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ABSTRACT - In this paper we study the diffusion of modern irrigation technologies among a 

population of farmers, with a particular focus on risk and information dissemination through 

network and imitation effects. The major contribution of our work is to extend the traditional 

(theoretical) model of diffusion to account for production risk and the value of information 

about the new technology. This model is then applied to a sample of 385 farms located in 

Crete, Greece, to describe diffusion of modern irrigation technologies. Our results indicate 

that risk aversion plays a significant role and that farmers who are more sensitive to the risk of 

extreme events will adopt the modern irrigation technology earlier. Knowledge, experience 

and information dissemination are found to reduce time before adoption of the new 

technology, while farmers tend to learn more from and/or imitate farmers that are homophylic 

to them with respect to their education level, age and farm specialization.  
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INTRODUCTION 

Adoption of advanced irrigation technologies has been the major contributor to the reduction 

in irrigation water use in many regions and countries suffering from water scarcity. Therefore, 

understanding the determinants of irrigation technology investment and adoption rates is 

necessary for the design of agri-environmental policies towards sustainable water use. It is 

important for farmers, manufacturers of irrigation equipment, and regulators to understand the 

conditions under which a specific technology (i.e., drip, sprinklers) is desirable and likely to 

be adopted as well as the factors that affect its diffusion process. Analyzing adoption and 

diffusion patterns of irrigation technologies have been at the core of several empirical studies 

including those by Caswell and Zilberman (1985), Dinar and Zilberman, Dinar, Campbell and 

Zilberman, Dinar and Yaron, Dridi and Khanna and, Koundouri, Nauges and Tzouvelekas. In 

contrast with the epidemic models of diffusion initiated by Griliches and Mansfield, this body 

of the literature argues that adoption and diffusion patterns are the result of explicit 

maximizing behaviour of a population of heterogeneous farmers. In most cases, economic 

factors (water price, cost of irrigation equipment, crop prices, etc.) but also farm 

organizational characteristics and environmental conditions, do matter to explain adoption and 

diffusion of modern irrigation technologies.   

However, in the case of long-lasting technologies like modern irrigation infrastructure, 

farmers are faced with a decision which is costly to reverse and requires appropriate future 

planning. These investments change both variable and fixed costs, often require equity or debt 

financing, may alter the scale of production and can require more intensive on-farm 

management to ensure positive economic returns.1 Sahal and Thirtle and Ruttan, summarizing 

the diffusion literature, argue that the epidemic models of diffusion mistakenly ignore the 

multidimensional process reflected in aggregate adoption rates. Individual farmers may 

exhibit different patterns of adoption through time due to: (i) the existing information set and 
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their capacity to absorb and process that information, (ii) their risk preferences and 

perceptions - farmers may be willing to adopt irrigation technologies in order to hedge against 

risk during years of water shortage, as the same farm output can be sustained with less 

irrigation water-, (iii) the degree of technical compatibility between the innovation and farm’s 

existing production technology, (iv) factors exogenous to the farm such as market conditions, 

government policy and the general economic environment.2  

Along these lines, and using the theoretical underpinnings of technology adoption 

suggested by Dinar, Campbell and Zilberman and Caswell and Zilberman (1986), we extend 

the theoretical model developed by Koundouri, Nauges and Tzouvelekas, describing adoption 

of modern irrigation technology. More precisely, we model the process of technology 

diffusion accounting for production risk and the value of information about the new 

technology. The empirical application is made on a sample of 385 farms located in the island 

of Crete, Greece, and surveyed during the 2005-06 cropping period. Information on the exact 

time of adoption of drip irrigation technologies allows us to study factors affecting the length 

of time to adoption using a duration model. Duration analysis allows investigation of the 

timing of technology adoption, by modeling the conditional probability of adoption at a 

particular time period, given that adoption has not occurred before. In order to account for 

farmers’ risk preferences, we incorporate the first four sample moments of profit in the 

diffusion model, along the lines of Kim and Chavas, and Koundouri, Nauges and 

Tzouvelekas. Another contribution of this paper is to investigate (empirically) the role of 

network and imitation effects on technology diffusion among a population of heterogeneous 

farmers.  

