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Abstract

The pump storage technique allows to use cheap thermal electricity at
periods of low demand to restore water resources that can be used to generate
electricity at periods of peak demand. When the thermal plant and the
hydro plant are managed by the same operator, the two plants are used in
an efficient way to substitute low cost fuel to high cost fuel. When there are
two independent managers, competition requires careful analysis. The paper
first analyses the optimal dispatch and the profit-maximizing dispatch of
the thermal and hydro-generation units when water can be pumped up into
reservoirs. We identify the demand and cost conditions where the pumping
device must be used. We then switch to the case where the two plants are
operated by separate owners. We analyse the Nash equilibrium of the game
where the hydro unit is the client of the thermal unit at off-peak period, and
compete against it at peak period under three alternative legal arrangements
and/or technical constraints: i) the thermal producer cannot separate the
energy sold to the hydroproducer from the energy sold to final consumers; ii)
the thermal producer is obliged to sell at market price the energy demanded
by the hydroproducer and iii) the hydroproducer is obliged to buy at market
price the quantity of energy assigned by the thermal producer.

Keywords : water resource; pumping; hydroelectricity; Cournot competition

JEL classification: L12, L13, Q25, Q42
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1 Introduction

Electricity can be generated from a large spectrum of heterogeneous technolo-
gies: nuclear thermal plants, gas, oil, brown-coal and coal burning installa-
tions, windmills, tidemills and river and mountain hydroplants, to quote only
those which have proved to be not mere engineer dreams1. Within this large
range of diverse technologies, some are complements and others are substi-
tutes, complementarity and substituability being appreciated from both the
user side of the market and its production side. For example, the nuclear
technology is the cheapest way to satisfy base long-duration demand. By
contrast, for short run and sufficiently spaced peak demand, gas turbine gen-
eration often happens to be the most efficient choice. Hence no technology
is better than any other one in absolute terms. This is the reason why they
are all operated simultaneously. A main point put forwards in electricity
economics, is that electricity as such cannot be stored and must be produced
at the very moment it is called for. But the storage problem must not be
disconnected from the global analysis of the whole industry. The problem
would be an unescapable one if all the inputs used in the generation process
were themselves not storable. Fortunately all the non renewable inputs, car-
bon and nuclear fuels, are storable, either underground before extraction or
overground after extraction, although at different costs. The main non stor-
able inputs are renewable inputs like sun and wind energy. But in some cases
the electricity output can be transformed into an input which is storable and
may be used at a later date. In this paper we analyze the interaction be-
tween an hydroelectric generator and a thermal generator when there exists
an hydroplant using power produced by the thermal generator.

The observation of real hydrosystems shows that hydrogenerators oper-
ate complex systems of dams where the water released and turbinated by an
upstream dam can be stored in a downstream dam and either turbinated a
second time or pumped to come back into the upstream dam. The economic
analysis of such a complex system necessitates to construct a huge model to
take into account all the technical restrictions imposed to the quantity of wa-
ter that can be stored (at maximum and at minimum), released, turbinated,
pumped, etc. in each dam. The objective of this paper is to qualify how
water pumping changes the overall conditions of competition between het-
erogeneous technologies of generation2. Consequently, in the following pages,

1For complete pictures of the different energy sources and their transformations see for
example Boyle (1996), Cassedy (2000) Edwards et alii (1999), or Johansson et alii (1993).

2The basic model of competition between a thermal plant and a hydroplant (without
pumping) is given in Crampes and Moreaux (2001) and the extension to uncertainty in
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we adopt strongly simplifying hypotheses as compared with the real world.
In particular, we omit stock constraints and we focus on flow restraints.

While the electricity industry is commonly viewed as an industry where
storage is totally impossible, economists and engineers know that the elec-
tricity produced during off-peak periods by fuel generators can be used to
store water and this provides extra energy for peak periods3. According to
Eurostat data, pumping represents 5.5 % of the generation capacity in the
European Union. As shown in Table 1, the energy produced by means of this
stored water is on average less than 1 % of the total production but it is an
essential supply because it is called at peak periods, when thermal electricity
becomes scarce and expensive. Within an integrated industry, the dispatch-
ing of the two types of plants at peak and off-peak periods is just a matter of
efficiency. This part of the economic analysis has been clearly documented
by Jackson (1973). But with the liberalization of the electricity industry, a
new problem arises: how can competition in electricity markets work when
hydroplants and thermal plants belong to separate owners? Indeed, the two
types of generators are competitors at peak periods and potential partners
at off-peak periods. This complex situation has not been addressed yet in
the economic literature.

Table 1
Electricity Production in 2005 (TWh)

Countries Total Hydraulic Pumped share
production (H) TWh % of H

France 574.0 56.0 4.7 8.3
Germany 619.0 27.0 6.9 25.9
Italy 301.0 42.0 8.8 11.0
Spain 294.0 24.0 3.5 14.5
United Kingdom 400.3 7.3 2.9 39.7
European Union 3201.0 317.0 36.1 11.4
Japan 1111.9 103.6 9.1 8.8
North America 4908.0 660.0 24.0 0.4
Russia 932.0 160.8 1.8 1.1
Source: Worldwide electricity production from renewable energy sources.
Eighth inventory Edition 2006. Observ’ER, EDF.

Dakhlaoui and Moreaux (2006). Competition between hydroproducers is analyzed by
Ambec and Doucet (2003).

3“This pumped storage technique is particularly well suited to nuclear plants that
cannot be “turned off” during low demand intervals. By using electricity for pumped
storage, the nuclear generators can operate continuously at their most efficient output
levels”. Jackson (1973) p. 556.
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Section 2 presents the features of the model where electricity can be
produced either by a thermal plant or by a hydroplant supplied with water by
electricity from the thermal plant. In section 3 we expose the characteristics
of the efficient use of the two plants and we show how pump storage creates
a strong complementarity between the two types of technologies. Section 4
determines and compares the decisions made by a benevolent planner and
by a private integrated monopoly. In section 5, we switch to competition
between two private operators, each controlling one technology. Actually,
they mainly compete during the periods of peak demand. When the final
demand for electricity is low, the hydroplant is the client of the thermal
generator. We consider three different institutional settings where either the
thermal producer of the hydroproducer is the decision maker on the pumped
flow. Section 6 concludes.

2 Model setting

We consider a stationary cyclical electricity market which can be supplied by
two types of perfectly substitutable generators, a thermal unit and a hydro-
plant.

Each 24-hour time interval, denoted by τ = 1, 2, ..., is made of two pe-
riods, the night period labeled t = 1 and the day period labeled t = 2, of
equal duration4. Hereafter, we will refer to “off-peak period” for t = 1, to
“peak-period” for t = 2 and to “day” for the 24-hour time interval. Let qτt

be the quantity consumed in period t of day τ . By a stationary market we
first mean that the gross surplus that final users derive from consuming qτt

depends on period t but not on day τ . Hence, deleting index τ , let ut(qt) be
the period t gross surplus generated by the consumption of qt.

We assume that for any t = 1, 2, the gross surplus function ut : R++ → R+

is first strictly concave and increasing over some internal (0, q̂tu), 0 < q̂tu <
+∞, and next constant over [q̂tu, +∞], that is:

u′t(qt) > 0 and u′′t (qt) < 0 , qt ∈ (0, q̂tu) , t = 1, 2
ut(qt) = ū > 0 , qtε[q̂tu, +∞] , t = 1, 2

4The assumption that t = 1 and t = 2 both have the same duration facilitates the
graphical presentation of the results.
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Period 2 is the peak-period, meaning that:

q̂1u < q̂2u

u1(q) < u2(q) , q ∈ (0, +∞)
u′1(q) < u′2(q) , q ∈ (0, q̂2u).

Let Rt(qt) = u′(qt)qt, t = 1, 2, denote the revenue function in period t
and let MRt(qt) ≡ R′

t(qt) = u′t(qt) + u′′t (qt)qt be the corresponding marginal
revenue function. We first assume that MRt is strictly decreasing when
positive. Thus there exists q̂tR, 0 < q̂tR ≤ q̂tu, t = 1, 2, such that

MRt(qt)

{
> 0 , qt ∈ (0, q̂tR)
≤ 0 , qt ∈ [q̂tR, +∞).

and:
MR′

t(qt) = 2u′′t (qt) + u′′′t (qt)qt < 0 , qt ∈ (0, q̂tR).

Also we assume that, when positive, the marginal revenue in the peak
period is higher than the marginal revenue in the off-peak period, for a same
consumption level in each period. Thus:

q̂1R < q̂2R

MR1(q) < MR2(q) , q ∈ (0, q̂2R).

We assume that the operating cost function of the thermal plant is the
same whatever the period. Let c(q) be the cost function of the thermal plant
which is assumed to be of class C2 and strictly increasing and convex over the
range of feasible production levels. We assume that there exists an interval
[0, q̄) such that both ut(q)−c(q) > 0 and u′t(q)−c′(q) > 0, q ∈ (0, q̄), t = 1, 2
so that dispatching will always command to have positive generation for final
consumers.

