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1 Introduction

Estimating covariances is important in many applications. Given two discretely observed

time series, if they are observed at the same time instants there is no difference in esti-

mating covariance or variances, since 4 · Cov(X,Y ) = V ar(X + Y ) − V ar(X − Y ). The

problem of estimating covariances arises when the two time series are not observed syn-

chronously. Such ‘nonsynchronous observation’ problem has been solved by the estimator

proposed in Hayashi and Yoshida (2005) (henceforth HY). However, there are many sit-

uations in which the time series are observed at different instants, but interpolated to

new time series, which carry less information than the original ones. Under these situ-

ations, the estimator developed by HY cannot be implemented, since it needs not only

the observations, but also the time instants of both time series. The main contribution

of this paper is to present a methodology for measuring the covariance of two discretely

observed time series, when they are first observed discretely at random points in time,

then interpolated using previous-tick interpolation to get an evenly spaced time series.

This case is of particular importance for estimating the covariance of financial as-

sets, which is widely called co-volatility or cross-volatility in the financial econometrics

literature. The most fundamental examples arise from the literature on intraday data.

Financial assets (stocks, bonds, commodities and so on) trade with very different inten-

sities, ranging from less than a second for the most liquid, to several hours for the less

liquid. In this situation, it is typical to analyze data which have been interpolated at a

given frequency, e.g. one minute. Many data vendors distribute data in this form.

The recent interest of financial econometrics in high frequency data led to the flourish-

ing of realized estimators for high frequency data, including realized covariance (Andersen

et al., 2001, 2003; Barndorff-Nielsen and Shephard, 2004) and many refinements, see e.g.

Griffin and Oomen (2006). Since the empirical study by Epps (1979), it is well known

that the bias comes from non-synchronicity of the data, and different solutions have been

proposed to correct for the non-synchronicity problem (Scholes and Williams, 1977; Co-

hen et al., 1983; Lo and MacKinlay, 1990). The bias can be prevailing in the intraday

domain, since realized covariance is more and more biased toward zero as the sampling

frequency increases.

We analyze the sources of the bias, showing that these can be divided into two: non-

synchronous bias and zero return bias. We show that traditional methods cannot correct

both, and we propose a method to handle these two biases. We then test the methodology

on simulated and actual data. Simulated data help in confirming the theory, and to pro-

vide an order of magnitude of the time scales at which the bias become prominent. In our
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application, we compute bias corrected covariance estimates with intraday stock prices,

comparing the results with those obtained from competing estimators. Our conclusion

is that under high frequency situation, the proposed estimator should be selected as the

most reliable covariance measure.

The rest of the paper is organized as follows. In Section 2, we introduce the data

generating process we assume throughout the paper and take a look at the realized co-

variance matrix. In Section 3, we illustrate the nonsynchronous bias of realized covariance

and introduce traditional lead and lag modification. In Section 4, we show an example

in which the traditional method is not enough and propose a new bias-corrected esti-

mator. In Section 5, we confirm our theory through a Monte Carlo study. We present

an application to financial data in Section 6. The final Section is devoted to concluding

remarks.

2 Realized covariance

We consider a multi-dimensional stochastic process, e.g. representing a logarithmic asset

price vector. Without loss of generality, we limit our discussion to the two-dimensional

case.

Assumption 1 p(t) is an R
2-valued stochastic process in [0, T ], driven by

(

dp1(t)

dp2(t)

)

=

(

σ11(t) σ12(t)

0 σ22(t)

)(

dW1(t)

dW2(t)

)

, (2.1)

where (W1(t),W2(t)) is a standard two-dimensional Brownian motion, and σij(t) is adapted,

measurable and bounded stochastic processes such that a unique solution of the SDE (2.1)

exists with the initial condition (p1(0), p2(0)) ∈ R
2.

