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1. Introduction

The economic literature on inequality measurement is mainly concerned with
the comparison of univariate indices of well-being, which record the differences in
distribution of income (and/or wealth) within and between populations. However,
such an approach is considered an inadequate basis for comparing individual dispar-
ities because people differ in many aspects besides income. The analysis of different
individual attributes is indeed crucial to understand and evaluate inequality among
persons. Therefore, a recent research trend is focused on criteria for ranking mul-
tivariate distributions of individual attributes.1 Unfortunately, few progress has
been made on extending the theory of inequality measurement from univariate to
the multivariate case (see e.g. [4], [5], [6], [8], [9] [12]): the works on multidimen-
sional disparity comparisons are indeed rather sparse. In the present paper, we
contribute to such a literature by addressing the problem of establishing inequal-
ity comparisons among multidimensional distributions of individual endowments of
goods. In order to pursue our aim, we extend the notion of majorization (or dually
Lorenz) preorder to a multi-attribute framework. Of course, the Lorenz criterion2 is
a fundamental tool for drawing conclusions about inequality of univariate (income)
distributions, and is amenable to an intuitively appealing interpretation. In fact,
according to a celebrated result of Hardy, Littlewood and Polya [HLP, [2]], which
is considered a cornerstone of the economic literature on inequality measurement,
if a distribution is less unequal than another according to the Lorenz preorder,
then the former can be obtained from the latter by means of a finite sequence of
Pigou-Dalton transfers3 (and conversely), and equivalently the inequality associ-
ated with the former will be greater than that associated with the latter by the
class of S-concave real-valued functions4 (and conversely). Unfortunately, no exact
counterparts of the HLP characterizations of Lorenz (majorization) preorder are
available in a multidimensional setting. The major difficulty lies in the fact that
deriving a more even multivariate distribution from another one by means of the
transformation induced by an n×n bistochastic matrice B is not always equivalent
to applying a finite sequence of simple PD transfers, namely transfers where just
two coordinates are involved.
Moreover, the very assessment of inequality in resource allocation by means of

Lorenz preorder is in fact highly problematic for multivariate distributions. Indeed,

1See Savaglio [9] for a survey.
2See Marshall and Olkin [7] chapter 1 for the definition of the Lorenz preorder and discussion

of the related Lorenz criterion.
3A (simple) Pigou-Dalton (PD) transfer is a bilateral income transfer, assumed to be inequal-

ity diminishing, that takes place from the richer to the poorer, without reversing their relative
positions.

4A function f : D → R, where D ⊆ Rn, is S-concave if f (Bx) ≥ f (x) for all x ∈ D and all
n×n bistochastic matrices B, i.e. nonnegative square matrices, all row and column sums of which
are equal to 1.
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in the univariate (income/wealth) case Lorenz-based (or majorization) comparisons
of distributions are easily performed, thanks to the total ordering of real-valued
income levels. On the contrary, in the multidimensional setting individual endow-
ments, that typically admit only partial orderings (e.g. dominance orderings), are
to be compared. Hence, the problem of building up a majorization preorder, start-
ing from a partial (pre)ordering of individual endowments must be also addressed.
In particular, we focus on that issue when individual endowments consist of private
goods.
Usually, many copies of the same object may appear in an individual endow-

ment. In order to cope with this fact, we introduce the notion of multisets, i.e.
sets which may include multiple copies of the same element5. Therefore, as mul-
tiple copies of different goods are distributed among people, we get a partition of
multisets, or multipartitions. Multipartitions are discrete counterparts of a multi-
variate distribution and can be represented as a rectangular integer-valued matrix
whose generic row i denotes the assignment of the annual vector of goods to the
i-th agent. Such an analytical structure, induced by finite multiset-partitions, is
exactly the framework used to study multidimensional inequality, i.e. the disparity
of a population of N individuals distinguished for several attributes (see e.g. [4],
[5], [6], [8], [9]). In such a setting, we first define a multidimensional counterpart
of majorization preorder. In order to achieve that, we start from the partial order
induced by the strict dominance vector order for multisets. We enrich such a class
of dominance ordering of multisets with a threshold, a sort of multidimensional
poverty line, in order to generate a dominance filtral preorder (henceforth DFP).
To put it briefly, we compare distributions of goods on a finite population of N
individuals in terms of componentwise (strict) rankings and introduce a minimum
requirement (the threshold), such that any bundle of goods which does not reach
the required standard is deemed actually equivalent to the empty set. However, in
order to define the majorization preorder, we need to extend the DFP, that is in
general non-total, to a total preorder. We accomplish the foregoing task by relying
on the height-function of a poset, defined as the maximum number of steps you
may go down a DFP-discending chain before reaching the threshold. In words,
a height-function assigns to each endowments of goods its height, a non-negative
number, therefore providing an objective numerical scale for assessing the relative
importance of an individual endowment. Of course, the ‘higher than’ binary re-
lation is a total preorder, thus it supports a DFP-based majorization inequality
ranking of multiprofiles. In fact, to consider the resulting heights of the profiles
of individual endowments allows us to apply the majorization preorder to the set
of height profiles we obtain. In such a way, we have achieved a counterpart of the
(dual of) Lorenz ranking of unidimensional (income) distributions.
There have been a number of different ways proposed for generalizing the uni-

dimensional transfer principle so that it can be applied when there are multiple
individual attributes (see e.g. [4], [7], [9]). In such a setting, the notion of transfer
is rather demanding. Indeed, we restrict the class of all possible multidimensional

