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1 Introduction

Quite a number of models have been developed to analyze the impact of the
pollution generated by using non-renewable resources which is considered as a
standard energy (e.g., Barbier, 1999, Grimaud and Rouge, 2004, 2005). How-
ever, as Grimaud and Rouge (2006) have indicated, there are other resources
which are renewable and generate less pollution (such as solar energy, hydro-
gen fuel cell, etc.) which should be taken into account. Moreover, because of
concerns about global climate change and its impact on human well-being, it is
important to study the mechanisms for reducing energy intensity and notably
reducing energy consumption from non-renewable resources. Therefore, it is
necessary to explore the possible contribution of environment and growth the-
ory in providing models where crucial variables such as physical capital, labor,
consumption, and technological level interact with renewable and non-renewable
resources.

An important question that has captivated the attention of environmental
economists is whether growth is sustainable in the presence of natural resource
scarcity. The issue concerns both academics and public decision-makers, no-
tably in the current context of increasing energy demands and the depletion of
fossil fuels expected in the near future. The new growth theory gives the an-
swer that with some technological properties, growth may be sustained in the
long-run even if resource stock is finite. Examples include Barbier (1999) with
a Romer-Stiglitz model, Aghion and Howitt (1998) and Grimaud and Rouge
(2005) using the Schumpeterian models, in which they underlined that endoge-
nous technological change can sufficiently sustain growth in the long run. This
conclusion was also found in numerous studies in the literature and is success-
fully summarized in Smulders (2005):

‘...that a society willing to spend enough on R&D can realize a
steady state of technological change sufficient to offset the diminish-
ing returns from capital-resource substitution and sustain long-run
growth.’

However, these studies do not pay enough attention to the empirical justi-
fication of their theoretical results. This is particularly due to the difficulty of
building a testable version from a complex theoretical framework.

A recent strand of literature concerns the relationship between the economy
and the environment. Studies are motivated by the search for empirical evi-
dence for the proposed theoretical models. Pioneer work was done by Brock and
Taylor (2004) and Alvarez et al. (2005). Brock and Taylor (2004) proposed a
Solow growth model with pollution together with empirical justification. They
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found evidence of an environmental Kuznets curve (an inverted-U shaped rela-
tionship between emissions and income) for OECD countries. They also showed
that pollution emissions have a convergence feature, like income convergence in
empirical growth studies. Alvarez et al. (2005) provided a neoclassical growth
model with pollution which is compatible with the empirical finding about pol-
lution convergence in a panel of European countries.

In line with this strand of literature, our paper addresses a theoretical model
of which the results may be tested with real data. We provide a framework
where technological change is endogenized and the production employs the la-
bor, physical capital and both type of renewable and non-renewable resources.
We present a rigorous analysis of the existence and the characteristics of the
optimal balanced growth path. Not only do we analyze the steady-state solu-
tion, we also characterize the transitional dynamics of the model and show that
the balanced growth path has a saddle point of stability. Moreover, we prove
the existence of an optimal solution of the social planner problem which is often
assumed in the many papers in the literature (see d’Albis et al., 2008). Finally,
we use the data from OECD countries to perform an empirical test based on
the transitional equations of the model.

The paper is organized as follows. After the Introduction, in Section 2
we introduce a simple endogenous growth model in which the steady state is
explicitly computed. The transitional dynamics show that the balanced growth
path has a saddle point of stability. The existence of an optimal solution of the
general model is also proven. Section 3 is devoted to the empirical results. We
use data provided by the OECD and the International Energy Agency (IEA) on
production, expenditures in energy R&D, and energy consumption to evaluate
the theoretical model. Section 4 concludes.

2 The theoretical model

The model can be heuristically described as follows. The aggregate output
produced from the labor, physical capital and two types of natural resources:
non-renewable resources (e.g., fossil fuels) and renewable resources (solar, ther-
mal, biomass, etc.). The final product is shared between consumption and
accumulative physical capital. The representative consumer derives her utility
from consumption. Therefore, the model correspond to a system with four state
variables. As Kolstad and Krautkraemer (1993) remarked,

‘...it is difficult or impossible to characterize the qualitative features
of a dynamic model evolving three state variables without restric-
tive assumptions about the functional forms of important relation-
ships...’,
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we specify a set of restrictions imposed on preferences and production tech-
nology in order to have analytical results that may be tested with real data.

The production function takes the form

F (A,K,LY , Q,R) = Aθf(LY , K,Q, R)

where A, LY ,K, Q and R represent the technological level, the labor input,
physical capital input, non-renewable resources, and renewable resources. The
production function includes the labor man-made capital as in Aghion and
Howitt (1998), Barbier (1999), Bretschger and Smulders (2003), Grimaud and
Rouge (2005), among others. Moreover, it includes the natural resources as in
Grimaud and Rouge (2004).

Assume the rate of technological change is

Ȧ = bAφLA , φ > 0, φ ≤ 1, (1)

where LA is the labour employed for research and b is a positive constant.
Normalizing the total flow of labor we have

LY + LA = 1.

As in the other models of knowledge accumulation which are proposed in the
literature (see Gastaldo and Ragot, 1996, Smulders, 1995, 2005, Grimaud and
Rouge (2004, 2006)), we assume that human capital enters into the innovation
process. The interesting points in our model is that the technological level is not
only for human or physical capital but it can be also used for natural resources
as the energy-saving technological1.

The final output can be allocated between consumption and new capital
accumulation

K̇ = F − C − δK

where δ ∈ (0, 1) is the depreciate rate.
It is standard that we assume the dynamics of stocks of renewable and

non-renewable resources are
ṠQt = −Qt (4)

1For example, from our production function, if we assume f(LY , K, Q, R) is the Cobb-

Douglas function then

F (A, K, Q, R) = AθLγ
Y KξQαRβ , (2)

γ, ξ, α, β > 0, γ + ξ + α + β = 1. (3)

Therefore, if θ = α then F (A, K, Q, R) = (AQ)αLγ
Y KξRβ , technological progress used for

non-renewable resource and if θ = β, F (A, K, Q, R) = (AR)βLγ
Y KξQα, technological progress

used for renewable resource.
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and
ṠRt = mSRt −Rt, m > 0. (5)

The representative consumer’s utility function is given by

U =
∫ ∞

0
u(Ct)e−ρtdt (6)

From now on, as it is not necessary, the time index is not included for simplifying
our notation.