The zero-drift assumption is allowable, not only because it means an efficient market in

financial economics, but also because, mathematically, the martingale component swamps

the drift over short time intervals. The time-varying covariance matrix Ω(t) is defined as:
(

Ω11(t) Ω12(t)

Ω12(t) Ω22(t)

)

≡

(

σ11(t)
2 + σ12(t)

2 σ12(t)σ22(t)

σ12(t)σ22(t) σ22(t)
2

)

, (2.2)

The estimation target is the value of the integrated covariance matrix over a fixed time

interval [0, T ]:
∫ T

0

Ω12(t)dt.

For estimating this matrix, the following result is well known:
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Proposition 2 If all the components of p(t) are observed at the same time instants,

0 = t0 < t1 < · · · < tN <= T,

and

lim
N→∞

max
n

(tn − tn−1) = 0

then, under Assumption 1, we have

p − lim
N→∞

N
∑

n=1

(p(tn) − p(tn−1))(p(tn) − p(tn−1))
′ =

∫ T

0

Ω(t)dt.

This is the theoretical basis of realized covariance, see e. g. Barndorff-Nielsen and Shep-

hard (2004). Proposition 2 is based on the idea of synchronous and continuous record.

However, actual financial observations are made at non-synchronous time instants.

Definition 3 We define a partition PN of the interval [0, T ] as the set of N +1 increasing

time instants covering the whole interval:

PN = {t0, t1, . . . , tN : 0 = t0 < t1 < . . . < tN = T}

Two partitions PN1
,PN2

are said completely asynchronous if PN1
∩ PN2

= {0, T}. A

partition PM is said evenly spaced if tm − tm−1 = T
M

, m = 1, . . . ,M

We consider the situation where each component of p(t) is observed at a partition PNi
, i =

1, 2, and data are successively interpolated to an evenly spaced grid, according to the so-

called previous tick interpolation scheme. The previous-tick interpolation is defined as

follows. Define:

tim = max

{

t ∈ PNi
: t ≤

mT

M

}

, i = 1, 2. (2.3)

The interpolated time series are defined as:

qi(m) = pi(t
i
m), m = 0, . . . ,M, i = 1, 2, (2.4)

that is, we denote by p the original time series and by q the interpolated time series. To

sum up, we assume:

Assumption 4 Each component of the stochastic process p(t) is first observed on a par-

tition PNi
, i = 1, 2, then interpolated to the same evenly spaced partition PM according

to the previous-tick interpolation (2.4).
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Remark that, after being interpolated on the partition PM , the time series {qi(m)} do

not any longer include information on the original partitions PNi
. We study covariance

estimation of {qi(m)} only.

Realized covariance on partition PM is defined by

RC(M) =
M
∑

m=1

[q1(m) − q1(m − 1)] [q2(m) − q2(m − 1)] , (2.5)

and this is used as an estimator of
∫ T

0
Ω12(t)dt. However, when using interpolated data,

RC(M) is biased toward zero. This phenomenon is known as the Epps effect (Epps,

1979). We provide an explanation for it using a simple example in the following sections.

3 Nonsynchronous bias and lead-lag modification

To understand the source of the bias, consider the following simple example. In Figure 1 a

realization of p(t) is drawn1. In this case, the whole period is divided into three equidistant

periods. At the bottom of the figure, we shows the time position of the previous ticks for

each equidistant period. Now define the interval Im as

Im ≡ [t1m−1
, t1m] ∩ [t2m−1

, t2m]

where t1m, t2m are defined in (2.3).

By the independence of increments of Brownian motion, the expectation of the realized

covariance is calculated as

E[RC(M)] =
M
∑

m=1

E[(q1(m) − q1(m − 1))(q2(m) − q2(m − 1))]

=
M
∑

m=1

E[(p1(t
1

m) − p1(t
1

m−1
))(p2(t

2

m) − p2(t
2

m−1
))]

=
M
∑

m=1

E[

∫ t1m

t1m−1

(σ11(t)dW1(t) + σ12(t)dW2(t))

∫ t2m

t2m−1

σ22(t)dW2(t)]

=
M
∑

m=1

∫

Im

Ω12(t)dt

1Remark that in our discussion we focus on ex post inference conditional on covariance path and arrival

time PNi
, so we can treat them as deterministic.
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Figure 1: M = 3, N1 = 7, N2 = 5.