5Multisets have been defined by assuming that for a given set A an element x occurs a finite
number of times. They constitute a generalization of the notion of set and as sets, support
operations to insert and withdraw items, provide a means to test the membership of a given item,
and support the basic set operations of union, intersection, and difference. For example, in the
multiset {a, a, b, b, b, c}, the multiplicities of the members a, b, and c (which could be interpreted
as different private goods), are respectively 2, 3, and 1.
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transfers to the subset of all bilateral transfers that take place from the richer6 to
the poorer, leaving the set of all total goods in the multivariate distribution un-
changed. Moreover, we define as minimal a transfer which involves one unit for
each component of the personal distribution of goods. In other words, we focus
on those transfers such that for each good the endowment of the richer person is
diminished by one unit and the corresponding endowment of the poorer one is in-
creased by the same amount (without reversing the respective ranks). We show
that the DFP-majorization is equivalent to reachability by means of finite sequence
of minimal uniform transfers. This is the first fragment of our extension of the HLP
characterization results to a multidimensional framework.
The last part of our analogue to the classic HLP theorem consists in proving

that a version of the result due to Schur and Ostrowski on the class of majorization
order-preserving functions (see [[7], Chapter 1]) also holds in the setting of finite
multipartitions with thresholds. In particular, we focus on the class of real-valued
functions which preserve the majorization preorder as defined on the totally ordered
space of the height vectors. The importance of defining an order-preserving function
in such a setting relies on the one-to-one correspondence between isotone functions,
maps that preserve the majorization relation, and the so-called social evaluation
functions (SEF)). SEFs are widely used to define inequality indices, which in turn
provide the basis for welfare comparisons between and within populations by equity-
concerned policy-makers.
In a previous work, we have already addressed the issue of building up a Lorenz

preorder starting from a partial ordering induced by set-inclusion as augmented
with a minimum ‘filtral’ threshold (see [10]). In fact in [10], we focus on the exten-
sion of the celebrated HLP results to the measurement of opportunity inequality
starting from a class of set-inclusion monotonic total preorders of (opportunity)
sets different from the cardinality preorder. However, the set-inclusion preorder is
only satisfactory when at least some of the relevant resources are public, or at least
non-rival, goods. Thus, by addressing the same problem of building up a Lorenz
preorder starting from the strict dominance order for multisets, the present paper
allows a proper treatment of the standard pure-private good case.
All things considered, there are therefore at least two good reasons for explor-

ing if a version of the HLP characterization results holds starting from a (dual of)
Lorenz-like preorder of partitions of finite multisets: (i) the possibility to extend
the unidimensional inequality criteria to a multidimensional setting where several
individual characteristics are simultaneusly considered and (ii) it is after all pos-
sible to extend the celebrated HLP theorem to the measurement of opportunity
inequality even starting from several preorders of opportunity sets which are dif-
ferent from the cardinality preorder even when opportunities to be considered are
private goods.
The paper is organized as follows. In Section 2, we introduce and discuss our

basic notions. We show the analogy between our approach to inequality rankings
of profiles of individual endowments and the standard multidimensional analysis of
disparity. We introduce a version of the Pigou—Dalton “principle of transfers” for
multipartitions of goods and define an equality-enhancing, rank-preserving transfer
of items from a richer to a poorer individual. Finally, a class of multidimensional
majorization order-preserving functions is also provided. Section 3 includes the

6In terms of the component-wise strict ranking of opportunity endowments.
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main results of the present work, namely a partial extension of the classic HLP the-
orem for individual multiprofiles of goods. Section 4 is devoted to some concluding
remarks, while proofs are collected in Section 5.

2. Notation and Definitions

We study a class of rankings of individual endowments which typically arise when
all the alternatives are pure private goods. Then, let N denote a finite population
of agents, with #N > 2 (where # denotes cardinality), X the finite set of available
goods and assume that #X > 2 in order to avoid trivial qualifications. As the
elements of X represent private goods, the same item may appear more than once.
Thus, as people commonly buy many copies of the same (private) good, we allow
that the objects in X have duplicates. Hence, in order to cope with this fact, we
introduce the notion of finite multisets on X, i.e. a function m : X → Z+ such thatP

x∈X m (x) < ∞. In other words, function m registers how many memberships
each item has in a multiset by assigning to this result a natural number. Since copies
of different goods are distributed among N people, we get a partition of multiset
m, or multipartion of m, on population N , which is a profile m = {mi}i∈N of
multisets on X, a multiprofile of individual endowments then, such that for any
x ∈ X:

P
i∈N mi (x) = m (x). We denote by ΠNm the set of multipartitions of m on

population N . In such a manner, an element m of ΠNm could be figured out as a
distribution matrix (see 2.1), representing a population with N agents among which
a set of goods is distributed and where the generic row i denotes the assignment of
the goods to the i-th agent.

