cos!

�
�

�R
��
log
�
ANC +BNC cos!

�
d! =

12We invite the reader interested in the discussion on the technical issue of existence of the
mathematical objects under exam to BDR, page 6.
13See Gradshteyn and Ryshink (1980), page 527.
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= 2� log
AC +

p
AC2 �BC2

ANC +
p
ANC2 �BNC2

14

The above results can be collected and summarized in the following Bode�s integral
theorem for regime-switching cases.

Theorem 5 Given model (15), the value of the Bode�integral corresponds to

KB = 2� log
AC +

p
AC2 �BC2

ANC +
p
ANC2 �BC2

+ 4�

�P
vi

log j �NCvi j �
P
ri

log j �Cri j
�
(21)

with i 2 vi if j �NCi j> 1; i 2 ri if j �Ci j> 1;8i = 1; 2

where ANC ; AC ; BNC and BNC are de�ned as in (18).

Theorem 5 de�nes design limits in case of a MSAR(1) model with d = 2. Its
generic analytic formula depends on the policy rule; on the a (i) s and the pijs with
i; j = 1; 2: This leads us to notice two important di¤erences with respect to the LTI
cases. First, the Bode�s integral is model speci�c, and therefore subject to model mis-
speci�cations. Second, the presence of the terms AC and BC suggests that the value
of the Bode�s integral can be a¤ected by the policy rule, consequently, one can asso-
ciate to it the role of an endogenous constraint, similar to an externality e¤ect, rather
than the exogenous constraint, typical of linear frameworks. This certainly consti-
tutes an additional motivation to consider the analysis of design limits important in
any policy evaluation exercise.

4 The dynamics of the Bode�s integral

4.1 The Bode�s integral across the models

4.1.1 The case of symmetric transition probabilities

In this section, we compute the value of the integral in the simple case of MSAR(1).
Unless otherwise stated, we consider the variance minimizing rule and a disturbance
term with constant and unit variance. We start considering the case of both p11
and p22 equal to 0:5 (the case of symmetric transition probabilities). In Section
4.1.2 we extend the analysis for asymmetric values of the transition probabilities to
investigate the e¤ects of the frequency of the switching on the Bode�s integral. Finally,
we consider di¤erent simple policy rules and compare their performances in terms of
the variance minimizing rule.

14Notice that the explicit solutions of the integral exists only for A � jBj and Ac � jBcj : This
restriction, however, is not binding in any of the simulations presented next.

14



Figures 3, 4 and 5 present the spectral densities of the global MSAR(1) model
together with the one of the two underlying models. The solid line refers to the free
dynamics case while the dashed line illustrates the spectral density of the constrained
processes when the optimal rule which minimizes the overall variability of the regime-
switching model is applied to uncover the e¤ects of the policy on the potential models
which may realize. Figure 3 is related to a MSAR(1) with a(1) = 0:8 and a(2) = 0:2
and �gure 4 shows the case of a MSAR(1) model with coe¢ cients a (1) = �0:8
and a (2) = 0:2. The Bode�s integral relative to these exercises is -0.21. The Bode�s
integral is negative, even if the controlled spectrum presents some frequency trade-o¤s
(stabilization is improved at the low frequencies but exacerbated at the high ones).
A negative Bode�s integral implies that, even though some frequency trade-o¤s result
due to policy intervention, overall, the frequency-speci�c variability contributions
are reduced in comparison with the free dynamics case, in the sense that, while we
are able to reduce the overall variability, the frequency-speci�c trade-o¤s overall are
diminished. In this particular case we can notice that, even if the low frequency
�uctuations appear exacerbated there is an important stabilization at the higher
frequencies, where the model presents a quite pronounced peak. The second and third
panels show that the high frequency peak comes from the model with autoregressive
coe¢ cient of 0:8, which is the more unstable. This example shows that, when the
spectral representation of one underlying model presents pronounced peaks, this is
going to drive the control rule in such a way that this peak is smoothed at the expense
of the frequency performance at other frequencies.
Figure 4 shows similar conclusions. In this case the more pronounced peaks ap-

pear at the high frequencies because the negative autoregressive coe¢ cient of one
underlying model plays a much more important role than the positive coe¢ cient of
the more stable underlying model. The value of the Bode�s integral is, again, -0.21.
Again, the more unstable model drives the policy rule, which tends to smooth the
most important frequency contribution, together with the minimization of the overall
variance.
Finally, we present a particular case in which the policymaker is indi¤erent be-