Figure 2: Intersection intervals

Thus, RC(M) can account for the interval
⋃M

m=1
Im only. 2 Figure 2 shows the intervals

Im in the case of Figure 1. The two gaps the expectation cannot cover is the source for

the bias towards zero. We call this bias nonsynchronous bias.

To account for the nonsynchronous bias, in other words, to fill up the gaps, it is enough

to use the following estimator.3

RCLL(L,U,M) =
M
∑

m=1

U
∑

k=−L

[q1(m + k) − q1(m + k − 1)] [q2(m) − q2(m − 1)] , (3.1)

2If observations are synchronous, this interval coincides with [0, T ] making RC(M) unbiased.
3This estimator has been proposed in the financial literature, see e.g. Scholes and Williams (1977);

Lo and MacKinlay (1990), although they consider more specific models for estimating covariance.
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where q1(m + k) − q1(m + k − 1) = 0 if m + k > M or m + k − 1 < 0.4 The RCLL

estimator simply adds lead and lag terms, accounting for the nonsynchronous bias.

In our example, RCLL(1, 1, 3) corrects the nonsynchronous bias. Define ∆q(m) =

q(m) − q(m − 1).

RCLL(1, 1, 3) = RC(3) +
3
∑

m=2

∆q1(m)∆q2(m − 1) +
3
∑

m=2

∆q1(m − 1)∆q2(m),

where ∆q1(1)∆q2(2) and ∆q1(3)∆q2(2) fill the first and second gap respectively. The

products ∆q1(2)∆q2(1) and ∆q1(2)∆q2(3) are redundant and just increase the variance of

the estimator. If we know the time of previous tick t1m and t2m, then we can choose one of

the two ∆q1(m)∆q2(m−1) or ∆q1(m−1)∆q2(m) to cover m-th gap. If t1m < t2m(t1m > t2m),

we would add ∆q1(m)∆q2(m − 1)(∆q1(m)∆q2(m − 1)) only. However, when observation

instants are not available, we are compelled to add all the cross terms.

4 Zero-return bias and bias-corrected estimator

In the above section, we have shown that RCLL(1, 1) is able to correct the nonsynchronous

bias. However, also the RCLL(1, 1) estimator is still biased in the following case. For the

same realization in the previous example we divide [0, T ] into six evenly spaced periods,

as shown in Figure 3. By definition of previous tick interpolation, in this example we

have q2(1) = q2(0) and q2(5) = q2(4), then I1 = ∅ and I5 = ∅. As shown at the bottom

of Figure 3 uncovered gaps enlarge. In general, the area that is accounted for by RC(M)

shrinks when increasing M not only because of the increasing number of gaps but also

because of zero returns. Under high frequency situation, the existence of zero returns

become more prominent. We call such bias zero-return bias.

Moreover in this case the modification by RCLL(1, 1) is not enough to cover whole

interval. Figure 4 shows the area RCLL(1, 1, 6) covers. There is still a gap. Of course

in this case RCLL(2, 2, 6) can cover whole interval, however, too many additional terms

make the estimator noisy. In general, larger U and L makes the estimator less biased but

more noisy. For an extreme example, RCLL(M,M,M) = (p1(T )− p1(0))(p2(T )− p2(0))

is always unbiased but very noisy. Instead of adding a fixed number of lead and lag terms

at every m, we propose a flexible modification as follows.

Before the lead-lag type modification, we need another step of modification for zero

return. For the case M = 6, we first consider a modification to account for the zero-return

4This condition is not necessary if we can arbitrary use the past data qi(−1), qi(−2), ... and the future

data qi(M + 1), qi(M + 2), ....

6



Figure 3: M = 6, N1 = 7, N2 = 5.