(2.1)

x y ... w ... z ←− goods
people
↓

z }| {

m =

⎡⎢⎢⎢⎢⎢⎢⎣
m1 (x) m1 (y) ... m1 (z)

.

.

.

.

.

.
mi (w)

.

.

.
. . . .

mn (x) ... . mn (z)

⎤⎥⎥⎥⎥⎥⎥⎦
Hence the following question rapidly arises: “Given two distribution matricesm and
m

0
, which one contains the lower level of disparity?”. To answer the question, we

generalize some suitable unidimensional dominance criteria to the multidimensional
case. In particular, we generalize, as mentioned above, the notion of majorization
preorder to that of majoriaztion preorder of partitions of finite multisets, defined
with the reference to a preorder of sets of goods as induced by strict dominance
and augmented with a threshold. Then, in order to proceed with our analysis,
let MX be the set of all multisets on X and define the natural componentwise
(strict) order > on MX as follows: for any m, m

0 ∈ MX , m > m
0
if and only

if m (x) > m
0
(x) for any x ∈ X. In particular, for any m∗ ∈ MX , we may

consider the subposet Mm∗ = (MX,m∗ , >) of the poset M = (MX , >), where
MX,m∗ = {m ∈MX : m > m∗ or m = m∗}. In order to capture the notion of a
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threshold in this setting, we shall rely on the definition of an order filter of the
posets (MX,m∗ , >).

Definition 1. Let m∗ ∈MX . An order filter of (MX,m∗, >) is a set F ⊆MX,m∗

such that for any m,m
0 ∈MX,m∗ , if m

0 ∈ F and m > m
0
then m ∈ F .

Such an order filter F collects all the elements of the multisets of MX,m∗ , which
are >-larger than some element from a specified (finite) list BF = {b1, ..., bl}, the ba-
sis of the filter, where bg = (bg (x))x∈X ∈MX,m∗ , g ∈ {1, ..., l} are non-comparable
elements, called generators of the filter. The elements of the basis, which jointly
constitute a threshold (a sort of multidimensional poverty line), correspond to the
set of minimally acceptable endowment of goods. In this way, we associate a thresh-
old to each order filter as defined on the individual endowment. In particular, when
#BF = 1, i.e. BF is a singleton, the order-filter F is said to be principal. All this
is made precise by the following:

Definition 2 (Dominance Filtral Preorder (DFP)). For any (principal) order filter
F of (MX,m∗ , >) the F -generated dominance (principal) filtral preorder (DFP) is
the binary relation <F on MX,m∗ defined as follows: for any m,m0 ∈ MX,m∗ ,
m <F m0 if and only if m > m0 or m0 /∈ F .

Since the main goal of the present paper is to study a DFP-based method of
ranking multiprofiles of goods in terms of inequality, which reproduces the HLP
characterization for majorization preorder, we need to extend the partial order <F

induced by the F -generated DFP on MX,m∗ to a total order. As mentioned in the
Introduction, the (dual of the) Lorenz criterion is indeed induced by the total order
of the elements in the univariate distribution (of incomes). On the contrary, our
(MX,m∗ , <F ) is an extremely irregular partial order set. Moreover, we need to find
a way to compare individual multivariate distributions of goods in a manner that
preserved their relationship under the partial order. In the theory of combinatorial
posets, the rank function should constitute the natural candidate for extending the
DFP induced by the filter F to a total order. But, when the poset is irregular, the
rank function (preserving the covering-relation on the elements of the set) violates
the so-called Jordan-Dedekind condition and then fails to be well-defined (see e.g.
Greene and Kleitman [1]). In absence of a rank function, the notion of height is often
a useful substitute. In fact, a way to extend a poset to a linear order is to arrange
all elements of the poset in a latticial diagram (the so-called Hasse diagram), by
height, where ‘height’ is established by the level in the lattice diagram at which
the element, whose height we test, appears. Then, the so-called height-function is
a natural-valued function that evaluates the lenght (numer of elements plus one),
of the longest chain7 from m to the basis of filter F and is defined as follows:8

Definition 3. Let F be an order filter of (MX,m∗ , >) and <F the (principal) DFP
induced by F. Then, the <F -induced height function

h<F :MX,m∗ → Z+

7Notice that a chain of a poset (X,<) is a subset Z ⊆ X such that (Z,<) is a totally ordered
set.

8See [3] for an extensive treatment of the height function.
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is defined as follows: for any m ∈MX,m∗ :

h<F (m) = max

½
#C : C is a <F -chain, such that

m ∈ C and m ÂF m0 for any m0 ∈ C\ {m}
¾
.