3 Existence of the optimal solution

In this section, we shall prove the existence of optimal solution in the general
model where the social problem is written as follows

max
∫ ∞

0
u(C)e−ρtdt

subject to

ṠR = mSR −Rt, (7)

ṠQ = −Q, (8)

Ȧ = bLAAφ, (9)

K̇ = Aθf(K, LY , Q, R)− C − δK, (10)

1 = LA + LY , (11)

C ≥ 0,K ≥ 0, A ≥ 0, 0 ≤ LY ≤ 1, 0 ≤ LA ≤ 1,

LY 0,K0, SQ0 , SR0, given.

The maximal Hamiltonian is not concave in every variable so the Arrow
sufficiency theorem does not apply in our model.2 The question of the exis-
tence of optimal solutions in infinite horizon optimization in continuous time is
difficult since the feasible functions belong to a closed ball in L1 space is not
weakly compact. Moreover, even though the assumption that u(C) is strictly
concave and continuous, the objective function

∫∞
0 u(C)Le−ρtdt is not always

continuous. In our model, it is only upper-semi-continuous in the topology
δ(L1(e−ρt), L∞). Therefore, in many papers, the existence of solutions are as-
sumed for the simplicity. Following the idea suggested in a recent paper of
d’Albis et al. (2008), we will show that, under some assumptions, the social
problem has the objective function which is uniformly bounded from above on
the set of feasible control C . By using the Dunford-Pettis criterion, one can

2Note that θ may be greater than 1. The question of existence of optimal solution in the

model with non-concave maximal Hamitonian is still a conjecture. See footnote 26, pp 93 in

Groth and Schou, (2007) or Groth and Schou,(2002) for this discussion.
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prove that the associated feasible sequences with C (maximizing sequences) will
weakly converge in the topology σ(L1(e−ρt), L∞). This limit is feasible due to
the Fatou lemma and we get the conclusion.

Recall that L1(e−ρt) is the set of function f verifying the
∫∞
0 |f(t)| e−ρtdt <

∞ and the Dunfort-Pettis criterion is stated as follows:
Let B be a bounded subset of L1(e−ρt). B is relative compact for the topology

σ(L1, L∞) iff ∀ε > 0,∃δ > 0 such that
∫
K |f(t)| e−ρtdt < ε,∀f ∈ B and ∀K

with
∫
K e−ρtdt < δ.

We make the following assumptions
H1. The function u(C) is strictly concave, strictly increasing and continu-

ous.
H2. Function f is continuously differentiable, concave, increasing on four

arguments and

f(0, .) = 0,

lim
K→+∞

fK(K, 1, SQ0 , SR0) ≤ 0,

H3. ρ > max{b,m, bθ}, −δ ≤ K̇/K and there exists a real number µ 6= +∞
such that

−µ ≤ ṠR/SR.

H4. Q ≤ SQ0,R ≤ SR0 .

We say that the sequence (Q,R, SQ, SR, A,K, C, LY , LA) is feasible if it is
satisfied the constraints (7)-(10) and

C ≥ 0,K ≥ 0, A ≥ 0, Q ≥ 0,

R ≥ 0, 0 ≤ LY ≤ 1, 0 ≤ LA ≤ 1.

LY 0,K0, SQ0 , SR0,A0 given.

Proposition 1 Under assumptions H1 − H4, the social planner problem has
optimal solutions.

Proof : The idea of proof as follows. Assumption H1, H2 implies objective
function bounded from above.(The proof of upper-semi-continuous of objective
function is similar to d’Albis et al, 2008). Thus consider feasible sequence C(n)
such that

sup

∫ ∞

0
u(C)e−ρtdt = lim

n→∞

∫ ∞

0
u(C(n))e−ρtdt

We will prove that assumptions H2, H3 imply that C(n) and other associ-
ated feasible variables satisfy the Dunfort-Pettis criterion, i.e, these sequences
weakly converge to limit points. This limit is feasible due to the Fatou lemma
and we get the conclusion. First, we shall prove all variable sequences satisfy
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the Dunfort-Pettis criterion. Let us denote (Q,R, SQ, SR, A, K)n to be the fea-
sible sequence which is associated with C(n). We first need to prove that if
(Q,R, SQ, SR, A,K, C) is feasible from SQ0 , SR0 , Q0, R0, A0,K0 then they be-
long to the space L1(e−ρt). Indeed, it follows from (8) that ṠQ ≤ 0. That implies
0 ≤ SQ ≤ SQ0 . By (7) we have ṠR ≤ mSR or −µ ≤ ṠR/SR ≤ m. Thus, there
exists S such that Seµt ≤ SR ≤ Semt, ṠR ≤ mSemt and 0 ≤ R ≤ (m + µ)Semt.

Since Ȧ/Aφ = bLA ≤ b, we will prove that there exist a constants A1such
that

A ≤ A1e
bt.

Indeed, note that φ ≤ 1, if A ≥ 1 then Ȧ/A ≤ Ȧ/Aφ ≤ b.

If A < 1 then lnA < ln 1 and this implies Ȧ/A < 0 < b. In both cases, there
exists a constant A1such that

A ≤ A1e
bt.

Moreover, we have
0 ≤ Ȧ ≤ Aφb ≤ (A1)φeφbt.

Now, assumption H3 implies that (Q,R, SQ, SR, A) belong to L1(e−ρt) be-
cause

0 ≤
∫ ∞

0
Qe−ρtdt ≤ SQ0

∫ ∞

0
e−ρtdt < +∞,

0 ≤
∫ ∞

0
Re−ρtdt ≤ (m + µ)S

∫ ∞

0
e(m−ρ)tdt < +∞,

0 ≤
∫ ∞

0
SRe−ρtdt ≤ S

∫ ∞

0
e(m−ρ)tdt < +∞,

0 ≤
∫ ∞

0

∣∣∣Ȧ
∣∣∣ e−ρtdt ≤ A1

∫ ∞

0
e(b−ρ)tdt < +∞,

0 ≤
∫ ∞

0
Ae−ρtdt ≤ A1

∫ ∞

0
e(bφ−ρ)tdt < +∞

Since limK→+∞ fK(K, 1, SQ0 , SR0) ≤ 0, for any ζ ∈ (0, ρ−bθ) there exist a such
that

f(K, L,Q, R) ≤ B + ζK.