Figure 4: Area covered by RCLL(1, 1, 6)

bias. This can be done just by discarding zero returns. In other words we focus on price

change vectors. Denote by ∆zq(m) = q(m) − q(m − z). Consider price change vectors:

( ∆q1(1), ∆q1(2), ∆q1(3), ∆q1(4), ∆2q1(6) ),

( ∆2q2(2), ∆q2(3), ∆q2(4), ∆2q2(6) ),

then sum up cross products of two time-overlapping price changes:

∆q1(1)∆2q2(2) + ∆q1(2)∆2q2(2) + ∆q1(3)∆q2(3)

+ ∆q1(4)∆q2(4) + ∆2q1(6)∆2q2(6).

The expectation of this covers the area shown in figure 5. In order to fill up the three

gaps in the figure, add the lead-lag terms for each gaps
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Figure 5: After modification for zero returns

∆q1(2)∆q2(3) ∆q1(3)∆q2(4) ∆q1(4)∆2q2(6)

∆2q2(2)∆q1(3) ∆q2(3)∆q1(4) ∆q2(4)∆2q1(6)

Now the whole interval is covered up, in other words, the modification is completed.

Similarly, in the general case, the modification consists of two steps: the modification

for the zero-return bias and for the non-synchronous bias. With this in mind, we can

easily derive the bias corrected estimator:

BC(M) =
M
∑

m1=1

M
∑

m2=1

1A1
[q1(m1) − q1(m

−

1
)]1A2

[q2(m2) − q2(m
−

2
)]1A











m−

i = max{m < mi : qi(m) 6= qi(m − 1)}, i = 1, 2

Ai = {qi(mi) 6= qi(mi − 1)} , i = 1, 2

A =
{[

m−

1
,m1

]

∩
[

m−

2
,m2

]

6= ∅
}

(4.1)

The term 1A1
(q1(m1)−q1(m

−

1
)) means that we include only nonzero-returns. The term 1A

takes cross product of time-overlapping pair of price changes as well as lead-lag one. By

definition to cover the whole interval, the corrected estimator (4.1) is unbiased. Remark

that BC(M) = RCLL(1, 1,M) when there is no zero return in each interpolated return.

The bias-corrected estimator is similar in spirit to the unbiased covariance estimator

proposed in Hayashi and Yoshida (2005), which is defined as:

HY =

N1
∑

n1=1

N2
∑

n2=1

[p1(tn1
) − p1(tn1−1)] [p2(tn2

) − p2(tn2−1)] 1B

B = {(tn1−1, tn1
] ∩ (tn2−1, tn2

] 6= ∅}.

(4.2)

The HY estimator is designed for using all the observations, while BC(M) is for the

situation where data have been interpolated, thus we cannot obtain precise information

of ticks including time stamps. However, these two estimators turn out to be the same

for large M while RC and RCLL shrink to almost zero.

Proposition 5 For given completely asynchronous partitions (PN1
,PN2

), there exists

M∗ ∈ N such that RC(M∗) = ∆p1(T )∆p2(T ) and BC(M∗) = HY .
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Furthermore, RCLL is designed for correcting bias, however, for larger M than M∗

of the proposition above, RCLL provides the same estimates as RC.

Corollary 6 For given completely asynchronous partitions (PN1
,PN2

), there exists M∗∗ ∈

N such that RCLL(L,U,M∗∗) = ∆p1(T )∆p2(T ).

5 Monte Carlo study

In this section, we compute the RC, RCLL(1, 1), RCLL(2, 2), and BC on simulated time

series. The model we simulate is:
(

dp1(t)

dp2(t)

)

=

(

σ11(t) σ12(t)

0 σ22(t)

)(

dW1(t)

dW2(t)

)

, 0 ≤ t ≤ T (5.1)

with

dσij (t) = κ (θ − σij (t)) dt + γdWij (t) , i, j = 1, 2. (5.2)

where κ = 0.01, θ = 0.01, and γ = 0.001 for any i, j. We discretize the process (5.1-5.2)

using a first-order Euler discretization scheme, with ∆t = 1 second, for a total of T =