In words, the height function assigns to each individual profile of goods mi (x),
for any x ∈ X, with i = 1, ...,N , a non-negative number, namely the size of
the longest strictly ascending chain having mi (x) as its maximum. Thus, the
height of a vector mi (i.e. the endowment of goods of the individual i in MX,m∗),
counts the number of goods which stand belowmi (x) according to the preorder <F ,
when considering the longest path ending in mi (x). In other words, if we consider
the Hasse diagram of the poset (MX,m∗ , <F ), then the application of the height
function to MX,m∗ consists in counting how many steps we go down following
the vertical directions before getting the threshold generated by the (principal)
filter.9 In our case, the height function provides a total extension of the DFP,
i.e. a DFP-method of ranking multiprofiles, by inducing the ‘higher than’ binary
relation. Moreover, it essentially allows us to replicate, in the more general context
of individual endowments of goods, some of the fundamental results of the theory
of income inequality measurement as collected in the following:

Theorem 1 (HLP [2]). For any x = (x1, ..., xn), y =(y1, ..., yn) ∈ RN+ , the follow-
ing conditions are equivalent:

i) y <M x: i.e.
Pk

i=1 yi ≥
Pk

i=1 xi, i = 1, ..., n−1, and
Pn

i=1 yi =
Pn

i=1 xi,where,
the components of x and y are arranged in non-increasing order;

ii) x can be derived from y through a finite sequence of transformations z
0
=

f (z) of the following type: z
0
i = zi+δ, z

0
j = zj−δ with j ≤ i and z

0
k = zk,

for k 6= i, j and δ > 0, provided δ ≤ (zj − zi) /2;
iii) f (y) ≥ f (x) holds for any f : A ⊂ RN+ → R of the following form: for

each z ∈ A, f (z) = Pn
i=1 ϕ (zi) where ϕ : R → R is a continuous convex

function.10

All in all, in what follows, we explore the possibility to export into a multidi-
mensional setting the criteria sub (i), (ii), (iii) of the foregoing theorem. Then, in
order to accomplish the foregoing task we first introduce the following:

Claim 1. Let m ∈ MX,m, F a principal order filter of (MX,m, >) with basis
BF = {b} and (MX,m, <F ) the F -generated dominance filtral preorder, then

h<F (m) = max
n
0,min

x
{m (x)− b (x)}+ 1

o
.

Thus, Claim 1 provides us with a handy formula to compute heights, which will
prove to be very useful in the ensuing analysis.
Following our approach to the inequality ranking of profiles of individual endow-

ments, we now apply the majorization preorder to the set of the resulting heights
for the profiles of personal endowments under consideration. Such a preorder in-
duces a further preorder, which is an inequality ranking of multiprofiles of goods,
which is a counterpart of the (dual of ) Lorenz ranking of (income) distributions.

9Note that a strictly ascending chain is said to be maximal when it cannot be extended without
changing one of its extrema.

10Functions f (.) = ϕ (.) as defined above are indeed Schur convex, i.e. such that f (y) ≥
f (x) whenever y <M x.
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Indeed, let us denote bym = (mi (x))
x∈X
i∈N a generic multiprofile, i.e. a multivariate

distribution of a finite number of goods among a population of N individuals. Inm,
the generic row mi (x) represents the distributions of goods, for any x ∈ X, which
are allotted to individual i, for i ∈ {1, ..., N}, according to m. Then, a counterpart
of the majorization preorder in our framework is defined as follows:

Definition 4. Let m,m0 ∈ ΠNm be two profiles of individual endowments of goods,
F an order filter of (MX,m∗ , >), <F the corresponding filtral preorder on MX,m∗ ,
and h<F the <F -induced height function on MX,m∗ . Then, we say that m majorizes
m0, denoted m <maj

F m0, if:

h<F (m) = (h<F (m1) , ..., h<F (mn)) <maj (h<F (m
0
1) , ..., h<F (m

0
n)) = h<F

³
m

0´
,

namely:
kX
i=1

h<F (mi) >
kX
i=1

h<F (m
0
i) k = 1, ..., n− 1,

and
nX
i=1

h<F (mi) =
nX
i=1

h<F (m
0
i) ,

whenever the height vectors are arranged in non-increasing order.

In words, focusing on a domain of multivariate distributions of pure private goods

among a population, we map the space of individual profiles of goods
³
ΠNm, <maj

F

´
into a set of integer points in ZN+ , i.e. the totally ordered space of the height vectors,
on which we apply the majorization preorder. Notice as such a domain will depend
on the order filter selected and therefore is denoted as the (height) span of <F ,
written as H<F .
Now, in order to extend the basic results of the literature on unidimensional

inequality measurement to our multidimensional context of profiles of individual
endowments of private goods, we must provide a suitable counterpart of the Pigou-
Dalton transfer principle. Thus, let us state the notion of transfer with respect to
height-extensions of DFPs, by first defining a transfer operator as follows:

Definition 5. A transfer operator on ΠNm is a nonempty correspondence = : ΠNm ⇒
ΠNm such that

∀ (m,m0) ∈ ΠNm ×ΠNm, m0 ∈ = (m) .
Then, a transfer operator is a transformation which leaves the set of all total

alternatives/goods in m and m0 unchanged. Next, we define a notion of minimal
transfer:

Definition 6. Let m,m0 ∈ ΠNm be two profiles of individual endowments of goods,
F a principal order filter of (MX,m∗ , >) with basis BF = {b} and i, j ∈ N such that
mi ÂF mj, h<F (mi) > h<F (mj) + 1 such that:

m0
i (x) = mi (x)− 1 for any x ∈ X

m0
j (x) = mj (x) + 1 for any x ∈ X

and m0
l (x
∗) = ml (x

∗) for any l 6= i, j, and x∗ ∈ X(2.2)

Then m0 is said to arise from m through a minimal uniform transfer (MUT) (from
richer i to poorer j).
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By analogy with the Pigou-Dalton principle, we also require that transfers of
goods be not large enough to reverse the relative height-induced positions of the
donor and recipient, namely:

Definition 7. A transfer operator = is said to be:
(i): MUT if and only if for any m,m0 ∈ ΠNm, if m0 ∈ = (m) then m0 arises
from m through a MUT.

(ii): weakly rank-monotonic w.r.t <F if and only if it does not cause height-
reversals i.e. for any m,m0 ∈ ΠNm and any i, j ∈ N , if

m0 ∈ =(m), m0
i 6= mi, m

0
j 6= mj

and
h<F (mi) > h<F (mj)

then
h<F (m

0
i) > h<F (m

0
j).

(iii): weakly progressive w.r.t. <F if and only if for any m,m0 ∈ ΠNm:
m0 ∈ =(m), m0

i > mi and mj > m0
j

entails that
h<F (mi) > h<F (mj).

(iv): weakly-equalizing w.r.t. <F if it is both weakly rank-monotonic w.r.t.
<Fand weakly progressive w.r.t. <F .

Moreover, in order to pursue our search for a DFP-counterpart of the HLP’s cel-
ebrated result, we have to focus on the class of real-valued functions which preserve
DFP-induced majorization preorders.

Definition 8 (real-valued <maj
F -isotonic functions). Let F be an order filter of

(MX,m∗ , >) and <maj
F the majorization preorder on ΠNm induced by the DFP <F as

defined above. Then a real-valued function

f : ΠNm −→ R

is isotonic (wrt <maj
F ) on domain D ⊆ ΠNm if and only if for any m,m0 ∈ D

f(m) >f(m0) whenever m Âmaj
F m0.

Real-valued isotonic functions are simply the DFP-counterparts of so-called Schur-
convex functions (see e.g. [7] chapter 3), namely functions f (·) =Pϕ (·) such that
f (x) > f (y) whenever x<majy, with x, y ∈ Rn.
Finally, the use of the foregoing Definitions is clarified in the following:

Example 1. Let us suppose that the set of available goods X is composed of six
copies of good x and ten copies of good y, (i.e. m (x) = 6 and m (y) = 10),
distributed over a population of three agents {i, j, l} in order to get a partition of
multiset m, namely the multiprofile:

m =
i
j
l

x y⎛⎝ 5 6
1 2
0 2

⎞⎠
If we consider as the basis of the filter BF = {b1, b2}, where b1 = (b1 (x)) = 1

and b2 = (b2 (y)) = 1, then the corresponding filter-induced height function will be
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tantamount to h<F (m) = (5, 1, 0). Thus, suppose that, according to Definition 6, a
transfer takes place from richer i to poorer l in order to get the new multidimensional
distribution:

m
0
=

i
j
l

x y⎛⎝ 4 5
1 2
1 3

⎞⎠
and the corresponding h<F

³
m

0
´
= (4, 1, 1). Hence, it is obvious that m <maj

F m0

and that f(m) >f(m0) where f is, for example, a function that simply sums the
value of the heights of the multipartitions. On the contrary, if BF = {b1, b2} =
(1, 3), and the same transfer takes place in m, we now have that h<F (m) = (4, 0, 0)

and h<F

³
m

0
´
= (3, 0, 0), with corresponding net loss of height mass. It is worth

noticing here how a careful check that numbers always vary according to transfers
of goods is often required.

3. HLP Theorem for finite multipartitions

Let us start with a multidimensional counterpart of an important fragment of the
theory of inequality measurement, namely the Muirhead Lemma (see e.g Marshall
and Olkin [7] chapter 1), which says that is possible to obtain one (univariate)
distribution from another one throughout a finite sequence of simple (in the sense
of (ii) Theorem 1) transfers, which minimally alter the initial distribution if and
only if the former is majorized (or dually Lorenz dominated according to the Lorenz
criterion) by the latter :

Proposition 1. Let F be a principal order filter of (MX,m∗ , >), and m,m0 ∈ ΠNm
two multidimensional individual profiles of individual endowments of goods such that
(h<F (m) , h<F (m

0)) ∈ (Z+\ {0})N . Then, the following statements are equivalent:
(1) m Âmaj

F m0;
(2) There exist a weakly-equalizing (wrt <F ) MUT operator = and a positive

integer k such that m0 ∈ =(t)(m).11
The foregoing Proposition is related to the result on integer majorization due

to Muirhead (see e.g. [7]). Nevertheless, it does not reduce to it, because here
transfers involves goods and are only indirectly reflected into numbers. In other
words, we need to double check that numbers always chance according to transfer
of goods by avoiding loss in the total sum of the height-values.
In order to establish a close DFP-analogue of the Theorem 1, let us start with

a useful characterization of real-valued <M
F -isotonic functions which also mimics a

well known result on Schur-convex functions (see e.g. Lemma 3.A.2 in Marshall
and Olkin [7]).