 

In Section 2, we present the theoretical model of diffusion of modern irrigation 

technology under production risk and in section 3 we describe the corresponding econometric 
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model. In section 4, we discuss the data and the specification of the diffusion model and in 

section 5 we discuss the estimation results. In section 6 we conclude the paper. 

 

THEORETICAL MODEL 

Let’s assume that farms utilize a vector of conventional inputs  (e.g., land, capital, labor) 

together with irrigation water 

cx

wx  to produce a single output y through a technology described 

by a well-behaved (i.e., continuous and twice differentiable) production function satisfying all 

the regular neoclassical properties (i.e., positive and diminishing marginal productivities),  

 

   (1) ( wy f ,x ;d ,k= cx � )

 

where k is the irrigation technology index,3 d is an aridity index capturing weather 

conditions,4 and wx�  is the amount of effective irrigation water applied to the plant. Following 

Caswell and Zilberman (1986) we define a measure of irrigation effectiveness ( e
wx ) as the 

ratio of effective water ( wx� ) to applied irrigation water ( wx ), i.e.,5   

 

e
w w wx x x= �          (2) 

and 

e
w w wx x x= ⋅�          (3) 

 

Irrigation effectiveness is influenced by three decisive factors (Dinar, Campbell, and 

Zilberman): the water holding capacity of the soil (q), the prevailing weather conditions (d), 

and the method of water application (k) (i.e., irrigation technology). Hence, relation (3) can be 

expressed as a general function of the form: 
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( )w wx g x ;q,d ,k=�         (4) 

 

Higher soil’s water holding capacity is expected to increase irrigation water efficiency 

so the following relationships should hold: 0qg′ >  and 0qqg′′ ≤ .6 High precipitation increases 

soil moisture, and thus irrigation effectiveness, as less water is applied to the crop. High 

temperatures increase yield but at the same time also increase evaporation. This positive 

relationship holds up to a given point ( d ) which is unique to each field and/or plant. After 

that point a further increase in temperature reduces yield. Thus, we expect  and 0dg′ > 0ddg′′ ≤  

for d d≤  and  and  for 0dg′ < 0ddg′′ ≥ d d>

( )

. Finally, it is reasonable to assume that capital 

intensive irrigation technology enhances irrigation effectiveness, while it also affects the 

composition of input quantities used in crop production (e.g., fertilization through irrigation 

system). Hence, we assume that ( )0
w ,q,d;k1 1

w ,q,d;k 0g x g x>  with k=1, 0 being the modern 

and traditional irrigation technology, respectively.7 Modern irrigation technologies can be 

interpreted as land quality augmenting since they enhance soil’s water retention capacity. 

However, the gain in irrigation effectiveness associated with the change in irrigation 

technology is likely to decline with soil quality and increase with adverse weather conditions.  

Following Dinar, Campbell and Zilberman, farmer’s joint decision of an irrigation water 

application rate and irrigation technology assuming profit-maximizing behavior can be solved 

via a two-stage procedure. First, farmers choose the optimal amount of irrigation water 

together with conventional inputs for each technology (traditional and modern) and 

subsequently choose the irrigation technology yielding the highest profits. Obviously if none 

of the technologies yields positive profits, farmers will not operate at all. In addition, we 
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assume that farmers are not myopic in a sense that they can form expectations concerning all 

conjectures of their future profit flows.8 

Furthermore, since farm production is affected by weather conditions we assume that 

farmers incur production risk. This risk is commonly represented by a random variable , 

whose distribution is exogenous to farmer’s actions. Following Koundouri, Nauges and 

Tzouvelekas, this is the only source of risk we consider, as output and factor prices are 

assumed non-random (i.e., farmers are assumed to be price-takers in both the input and output 

markets).  