It follows that
K̇ ≤ B + ζK.

Multiply by e−εt then we get
∫ t

0

∂(e−ζtK)
∂t

dt ≤
∫ t

0
Be−ζt.

This implies that there exists constant B′ such that K ≤ B′eζt. Moreover since
K̇ ≥ −δK, we then have there exist a constant B′′ such that

∣∣∣K̇
∣∣∣ ≤ B′′eζt <
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B′′eρt. Thus ∫ ∞

0
Ke−ρtdt < +∞,

∫ ∞

0

∣∣∣K̇
∣∣∣ e−ρtdt < +∞.

Because K̇ ≥ −δK, we have

C ≤ Aθf(K, L, Q,R) ≤ (A1)θebθt(B + ζK)

≤ (A1)θebθt(B + ζB′eζt).

Thus we can choose a constant B′′ ≥ (A1)θB + (A1)θζB′ such that

C ≤ B′′e(bθ+ζ)t < B′′eρt

which implies

0 ≤
∫ ∞

0
Ce−ρtdt < +∞.

Hence, it is easy to see that the feasible sequences satisfy the Dunfort-Pettis
criterion. Then they weakly converge to the limit points in L1 for the topology
σ(L1(e−ρt), L∞) which are feasible due to Fatou Lemma. (see d’Albis et al,
2008). These limit points are optimal solutions of our problem.

4 The optimal growth rates

In order to get the analytical solutions of the growth rates at the steady state,
we suppose that the instantaneous utility function takes the following form

u(C) =

{
C1−ε−1

1−ε , if ε 6= 1
ln C if ε = 1.

The program of the social planner can be written as

max
∫ ∞

0
u(C)e−ρtdt

subject to

F = AθLγ
Y KξQαRβ

ṠQ = −Q

ṠR = mSR −R

K̇ = F − C − δK

Ȧ = bAφLA

1 = LA + LY

LY0 ,K0, SQ0 , SR0 given.

8



Let denote gX = Ẋ
X be the growth rate of variable X We shall summarize

the macroeconomic equilibrium in terms of the five variables: x = F/K, y =
C/K, z = Q/SQ, u = R/SR, q = LY Aφ−1, r = Aφ−1 from which other equilib-
rium rates

gF , gK , gC , gLY
, gLA,gA, gQ, gSQ

, gR, gSR

can be derived as the following proposition.

Proposition 2 The optimal growth rates take the following values

gA = b(r − q),

gK = x− y − δ,

gC =
ξx− δ − ρ

ε
,

gSQ
= −z,

gSR
= m− u

gQ = −y +
bθr

ξ
+

mβ + (1− ξ)δ
ξ

gR = −y +
bθr

ξ
+

m(β + ξ) + (1− ξ)δ
ξ

gLY
= −y +

bθr

ξ
+

bθ

γ
q +

mβ + (1− ξ)δ
ξ

gF = ξx− y +
bθr

ξ
+

mβ + δ(α + β + γ)
ξ

− δ.

gLA
=

q

q − r
gLY

.

Proof : See Appendix

Before analyzing the full dynamic system we look at at the characterization
of a balanced optimal growth path. A steady state satisfies that all rates of
growth are constant and denoted by g∗X for any variable X. Denote also by X∗

the value at the steady state of X.

Proposition 3 At the steady state, the growth rate take the following values

g∗Q = g∗SQ
= −y∗ +

bθr∗

ξ
+

mβ + (1− ξ)δ
ξ

(12)

g∗R = g∗SR
= −y∗ +

bθr∗

ξ
+

m(β + ξ) + (1− ξ)δ
ξ

(13)

g∗F = g∗K = g∗C =
ξx∗ − δ − ρ

ε
(14)

g∗LY
= g∗LA

= 0 (15)

g∗A = b(r∗ − q∗) (16)
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where if φ = 1 then

x∗ =
bθ + mβ + δ(1− ξ)

ξ(1− ξ)

y∗ =
(ε− ξ)(bθ + mβ + δ(1− ξ)) + ξ(1− ε)δ + ρ]

εξ(1− ξ)

q∗ = [y∗ − mβ + (1− ξ)δ + bθ

ξ
]
γ

θb

r∗ = 1

If φ 6= 1 then x∗, y∗, q∗, r∗ defined by

ξx∗ − δ − ρ

ε
= x∗ − y∗ − δ,

ξx∗ − y∗ +
bθq∗ + mβ + δ(1− 2ξ)

ξ
= x∗ − y∗ − δ,

−y∗ +
mβ + (1− ξ)δ + bθq∗

ξ
+

bθ

γ
q∗ = 0,

r∗ = q∗.

Proof : See Appendix

Remark 1 We have z∗ = −g∗SQ
, u∗ = m − g∗SR

. It follows from transversality
conditions at the steady state and the Euler equation that

lim
t→+∞µS∗Qe−ρt = 0 where µ = µ(0)e−ρt

and
S∗Q(t) = S∗Q(0)eg∗Qt

we then obtain
lim

t→+∞µ(0)S∗Q(0)eg∗Qt = 0.

This implies g∗Q < 0 .
Similarly, since limt→+∞ λSRe−ρt = 0 where λ = λ(0)e(ρ−m)t, we get

lim
t→+∞λ(0)S∗R(0)e(g∗R−m)t = 0 or g∗R −m < 0.

In the next section, we study the dynamic behavior of the nonlinear system
which is characterized by the behavior of the linearized system around the
steady state.
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5 Transitional dynamics

We shall summarize the macroeconomic equilibrium in terms of four stationary
variables, x = F/K, y = C/K, z = Q

SQ
, u = R

SR
, q = Aφ−1LY , r = Aφ−1 from

which other equilibrium rates can be derived as in Proposition 2.

Proposition 4 If φ = 1 then the Jacobien matrix has only one negative eigen-
value. If φ < 1 then the Jacobien matrix has two negative eigenvalue if ξ < ε.

Proof : Case1. If φ = 1. In this case r = 1, we just need to analyze the dynamic
system of x, y, z, u, q. By logarithmic differentiation the identities determine
x, y, z, u, q and using the results obtained in Proposition 2 we get

ẋ = (gF − gK)x = [(ξ − 1)x +
bθ

ξ
+

mβ + δ(1− ξ)
ξ

]x.