tween intervening or not. Figure 5 shows that, in the symmetric probabilities case,
when the two underlying models have opposite autoregressive coe¢ cients, the per-
ceived Markov Switching model has a rectangular spectrum, so that the optimal
reaction is no intervention. The value of the Bode�s integral is, by de�nition, zero.
In order to have a much more complete picture of the analysis, next we plot the

value of the Bode�s integral against the autoregressive coe¢ cient of one underlying
model, keeping the other model�s autoregressive coe¢ cient �xed. Figures 6 and 7
present the case of the autoregressive coe¢ cient of underlying model �xed at, respec-
tively, 0.8 and 0.5.
Several considerations can be advanced. First, the Bode�s integral is always nega-

tive or equal to zero. This is, at �rst glance, counterintuitive: the assumption of the
switching regimes introduces an additional source of uncertainty and it is reasonable
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Figure 3: The spectral representation of the MSAR(1) model with coe¢ cients a (1) =
0:8 and a (2) = 0:2 (�rst panel). The second and third panel represent the spectral
representation of the underlying models. The solid line denotes the non control case,
the dashed line denotes the control case.

Figure 4: MSAR(1) model with coe¢ cients a (1) = �0:8 and a (2) = 0:2 (�rst panel).
The second and third panel represent the spectral representation of the underlying
models. The solid line denotes the non control case, the dashed line denotes the
control case.
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Figure 5: MSAR(1) model with coe¢ cients a (1) = 0:8 and a (2) = �0:8 (�rst panel).
The second and third panel represent the spectral representation of the underlying
models. The solid line denotes the non control case, the dashed line denotes the
control case.

to expect that this may cause an exacerbation to design limits. Second, the values of
the Bode�s integral are symmetric around a (2) = 0.
The Bode�s integral is null in two cases: one is the case in which no intervention is

the optimal reaction so that the Bode�s integral is zero by de�nition. The second case
is the linear case, where the two models coincide. We saw above that for stable linear
models the value of the Bode�s integral is always zero. These �gures make clear that
the analysis of the regime switching cases can be considered as a generalization of
the linear case, where the two underlying models coincide. As we already discussed
above, when one model presents important frequency peaks, like the model with
autoregressive coe¢ cient equal to 0.8, the policy rule is very biased towards this model
such that the peak is smoothed. This property allows negative values of the Bode�s
integral. If we interpret the presence of di¤erent potential models as a way to model
�model uncertainty�, we can consider the policy rule a robust policy rule: it will not
be optimal with respect to any model, but it will bring satisfactory performance in all
possible realizations. This usually implies that the policy rule will be biased towards
the worst performing model so to ensure that no big losses will be produced in the
case in which this model realizes. Hansen and Sargent (2008) describe the frequency
speci�c e¤ects of the robust feedback rules in frequency domain. They emphasize
that, while an optimal rule targets the minimization of the overall variance, that is
the area beneath the spectrum, a robust rule will perform such that the most relevant
frequency density peaks will be lowered, as if concerns about robustness in frequency
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Figure 6: The dynamics of the Bode�s integral constraint with a (1) = 0:8; p11 = 0:5
and p22 = 0:5:

domain can be interpreted as risk aversion across the frequencies. This property
implies less severe frequency tradeo¤s, lowering, therefore, the value of the Bode�s
integral.

4.1.2 The Bode�s integral across the probabilities of switching

Next, we abandon the symmetry of the transition probabilities to explore the e¤ect of
the frequency of the switching on the Bode�s integral value. We consider two special
cases, setting the transition probabilities p11 = p22 equal to 0:8 and 0:3:
Figures 8 and 9 represent, as above, the dynamics of the Bode�s integral for

di¤erent models. The probabilities of switching place an important qualitative role
in the analysis of the frequency speci�c e¤ects. When the frequency of the switching
is sustained the value of the Bode�s integral is always negative and its dynamics
appears completely reverted: the non control case and the linear case constitute now
a lower bound for the measure of the frequency speci�c tradeo¤s. Figure ?? helps
grasping the intuition of the result for this simple �rst order regime switching case. It
reproduces the spectral densities of the regime switching model for di¤erent transition
probabilities.
When one model is very unstable compared to the other, then the variance min-

imizing rule is very e¤ective in reducing the pronounced peak and this constitutes
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Figure 7: The dynamics of the Bode�s integral constraint with a (1) = 0:5; p11 = 0:5
and p22 = 0:5:

Figure 8: The dynamics of the Bode�s integral constraint with a (1) = 0:8, p11 = 0:8
and p22 = 0:8:
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Figure 9: The dynamics of the Bode�s integral constraint with a (1) = 0:8, p11 = 0:3
and p22 = 0:3:

an improvement in the frequency speci�c performance. This improvement is much
more evident when the probability of switching is low. In this case the peak of the
unstable model is very pronounced since the MSAR(1) model is closer, in terms of
frequency speci�c characteristics, to the more unstable model. A higher probability
of switching makes the MSAR(1) less close to both underlying models and there-
fore the peak at the low frequencies is also less pronounced. In other words, a very
high probability of switching modi�es completely the distribution of the volatility at
the di¤erent frequencies and this impedes the state independent feedback rule of the
type assumed in this framework to be e¤ective in reducing frequency speci�c peaks.
Here, however, we are mostly conceiving the regime switching case as a convenient
way to represent model uncertainty. Typically macroeconomic studies which account
for model uncertainty with Markov Switching models, consider a very low probabil-
ity of switching since phases of growth or recessions have typically medium or low
frequencies characteristics.

4.2 The Bode�s integral across the policy rules

We have already noticed that the policy rule not only shapes the spectral characteris-
tics of the model, but it does so in a way which a¤ects also the measure of frequency
tradeo¤s. Figure 10 shows the dynamics of the Bode�s integral across several models
with a (1) = 0:8; p11 = 0:2; and p22 = 0:8; and compares di¤erent policies along
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Figure 10: The dynamics of the Bode�s integral constraint for di¤erent policies.
[a (1) = 0:8; p11 = 0:2; p22 = 0:8] :

with the variance minimizing rule. In absence of switching (a (1) = a (2) = 0:8),
the dynamics of the Bode� s integral converges to zero (we are back to the linear
framework). As we move leftward the dynamics of design limits varies substantially
according to the policy rule. Notice that the variance minimizing rule (the solid line
case) always dominates all the other proposed rules while the farther is the policy rule
from the optimal one, the worse the performance in terms of design limits. In general
cases, however, the statement that the variance minimizing rule always produces the
smallest amount of design limits does not always hold, as �gure ?? shows. It depicts
the measure of the Bode�s constraint with the same set of rules considered before but
in a context of a high probability of switching.
When the probability of switching is high, the variance minimizing rule is associ-

ated with the highest level of fundamental limitations of the design.
To conclude, we state that proposing the minimization of design limits through the

minimum Bode�s integral as an object is certainly an argument too strong. However,
we want to emphasize that conventional monetary policy calculations, based on the
overall variance minimization, may hide important exacerbations of frequency speci�c
performance of the policy rule.

5 Application: monetary policy rules

In order to understand frequency-speci�c tradeo¤s, we follow BDR and compute the
frequency-speci�c losses that are implicit in the tradeo¤s associated with the variance-
based Phillips curve in the backward looking regime switching model estimated by
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Svensson and Williams (2005). We compute the parameters for the simple interest
rate rule

it = g��t�1 + gyyt�1

to minimize the loss function

L = �var (�t) + (1� �) var (yt)

where � is a real number. Varying � between 0 and 1, one traces out the e¢ cient
frontier of in�ation/output variance pairs from which a policymaker may choose. For
each point on the frontier we decompose the variance values between low frequencies
(cycles of 8 years or more), business cycle frequencies (cycles of 2 to 8 years), and
high frequencies (cycles of less than 2 years) following the NBER classi�cation of
minor and major business cycle. The decomposition is represented in �gure 11.15