Concerning now the hydro-plant system, let us measure water in the dam
in terms of energy units. The type of hydro-plant we have in mind is an
Alpine mountain system in which the dam is located at some high altitude
site whereas the turbine generators are located at a lower altitude site, so
that the height of water stock in the dam itself can be neglected. Let Sτt be
the quantity of water available in the dam at the end of period t of day τ .

We assume that there exists no natural water inflow entering the system.
All the water available in the dam must have been pumped from some source,
using outside electric energy, that is energy generated by the thermal plant.
Let fτt be the quantity of water pumped by the hydro-producer during period
t of day τ . Assuming that the storage capacity of the dam is sufficiently
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large so that no storage constraint is ever active, assuming there is no loss of
water within the system, and denoting by qH

τt the output of the hydro-plant
in period t of day τ , absent any random event, we must have

Sτt 5





Sτ−1,t+1 + fτt − qH
τt if t = 1

Sτ,t−1 + fτt − qH
τt if t = 2

Let us denote by qT
τt the thermal production of period t in day τ for final

use within the same period. We limit our attention to cyclical stationary
states in which for any τ and τ ′ and any t, we have:

fτt = fτ ′t , qH
τt = qH

τ ′t , qT
τt = qT

τ ′t and Sτt = Sτ ′t,

so that we must have qH
τ1 + qH

τ2 ≤ fτ,1 + fτ−1,2 = fτ1 + fτ2. Hence in what
follows we drop the index τ .

Pumping water necessitates more energy than the pumped water can
generate. Let αft, α > 1, be the quantity of electricity required to add ft to
the stock available in the dam at the beginning of the next period. The total
production level of the thermal unit is qT

t + αft.

3 Efficient production schemes

When the decision whether to dispatch the thermal and the hydroplants and
for how much is taken by one single entity, the mix of hydro and thermal
electricity minimizes the total cost of electricity generation. We analyze the
efficient production schemes in this section. In the next section, we will
consider the final decision on the absolute values of dispatch depending on
the objective of the decision-taker, either a public firm that maximizes social
welfare or a private monopolist that maximizes profit.

How to produce efficiently a given pair (q1, q2) of electric energy for final
consumers? The efficient dispatch {(qH

t , qT
t , ft), t = 1, 2} is the solution to

problem P.1:

P.1 max
{(qH

t ,qT
t ,ft), t=1,2}

− c(qT
1 + αf1)− c(qT

2 + αf2)
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s.t.

qT
t + qH

t − qt ≥ 0 , t = 1, 2 γt (3.1)

(f1 + f2)− (qH
1 + qH

2 ) ≥ 0 µ (3.2)

qH
t ≥ 0, qT

t ≥ 0, ft ≥ 0 , t = 1, 2 ν (3.3)

Constraint (3.1) means that electricity cannot be stored and (3.2) recalls
that the whole hydroresource comes from pumping. The first order condi-
tions that characterize the solution to problem P.1 are detailed in the Ap-
pendix. From these conditions, we deduce that cost minimization commands
constraints (3.1) and (3.2) to be binding. Actually, it would be wasteful to
generate more energy than what is needed (constraint (3.1)) and to pump
more water than what will be turbinated (constraint (3.2)). Hence, in what
follows, we refer to (3.1) and (3.2) as equalities. Also, an immediate implica-
tion of the basic laws of thermodynamics, is that transforming first electricity
into water in the dam and next water in the dam into electricity, both within
the same period, is pure energy waste. Thus having both qH

t and ft strictly
positive cannot be a component of a cost minimizing policy. Summing up:

Lemma 1 Assume that qt > 0, then cost minimization implies that:

a - both constraints (3.1) and (3.2) must be satisfied as equalities;

b - qH
t and ft cannot be both strictly positive.

Proof: See Appendix A1

An immediate implication of Lemma 1-b is that the electricity produced
by turbinated water within any period t is actually coming from pumped
water within period t − 1. But, because the marginal cost of the thermal
plant is increasing, the period within which water has to be pumped is that
period during which the consumption of the final users is the lowest one.
Hence:

Lemma 2 Whatever t and t′ (t, t′ = 1, 2 and t 6= t′), qt ≥ qt′ > 0 implies
that qH

t′ = 0.

Proof: See Appendix A1.

A straightforward implication of Lemma 2 is that if qt = qt′ , then qH
t′ =

qH
t = 0 and consequently ft′ = ft = 0. Actually, this specific result can be

generalized in the following way. In the present setting, the hydro-system is
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a mere storage device or transfer device of the energy produced at one period
to the next at a cost represented by the fraction of the energy lost during the
transfer. Hence, this apparatus is to be used if and only if, without transfer,
the marginal cost differential resulting from the production of quantity qt

exclusively during period t is higher than the marginal loss implied by the
transfer. This is formally established in the following Lemma.

Lemma 3 Suppose qt ≥ qt′ > 0, t, t′ = 1, 2, and t 6= t′. Then c′(qt) ≤
αc′(qt′) is a necessary and sufficient condition for ft = ft′ = 0.

Proof: See Appendix A1.

In order to illustrate how to determine the types of production profiles
(qt, qt′) having to be supplied with hydrogeneration and thermal generation
and those having to be supplied only by thermal generation, let us consider
Figure 1. Let us assume that the marginal cost function is a linear function
with c′(0) ≡ limq↓0c′(q) > 0. In the left quadrant, production levels q are
measured along the vertical axis and the marginal costs c′ and αc′ are mea-
sured along the horizontal axis. In the right quadrant, qt is measured along
the vertical axis and qt′ along the horizontal axis. Let q be that value of q
such that c′(q) = αc′(0). For any qt′ ≥ q let us define qtm(qt′) as this value
of qt solving c′(qt) = c′(qt′)/α, and symmetrically for any qt ≥ q let us define
qt′m(qt) as this value of qt′ solving c′(qt′) = c′(qt)/α. For example in Figure 1
let us start from the value q̇t′ of qt′ ,(q̇t′ > q), then

D′ in the left quadrant is the point (αc′(q̇t′), q̇t′),

D′′ within the same quadrant is the point (c′(qtm(q̇t′)), qtm(q̇t′))

D′′′ in the right quadrant is the point (qtm(q̇t′), q̇t′).

Now let us start from the value q̇t of qt, q̇t > q. Then

C ′ in the left quadrant is the point (c′(q̇t), q̇t),

C ′′ within the same quadrant is the point (αc′(qt′m(q̇t)), qt′m(q̇t)),

C ′′′ in the right quadrant is the point (qt′m(q̇t), q̇t).

Let qt be any quantity of energy to be delivered in period t and qt′ >
qt′m(qt) be some quantity to be delivered in period t′. Assume first that both
qt and qt′ are produced by the thermal plant within the delivery period. Then
the thermal marginal cost of qt′ , that is c′(qt′), is higher than the marginal
cost of α additional units of energy produced in period t in the thermal
plant, pumped into the dam and turbinated in period t′ to deliver one unit
of energy, which amounts to αc′(qt). Thus for profiles (qt, qt′) located above
the line qtm(qt′), hydrogeneration has to be used. The same argument clearly
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holds for profiles (qt, q
′
t) located to the right of the qt′m(qt) line. For profiles

located below qtm(qt′) and above qt′m(qt), the best solution is to use the
thermal unit exclusively.

Clearly for α = +∞, the pumping cost in terms of energy lost is infinite
so that no intertemporal smoothing device is available: qtm is the vertical
axis and qt′m the horizontal axis. At the other end of the spectrum, α = 1,
transfering energy from some period to the next is costless, and the only
profiles for which hydrogeneration is not used are those profiles (qt, qt′) such
that qt = qt′ . Then qtm(qt′) and qt′m(qt) are both the 45o line. In such a
case, whatever (qt, qt′), we must have qT

t = qT
t′ = (qt + qt′)/2, qH

t = 0 if
qt ≤ (qt + qt′)/2, and qH

t = qt − (qt + qt′)/2, if qt > (qt + q′t)/2, t, t
′ = 1, 2 and

t 6= t′.

The exact shape of the no-hydro region (NH) depends on the properties
of the marginal cost function. In Figure 1, we have assumed that marginal
cost is linear, c′(q) = c0 + cq. Under this specification, it is easy to derive

qtm(qt′) = (α − 1)
c0

c
+ αqt′ . Therefore, the NH region expands with α and

c0 and shrinks with c.
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Figure 1: Determination of the production profiles (qt, qt′)
to be produced with and without hydrogeneration

NB: A = c′(0), B = αc′(0), C = c′(q̇t) = αc′(qt′m(q̇t)), D = αc′(q̇t′) =
c′(qtm(q̇t′)), q = qtm(0) = qt′m(0).