60× 60× 4.5 seconds. The data are observed with time differences which are drawn from

an exponential distribution with mean 1/λ1 = 1/0.04267 ≈ 23.4 seconds for p1 and 1/λ2 =

1/0.04787 ≈ 20.9 seconds for p2,
5 then interpolated to evenly spaced grids with different

values M . We compare the performances of BC(M), RCLL(1, 1,M), RCLL(2, 2,M) and

RC(M) for each M , as well as the HY estimator from original observations. We choose

M = 9, 18, 27, 54, 135, 270, 540, 1620, 3240, and 16200, which correspond to T = 16200,

to 30, 15, 10, 5, 2, 1 minutes and 30, 10, 5, 1 seconds, respectively. We replicate 500

‘daily’ experiments.

Since we know, on each trajectory, the integrated value of Ω12(t), for each value of M

we can draw the distribution histograms of the errors of estimators. Such distributions

are shown in Figure 6, while table 1 reports the (simulated) sample MSE and average

bias of the estimators. In Table 1, we also show the probability 6

PM ≡ P ({∆q1(m) = 0} or {∆q2(m) = 0})

= (1 − λ1)
T/M + (1 − λ2)

T/M − (1 − λ1)
T/M (1 − λ2)

T/M . (5.3)

It shows the expected percentage of the zero-return-bin in which either of two returns is

zero.
5These values are typical on the intraday stock market
6In continuous time, the probability is exp(−λ1T/M)+exp(−λ2T/M)−exp(−λ1T/M) exp(−λ2T/M).

Since we discretized second by second, (5.3) is the exact probability in our simulation.
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Figure 6: Distribution of errors in estimating covariances of

BC(M), RC(M), RCLL(1, 1,M), RCLL(2, 2,M) and HY , for different values of

M , see the text. The distributions are computed from 500 ‘daily’ replications.
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Under our simulation design, the covariance between the first and the second asset

is positive on average: Ω12(t) reverts around a positive mean of 0.0001 since Ω12(t) =

σ11(t)σ12(t), and both σ11(t) and σ12(t) revert around a mean of 0.01. Thus we expect a

downward-biased covariance estimate when using RC or RCLL.

Our simulations show, visually, the results obtained theoretically in the previous sec-

tions. The RC is biased (Figure 6), and the bias increases with increasing M . The same

happens with RCLL, both with L = U = 1 and L = U = 2. Instead, BC is unbiased at

all M , and its precision increases with increasing M , approaching the precision of the HY

estimator for M large enough. In this case, BC and HY are not equal, as in Proposition

5 for large M , since in our sample synchronous observation happen with an intensity of

0.04267 · 0.04787 ≈ 0.2% per second, that is we simulate on average ≈ 33 synchronous

observations on each trajectory. By definitions of BC and RCLL(1, 1), both estimators

provide close estimates at lower frequencies, in which the number of zero returns is low .
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In Table 1, the MSE of both estimators are the same up to 5 minutes (M = 54).

The advantage of using bias corrected estimators instead of RC depends on M and

on the frequencies of observations N1 and N2. At low frequencies, the increase of variance

from additional terms overwhelms bias correction effects. In practice, bias corrected

estimators should be used if RC shrinks to zero.7 Summarizing, at lower frequencies BC

and RCLL(1, 1) provide close results. At higher frequencies (or, when the number of zero

returns is larger) the advantage of using BC becomes clear.

6 Covariance of high frequency data

We apply the BC estimator to compute the daily covariance from intraday data of indi-

vidual stock prices (Honda, Nissan, and Toyota). The data are gathered from Japanese

stock exchanges.8 We obtained 1-minute previous-tick-interpolated data (just taking clos-

ing prices of 1 minute bins) from July 2 to September 28, 2001 (63 trading days).9 To

compare BC(M) with RC(M), RCLL(1, 1,M), and RCLL(2, 2,M), we compute aver-

ages of daily covariances for frequencies ranging from one minute to one hour (Figures

7,8 and 9). Such plots are called covariance (or volatility) signature plots in the financial

econometrics literature. At the bottom of the figures, we show the ratio of zero-return

bins: the ratio of the number of bins in which return of either of two assets is zero to

total number of bins, showing that the actual data contain a significant amount of zero-

returns not only because of no-trading bins but also because of price discreteness. RC

computes smaller estimates than other estimators all over the intra-hourly frequencies.