ẏ = (gC − gK)y = [
(ξ − ε)x + (ε− 1)δ − ρ

ε
+ y]y

ż = (gQ + z)z = (−y +
bθ

ξ
+

mβ + (1− ξ)δ
ξ

+ z)z

u̇ = (gR + u−m)u = (−y +
bθ

ξ
+

mβ + (1− ξ)δ
ξ

+ u)u

q̇ = (gLY
)q = (−y +

bθ

ξ
+

bθ

γ
q +

mβ + (1− ξ)δ
ξ

)q

The dynamics of h = (x, y, z, u, q, r) are described by the system above.
From the theory of linear approximation we know that in the neighborhood of
the steady state the dynamic behavior of the nonlinear system is characterized
by the behavior of the linearized system around the steady state ḣ = J(h−h∗)
where h∗ = (x∗, y∗, z∗, u∗, q∗, r∗) and J is the Jacobien matrix evaluated at the
steady state.

J =




∂ẋ/∂x ∂ẋ/∂y ∂ẋ/∂z ∂ẋ/∂u ∂ẋ/∂q

∂ẏ/∂x ∂ẏ/∂y ∂ẏ/∂z ∂ẏ/∂u ∂ẏ/∂q

∂ż/∂x ∂ż/∂y ∂ż/∂z ∂ż/∂u ∂ż/∂q

∂u̇/∂x ∂u̇/∂y ∂u̇/∂z ∂u̇/∂u ∂u̇/∂q

∂q̇/∂x ∂q̇/∂y ∂q̇/∂z ∂q̇/∂u ∂q̇/∂q




Note that x∗, y∗, z∗, u∗, q∗ are stationary variables, if ẋ = f(h)x then
f(h∗) = 0. Thus,

∂ẋ

∂x
(h∗) =

∂f(h∗)
∂x

x∗.
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Thus we get the Jacobian matrix

J =




(ξ − 1)x∗ 0 0 0 0
( ξ−ε

ε )y∗ y∗ 0 0 0
0 −z∗ z∗ 0 0
0 −u∗ 0 u∗ 0
0 −q∗ 0 0 bθ

γ q∗




The characteristic roots λk(k = 1, .., 5) are the solutions of the characteristic
equation |J− λU| = 0 where U is the 5 × 5 unit matrix. We can write at h∗

that
[
bθ

γ
q∗ − λ5][u∗ − λ4][z∗ − λ3][y∗ − λ2][((ξ − 1)x∗ − λ1] = 0

It is easy to see that there is only λ1 = (ξ − 1)x∗ < 0 while the others are
positive.

Case 2. If φ 6= 1, we must analyze the dynamic system of x, y, z, u, q and
r = Aφ−1. Since ṙ

r = (φ− 1)gA, we know that g∗A = 0 which implies that r is a
stationary variable. Moreover, r∗ = q∗.We have

ẋ = (gF − gK)x = [(ξ − 1)x +
bθr

ξ
+

mβ + δ(1− ξ)
ξ

]x.

ẏ = (gC − gK)y = [
(ξ − ε)x + (ε− 1)δ − ρ

ε
+ y]y

ż = (gQ + z)z = (−y +
bθr

ξ
+

mβ + (1− ξ)δ
ξ

+ z)z

u̇ = (gR + u−m)u = (−y +
bθr

ξ
+

mβ + (1− ξ)δ
ξ

+ u)u

q̇ = ((φ− 1)gA + gLY
)q = ((φ− 1)b(r − q)− y +

bθr

ξ
+

bθ

γ
q +

mβ + (1− ξ)δ
ξ

)q

ṙ = [(φ− 1)gA]r = [b(φ− 1)(r − q)]r.

It is easy to get

J =




(ξ − 1)x∗ 0 0 0 0 bθ
ξ x∗

(ξ−ε)
ε y∗ y∗ 0 0 0 0
0 −z∗ z∗ 0 0 bθ

ξ z∗

0 −u∗ 0 u∗ 0 bθ
ξ u∗

0 −q∗ 0 0 [−(φ− 1)b + bθ
γ ]q∗ [(φ− 1)b + bθ

ξ ]q∗

0 0 0 0 [−b(φ− 1)]r∗ [b(φ− 1)]r∗.




The characteristic roots λk(k = 1, .., 6) are the solutions of the characteristic
equation

|J− λU| = 0 (17)

where U is the 6× 6 unit matrix. Equation (17) is equivalent to

(z∗ − λ)(u∗ − λ) detM = 0
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where M =



(ξ − 1)x∗ − λ 0 0 bθ
ξ x∗

(ξ−ε)
ε y∗ y∗ − λ 0 0
0 −q∗ [−(φ− 1)b + bθ

γ ]q∗ − λ [(φ− 1)b + bθ
ξ ]q∗

0 0 [−b(φ− 1)]r∗ [b(φ− 1)]r∗ − λ




.

We then get two positive solutions, λ = z∗, λ = u∗ immediately. We have
det M(λ) =

((ξ − 1)x∗ − λ)(y∗ − λ)

∣∣∣∣∣
(−(φ− 1)b + bθ

γ )q∗ − λ ((φ− 1)b + bθ
ξ )q∗

−b(φ− 1)r∗ b(φ− 1)r∗ − λ

∣∣∣∣∣

+(−1)1+4 bθ

ξ
x∗

∣∣∣∣∣∣∣

(ξ−ε)
ε y∗ y∗ − λ 0
0 −q∗ [−(φ− 1)b + bθ

γ ]q∗ − λ

0 0 [−b(φ− 1)]r∗

∣∣∣∣∣∣∣

= ((ξ − 1)x∗ − λ)(y∗ − λ) detN(λ)− bθ

ξ

(ξ − ε)
ε

b(φ− 1)x∗y∗q∗r∗,

where

detN(λ) = [(−(φ− 1)b +
bθ

γ
)q∗ − λ][b(φ− 1)r∗ − λ]

+((φ− 1)b +
bθ

ξ
)q∗b(φ− 1)r∗.

det N(0) = [(
bθ

γ
+

bθ

ξ
)b(φ− 1)r∗q∗].