We see that, if α = 1, qtm(q′t) = qt′ and the NH region vanishes since
electricity can be transfered from one period to the other costless thanks to
the hydroplant. When α = +∞ if the thermal cost is linear (c0 > 0, c = 0),
it is always more efficient to rely only on instantaneous thermal generation
rather than to use the storage possibility: the whole right quadrant is a
NH zone. When 1 < α < +∞ and the thermal cost is purely quadratic
(c0 = 0, c > 0) the NH zone is a cone, the frontier of which only depends on
the efficiency parameter α.
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4 Integrated management

In this section, we successively consider the first best allocation, that is the
dispatch that maximizes welfare, and the dispatch chosen by a private mo-
nopolist who controls the two plants. They only differ in the benefit function
to maximize. They face the same technical constraints.

4.1 First best dispatch

The social planner solves the following problem5:

P.2 max
{(qH

t ,qT
t ,ft), t=1,2}

2∑
t=1

{ut(q
T
t + qH

t )− c(qT
t + αft)}

s.t. (3.2) and (3.3).

The first order conditions of P.2 are

qT
t : u′t(q

T
t + qH

t ) = c′(qT
t + αft)− νT

t t = 1, 2 (4.1)

qH
t : u′t(q

T
t + qH

t ) = µ− νH
t t = 1, 2 (4.2)

ft : αc′(qT
t + αft) = µ + νf

t t = 1, 2 (4.3)

and the complementary slackness conditions (A5)-(A8) in the Appendix.

In section 2, we have assumed that t = 2 is the peak period. Intuition
suggests that q2 > q1. This is proved in the Appendix A2. Since optimality
implies efficiency, then by Lemma 2, we know that qH

1 = 0. Consequently, it
is straightforward to obtain f2 = 06. Indeed, it would be inefficient to pump
water at the peak period with the objective to keep it unused at the next
period. The only question that is not yet solved is to know whether f1 = qH

2

is strictly positive or is nil.

Let qti, (t = 1, 2), be the quantities produced and consumed at period t
in a purely thermal system, that is in a system where α = +∞. In such a
system, the optimal quantities, denoted by qu

ti, (t = 1, 2), are those values of
qti solving:

u′t(qti) = c′(qti) t = 1, 2 (4.4)

5To simplify the problem, we already assume that (3.1) is an equality and we write the
sum of the quantities generated by the two plants as the argument of the gross surplus
functions.

6More formally, by (4.2) we have µ > 0 so that f1 + f2 = qH
2 by (A5) in the Appendix.

Now, assume that f2 > 0. By Lemma 1.b we would have qH
2 = 0, hence a contradiction.
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We can now characterize the optimal policy in the complete system by
comparison with what would prevail in a pure thermal system.

Proposition 1 The first best dispatch must satisfy:

- if u′2(q
u
2i) > αc′(qu

1i), then:

f1 = qH
2 > 0 and f2 = qH

1 = 0

u′1(q
T
1 + αqH

2 ) = c′(qT
1 + αqH

2 )

u′2(q
T
2 + qH

2 ) = c′(qT
2 ) = αc′(qT

1 + αqH
2 )

- if u′2(q
u
2i) ≤ αc′(qu

1i), then:

f1 = f2 = qH
1 = qH

2 = 0 and qT
t = qu

ti , t = 1, 2

Proof of Proposition 1:

As we saw in Lemma 3 and in Figure 1, for a given pair of final con-
sumptions, depending on the cost function and the loss coefficient α, the
optimal solution will be either without hydrogeneration or a mix of hydro
and thermal generation. The higher α, the more likely the no-hydro solution.

Starting from the only-thermal solution (qu
1i, q

u
2i), we can define the thresh-

old value

αu =
c′(qu

2i)

c′(qu
1i)

(4.5)

such that if α ≥ αu the no-hydro dispatch is optimal and if α < αu, the best
dispatch commands to mix the two technologies. Clearly if αc′(qu

1i) < c′(qu
2i),

consuming the same quantity at each period but producing some part qH
2 of

qu
2i in period 1, that is producing thermally qu

1i +αqH
2 in period 1 and qu

2i−qH
2

in period 2 would reduce the total cost provided that qH
2 is not too large.

This is the case illustrated in Figure 2 for α = α1 and it corresponds to the
first part of Proposition 1. Symmetrically when α = α2, α2c

′(qu
1i) > c′(qu

2i)
so that, it is better not to use the hydro system as established in the second
part of Proposition 1. Equivalently for a given loss index α and a given cost
function c, if the difference between u1 and u2 and u′1 and u′2 is not too large
so that qu

2i − qu
1i is small, then the hydro transfer system is useless; and for a

given loss index α and a given utility function, if the marginal cost is slowly
increasing, again the hydro system is not used. This case corresponds to the
second part of Proposition 1.
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c′(qT
1 + αf1)

= u′1(q
T
1 )

αf1 f1

qT
2 qu

2i
qT
2 + qH

2
= qT

2 + f1

Figure 3: The welfare gains from pumping
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The first best allocation is illustrated in Figure 3. The solution in a
temporally isolated pure thermal system is illustrated by At(t = 1, 2), for
period t. Note that we have qT

1 < qu
1i that is the first best consumption in

period 1 is lower than the consumption in period 1 in the temporally isolated
pure thermal system, whereas the consumption in period 2, the peak period,
is higher qT

2 + qH
2 > qu

2i.

But the thermal production in period 1 is higher, and in period 2 is lower
than in the pure thermal system. Compared to the pure thermal system
there is a welfare loss in period 1, measured by the shaded area 1, more
than compensated by a welfare gain in period 2, measured by the shaded
area 2. If marginal utility is very inelastic, welfare gains from pumping are
essentially technical. Otherwise, consumers incur a loss at night but their
utility is increased at day.

4.2 The private monopoly

When the two plants are operated by a unique private firm, they are operated
efficiently because the firm is minimizing its cost. Thus the difference be-
tween the optimally managed system and the unregulated private monopoly
lies in the different objective functions each one wants to maximize. The pro-
gram solved by the monopoly is like program P.2, substituting the revenue
functions Rt for the gross surplus functions ut at each period t = 1, 2. Let
us call P.3 this program. The first order conditions are:

u′t(q
T
t + qH

t ) + u′′t (q
T
t + qH

t )[qT
t + qH

t ] = c′(qT
t + αft)− νT

t , t = 1, 2 (4.6)

u′t(q
T
t + qH

t ) + u′′t (q
T
t + qH

t )[qT
t + qH

t ] = µ− νH
t , t = 1, 2 (4.7)

together with (4.3) and the complementary slackness conditions (A.5)-(A.8)
in the Appendix.

By comparing the two dispatches solving respectively P.2 and P.3, we
mean:

- First compare the consumption levels, period by period, in each setting;

- Second compare the types of production mix, thermal and hydro ener-
gies, used in each case.

Concerning the first point, the monopoly effect is the standard effect, that
is a consumption level in each period lower than the optimal consumption
level.
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As regards the second it must be clear that anything may happen, that
is:

- either the same type of mix in the two settings, both thermal and hydro
energies in each one, or thermal energy only in each one;

- or different types of mix, either both energies at the optimum and only
thermal under monopoly, or only thermal at the optimum but both
energies under monopoly.

The reasons why we may have all these cases is illustrated in Figure 4
and with the following example.

6
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-

?

¾
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Figure 4: First best vs. private monopoly

Consider first Figure 4 which is the right hand side quadrant of Figure
1 with q2, the peak-period production level, measured along the vertical
axis, and q1, the off-peak production level, measured along the horizontal
axis. Since both optimal and monopolistic peak period production levels
are higher than the off-peak period ones, both optimal and monopolistic
production profiles are located above the 45o line.

In Figure 4 each arrow illustrates a possible move from the optimal pro-
duction profile toward the production profile chosen by the monopoly. With
arrows 1 and 2, the types of production mix are the same in the two settings,
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using the two kinds of energy when moving along Arrow 1, using thermal
energy only when moving along Arrow 2. With Arrows 3 and 4, the pro-
duction mix changes when passing from the optimal profile to the monopoly
profile. When moving along Arrow 3, thermal energy only is used at the
optimum while both energies are used by the monopoly. On the contrary,
when moving along Arrow 4, both energies are used at the optimum while
thermal energy only is used by the monopoly.

The following example shows that any one among the moves just listed
is possible.

Assume that u′t(qt) = at− btqt and c′(qt) = c.qt, t = 1, 2 where a2 > a1 >
c.