Difference between BC and RCLL(1, 1) becomes clear at less than 10 (Honda-Nissan) or

15 (Honda-Toyota, Nissan-Toyota) minutes. As for RCLL(2, 2), the difference also be-

comes clear at less than 5 (Honda-Nissan) or 10 (Honda-Toyota, Nissan-Toyota) minutes.

The robustness of BC with respect to frequency supports our theoretical results.

We also analyzed the behavior of BC at time scales lower than one minute on high

frequency data belonging to the TAQ database. We find that BC is biased toward zero in

the very high frequency regime in a similar fashion with respect to the other estimators.

This is not surprising, since also the HY estimator is biased in this situation, as shown

7It is important to remark that in our setting there is no microstructure noise, which is important for

high frequency financial data, see Griffin and Oomen (2006). Microstructure noise has been considered in

Bandi and Russell (2005); Zhang (2006); Palandri (2006). However, the independent noise they assume

in their papers does not have any impact on the unbiasedness of our estimator.
8The trading hour of one day is 4.5 hours.
9The numbers of recorded transactions are 54,886, 49,298, and 66,544 for Honda, Nissan and Toyota,

respectively. It means average duration times are 18.6, 20.7, and 15.3 seconds, respectively.
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for example by Griffin and Oomen (2006). It is likely that our diffusion model (even

with independent noise) cannot capture the dynamics of stock prices for extremely high

frequencies.10

7 Concluding remarks

In this paper, we analyze the problem of covariance estimation when data are interpolated

to an evenly spaced grid using the last available observation. We point out that using

realized covariance leads to biased estimate, and that the bias depends on two sources:

non-synchronous bias and zero-return bias. We also show that traditional lead-lag meth-

ods cannot account for zero-return bias. We then propose a bias corrected estimator

which corrects for both sources. Our new estimator guarantees the unbiasedness at every

frequency.

The proposed estimator can be helpful in applications especially under the situation

where portfolio manager faces high frequency interpolated data of various kind of assets

including some illiquid assets or periods. When time series include a significant amount

of zero returns, our estimator should be implemented.

It is important to remark that in this paper we do not study the impact of microstruc-

ture noise since we focus on the unbiasedness of the estimator. Although the independent

noise assumed in the related literatures does not have any impact on unbiasedness, it does

have significant impact on efficiency. Clearly, the extension to this direction is crucial and

it is now under development.

10Griffin and Oomen (2006) report that HY shrink to zero at less than 2 – 3 ticks for quotes data, 10

ticks for transaction data.
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Figure 7: Daily covariance (×104) signature plots (upper) and zero-return ratio (bottom)
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and “b” by BC(M). The ratio is computed by (the number of bins in which either of two returns is

zero)/(total number of bins).
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Figure 8: Daily covariance (×104) signature plots (upper) and zero-return ratio (bottom)
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Figure 9: Daily covariance (×104) signature plots (upper) and zero-return ratio (bottom)
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A Proofs

Proof of Proposition 5. Since PN1
∩PN2

= {0, T}, there exists a large M∗ such that each

bin ((m− 1)T/M∗,mT/M∗] but ((M∗− 1)T/M∗, T ] includes at most one observation. In

other words, for such M∗, every bin ((m − 1)T/M∗,mT/M∗](m < M∗) must be one of

the following three cases:

only one observation of 1st asset p1(t
1

m), (A.1)

only one observation of 2nd asset p2(t
2

m), (A.2)

no observation. (A.3)

For (A.1), there is no observation of 2nd asset, therefore, q2(m) = q2(m − 1). For (A.2),

q1(m) = q1(m − 1). For (A.3), q1(m) = q1(m − 1) and q2(m) = q2(m − 1). Thus

the m(< M∗)th term of the RC(M∗) must be zero for the every case. Now we obtain

RC(M∗) = ∆q1(M
∗)∆q2(M

∗) = ∆p1(T )∆p2(T ).