Hence detM(λ) is a polynomial degree of 4,

detM(λ) = H(λ) = λ4 + a1λ
3 + a2λ

2 + a3λ
2 + a4λ + a5

If this equation has solutions, then by Viete’s theorem, we get

H(0) = a5 = λ1λ2λ3λ4 =

= (ξ − 1)x∗y∗[(
bθ

γ
+

bθ

ξ
)b(φ− 1)r∗q∗]

−bθ

ξ
x∗

(ξ − ε)
ε

y∗b(φ− 1)q∗r∗

= [b(φ− 1)r∗q∗bθx∗y∗][
(ξ − 1)(ξ + γ)

γ
− (ξ − ε)

ε
]

= [b(φ− 1)r∗q∗bθx∗y∗][
(ξ − 1)ξε + (ξ − 1)γε− γ(ξ − ε)

γε
]

= [b(φ− 1)r∗q∗bθx∗y∗][
(ξ − 1)ξε + ξγ(ε− 1)

γε
]

= [b(1− φ)θr∗q∗bx∗y∗][
ξ(α + β)ε + γ)

γε
].
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If φ < 1 then H(0) > 0.We can write

H(λ) = ((ξ − 1)x∗ − λ)(y∗ − λ)(n1 − λ)(n2 − λ) +
bθ

ξ

(ξ − ε)
ε

b(1− φ)x∗y∗q∗r∗

where n1, n2 are solutions of the equation

detN(λ) = [(−(φ− 1)b +
bθ

γ
)q∗ − λ][b(φ− 1)r∗ − λ]

+((φ− 1)b +
bθ

ξ
)q∗b(φ− 1)r∗ = 0

n1.n2 = detN(0) = [(
bθ

γ
+

bθ

ξ
)b(φ− 1)r∗q∗] < 0

It follows that

H((ξ − 1)x∗) = H(y∗) = H(n1) = H(n2)

=
bθ

ξ

(ξ − ε)
ε

b(1− φ)x∗y∗q∗r∗ < 0.

This implies

H((ξ − 1)x∗)H(0) < 0,H(y∗)H(0) < 0,

H(n1)H(0) < 0,H(n2)H(0) < 0,

which implies H(λ) = 0 have two negative equations and two positive solutions.

Remark 2 Let us denote the eigenvectors corresponding to six eigenvalues
λi, i = 1, ..., 6 with vi, we may write the general solution of ḣ = J(h − h∗)
where h∗ = (x∗, y∗, z∗, u∗, q∗, r∗) as follows:

h(t)− h∗ =
6∑

i=1

aivie
λit

where parameters ai are determined by the initial conditions h(0)−h∗ =
∑6

i=1 aivi.

The optimal path in the neighborhood of the steady state is located in the stable
subspace which corresponds to the negative eigenvalues. Thus if φ = 1, we can
write (h(t)− h∗) = a1v1e

λ1t where λ1 < 0.

6 Econometric estimation

6.1 Estimated equations

In this section, we discuss about the empirical implication of the theoretical
model.

14



We concentrate our analysis on the growth rates gF/K , gQ, and gR at the
transition path. We only consider the case φ = 1, where all of these growth
rates only depend on x ≡ F/K and y ≡ C/K. When φ < 1, the model is
not identified and then estimation becomes impossible unless some restrictions
are imposed.3 From the previous analysis for φ = 1 (cf. Remark 2), as the
components of h are independent of each other, we can write the approximation
expressions for x and y as follows

xt − x∗ = a1v1xeλ1t (18)

yt − y∗ = a1v1ye
λ1t, (19)

where v1x and v1y, two components of v1. By using the initial conditions, we
get

a1v1x = x0 − x∗

a1v1y = y0 − y∗

Therefore, we obtain the following solution

xt = (1− eλ1t)x∗ + eλ1tx0 (20)

yt = (1− eλ1t)y∗ + eλ1ty0, (21)

recall that we have

gx = (ξ − 1)x +
bθ + mβ + δ(1− ξ)

ξ

gQ = −y +
bθ

ξ
+

mβ + (1− ξ)δ
ξ

gR = −y +
bθ

ξ
+

m(β + ξ) + (1− ξ)δ
ξ

.

We substitute (20) and (21) in these expressions and use the definitions x0 =
F0/K0, y0 = C0/K0, and gx = gF/K = 1

T ln(FT /F0) − 1
T ln(KT /K0), gQ =

1
T ln(QT /Q0) and gR = 1

T ln(RT /R0), which are respectively the average growth
rates of F/K, Q, and R, between 0 and T . This results in the transitional
dynamics of gχ, χ = F/K,Q, R towards the steady-state of the economy.4

Firstly, gF/K is given by5

gF/K = (ξ − 1)xT +
bθ + mβ + δ(1− ξ)

ξ
(22)

=
bθ + mβ + δ(1− ξ)

ξ
+ (ξ − 1)(1− eλ1T )x∗ + (ξ − 1)eλ1T x0 (23)

= α0 + α1F0/K0 + εF/K (24)
3This issue will be discussed deeply in a further work.
4The reason of using gF/K instead of gF is that the approximation of the latter contains,

in the right-hand side, both F/K and C/K which are highly correlated. Hence, regression of

gF on F/K and C/K will face a problem of multicolinearity.
5Index i is dropped to simplify notations.
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where

α0 =
bθ + mβ + δ(1− ξ)

ξ
+ (ξ − 1)(1− eλ1T )x∗

α1 = (ξ − 1)eλ1T .

Concerning gQ, we have

gQ = −(1− eλ1T )y∗ − eλ1T y0 +
bθ

ξ
+

mβ + (1− ξ)δ
ξ

(25)

= β0 + β1C0/K0 + εQ (26)

where

β0 = −(1− eλ1T )y∗ +
bθ

ξ
+

mβ + (1− ξ)δ
ξ

(27)

β1 = −eλ1T . (28)

Similarly, gR is given by

gR = −y +
bθ

ξ
+

m(β + ξ) + (1− ξ)δ
ξ

(29)

= −(1− eλ1T )y∗ − eλ1T y0 +
bθ

ξ
+

m(β + ξ) + (1− ξ)δ
ξ

(30)

= γ0 + γ1C0/K0 + εR (31)

where

γ0 =
bθ

ξ
+

m(β + ξ) + (1− ξ)δ
ξ

− (1− eλ1T )y∗ (32)

γ1 = −eλ1T . (33)

Equations (24), (26), and (31) represent three cross-sectional regressions
where εF/K and εQ and εR are the corresponding error terms.6 These equations
may be estimated by using Ordinary Least Squares. However, as underlined by
Islam (1995) and subsequent studies on income convergence, we will lose lots
of information included in the data sample as we only need observations of the
initial and final dates, i.e. dates 0 and T , and the sample size is then equal to
the number of countries.