The first-best non-hydro solution is given by u′t(qt) = cqt , that is

qu
ti =

at

bt + c
t = 1, 2 (4.8)

The non-hydro solution when outputs are chosen by a private monopoly
is the solution to u′t(qt) + qtu

′′
t (qt) = cqt , that is

qR
ti =

at

2bt + c
t = 1, 2 (4.9)

With these values, it is easy to compute

αu =
a2

b2 + c

b1 + c

a1

and αR =
a2

2b2 + c

2b1 + c

a1

which represent the threshold value of the loss due to pumping in the first
best dispatch and in the monopoly dispatch respectively7. We see that

αu ≶ αR according to b2 ≶ b1

Since period 2 is the peak-period, we can assume that b2 > b1, denoting
a demand less reactive to price variation. It results that

if α > αu, the hydroplant is used neither by the social planner, nor by
the monopolist (case 2 in Figure 4);

7The critical value of α corresponding to first best is defined in (4.5). The critical value

that corresponds to the monopoly case is defined by αR =
c′(qR

2i)
c′(qR

1i)
where qR

ti is the value

of qti solving u′t(q) + qu′′t (q) = c′(q), t = 1, 2.
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if αu > α > αR, the monopolist does not use the hydroplant while it
would be optimal to use it (case 4);

if αR > α, the hydroplant is used by both the social planner and the
monopoly (case 1).

Hereafter, we compare the optimal despatch and the monopoly’s despatch
when α is small enough for pumping to be used in both frameworks (case 1).

For α < αu, from Proposition 1 we can write the first best dispatch as

qHu
2 =

(αu − α)a1a2

α2a2b1 + αub2a1

qTu
1 =

αua1b2 + α2a2b1 − αca2(αu − α)

(b1 + c)[αua1b2 + α2a2b1]
a1 = qu

1i −
αc

b1 + c
qHu
2

qTu
2 =

αa2[a1b2 + αa2b1]

(b2 + c)(αua1b2 + α2a2b1)
= qu

2i −
b2

b2 + c
qHu
2

As shown in figure 3, we observe that

qTu
1 + αqHu

2 = qu
1i + α

b1

b1 + c
qHu
2 > qu

1i > qTu
1

and
qTu
2 + qHu

2 = qu
2i +

c

b2 + c
+ qHu

2 > qu
2i > qTu

2

which means that at each period, the total production of electricity is larger
than if the pumping plant were not available. At the off-peak period (t = 1)
final consumption qTu

1 is lowered by pumping but at the peak period (t = 2)
final consumption qTu

2 + qHu
2 is higher thanks to the extra energy provided

by the hydroplant.

The same comments apply to the monopoly dispatch when αR > α:

qHR
2 =

(αR − α)a1a2

2[α2a2b1 + αRa1b2]

qTR
1 = qR

1i −
αc

2b1 + c
qHR
2

qTR
2 = qR

2i −
2b2

2b2 + c
qHR
2
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If we compare the monopoly dispatch with the first best when αu >
αR > α, it is straightforward to check that the monopoly does not use the
hydroplant sufficiently as compared with first best: qHR

2 < qHu
2 . This is

trivially true when αu > αR = α since qHu
2 > 0 while qHR

2 = 0.

It remains to compare the intensity of use of the thermal plant. We can
compute that

qTu
1 + αqHu

2 > qTR
1 + αqHR

2 (4.10)

and
qTu
2 > qTR

2 (4.11)

In other words, the possibility to combine the two technologies does not
modify the behavior of the private monopoly: its thermal plant is used below
the optimal level.

We will come back to the monopoly configuration in section 5.3.1. Figure
7 gives a graphical solution to profit maximization by an integrated firm.

5 Cournot Competition

We assume in this section that the thermal plant and the hydro plant are
under the control of separate enterprises and we consider a “day-ahead”
wholesale market for electricity in which:

i) the two agents announce to an independent Market Operator (MO
thereafter) the quantities they intend to supply and/or demand in each
period of the following day ; in other words, they play an open loop
game.

ii) taking into account the demand functions of the final users the MO
computes the price that clears the market in each period.

We neglect the markets where the price at which the electricity sold to the
hydro producer or sold by the hydro producer is fixed by administrative rules
as it is the case for generation from renewable resources in some countries.
Therefore, the energy price is the same for final use and for intermediary use.

Competition between H and T is very dependant on who takes decisions
as regards the flows ft (t = 1, 2). To keep things as simple as possible, we
will assume from now on that f2 = 0 at equilibrium, which is a trivial result
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given the hypothesis of peak demand at period 2. On the final market, the
two distinct firms compete by fixing (qH

1 , qH
2 ) for H and (qT

1 , qT
2 ) for T .

The decision on the remaining variable, namely f1, depends on the in-
stitutional setting and the network’s topological characteristics. We will
successively consider the three following cases :

1. Energy pool. Firm T produces the total quantity yT
t at period t, from

which qT
t is consumed by final consumers and αft is consumed by H to

store the quantity ft of water.

2. Sale obligation. Firm H freely chooses to buy ft at price pt and firm T
is obliged to serve it.

3. Purchase obligation. Firm T freely chooses to sell ft at price pt and
firm H is obliged to buy it.

The three configurations have in common the way prices are fixed by the
MO. Final consumers buy qt at period t. Since they are price takers, their
demand is the solution to

max
qt

ut(qt)− ptqt where qt = qH
t + qT

t , t = 1, 2.

From the first order condition, we can write the inverse demand function
as

p̃t(qt) = u′t(q
H
t + qT

t ) t = 1, 2 (5.1)

5.1 Energy pool

In this configuration, the thermal firm cannot separately decide on qT
t and

ft. Its decision variable is the total quantity sold at each period:

yT
t

def
= qT

t + αft

In this setting, the hydroplant solves

max
qH
1 ,qH

2 ,f1

p̃1(y
T
1 − αf1 + qH

1 )(qH
1 − αf1) + p̃2(y

T
2 + qH

2 )qH
2

s.t. f1 − (qH
1 + qH

2 ) ≥ 0 µ
f1 ≥ 0 , qH

t ≥ 0 , t = 1, 2 ν
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We first prove that H will choose qH
1 = 0 independently of T’s decisions.

The first order condition with respect to qH
1 is

p1 + (qH
1 − αf1)p̃

′
1 + νH

1 − µ = 0

and the first order condition with respect to f1 > 0 is

−α[p1 + (qH
1 − αf1)p̃

′
1] + µ = 0

Consequently, if qH
1 > 0, then νH

1 = 0 and since α > 1, the two above
conditions can be satisfied only if

µ = p1 + (qH
1 − αf1)p̃

′
1 = 0

This implies qH
1 − αf1 > 0 by p̃′1 < 0. And since α > 1, this implies in

turn qH
1 > f1, which clearly violates the resource constraint.

We conclude that qH
1 = 0, so that the hydroproducer’s program can be

rewritten as8

max
qH
2

p̃2(y
T
2 + qH

2 )qH
2 − p̃1(y

T
1 − αqH

2 )αqH
2

In order to sell one unit of electricity at period 2, H has to buy α units
at period 1. Therefore, if the thermal producer sells to the final market
quantities (qT

1 , qT
2 ) such that p̃2(q

T
2 ) < αp̃1(q

T
1 ), H will fix qH

2 = 0.

Otherwise, its best response is qH
2 = F1(y

T
1 , yT

2 ) given by the unique solu-
tion of the first order condition

p2 + p̃′2q
H
2 − α[p1 − αp̃′1q

H
2 ] = 0

under the assumption of a strictly concave profit function in qH
2 .

Differentiating the first order condition, we can write

sign
∂qH

2

∂yT
1

≡ sign− p̃′1 + αp̃′′1q
H
2

sign
∂qH

2

∂yT
2

≡ sign p̃′2 + p̃′′2q
H
2

8Because H controls both qH
2 and f1 and it is costly to pump water, it is obvious that

the constraint qH
2 ≤ f1 is binding.
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Assuming that the curvature of demand functions is small at each period,
we have that the hydroproducer will pump at period 1 and produce at period
2 a quantity increasing with the total output of T at period 1 and decreasing
with its total output at period 2.

We now consider the program of T . It solves

max
yT
1 ,yT

2

2∑
t=1

p̃t(q
H
t + yT

t − αft)y
T
t − c(yT

t )

Taking for given that qH
1 = f2 = 0, the first order conditions are

yT
1 .p̃′1(y

T
1 − αf1) + p̃1(y

T
1 − αf1)− c′(yT

1 ) = 0

yT
2 .p̃′2(y

T
2 + qH

2 ) + p̃2(y
T
2 + qH

2 )− c′(yT
2 ) = 0

The best response functions are yT
t (f1, q

H
2 ), t = 1, 2 and we show in the

appendix that, provided that the curvature of the demand functions be suf-
ficiently low:

∂yT
1

∂f1

> 0 ,
∂yT

1

∂qH
2

= 0 ,
∂yT

2

∂f1

= 0 ,
∂yT

2

∂qH
2

< 0

The Nash equilibrium is then

fN
2 = qHN

1 = 0 , fN
1 = qHN

2 > 0 , qTN
1 > 0, qTN

2 > 0

and consequently:

yTN
1 = qTN

1 + αfN
1 , yTN

2 = qTN
2

where

yTN
1 = Y T

1 (fN
1 , qHN

2 ), yTN
2 = Y T

2 (fN
1 , qHN

2 ) , fN
1 = qHN

2 = QH
2 (yTN

1 , yTN
2 )

It is illustrated in Figure 5. The North-East panel shows the relationship
between the demand of energy for pumping by H at period 1 as a function
of the total output of T at the same period and the supply of T as a function
of the demand for pumping. Both functions are increasing but the former is
additionally parameterized negatively by the output of T at period 2 since all
the energy bought at 1 will be used as an indirect input for the production
of H at period 2. This illustrates how the client/provider relationship of
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period 1 is affected by competition at period 2 and depicted in the South-
West panel. Here the decision variables are strategic substitutes with the
best response function of the hydroproducer shifting upwards when T has a
higher output at period 1 because this means more water in the reservoir.
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Figure 5: Nash equilibrium in the energy pool game

5.2 Sale obligation

In this institutional framework, we assume that the hydroplant is allowed
to order energy from the thermal plant at market price. As we will see,
this could be detrimental for financial equilibrium of the thermal plant, in
which case we will assume that the energy delivered to the hydroproducer is
rationed.