Lemma 1. Let F be a principal order filter of (MX,m∗ , >), h<F : (MX,m∗ , >) →
ZN+ , the <F -induced height function as defined above, and ϕ : ZN+ → R. Then
ϕ ◦ h<F is <maj

F -isotonic on [(H+
<F )

−1] ↓12 if and only if for all z ∈ZN+ ∩H+
<F such

11Let = be a transfer operator, then, for any positive integer t and m ∈ ΠN
m we define induc-

tively =(t)(m) = =(=(t−1)(m)).
12[(H+

<F )
−1] ↓ is the h<F -counter-image of the positive height span of (MX,m∗ ,<F ). More-

over, notice that for any x = (x1, ..., xn) ∈ Rn, we shall denote x ↓ the vector of x’s components
arranged in non-increasing order.
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that z = z ↓, and k = 2, ..., n the value

ϕ(z1, ..., zk−1, zk +∆, zk+1 −∆, zk+2, ... , zn)
is non-decreasing in ∆ ∈ Z+ provided that:

(1) 0 6 ∆ 6 min {zk−1 − zk, zk+1 − zk+2}, k = 2, ..., n− 2;
(2) 0 6 ∆ 6 (zk−1 − zk), k = n− 1, n
Then, a version of the characterization of the majorization preorder in terms of

Schur-convex functions is provided by the following:

Proposition 2. Let F be an order filter of (MX,m∗ , >), h<F the <F -induced height
function as defined above, and m,m0 ∈ ΠNm such that

(ϕ ◦ h<F )(m) > (ϕ ◦ h<F )(m0)

for any ϕ : ZN+ → R such that ϕ◦h<F is a <maj
F -isotonic function on [(H+

<F )
−1] ↓.Then,

m Âmaj
F m0.13

Altogether, Propositions 1, Lemma 1 and Proposition 2 entail the following:

Theorem 2. Let F be a principal order filter of (MX,m∗ , >), and m,m0 ∈ ΠNm
two opportunity profiles such that h<F (m), h<F (m

0) ∈ H+
<F .Then, the following

statements are equivalent:

(1) m Âmaj
F m0;

(2) There exist a <F -weakly equalizing MUT operator = and a positive integer
k such that m0 ∈ =(k)(m)

(3)
(ϕ ◦ h<F )(m) > (ϕ ◦ h<F )(m0)

for any ϕ : ZN+ → R such that ϕ ◦ h<F is a <maj
F -isotonic function on

[(H+
<F )

−1] ↓
Thus, Theorem 2 is a multidimensional counterpart for profiles of individual

endowments to the HLP theorem on inequality measurement as required.

4. Concluding remarks

The relevance of the foregoing results relies on the fact that the DFP-approach
is conducive to a majorization preorder of multiprofiles of goods that extends the
classic unidimensional analysis of income inequality to a multivariate context. Since
the comparison of multidimensional distributions typically admits only a non-total
preorder of individual endowments, we have suggested the possibility to rely on
height-based total extensions in order to reproduce some relevant parts of the the-
ory of majorization (or, dually, Lorenz) preorders. Indeed, we have shown that
the componentwise strict preorders of vectors, representing the assignment of the
goods to the agents, support a multipartition counterpart to the celebreted HLP
Theorem. In a broad sense, we answer to the question: “A lost paradise?”, posed
by Trannoy [12] and concerning the impossibility of finding again “the miracle of
the HLP theorem” in the multidimensional context. Of course, this does not come
totally for free. We first needed to use a two-steps procedure in order to compare

13Notice as Proposition 2 holds for any (as opposed to principal) order filter defined on the
domain of partitional profiles.
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rectangular matrices, representing the disparity of a population ofN individuals dis-
tinguished for several attributes, namely multivariate ditributions of goods. Then,
we adopted a very restricted version of the Pigou-Dalton principle of transfers to
define a distributive profile as less even than another one.
Although our work represents a new fruitful approach to the analysis of multidi-

mensional inequality, much more remains to be discovered, at least on the problem
to compare our solution to the issue of building up a Lorenz preorder of multivari-
ate distributions with the main results on matrix majorization existing in economic
literature (see e.g. [5], [6], [7], [8], [9] among others), but this task is best left as a
possible topic for further research.

5. Appendix: Proofs

Proof of Claim 1. Let us consider two cases, namely (i) there exists x ∈ X such that
m (x) < b (x), thenmin (m (x)− b (x)) < −1 and thereforemax {1,minx {m (x)− b (x)}+ 1} =
1. On the other hand, by definitionm ∼F ∅, hence h<F (m) = 1; (ii) for any x ∈ X,
m (x) > b (x), thenmin (m (x)− b (x))+1 > 1, i.e. max {1,minx {m (x)− b (x)}+ 1} =
min (m (x)− b (x)) + 1. In particular, let us assume min (m (x)− b (x)) = k > 1,
then there exists x ∈ X such that m (x) = b (x) + k and m (y) > b (y) + k for any
y ∈ X. Thus, we may define m1, ...,mk ∈MX,m∗ such that for any y ∈ X,

m1 (y) = b (y) + 1

m2 (y) = b (y) + 2

...

mk (y) = b (y) + k.