An alternative approach is to transform the model in some panel structure.
In particular, we can rewrite equations (24), (26), and (31) as follows:

g(F/K)it
= α0 + α1Fi,t−1/Ki,t−1 + ε(F/K)it

(34)

gQit = β0 + β1Ci,t−1/Ki,t−1 + εQit (35)

gRit = γ0 + γ1Ci,t−1/Ki,t−1 + εRit (36)
6These error terms may correspond to omitted variables or unobserved factors affecting the

growth rates gF/K , gQ and gR. They can also represent measurement errors in these growth

rates.
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where i = 1, ..., N , and t = 1, ..., T . As in most studies on income convergence,
we use data corresponding to the five year interval period, i.e. data from 1977,
1982, 1987, 1992, and 1997. Hence the length between t and t− 1 is equal to 5
and gχit = 1

5 ln(χt/χt−1). The purpose is to reduce the business cycle effect.
The sample size is 108 observations (N = 27, T = 4). In our panel data

framework, the error terms εχit , χ = F/K, Q,R, include country and time
effects, i.e. εχit = µi+λt+uχit where µi and λt denote country heterogeneity and
time heterogeneity respectively, and uχit is the idiosyncratic error. Moreover,
the model predicts that coefficients α1, β1, and γ1 are negative.

Estimations of these equations can be obtained with standard panel methods
(within estimation for fixed effects, Generalized Least Squares for random ef-
fects) which assumes the strict exogeneity of regressors, i.e. E[(Fs/Ks)ε(F/K)t

] =
E[(Cs/Ks)εQt ] = E[(Cs/Ks)εRt ] = 0, ∀s, t. However, this assumption may be
faulty as regressors can be correlated with some unobserved factors or with
future values of the dependent variable. This is probably the case when we
study macroeconomic data. For example, we may think that current consump-
tion and capital stock may have some impacts not only on current income
and energy consumption but also on their future values. This situation arises
when regressors are predetermined, i.e. E[(Fs/Ks)ε(F/K)t

] = E[(Cs/Ks)εQt ] =
E[(Cs/Ks)εRt ] = 0, ∀s < t − 1. In this situation, the model can be estimated
by using Generalized Methods of Moments (see, e.g., Baltagi, 2005, and Lee,
2002). This is also the approach adopted in our estimation strategy.

6.2 Data

The data concerns twenty-seven OECD countries for the period 1977-1997.7

Data on non-renewable energy consumption Q and renewable energy consump-
tion R are collected from the International Energy Angency (IEA). Non-renewable
energy consumption, Q, is measured as the sum of consumption of gas, and liq-
uid fuels (in metric tons oil equivalent, toe). We assume that renewable energy
consumption, R, corresponds to the sum of nuclear energy, hydroelectricity,
geothermal energy, renewable fuels and waste, solar energy, wind energy, and
energy from tide, wave, and ocean (also in toe).

Table 1 here Figures 1-5 here

Data on production F , consumption C, physical capital stock K, and pop-
ulation are collected from the Penn World Table 6.1. We note that all figures,

7The data include Australia, Austria, Belgium, Canada, Denmark, Finland, France, Ger-

many, Greece, Hungary, Iceland, Ireland, Italy, Japan, Korea, Luxembourg, Mexico, the

Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, Turkey, United

Kingdom, and the United States.
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except population, are expressed in PPP and 1996 prices for an international
comparison purpose. We use the population series and the series on real GDP
per capita in 1996 prices (series RGDPL) to produce the volume of real GDP
in 1996 prices. We compute the product between real GDP and investment
share of real GDP, on the one hand, and the product between real GDP and
consumption share of real GDP, on the other hand, which correspond to the
investment and consumption in real terms. Moreover, physical capital stock is
based on the investment series (i.e. investment share of real GDP) and com-
puted following the perpetual inventory method.8 Data are used in per capita
terms to neutralize the possible scale effect due to the difference in population
size observed between countries.

Data descriptive statistics are summarized in Table 1. Evolutions of the
averages of ratios F/K and C/K are displayed in Figure 1. These ratios have
similar patterns, with two dips around 1982 and 1993, except that F/K has
stronger variation than C/K. Series on consumptions of nonrenewable and
renewable resources are presented in Figure 2. The average of consumption
of renewable energies R, is much lower than that of nonrenewable energies Q,
which increased over the whole period of the study whereas the latter consid-
erably decreased in the late 70s to until the dip in 1983, to rising thereafter.

For the estimations, we take data corresponding to the five year interval pe-
riod, ( data from years 1977, 1982, 1987, 1992, and 1997) in order to eliminate
business cycle effects as in most of empirical studies on economic convergence.
Distributions of average annual growth rates (computed from these time inter-
vals) of the output to capital ratio F/K, gF/K , renewable energy consumption
per capita, gR, and nonrenewable energy consumption per capita, gQ, are re-
ported in Figures 3, 4, and 5, respectively. The distribution of these growth
rates sensitivity changes over time. We also observe a particularity that the
dispersion of gQ and gR diminishes throughout the period of study.

6.3 Estimation results

Estimation results by GMM are reported in Table 2. As GMM use the first-
difference transformation, the intercept and country effects (which are not sep-
arately identified) are deleted from each regression and therefore not estimated.
Furthermore, the assumption of predetermined regressors,

E[(Fs/Ks)ε(F/K)t
] = E[(Cs/Ks)εQt ] = E[(Cs/Ks)εRt ] = 0, ∀s < t− 1,

8The perpetual inventory equation is Kt = It + (1 − δ)Kt−1 where It is the investment

flow. The initial capital stock is given by K0 = I0/(gI + δ) where gI is the average geometric

growth rate of investment from the initial date. The depreciation rate, δ, is often set to 4 to

6%. In our paper, changing δ from 4% to 6% does not modify the qualitative conclusion.
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allows us to use all values of Fs/Ks and Cs/Ks, s = 1, ..., t − 2 as possible
instruments for Ft/Kt and Ct/Kt respectively. As a consequence, there are
finally 81 observations used in the estimations.