In this legal configuration, H chooses ft and qH
t (t = 1, 2) and T chooses

qT
t (t = 1, 2).
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The objective of the thermal plant is

max
qT
1 ,qT

2

p̃1(q
T
1 + qH

1 )(qT
1 + αf1)− c(qT

1 + αf1) + p̃2(q
T
2 + qH

2 )qT
2 − c(qT

2 )

The first order conditions for profit maximization are

p̃1(q
T
1 + qH

1 ) + (qT
1 + αf1)p̃

′
1(q

T
1 + qH

1 )− c′(qT
1 + αf1) = 0 (5.2)

p̃2(q
T
2 + qH

2 ) + qT
2 p̃′2(q

T
2 + qH

2 )− c′(qT
2 ) = 0 (5.3)

The hydro-producer objective is

max
qH
1 ,qH

2 ,f1

p̃1(q
T
1 + qH

1 )(qH
1 − αf1) + p̃2(q

T
2 + qH

2 )qH
2

s.t. f1 − (qH
1 + qH

2 ) ≥ 0 µ
qH
t ≥ 0 t = 1, 2 , f1 ≥ 0 ν

The first order conditions are

p1 + (qH
1 − αf1)p̃

′
1 − µ + νH

1 = 0 (5.4)

p2 + qH
2 p̃′2 − µ + νH

2 = 0 (5.5)

−αp1 + µ + νf
1 = 0 (5.6)

Note that f1 = 0 would mean that the hydroplant stays out of the market.
From now on, we assume9 that f1 > 0, so that νf

1 = 0.

With a given quantity f1 in its reservoir, the hydro generator has to decide
its allocation between the two periods. Although the hydrofirm could have a
strong incentive to sell energy at the off-peak period 1 in order to lower the
price it pays to fill its reservoir we first show that such an equilibrium is not
stable. Hence we concentrate the analysis upon the properties of equilibria
in which the hydrofirm sell electricity only in period 2.

5.2.1 The instability of equilibria with hydrogeneration at the off-
peak period

Assume that, to determine the equilibrium, some tâtonnement process is
used, each firm making alternate bids, and assume that there exists an equi-
librium in which:

f1 = qH
1 + qH

2 , qH
1 > 0 , qH

2 > 0 , qT
1 > 0 and qT

2 > 0.

9Note also that p̃1 = p̃2 would be a necessary condition for having both f1 > 0 and
f2 > 0. Keeping the hypothesis that period 2 is the peak-period, we can assume that
p̃2 > p̃1 at equilibrium, so that f2 = 0 for sure. Indeed, pumping at period 1 and pumping
at period 2 are perfect substitutes for the hydrogenerator and the best choice is a corner
solution: all the electricity to store water will be bought at the off-peak period.
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It means that starting from f ′1 slightly smaller than f1, f
′
1 = f1−df1, df1 >

0, and a qH′
1 smaller than qH

1 by the same amount, qH′
1 = qH

1 −dqH
1 , dqH

1 = df1,
the hydrofirm could improve its profits by increasing its demand of electricity
to the thermal firm in period 1 by df1 and simultaneously increase its sales to
the final users by the same amount. Let qT ′

1 , t = 1, 2 and qH′
2 be the values of

the other variables at this stage of the tâtonnement process. Because dqH
1 =

df1 the derivative of the profit function of the hydroproducer corresponding
to this change of policy is given by:

∂πH

∂qH
1

+
∂πH

∂f1

where πH = p̃1(q
T ′
1 + qH′

1 )(qH′
1 − αf ′1) + p̃2(q

T ′
2 + qH′

2 )qH′
2 . Thus:

∂πH

∂qH
1

+
∂πH

∂f1

= (1− α)p̃1(q
T ′
1 + qH′

1 )− αf ′1p̃
′
1(q

T ′
1 + qH′

1 ).

If the hydroproducer is planning to sell a large quantity qH′
2 = f ′1− qH′

1 at
period 2 and/or if the price function of period 1 is very reactive (p̃′1 large in
absolute value), the second term of the right hand side in the former equation
can overweight the first one. The hydroproducer has an incentive to increase
its sales at the off-peak period, dqH

1 > 0, and simultaneously to buy more
electricity at period 1, df1 > 0. By doing that it intends to depress the price
of period 1 at which it buys αf1, that is to lower the cost to provide energy
at the peak period.

Actually, the price will increase because the first period component of
the reaction function of the thermal producer, denoted by QT

1 (qH
1 , f1), is

such that:

qH′
1 + df1 + QT

1 (qH′
1 + df1, f

′
1 + df1) < qH′

1 + QT
1 (qH′

1 , f ′1).

We can show it as follows. Assume that qH′
1 + qT ′

1 < qH
1 + qT

1 . Then
at the next step of the tâtonnement process the sales of period 1 are going
farther from qH

1 + qT
1 than qH′

1 + qT ′
1 , and the equilibrium cannot be attained

from any point located in the neighborhood of the equilibrium. To show it,

let us compute
∂qT

1

∂qH
1

+
∂qT

1

∂f1
from the first order condition (5.2) of the thermal

producer. We obtain:

∂qT
1

∂qH
1

+
∂qT

1

∂f1

= − p̃′1 + p̃′′1.(q
T ′
1 + αf ′1) + 2α(p̃′1 − c′′)

p̃′1 + p̃′′1.(q
T ′
1 + αf ′1) + (p̃′1 − c′′)

< 0.
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Both the numerator and the denominator of the above ratio are negative
because the second order condition of profit maximization with respect to
qH
1 must be satisfied10. Furthermore, since α > 1, then 2α(p̃′1 − c′′) < p̃′ − c′′

so that:
∂qT

1

∂qH
1

+
∂q′1
∂f1

< −1.

In words, when H increases qH
1 , it provokes a larger decrease in qT

1 and the
total quantity delivered to the market decreases, so that the price increases.

Consequently any equilibrium with qH
1 > 0 is unstable.

5.2.2 Equilibrium analysis

We now fix qH
1 = 0, so that the resource’s constraint is qH

2 ≤ f1. The best
responses of H are given by the following conditions

p̃2(q
H
2 + qT

2 ) + qH
2 p̃′2(q

H
2 + qT

2 )− µ = 0

−αp̃1(q
T
1 + αf1) + µ = 0

qH
2 − f1 = 0

The best response function is qH
2 (qT

1 , qT
2 ) where

∂qH
2

∂qT
1

=
αp̃′1
∆

,
∂qH

2

∂qT
2

=
−(p̃′2 + qH

2 p̃′′2)
∆

∆ = 2p̃′2 + p̃′′2q
H
2 − α2p̃′1

The concavity of the profit function of H requires that ∆ < 0, so that
∂qH

2

∂qT
1

> 0 and
∂qH

2

∂qT
2

< 0. In effect, when T increases its output at period 1, it

decreases the market price which makes energy purchases less costly. Because
its marginal cost decreases the hydrofirm increases its sales.

Figure 6 depicts the best choice of the thermal producer at periods 1 (in
the left panel) and 2 (in the right panel), given qH

2 . At the off-peak period,
the thermal producer faces total demand u1

′−1(p1) + αqH
2 which results in

10The second order condition with respect to qH
1 is:

p̃′1 + p̃′′1 .(qT ′
1 + αf ′1) + (p̃′1 − c′′) < 0,

hence the denominator is negative. Because α > 1, and p̃′1 − c′′ < 0, then 2α(p̃′1 − c′′) <
(p̃′1 − c′′) and the numerator is also negative.
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a discontinuous marginal revenue function depicted by the two-piece bold
curve MR1(q1). Actually, the intercept of the final demand curve with the
vertical axis p1(0) can be viewed as a price cap for all buyers, including
intermediate buyers. Therefore, when q1 ≤ αqH

2 ,MR1 = p1(0). At q1 = αqH
2 ,

marginal revenue jumps down since it is now derived from the demand of
both final users and firm H. In Figure 6, we assume that the intercept of
marginal revenue and marginal cost results in QT

1 (qH
2 ) > 0 where QT

1 (qH
2 ) is

the first period component of the reaction function of the thermal producer
in the present context where qH

1 = 0. But, shifting upward the marginal cost
function, it is easy to see that the best choice of firm T can be QT

1 (qH
2 ) = 011,

which means that the final users receive nothing. In this case, the hydroplant
can receive exactly what it demands, or it can be rationned12, receiving less
than αqH

2 . At the peak-period (see the right panel in Figure 6) as the hydro
firm sells qH

2 , the marginal revenue of firm T is derived from the residual
demand u2

′−1(p2)−qH
2 . The best choice of firm T is QT

2 (qH
2 ) at the intersection

of marginal cost and the residual marginal revenue.