Now, observe that mk > ... > m1 > b and either m > mk or both m > mk−1 and
m and mk are not comparable with respect to >. In any case, h<F (m) > k + 1.
Now, suppose there exists m

0
1, ...,m

0
k+1 ∈ MX,m∗ such that m

0
k+1 > ... > m

0
1 > b

and either m > m
0
k+1 or both m > m

0
k+1 and m and m

0
k+1 are not dominance-

comparable with respect to >. Then, by definition for any y ∈ X, m (y) > b (y) +
k + 1, i.e. min

y∈X
{m (y)− b (y)} > k + 1, a contradiction.

It follows that h<F (m) 6 k + 1 , whence h<F (m) = k + 1. ¤

Proof of Proposition 1. 14(1⇒ 2) Since
Pk

i=1 h<F (mi) −
Pk

i=1 h<F (m
0
i) ≥ 0 for

any k = 1, ..., n − 1, Pn
i=1 h<F (mi) −

Pn
i=1 h<F (m

0
i) = 0 and there exists an

l ∈ {1, ..., n− 1} such that Pl
i=1 h<F (mi) −

Pl
i=1 h<F (m

0
i) > 0, it follows that

there also exist l0 ∈ {l + 1, ..., n} such that Pn
i=l0 h<F (mi) −

Pn
i=l0 h<F (m

0
i) < 0.

Now, let i∗ ∈ {1, ..., n− 1} be the smallest integer and j∗ ∈ {l + 1, ..., n} be the
largest integer such that h<F (mi∗)−h<F (m0

i∗) > 0 and h<F (mj∗)−h<F
¡
m0
j∗
¢
< 0.

Therefore,
h<F (mi∗) > h<F (m

0
i∗) > h<F

¡
m0
j∗
¢
> h<F (mj∗) ,

whence,
h<F (mi∗)− h<F (mj∗) > 2.

14The style of the proof is standard (see e.g. [7]), we report it here for the sake of completeness.
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Next, consider a MUT in m from i∗ to j∗ and denote by m∗ the resulting profile.
Clearly, m Âmaj

F m∗. Repetition of the same argument entails the thesis.
(1⇐ 2) We proceed by induction. If k = 1, then, by definition of a MUT,

m0
i (x) = mi (x)− 1 for any x ∈ X

m0
j (x) = mj (x) + 1 for any x ∈ X

and m0
l (x
∗) = ml (x

∗) for any l 6= i, j, and x∗ ∈ X(5.1)

Hence, by definition of the height function,

h<F
¡
m0
j

¢
= h<F (mj)− 1 and

h<F (m
0
i) = h<F (mi) + 1.

It follows that (h<F (m1) , ..., h<F (mn)) <maj (h<F (m
0
1) , ..., h<F (m

0
n)), namely

m Âmaj
F m0. A similar argument applies to the inductive step of the proof. ¤

Proof of Lemma 1. (⇒)Let ϕ : ZN+ → R be a function such that ϕ ◦ h<F is <maj
F -

isotonic. Then, for any pair of profiles of individual endowments m,m0 ∈ ΠNm such
that m Âmaj

F m0, consider (h<F (m)) ↓ and (h<F (m0)) ↓. Then, by definition of
<maj
F ,

h<F (m) ↓Âmaj h<F (m
0) ↓

and by hypothesis,
ϕ(h<F (m) ↓) > ϕ(h<F (m

0) ↓).
Now, suppose there exists a vector z ∈ ZN+ ∩ H+

<F , z = z ↓, ∆ ∈ Z+ and
k ∈ {2, ..., n} such that:

either k 6 n− 1 and 0 6 ∆ 6 min {zk−1 − zk, zk+1 − zk+2}
or k = n and 0 6 ∆ 6 (zk−1 − zk)

with

(5.2) ϕ(z1, ..., zk−1, zk +∆, zk+1 −∆, ..., zn) < ϕ(z1, ..., zn)

i.e. let us suppose that ϕ is decreasing in ∆.
Then, first, observe that z = (z1, ..., zn)∈H+

<F entails:

(z1, ..., zk +∆, zk+1 −∆, ..., zn) ∈ H+
<F for any ∆

as defined above. Indeed, suppose w.l.o.g. that ∆ > 1. Then zk+1 > 1, whence
zk > zk+1 > 1. Moreover, by hypothesis ∆ is such that zk +∆ > zk+1 −∆ > 0.
Now, take a profile m ∈ ΠNm such that z = h<F (m). Recall that by hypothesis
z ∈ H+

<F . By definition of h<F ,

h<F (mk+1)−∆ := zk+1 −∆ > 0
entails:

min
x
{mk+1 (x)− b (x)}+ 1 > ∆.