Table 2 here

Empirical results based on OECD global data confirm the prediction of
the theoretical model. Indeed, estimation results show that coefficients α1,
β1, and γ1 are negative as expected. Coefficients α1 and γ1 are statistically
significant at the 5% and the 10% levels respectively, while β1 is insignificant.
The Wald test confirms the existence of time effects in all regressions. The
Sargan specification test for over-identifying restrictions (relative to the use of
instrumental variables) is always satisfied in either regressions as these over-
identifying restrictions are not rejected.

It should be noted that the GMM estimator is consistent with an AR(1)
process for the regression residuals but not consistent with an AR(2). We use
the Arellano-Bond tests to study this issue. Test results reject the absence
of autocorrelation of order 1 but do not reject that of order 2 for regressions
with gF/K and gR, suggesting that estimations are consistent in these cases.
Concerning gQ, the specification does not seem robust as Arellano-Bond test
does not confirm, but only at the 10% level, the absence of an AR(2) process
in the residuals.

7 Conclusion

The paper is a first attempt to explore theoretically and empirically the inter-
action between growth, technological level, and consumptions of renewable and
non-renewable resources. We derive the optimal solution and characterize the
BGP together with the transitional dynamics of the model. An empirical anal-
ysis of the model is also provided by using some panel econometrics on OECD
data. Our estimation strategy is appealing since it accounts for country and
time heterogeneities and it allows for a more flexible assumption about regres-
sors than the usual assumption of strictly exogenous regressors in the standard
framework. As underlined previously, it would be of particular interest, in an-
other step, to study the identification issue of the empirical specification that
can be derived from the theoretical model when φ < 1.

Moreover, on the theoretical side, we do not consider externality from re-
source use in utility or production. It would therefore be interesting to include
these factors in a future work to improve the realism of the modeling. An-
other research interest to consider is a more general model with very general
functional forms for production, knowledge accumulation, utility, and natural
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resources dynamics. Competitive equilibrium and public policy will also require
particular attention.
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Appendix

Proof of Proposition 2

Proof : The current-value Hamiltonian is

H(C,K, Q, R, LY , A) = u(C) + λ(mSR −R)− µQ + ν(F − C)

= u(C) + λ(mSR −R)− µQ (37)

+ν(F − C − δK) + ωbAφ(1− LY ). (38)

where λ, µ, ν, ω are four costate variables.
The first order conditions ∂H

∂C = 0, ∂H
∂Q = 0, ∂H

∂R = 0, ∂H
∂LY

= 0 yield

ν = UC (39)

µ = vFQ (40)

λ = vFR (41)

ω =
vFLY

bAφ
(42)

From Euler equations ∂H
∂K = ρν−ν̇, ∂H

∂SR
= ρλ−λ̇, ∂H

∂SQ
= ρµ−µ̇, and ∂H

∂A = ρω−ω̇

we get

ν̇

v
= ρ− FK − δ (43)

µ̇

µ
= ρ (44)

λ̇

λ
= ρ−m (45)

ω̇ = (ρ− bφAφ−1(1− LY ))ω − vFA.

By (39) and Ȧ/A = bAφ−1(1− LY ) we get

ω̇ = (ρ− φgA)ω − UCFA. (46)

The transversality conditions are

lim
t→+∞λSRe−ρt = lim

t→+∞µSQe−ρt = lim
t→+∞ νKe−ρt = lim

t→+∞ωAe−ρt = 0. (47)

From the identities ṠR = mSR − R, ṠQ = −Q and K̇ = F − C − δK we
obtain

gSQ
= −z, (48)

gSR
= m− u, (49)

gK = x− y − δ, (50)

gA = b(r − q) (51)
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Since F = AθLγ
Y KξQαRβ, we have

FK = ξF/K = ξx,

ḞQ

FQ
= θgA + γgLY

+ ξgK + (α− 1)gQ + βgR, (52)

ḞR

FR
= θgA + γgLY

+ ξgK + αgQ + (β − 1)gR, (53)

ḞLY

FLY

= θgA + (γ − 1)gLY
+ ξgK + αgQ + βgR (54)

Equation (39) together with (43) yield

ρ− U̇C

UC
= FK − δ = ξx− δ. (55)

It is easy to check that
U̇C

UC
= −ε

Ċ

C
= −εgC . (56)

Thus,

gC =
ξx− δ − ρ

ε
.

By logarithmic differentiation (40) and together with (44) we have

ḞQ

FQ
= ρ− U̇C

UC
= ξx− δ. (57)

From (41) and (45) we get

ḞR

FR
= ρ− U̇C

UC
−m = ξx− δ −m. (58)

From (42) and (46) we get

U̇C

UC
+

ḞLY

FLY

− φgA = ρ− φgA − UCFA

ω
=

ρ− φgA − UCFA

UCFLY

Aφ = ρ− φgA − θF/A

γF/LY
Aφ =

ρ− φgA − θ

γ
LY Aφ−1 = ρ− φgA − bθ

γ
q.

Thus,

ḞLY

FLY

= ρ− U̇C

UC
− bθ

γ
q

= ξx− δ − bθ

γ
q.
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Now, it follows from (52)-(54) that we have a system of equations with three
variables gQ, gR, gLY

γgLY
+ (α− 1)gQ + βgR = ξy − bθ(r − q) + (ξ − 1)δ = T1 (59)

γgLY
+ αgQ + (β − 1)gR = ξy −m− bθ(r − q) + (ξ − 1)δ (60)

(γ − 1)gLY
+ αgQ + βgR = ξy − bθ

γ
q − bθ(r − q) + (ξ − 1)δ (61)

From (59)-(60) we have −gQ + gR = m.

From (59)-(61) we get γgLY
= bθq + γgQ.

Replace this equation into (59) and we have

(γ + α− 1)gQ + βgR = T1 − bθq

We then have two equations to find gQ, gR.

gQ =
mβ + bθq − T1

ξ
=

bθr − ξy + mβ + (1− ξ)δ
ξ

gR = gQ + m =
bθr − ξy + m(β + ξ) + (1− ξ)δ

ξ

and
gLY

=
bθ

γ
q + gQ =

bθr − ξy + mβ + (1− ξ)δ
ξ

+
bθ

γ
q.