11Again we write QT
1 (qH

2 ) instead of QT
1 (0, qH

2 ) to simplify the notation since qH
1 = 0.

12The reason why firm H can be rationed is that T would incur financial losses if it were
obliged to serve H when its marginal cost is sharply increasing.
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Figure 6: Best responses of the thermal plant

The T ’s canonical best responses are qT
t (f1, q

H
2 ) such that (see proof in ap-

pendix A4)

∂qT
1

∂qH
2

= 0 ,
∂qT

1

∂f1

< 0 ,
∂qT

2

∂f1

= 0.

Furthermore, provided that p̃′′2 be not too large if positive, then:

∂qT
2

∂qH
2

< 0

The Cournot equilibrium under sales obligation (SO) is

qTSO
t = QT

t (fSO
1 , qHSO

2 ) t = 1, 2

fSO
1 = qHSO

2 = QH
2 (qTSO

1 , qTSO
2 )

It can be represented in a figure similar to figure 5 except that the total
output of the thermal producer yT

t is to be replaced by the quantity delivered
to the final market qT

t (t = 1, 2). The consequence is that the curve qT
1 (f1)

depicting the response of T at period 1 to changes in f1 in the North-East
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quadrant is decreasing. In effect, when H increases its purchases, T must
serve it (under the aforementioned provision that it does not incur finan-
cial losses). This increases marginal cost, which makes delivery to the final
market more costly and T reacts by disminishing its output of final energy.

5.3 Purchase obligation

Whereas the former case is enforced in various countries, the case where
the thermal producer can oblige the hydro producer to buy its electricity is
mainly theoretical, but it allows to analyze a possible institutional arrange-
ment with interesting economic features.

To keep things reasonable, we assume that T can oblige H to buy f1 ≥ 0
at period 1 but H can refuse if this would result in a negative profit. We
also assume that f2 = 0 since 2 is the peak period.

We first show how this setting differs from the integrated monopoly of
section 4.2. Then, we determine the main features of the Nash equilibrium.

5.3.1 Differences with the monopoly case

At first sight it looks as if the thermal producer integrate the hydroproducer
and use its hydroplant for developping a full monopoly power. However
consider a monopoly solution in which the monopoly is using the hydroplant
to produce electricity at period 2: qTm

1 > 0, qTm
2 > 0, qHm

1 = 0, qHm
2 > 0, fm

1 =
αqHm

2 and fm
2 = 0 where the supscrit m stands for “monopoly”. This solution

illustrated in figure 7 must satisfy (cf. (4.3), (4.9) and (4.10) supra):

• At period 1:
c′(qTm

1 + αqHm
2 ) = MRm

1 (qTm
1 ).

The marginal cost at period 1 must be equal to the marginal revenue
at the same period. (See points M1 and M ′

1 in figure 7).

• At period 2:

αc′(qTm
1 + αqHm

2 ) = c′(qTm
2 ) = MRm

2 (qTm
2 + qHm

2 )

The marginal cost of hydro energy supplied at period 2 must be equal to
the marginal cost of the thermal energy at the same period, and they must
be equal to the marginal revenue. (See points M2,M

′
2 and M ′′

2 ).
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Figure 7: Monopoly equilibrium

Assume that the thermal producer try to mimic the monopoly solu-
tion in the purchase obligation setting by forcing the hydroproducer to buy
αf1 = αqHm

2 at period 1 while himself selling qTm
t , t = 1, 2 at period t. Fig-

ure 7 shows that the thermoproducer will be induced to depart from this
solution. Given that H is forced to buy αqHm

2 at period 1, and given that
the thermoproducer sells qTm

t at period t, we have MRH
2 (qTm

2 + qHm
2 ) >

pm
1 > MRH

1 (qTm
1 + qH

1 ), qH
1 > 0, where MRH

t is the marginal revenue of the
hydrofirm. Thus the hydroproducer would mimic the hydroelectricity sale
policy of the monopoly provided that its profits be non negative. For that it
is sufficient that αpm

1 ≤ pm
2 so that its profit margin per unit of hydroelec-

tricity sold at period 2, which amounts to pm
2 − αpm

1 , be non-negative. But
the problem is that the first period revenue function of the thermal firm is
now p̃1(q

T
1 )(qT

1 + αf1) instead of p̃1(q
T
1 )qT

1 for the monopoly. Thus even if
the thermal producer were selling qTm

1 at period 1, its marginal revenue with
respect to αf1 would be pm

1 so that it would choose the point A in the right
hand side quadrant in Figure 7, at which its marginal revenue is equal to its
marginal cost. But it is not clear that the thermal firm would even choose
to sell qTm

1 to the final users at period 1. By doing so its period 1 profits
are given by the surface AA′A′′ the difference between the horizontal pm

1 at
which it sells to both the consumers and the hydrofirm, and the marginal cost
curve c′. Would it sell nothing to the final users, the price at which it sells
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to the hydrofirm would be the period 1 choke price, and if it forces the hy-
drofirm to buy the quantity at which the marginal cost is equal to the choke
price, corresponding to point B in the figure, its profits would be the surface
BB′A′′ which is larger than AA′A′′. As we show in the next paragraph, it is
never profitable to sell to the final users for the thermal producer at the sale
obligation equilibrium, but the reverse is true for the hydroproducer.

5.3.2 Equilibrium analysis

The hydroproducer only controls qH
1 and qH

2 . Its first order conditions are
given by (5.4) and (5.5). The thermal plant controls f1, q

T
1 and qT

2 . Its first
order conditions are respectively

αp̃1(q
T
1 + qH

1 )− αc′(qT
1 + αf1) + νf

1 = 0 (5.7)

p̃1(q
T
1 + qH

1 ) + (qT
1 + αf1)p̃

′
1(q

T
1 + qH

1 )− c′(qT
1 + αf1) + νT

1 = 0 (5.8)

p̃2(q
T
2 + qH

2 ) + qT
2 p̃′2(q

T
2 + qH

2 )− c′(qT
2 ) + νT

2 = 0 (5.9)

To converge towards the equilibrium characteristics, we first establish a
series of lemmas.

Lemma 4 It is not profitable for firm T to sell to the market at period 1.
Consequently, qT

1 = 0.

Proof: See Appendix A5.

The intuition of this result is that T can sell any kWh either to H or
to the market at period 1. But the former does not change p̃1(·) whereas
the latter decreases the selling price. Consequently, T will sell only to H at
period 1.

Lemma 5 It is profitable for firm T to sell energy to H at period 1. Conse-
quently, f1 > 0.

Proof: See Appendix A5.

In effect, in the open loop framework, T does not take into account that
f1 will be used by its competitor at period 2. Therefore, it just compares the
cost to produce f1 and the instantaneous revenue from the sale of f1.

Lemma 6 It is profitable for firm T to sell to the market at period 2. Con-
sequently, qT

2 > 0.
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Proof: See Appendix A5

Knowing that qT
1 = 0 by lemma 4, qT

2 = 0 would mean that T restricts
its activity to generation and use H as a marketer. This could make sense
if the generation cost at period 1, c1(.) was very small as compared with the
cost at period 2, c2(.). But in our model, the cost function is the same at
both periods and because of α > 1, T should produce more energy at period
1 than what could be sold by H at period 2. This means that T would incur
a higher cost than when it markets its own output at period 2. We show in
the appendix that T would be better off when relying on H for marketing
its energy only when H incurs financial losses. Therefore qT

2 = 0 cannot be
observed at equilibrium.

Lemma 7 It is profitable for firm H to sell to the market at period 2. Con-
sequently, qH

2 > 0

Proof: See Appendix A5.

Period 1 is the period of net expenses for firm H since qH
1 ≤ f1 and it buys

αf1 with α > 1 at price p1. It can also sell qH
1 at the same price. Therefore,

the firm must produce at period 2 to recoup its expenditures.

Lemma 8 The hydroproducer uses all the water made available by the ther-
mal producer.

Proof: See Appendix A5.

Selling electricity at period 1 allows H to decrease the price. Therefore,
since it is forced to accept all the supply f1 as long as it does not create
financial losses, H has an incentive to use all the water resources pumped by
the energy sold by T .