Let x∗ ∈ argminX {mk+1 (x)− b (x)}, and posit m0 =m (k,∆) such that

m0
k (x

∗) = mk (x
∗) +∆ and m0

k (x
0) = mk (x

0) for any x0 ∈ X\ {x∗}
m0
k+1 (x

∗) = mk+1 (x
∗)−∆ and m0

k+1 (x
0) = mk+1 (x

0) for any x0 ∈ X\ {x∗} , and
m0
l (x
∗) = ml (x

∗) for any l 6= k, k + 1, where x∗ ∈ argmin
X
(mi (x)− b (x)).
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Hence,

m0 =m(k,∆) = (m1, ...,mk−1,mk +∆,mk+1 −∆,mk+2, ...,mn).

Then,
h<F (m

0) = (z1, ..., zk−1, zk +∆, zk+1 −∆, zk+2, ..., zn)
i.e.

(z1, ..., zk−1, zk +∆, zk+1 −∆, zk+2, ..., zn) ∈ H<F
as required.
Next, observe that by definition of the ordinary integer majorization preorder

<maj

h<F (m
0) Âmaj h<F (m).

It follows that, as observed above,

ϕ(h<F (m
0)) > ϕ(h<F (m))

a contradiction in view of 5.2.
(⇐)15 Let ϕ be non-decreasing in ∆, for any k = 2, ..., n under (1) and (2),

but suppose (ϕ ◦ h<F ) is not <maj
F -isotonic on [(H+

<F )
−1], i.e. ϕ(y) <ϕ(x) when-

ever m Âmaj
F m0, with m,m0 ∈ ΠNm such that h<F (m), h<F (m

0) ∈ ZN+ , and
h<F (m):= y Âmaj x :=h<F (m

0).
Now, change the variables by positing z∗ = (z∗1 , ..., z∗k) with z∗k =

Pk
i=1 zi, such

that y Âmaj x if and only if

y∗k > x∗k for any k = 1, ..., n− 1,
and y∗n = x∗n,

where > is the componentwise ordering. By definition, ϕ(z1, ..., zn) non-decreasing
in ∆ entails that ϕ(z1, ..., zn) = ϕ(z∗1 , z

∗
2 − z∗1 , ..., z∗n− z∗n−1) is non-decreasing in z∗k.

Thus, the fact that y Âmajx implies:

ϕ(y∗1 , ..., y
∗
k − y∗k−1, ..., y

∗
n − y∗n−1) > ϕ(x∗1, ..., x

∗
k − x∗k−1, ..., x

∗
n − x∗n−1)

i.e.:
ϕ(y) > ϕ(x)

entails a contradiction. ¤

Proof of Proposition 2. 16 Suppose (ϕ◦h<F )(m) > (ϕ◦h<F )(m0) is a <maj
F -isotonic

function on [(H+
<F )

−1] ↓ and consider the following real-valued non-decreasing func-
tion: ϕ1(z1, ..., zn) =:

Pn
i=1 zi and ϕ2(z1, .., zn) =: −ϕ1(z1, ..., zn) defined on

D =
n
z : z = (z1, ...zn)∈ZN+ ∩H+

<F such that z = z ↓
o
.

Thus, in particular, ϕ1 ◦ h<F and ϕ2 ◦ h<F are both <maj
F -isotonic in view of our

previous lemma. Therefore,

(ϕi ◦ h<F )(m) > (ϕi ◦ h<F )(m0), i = 1, 2

15The converse part of the proof is standard. We provide here a sketch of the proof and refer
to [7] chapter 3, pages 54-55 and to [10] Lemma 1 for more details.

16It is standard, then we provide here a sketch of the proof and refer, for more details, to [7]
chapter 4, Propositon B.1 and to the proof of Propositon 2 in [10].
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entails that:
nX
i=1

h<F (mi) >
nX
i=1

h<F (m
0
i)(5.3)

and −
nX
i=1

h<F (mi) > −
nX
i=1

h<F (m
0
i),

i.e.
nX
i=1

h<F (mi) =
nX
i=1

h<F (m
0
i).

Next, posit w.l.o.g.:

y = y ↓= (h<F (m1), ..., h<F (mn)) and x = x ↓= (h<F (m0
1), ..., h<F (m

0
n)),

and for any i = 1, ..., n, k = 1, ..., n − 1 and w ∈ ZN+ define a function ϕiwk
on ZN+

as follows:
ϕiwk

(z1, ..., zn) = max {zi − wk, 0} for all z ∈ ZN+
Now, for any k = 1, ..., n−1, (Pn

i=1 ϕ
i
wk
)◦h<F is a non-negative (by construction)

real-valued <maj
F -isotonic function, then, for any k = 1, ..., n− 1
kX
i=1

xi − kwk 6
nX
i=1

ϕiyk(x) 6
nX
i=1

ϕiyk(y) 6
kX
i=1

yi − kwk

i.e.
kX
i=1

xi 6
kX
i=1

yi.

From this and from 5.3 follows that y Âmajx, or equivalently m Âmaj
F m0 as re-

quired. ¤
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