By logarithmic differentiation the equation of F = AθLγ
Y KξQαRβ we get

gF = θgA + γgLY
+ ξgK + αgQ + βgR =

= γgLY
+ (α− 1)gQ + βgR + θgA + ξgK + gQ

= T1 + θgA + ξgK + gQ

= ξy + (ξ − 1)δ + ξ(x− y − δ) +
bθr − ξy + mβ + (1− ξ)δ

ξ

= ξx− y +
bθr

ξ
+

mβ + δ(1− 2ξ)
ξ

= ξx− y +
bθr

ξ
+

mβ + δ(α + β + γ)
ξ

− δ.

Finally, since LY = q
r ,

gLA
=

L̇A

LA
= − L̇Y

1− LY
=

LY

LY − 1
gLY

=
q

q − r
gLY

.

Proof of Proposition 3

Proof : At the steady state, g∗A = b(r∗−q∗) is constant. Therefore, since g∗C , g∗K
are constant, it follows that x∗, y∗ is constant. It follows from g∗Q constant that
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r∗ is constant. Thus q∗, z∗, u∗ are also constant. Since x = F/K, y = F/C we
have g∗C = g∗F = g∗K .Moreover L∗Y = q∗/r∗ is constant which implies that L∗A is
constant. So we get

g∗LY
= g∗LA

= 0.

Since r∗ = A∗φ−1 is constant, we have (φ− 1)g∗A = 0 or

(φ− 1)b(r∗ − q∗) = 0.

This equation together with g∗C = g∗K , g∗F = g∗K , g∗LY
= 0 yield

ξx∗ − δ − ρ

ε
= x∗ − y∗ − δ

ξx∗ − y∗ +
bθr∗ + mβ + δ(1− 2ξ)

ξ
= x∗ − y∗ − δ

−y∗ +
mβ + (1− ξ)δ + bθr∗

ξ
+

bθ

γ
q∗ = 0

(φ− 1)(r∗ − q∗) = 0

a) If φ = 1, note that r∗ = A∗φ−1 = 1 we have

ξx∗ − δ − ρ

ε
= x∗ − y∗ − δ

ξx∗ − y∗ +
bθ + mβ + δ(1− 2ξ)

ξ
= x∗ − y∗ − δ

−y∗ +
mβ + (1− ξ)δ + bθ

ξ
+

bθ

γ
q∗ = 0

Thus

x∗ =
bθ + mβ + δ(1− ξ)

ξ(1− ξ)

y∗ =
(ε− ξ)(bθ + mβ + δ(1− ξ)) + ξ(1− ε)δ + ρ]

εξ(1− ξ)

q∗ = [y∗ − mβ + (1− ξ)δ + bθ

ξ
]
γ

θb
.

b) If φ 6= 1 then we have r∗ = q∗. Thus we have three equations which
determine the optimal growth rates at the steady state

ξx∗ − δ − ρ

ε
= x∗ − y∗ − δ

ξx∗ − y∗ +
bθq∗ + mβ + δ(1− 2ξ)

ξ
= x∗ − y∗ − δ

−y∗ +
mβ + (1− ξ)δ + bθq∗

ξ
+

bθ

γ
q∗ = 0

Note that A∗ = (r∗)1/φ−1.

Finally, since ṠQ

SQ
= − Q

SQ
and g∗SQ

is constant, we have g∗Q = g∗SQ
.

Similarly, we have g∗R = g∗SR
.
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Table 1: Descriptive statistics, 1977–1997

Variable Mean Std. Dev. Min Max
Consumption per capita 10.558 3.473 2.757 21.505
Capital stock per capita 46.629 19.066 5.247 89.764
GDP per capita 16.592 5.591 4.325 37.917
Consumption-capital ratio C/K 0.254 0.098 0.129 0.730
Output-capital ratio F/K 0.391 0.121 0.190 0.911
Nonrenewable energy consumption Q 3.145 1.706 0.496 10.637
Renewable energy consumption R 0.864 1.097 0.004 5.467
Number of countries 27
Number of years 21

Notes: Data on energy consumption are collected from the IEA for the period 1977–

1997. Consumptions of renewable and nonrenewable energies are expressed in metric

tons oil equivalent (toe). Economic data are drawn from the Penn World Table 6.1 (see

Heston et al., 2002). GDP, consumption, and capital stock are measured in thousands

U.S. dollars and 1996 prices. All figures are in per capita terms.
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Table 2: Estimation results

Equation Variable Coefficient Sargan AR(1) AR(2) Wald
g(F/K)t

(F/K)t−1 -0.174∗∗ 0.229 -3.08∗∗ -1.15 17.4∗∗

(0.060)
gQt (C/K)t−1 -0.015 0.883 -2.86∗∗ 1.41∗ 17.8∗∗

(0.067)
gRt (C/K)t−1 -0.275∗ 5.7 -2.37∗∗ -0.553 6.52∗

(0.166)

Notes: Regressions include country effects and year effects. Over-identifying restric-

tions are tested by the Sargan test. AR(1) and AR(2) tests are the Arellano and Bond

(1991) tests for serial correlation of order 1 and 2 respectively. The Wald test is for

significance of year dummies. Estimation results are obtained by GMM with robust

standard error à la White given in parentheses. ∗ and ∗∗ represent significance levels

of 10% and 5% respectively.
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Figure 1: Averages of ratios F/K (solid line) and C/K (dashed line), period 1977–

1997.
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Figure 2: Average consumptions per capita of nonrenewable energies Q (solid line)

and renewable energies R (dashed line), period 1977–1997.
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Figure 3: Average growth rate of F/K, period 1977–1997. The box plots relative to

1982, 1987, 1992, and 1997 represent the distribution of the average annual growth rate

observed for periods 1977-1982, 1982-1987, 1987-1992, and 1992-1997, respectively.
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Figure 4: Average growth rate of renewable resource consumption per capita gR,

period 1977–1997. The box plots relative to 1982, 1987, 1992, and 1997 represent the

distribution of the average annual growth rate observed for periods 1977-1982, 1982-

1987, 1987-1992, and 1992-1997, respectively.
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Figure 5: Average growth rate of nonrenewable resource consumption per capita gQ,

period 1977–1997. The box plots relative to 1982, 1987, 1992, and 1997 represent the

distribution of the average annual growth rate observed for periods 1977-1982, 1982-

1987, 1987-1992, and 1992-1997, respectively.
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