For the same M∗, define the position of the bin that includes a observation as

m̄i
ni

≡ {mi :
(mi − 1)T

M∗
< tni

≤
(mi)T

M∗
}.

Then we have partitions

Pm̄1
≡ {0 = m̄1

0
, ..., m̄1

n1
, ..., m̄1

N1
= M∗}

Pm̄2
≡ {0 = m̄2

0
, ..., m̄2

n2
, ..., m̄1

N2
= M∗}

Notice that every element of Pm̄1
and Pm̄2

has one-to-one correspondence to that of PN1

and PN2
respectively. Now we can write BC(M∗) using m̄i

ni
,

BC(M∗) =
∑

n1,n2

[q1(m̄
1

n1
) − q1(m̄

1

n1−1
)][q2(m̄

1

n2
) − q2(m̄

1

n2−1
)]1A′

where A′ = {[m̄1

n1−1
, m̄1

n1
] ∩ [m̄1

n2−1
, m̄1

n2
] 6= ∅}. However, A′ is equivalent with

A′′ = {[
(m̄1

n1−1
− εn1−1)T

M∗
,
(m̄1

n1
− εn1

)T

M∗
] ∩ [

(m̄1

n2−1
− εn2−1)T

M∗
,
(m̄1

n2
− εn2

)T

M∗
] 6= ∅}

for any 0 ≤ εni
< 1. Since we can choose an εni

such that

tni
=

(m̄i
ni
− εni

)T

M∗
,

B is equivalent with A′′. By definition, qi(m̄
i
ni

) = pi(tni
), now we obtain

BC(M∗) =
∑

n1,n2

[p1(tn1
) − p1(tn1−1)][p2(tn2

) − p2(tn2−1)]1B.
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Proof of Corollary 6. Define K ≡ max(L,U). We can choose a large M∗∗ such that

each bin has at most one observation and any bin of (A.1) or (A.2) is adjacent to at least

K successive bins of (A.3). Then all terms of RCLL(L,U,M∗∗) but [q1(M
∗∗)− q1(M

∗∗ −

1)][q2(M
∗∗) − q2(M

∗∗ − 1)] is zero.
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Table 1: Sample MSE (bias) from 500 ‘daily’ replications

M RC RCLL(1, 1) RCLL(2, 2) BC PM

30 min 9 1.77 4.86 7.21 4.86 8.15e-035

(0.0769) (0.0281) (-0.0967) (0.0281)

15 min 18 0.893 2.587 4.183 2.587 9.09e-018

(0.0384) (0.0673) (0.0540) (0.0673)

10 min 27 0.548 1.624 2.776 1.624 4.5e-012

(-0.0272) (0.109) (0.0150) (0.109)

5 min 54 0.304 0.845 1.414 0.845 2.49e-006

(-0.103) (0.0633) (0.103) (0.0633)

2 min 135 0.197 0.327 0.592 0.328 0.0081

(-0.284) (0.00941) (0.0333) (0.0112)

1 min 270 0.354 0.176 0.268 0.180 0.122

(-0.540) (-0.0343) (-0.0000135) (-0.00622)

30 sec 540 0.801 0.135 0.149 0.127 0.438

(-0.872) (-0.214) (-0.0477) (0.0000881)

10 sec 1620 1.7031 0.6968 0.3162 0.0926 0.863

(-1.293) (-0.811) (-0.512) (-0.00684)

5 sec 3240 2.1139 1.3468 0.8551 0.0893 0.957

(-1.442) (-1.146) (-0.906) (-0.0059)

1 sec 16200 2.5209 2.3059 2.1103 0.0867 0.998

(-1.577) (-1.507) (-1.441) (-0.00977)

HY 0.0833

(-0.011)
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