From this series of Lemma, we conclude that the best responses of T are

f1 = F1(q
H
1 , qH

2 ) , qT
2 = QT

2 (qH
1 , qH

2 )

implicitly defined as the solution of:

p̃1(q
H
1 )− c′(αf1) = 0 (5.10)

p̃2(q
T
2 + qH

2 ) + qT
2 p̃′2(q

T
2 + qH

2 )− c′(qT
2 ) = 0 (5.11)

It is easy to check that:
∂f1

∂qH
1

=
p̃′1
αc′′

< 0
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In effect, an increase in qH
1 drives the price downward which makes the

sale of f1 less profitable. Note also that ∂f1

∂qH
2

= 0 because when deciding upon

f1, the thermal producer does not take into account the future use of f1 by
H (open loop strategy).
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Figure 8: Nash equilibrium in the purchase obligation case

Also,
∂qT

2

∂qH
2

< 0 since the two firms are Cournot competitors at period 2

and
∂qT

2

∂qH
1

= 0 again because of the open loop framework.

The best responses of H are

qH
1 = QH

1 (f1, q
T
2 ) , qH

2 = QH
2 (f1, q

T
2 )

defined by

p̃1(q
H
1 ) + (qH

1 − αf1)p̃
′
1(q

H
1 ) + νH

1 = p̃2(q
H
2 + qT

2 ) + qH
2 p̃2(q

H
2 + qT

2 ) (5.12)

qH
1 + qH

2 = f1 (5.13)
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where νH
1 is zero for qH

1 > 0.

From Lemma 4-8, we have two potential solutions at equilibrium depend-
ing on the decision of H as regards the market at period 1. If p̃1(0) is not
too high, the equilibrium can be qH

1 = 0, qH
2 = f1 where f1 is the solution to

p̃1(0) = c′(αf1) by (5.10)

and qT
2 is given by (5.11).

But qH
1 > 0 is very likely in the case where p̃1(0) is high. The hydropro-

ducer now faces the following trade-off: since
∂f1

∂qH
1

< 0,
∂qH

2

∂qH
1

< 0.

Therefore, the lower the price to buy water at period 1, the lower the
quantity sold at period 2. From the total differentiation of equations (5.12)
and (5.13), we can show that (see Appendix A6)

∂qH
1

∂f1

> 0 because it allows to decrease the price of electricity bought

at period 1.

∂qH
2

∂qT
2

< 0 because the firms compete a la Cournot at period 2.

∂qH
1

∂qT
2

> 0 because the competition expected at period 2 leaves more

water available at period 1.

∂qH
2

∂f1

≶ 0 because on one hand more water available allows to sell more

energy at period 2 but, on the other hand, it opens the opportunity to
sell more at period 1 at the expense of period 2.

.

The Nash equilibrium fN
1 , qTN

2 , qHN
1 , qHN

2 is obtained from the joint reso-
lution of equations (5.10)-(5.13). It is illustrated in Figure 8.

6 Conclusions

Because hydroplants are more flexible than thermal plants to produce elec-
tricity, they play a very important role at peak hours. Indeed, in countries
with hydro resources, the marginal technology (that is the last technology in
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merit order called to match demand) is very often the hydroelectricity tech-
nology during peak demand periods. The resource used at peak periods can
come from pump storage, a technique that creates complementarity between
off-peak thermal electricity and peak hydroelectricity. In this paper, we have
analyzed this problem in two different frameworks: one is the joint decision
framework where one single decision maker (either public or private) chooses
the whole dispatch for the two types of plants for two periods in a steady
state regime. In the second one, the two types of technology are under the
control of separate private agents. In the first case, there is no hydroelectric-
ity sale during the (off-peak) period of pumping. In the competition case, it
may appear that the hydroplant would is better off when selling electricity
and pumping simultaneously but this policy is profitable only in the legal
framework where the hydroproducer is obliged to buy energy from the ther-
mal producer. In the two other competition cases we have analyzed (when
the thermal producer has a sale obligation or cannot separate the energy for
final use from the energy for intermediary use), the hydroproducer does not
buy and sell electricity during the same period of time.

The model can be extended in several directions, in particular by taking
into consideration the hydro capacity constraints.

When the capacity of dams or the turbine capacity is binding, the best
response functions of the hydroproducer are truncated and we obtain con-
strained equilibria. These technical constraints limit the flexibility of the
hydroproducer. But in the relationship between these two types of agents,
the technical constraints on the thermal producer are also more severe than
what we have accomodated in our model. Warming-up delays and ramp rates
can be so high that the firm is better off when keeping on producing, even
though the instantaneous marginal net profit is negative. This is the case
with nuclear plants. For these technical reasons, it is no longer true that the
thermal firm performs static optimization. It is actually facing a dynamic
optimization problem and the analysis of competition against a pumping
hydrostation becomes more complicated.
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8 Appendix

A.1 Characterization of the solution to problem P.1

Let LP.1 be the Lagrange function of P.1

LP.1 =
2∑

t=1

{
− c(qT

t + αft) + γt(q
T
t + qH

t − qt)

+νH
t qH

t + νT
t qT

t + νf
t ft

}
+ µ

(
2∑

t=1

ft −
2∑

t=1

qH
t

)
.

The first order conditions of P.1 are

qT
t : c′(qT

t + αft) = γt + νT
t t = 1, 2 (A1)

qH
t : µ = γt + νH

t t = 1, 2 (A2)

ft : αc′(qT
t + αft) = µ + νf

t t = 1, 2 (A3)

γt ≥ 0 , qT
t + qH

t − qt ≥ 0 , γt(q
T
t + qH

t − qt) = 0 , t = 1, 2 (A4)

µ ≥ 0 , f1 + f2 − qH
1 − qH

2 ≥ 0, µ(f1 + f2 − qH
1 − qH

2 ) = 0 (A5)

νH
t ≥ 0 , qH

t ≥ 0 , νH
t qH

t = 0 t = 1, 2 (A6)

νT
t ≥ 0 , qT

t ≥ 0 , νT
t qT

t = 0 t = 1, 2 (A7)

νf
t ≥ 0 , ft ≥ 0 , νf

t ft = 0 t = 1, 2 (A8)

Proof of Lemma 1

Assume that qt > 0.

1. Suppose that (3.1) is satisfied as a strict inequality implying that
γt = 0.

Since qt > 0, then:
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- either qT
t > 0 so that νT

t = 0,

- or qT
t = 0, but then qH

t > 0 so that νH
t = 0.

1.a. Consider the first case qT
t > 0 and νT

t = 0. Then (A1) results in:

c′(qT
t + αft) = 0

Because qT
t > 0, we have c′ > 0, hence a contradiction and we are left with

the second case.

1.b. When qT
t = 0, qH

t > 0 and νH
t = 0, so that by (A2):

µ = 0

Hence (A3) results in:
αc′(αft) = νf

t .

Assume that ft > 0, that is νf
t = 0. The above equation is now:

αc′(αft) = 0

with c′ > 0 because ft > 0 and α > 0; hence, a contradiction. Thus part b
of lemma 1 is proved.

However, because qH
t > 0 and ft = 0, we must have:

- either ft−1 > 0 if t = 2

- or ft+1 > 0 if t = 1

in order to stay within the same day τ so that γt = 0 whatever the case.

Hence:

- if ft−1 > 0, then νf
t−1 = 0 so that (A3) results in:

αc′(qT
t−1 + αft−1) = 0,

a contradiction since ft−1 > 0 implies c′ > 0.
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- if ft+1 > 0, then νf
t+1 = 0 so that (A3) results in:

αc′(qT
t+1 + αft+1) = 0,

again a contradiction.

2. Let us assume now that (3.2) is satisfied as a strict inequality so
that µ = 0, hence, by (A2), (A4) and (A6), both γt = 0 and νH

t = 0.
Since γt = 0 the proof runs along the same lines as in the proof of point 1.

Proof of Lemma 2

Suppose that qt ≥ qt′ > 0 and qH
t′ > 0. By Lemma 1.b we must have

ft′ = 0, hence by lemma 1.a and (3.2) ft = qH
t + qH

t′ implying that ft > 0
and, by Lemma 1.b again, that qH

t = 0. Thus ft = qH
t′ and from (3.1) as an

equality by Lemma 1.a: qT
t′ = qt′−qH

t′ and qT
t = qt. From qt ≥ qt′ , we trivially

get qt + αft > qt′ − qH
t′ . Now, note that

i) qH
t′ > 0 ⇒ νH

t′ = 0 so that, by (A2), µ = γt′

ii) Since qT
t = qt, then αc′(qT

t + αft) = αc′(qt + αft). Futhermore:

ft = qH
t′ > 0 ⇒ νf

t = 0, so that, by (A3), αc′(qt + αft) = µ.

iii) From ft′ = 0 and qT
t′ = qt′ − qH

t′ , we get, by (A1):

γt′ = c′(qt′ − qH
t′ )− νT

t′

Summing up, we obtain:

αc′(qt + αft) = µ = γt′ = c′(qt′ − qH
t′ )− νT

t′

hence a contradiction since α > 1, νT
t′ ≥ 0 and c′(qt + αft) ≥ c′(qt′ − qH

t′ ) this
last inequality resulting from the convexity of c and qt + αft > qt′ − qH

t′ .