The squares and the diamond in the �gure correspond to the case of a policymaker
who distastes output variance over in�ation variance (dove), so that � = 0:05; and a
policymaker which possesses a relative higher distaste for in�ation variance (hawk),
so that � = 0:95; respectively:
Similarly to the related analysis in linear frameworks presented in BDR, the

negative sloping frontier of the overall variance features are also reproduced for
the low frequencies decomposition. Tradeo¤s are very di¤erent for business cycle
frequencies where the frontier has a positive slope and for the high frequencies in which
case the frontier has a negative slope but with a reversed direction. Contrary to linear
cases, we notice that the in�ation volatility contribution due to the high frequencies is
much more important than the one due to the business cycle frequencies. The almost
vertical shape of the high frequencies frontier is also peculiar of the switching case.
In this case, a strong distaste for in�ation volatility brings an exacerbation of both
in�ation and output variance contributions and an even more important exacerbation
of in�ation volatility at the higher frequencies.
This simple exercise shows how unpacking the variance tradeo¤s in di¤erent fre-

quencies intervals may reveal unexpected frequency tradeo¤s that a policymaker with
frequency speci�c losses may want to take into account.

6 Conclusion

In this paper we extend the theory of design limits in regime-switching contexts, de-
riving the analogue of the Bode�s integral value, which has been recently introduced
in macroeconomic studies by Brock and Durlauf (2004). The Bode�s integral value
quanti�es the amount of the frequency trade-o¤s (design limits) the controller (typ-
ically, a central bank) faces in the process of stabilization. Positive values of the

15The analysis is the regime-switching analogue of the trade-o¤ frontier analysis of linear backward
looking contexts with costless control proposed in BDR.
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Figure 11: Tradeo¤ Frontiers: Aspects of in�ation and output processes that correspond
to the minimization of the loss function as � is varied between 0 and 1. The coe¢ cients are
derived using a grid search over the space g�;y 2 [0:0; 10:0] :
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Bode�s integral imply necessary exacerbations of the contribution of some frequency
ranges to the total �uctuations of the model. Negative values do not imply the ab-
sence of frequency trade-o¤s, but denote less stringent limits. While we describe the
general procedure, we show explicitly the computation for the simple case of a Markov
Switching model composed by two simple AR(1) models and consider the problem of
a stabilizing policymaker who cannot observe the realizations of the Markov Chain
process so to grasp the main novelties of the analysis due to the switching between
models.
We show that the analysis of the design limits in regime switching cases can be

viewed as a generalization of the linear case where the potential models coincide.
Some main features, peculiar to regime-switching cases, are revealed. First, the be-
havior of the Bode�s integral strongly depends on the particular model considered.
Second, di¤erent policy rules shape the spectral density of the process under exam-
ination in di¤erent ways, a¤ecting the measure of design limits. Therefore, while in
linear cases the Bode�s integral is included as constraint in control problems (Brock
and Dulrauf (2005)), we propose to consider it as an externality which a policymaker,
who associates di¤erent losses to di¤erent frequency ranges, may want to include in
his analysis.
The transition probabilities play an important role in the analysis. When the

unconditional probability of switching is low, such that the mean duration of the
potential states is high, the variance-minimizing policy is associated to less stringent
frequency trade-o¤s and the value of the Bode�s integral is typically negative. The
conclusion is di¤erent in the presence of a high unconditional probability of switching
between the models. In these cases, the stabilization has a price in terms of frequency
speci�c performance. The values of the Bode�s integral are typically positive. In the
former case, the Markov Switching framework is suitable to represent model uncer-
tainty and, similarly to the analysis of robust feedback rules in frequency domain
(see Hansen and Sargent (2008) and Tetlow and von zur Muehlen(2001)), the policy
rules which account for model uncertainty targets the pronounced peaks of the spec-
tral density of the model rather than the area beneath it, which corresponds to the
overall variance. This e¤ect alleviates the frequency speci�c tradeo¤s.
The second peculiar characteristic of the Bode�s integral value in regime switch-

ing models is represented by its dependence on the policy rule. In this sense, the
frequency-speci�c performance plays the role of an externality of the policymaker�s
action. This observation can open the way to a reconsideration of the Bode�s integral
and a possible further extension in which the minimization of the frequency trade-
o¤s may be associated a relative weight in the target vector of a monetary economic
analysis.
The examples shown make clear that general conclusions cannot be derived and

that each particular case should be evaluated separately in order to derive policy rele-
vant considerations. This study does not have the conceit to propose the minimization
of the Bode�s integral values as a pure object. However, we regard the communica-
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tion of the frequency speci�c e¤ects of any policy rule, including the knowledge of
design limits, as an important practice which should contribute to a more complete
monetary policy evaluation analysis.
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