Proof of Lemma 3
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Necessity: Assume ft = ft′ = 0. Since (3.2) is an equality we have that
qH
t = qH

t′ = 0 and, consequently, qT
t = qt > 0 and qT

t′ = qt′ > 0, hence
νT

t = νT
t′ = 0.

For period t, we can write from (A1) c′(qt) = γt so that µ = c′(qt) + νH
t

by (A2). At date t′, from (A3) we have αc′(qt′) = µ + νf
t′ . Consequently,

c′(qt) + νH
t = µ = αc′(qt′)− νf

t′ ⇒ c′(qt) ≤ αc′(qt′).

Sufficiency: We already know by Lemma 1.b that ft > 0 does not satisfy
the first order conditions when qt > 0. Let us prove that it is also true for
ft′ > 0 as long as c′(qt) ≤ αc′(qt′).

Suppose that ft = 0 and ft′ > 0. Then by (3.2) ft′ = qH
t + qH

t′ , and by
Lemma 1.b, qH

t′ = 0. Thus qT
t′ = qt′ , q

H
t = ft′ and qT

t = qt − qH
t .

Then:

ft′ > 0 ⇒ νf
t′ = 0

qT
t′ = qt′



 ⇒ αc′(qt′ + αft′) = µ by (A3),

qH
t > 0 ⇒ νH

t = 0 ⇒ µ = γt by (A2),
qT
t = qt − qH

t ⇒ γt = c′(qt − qH
t )− νT

t by (A1),

from which we obtain

αc′(qt′ + αft′) = µ = γt = c′(qt − qH
t )− νT

t ≤ c′(qt − qH
t ).

Since c′′(.) > 0, then c′(qt′) < c′(qt′ + αft′) and c′(qt − qH
t ) < c′(qt). Thus

we get:

αc′(qt′) < c′(qt).

We conclude that αc′(qt′) ≥ c′(qt) is sufficient for ft′ = 0.
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A.2 Proof that the solution of P.2 must have q1 < q2.

Let (q1, q2) be a solution of the optimal dispatching problem P.2. Then
from section 2 assumption ut(q) − c(q) > 0, q

∫
(0, q̄), t = 1, 2, we must have

qt > 0, t = 1, 2. Since any optimal policy must be efficient, then by Lemma
1.a:

qT
t + qH

t = qt > 0 , t = 1, 2

so that:
νH

t νT
t = 0,

because either qH
t > 0, or qT

t > 0 or both, t = 1, 2. For the same reason we
must have:

f1 + f2 = qH
1 + qH

2 .

Now assume that q1 ≥ q2. Then by efficiency and Lemma 2, it must be
the case that:

qH
2 = 0

Then by Lemma 1.b, either qH
1 > 0, in which case f1 = 0, or qH

1 = 0.
Hence we must have:

q1 = qT
1 + qH

1 = qT
1 + f2 > 0

q2 = qT
2 − αf2 = qT

2 − αqH
1 > 0

where f2 ≥ 0.

Note that, whatever the value of f2, q1 ≥ q2 and the assumptions about
ut, t = 1, 2, imply that:

u′2(q2) ≥ u′2(q1) > u′1(q1) (A9)

If f2 = 0, then qT
t = qt > 0, (t = 1, 2), so that q1 ≥ q2 and c′′ > 0 together

imply:
c′(q1) ≥ c′(q2).

Since then νT
t = 0, (t = 1, 2), taking (A9) into account, we get by (4.1):

u′2(q2) > u′1(q1) = c′(q1) ≥ c′(q2) = u′2(q2),

a contradiction.

Next, if f2 > 0, then qT
2 = q2 > 0 so that νT

2 = 0 and because qH
2 = 0,

νH
2 > 0 is not necessarily excluded. Hence (4.1)-(4.2) for t = 2 result in:

u′2(q2) = c′(qT
2 + αf2) = µ− νH

2 ≤ µ.
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Since f2 = qH
1 > 0, then νH

1 = 0 so that, for t = 1, (4.2) results in:

u′1(q1) = µ.

Last taking (A9) into account, we obtain:

u′2(q2) ≤ µ = u′1(q1) < u′2(q2),

again a contradiction.

A.3 Analysis of T ’s best responses in the “Energy Pool” case

By total differentiation of the first order conditions

yT
1 p̃′1(y

T
1 − αf1) + p̃1(y

T
1 − αf1)− c′(yT

1 ) = 0

yT
2 p̃′2(y

T
2 + qH

2 ) + p̃2(y
T
2 + qH

2 )− c′(yT
2 ) = 0

we deduce that

dyT
1

df1

=
α(yT

1 p̃′′1 + p̃′1)
yT

1 p̃′′1 + 2p̃′1 − c′′
∼ αp̃′1

2p̃′1 − c′′
> 0

Similarly,
∂yT

2

∂qH
2

=
−(yT

2 p̃′′2 + p̃′2)
yT

2 p̃′′2 + 2p̃2 − c′′
∼ −p̃′2

2p̃′2 − c′′
< 0

.

And it is straightforward to obtain
∂yT

1

∂qH
2

= 0 =
∂yT

2

∂f1

A.4 Analysis of T ’s best responses in the “Sale Obligation” case

From (5.2) and (5.3) in the text, the first order conditions of the thermal
plant are

p̃1(q
T
1 ) + (qT

1 + αf1)p̃
′
1(q

T
1 )− c′(qT

1 + αf1) = 0

p̃2(q
T
2 + qH

2 ) + qT
2 p̃′2(q

T
2 + qH

2 )− c′(qT
2 ) = 0

Total differentiation gives
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∂qT
1

∂f1

= − α(p̃′1 − c′′)
p̃′1 + p̃′′1.(q

T
1 + αf1) + (p̃′1 − c′′)

∂qT
2

∂qH
2

= − (p̃′2 + qT
2 p̃′′2)

2p̃′2 + qT
2 p̃′′2 − c′′

Therefore:

∂qT
1

∂qH
2

= 0 =
∂qT

2

∂f1

is trivial

∂qT
1

∂f1

< 0 comes from p′1 < 0 , c′′ > 0 and the 2nd order conditions

∂qT
2

∂qH
2

< 0 additionally requires p̃′′2 not too large when positive.

A5. The purchase obligation case

Proof of Lemma 4:

Suppose that qT
1 > 0. Then νT

1 = 0 and p̃1(.)− c′(.) = −(qT
1 +αf1)p̃

′
1(.) >

0. This would imply from (5.7) that νf
1 < 0, which is impossible. Conse-

quently, qT
1 = 0.

Proof of Lemma 5:

Suppose that f1 = 0. Then qH
1 = 0 and by (5.7) and Lemma 4, we have

that
p̃1(0)− c′(0) ≤ 0

which contradicts our assumptions of section 2. Consequently, f1 > 0.

Proof of Lemma 6:

Suppose that qT
2 = 0. Then from (5.9) we have that p̃2(q

H
2 ) − c′(0) ≤ 0.

Also, we have p̃1(q
H
1 ) = c′(αf1) from (5.7) and Lemma 4. Consequently,

p2 ≤ c′(0) < c′(αf1) = p1. But if it were the case then πH = p1.(q
H
1 − αf1) +

p2q
H
2 < p1.(q

H
1 + qH

2 − αf1) < 0 since qH
1 + qH

2 ≤ f1 and α > 1.

Proof of Lemma 7:
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Given that f1 > 0, if qH
2 = 0, we would have that

πH = p1.(q
H
1 − αf1) < 0 since α > 1 and f1 ≥ qH

1

Proof of Lemma 8:

Given the water constraint qH
1 + qH

2 ≤ f1 and given that α > 1, the two
first terms in the left hand side of (5.4) are strictly positive. Consequently
µ > 0 and the water constraint is binding.

A6. Best responses of H in the purchase obligation case

Let us rewrite equations (5.12) and (5.13) when qH
1 > 0

Rm1 − αf1p̃
′
1 −Rm2 = 0

qH
1 + qH

2 = f1

where Rm1
def
= p̃1(q

H
1 ) + (qH

1 − αf1)p̃
′
1(q

H
1 )

Rm2
def
= p̃2(q

H
2 + qT

2 ) + qH
2 p̃′2(q

H
2 + qT

2 )

Upon defining ∆
def
= R′

m1−αf1p̃
′′
1 + R′

m2 < 0, we obtain by total differen-
tiation

∂qH
1

∂f1

=
αp′1 + R′

m2

∆
> 0 ,

∂qH
1

∂qT
2

=
R′

m2

∆
> 0

∂qH
2

∂f1

=
R′

m1 − αf1p
′′
1 − αp′1

∆
≶ 0 ,

∂qH
2

∂qT
2

= −R′
m2

∆
< 0.
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