ε�

Hence if farmers are risk-averse with irrigation technology k (k= 0, 1), the profit 

function is written as follows: 

 

k k k k
w wπ py w x c= − − −k' k

c cw x k        (5) 

 

where  and ( )k k
w y = f x , ;d ,k εk

cx� � ( )k k
w wx = g x ;q,d ,k� ,  is the fixed cost of production 

associated with the given state of irrigation technology 

kc

( )0 1k ,= ; p is the output price which 

is known to farmers with certainty;9 ++∈ℜk
cw  is the vector of strictly positive conventional 

factor prices, and  is the unit cost of irrigation water.  k
ww

Farmers initially produce using a traditional irrigation technology (i.e., furrow), but 

they have the option to invest in a more efficient technology (i.e., drip). If they switch 

technologies, they must incur an irreversible investment cost, which may include the cost of 

designing a complete irrigation system and investing in the new infrastructure (e.g., pipes, 

filters, fertilization equipment) as well as the cost related with training both themselves and 

hired workers to use the new irrigation equipment. So, we assume that adoption of the new 

technology implies a change in the fixed cost of production,  (e.g., new fertilization 1c c> 0
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equipment) and might change the marginal cost of water ( )1 0
w ww w≠

( )

.10 Adoption of modern 

irrigation technology is assumed to be irreversible, as it might not be easy to re-sale the 

equipment. These arguments imply that a positive value of additional information might exist 

(Jensen; Dixit and Pindyck). In other words, imperfect knowledge about the new irrigation 

technology can lead to a strategic incentive to delay adoption (Foster and Rosenzweig).  

If we assume that the cost of acquiring the new drip irrigation technology at time t is 

known to the farmers, and the adoption decision is a discrete choice, then each farmer 

maximizes expected profits and chooses the time of adoption, τ, which solves the following 

dynamic optimization problem (Kerr and Newell): 

 

( ) ( )( ) ( )( ) ( )0 1

0

τ
ρt t rτ

τ τ
τ

max  ψ t max Ε U π t e dt E U π t e I τ e
∞

− −⎡ ⎤ ⎡= + ⎡⎣⎣ ⎦ ⎣∫ ∫ ρ dt  - C τ⎤⎦
−+ ⎤⎦  (6) 

 

where  are the total benefits obtained by farmers under both irrigation technologies, 

 is an increasing, concave and twice differentiable von Neumann-Morgenstern utility 

function,  is the cost of equipment for the new irrigation technology at the year of 

adoption,  represents the value of information also at the year of adoption, ρ is the risk-

adjusted discount rate since farm production is subject to weather risk, and r is the risk-free 

discount rate. Farmers will adopt at year τ the new irrigation technology if it is not more 

profitable to wait until a later period because of falling investment costs. The first-order 

condition of the maximization problem in (5), known as the arbitrage condition, implies: 

( )ψ t

C

(I

( )U ⋅

( )τ

)τ

 

( ) ( ) ( ) ( ) ( ) ( ) 0τ′ ≥t τψ τ V τ r C τ Ι τ C τ Ι′ = − + + +⎡ ⎤⎣ ⎦ ′     (7) 
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where  are the expected gross benefits of adopting drip 

irrigation technology at time τ. The arbitrage condition is sufficient if the acquiring cost is 

non-increasing and convex, and the expected gross benefits of adoption are non-decreasing 

with respect to time. Specifically, the second-order sufficient condition implies that: 

( ) ( )( ) ( )(1V τ Ε U π τ Ε U π τ⎡ ⎤ ⎡= −⎣ ⎦ ⎣ )0 ⎤⎦

 

( ) ( ) ( ) ( ) ( ) ( ) 0t t t tt ttψ t V t r C t I t C t I t′′ ′ ′ ′ ′′ ′′= − + + + ≥⎡ ⎤⎣ ⎦     (8) 

 

Conditions (7) and (8) are likely to hold as water availability is decreasing over time and 

the technology-acquiring cost generally decreases at a decreasing rate over time, eventually 

reaching a constant level. Hence, the general pattern implied by relation (7) is convex. In 

addition, in order for adoption to take place in finite time, these conditions imply that 

adoption must be profitable:  

 

( ) ( ) ( ) ( ) 0ρt

τ

ψ τ V τ e dt C τ I τ e
∞

−= − −⎡ ⎤⎣ ⎦∫ rt >      (9) 

 

ECONOMETRIC MODEL  

We model the diffusion of drip irrigation technology using duration analysis following 

Karshenas and Stoneman, Kerr and Newell and Abdulai and Huffman. The duration model 

that will be developed below can be seen as the empirical counterpart of the arbitrage 

condition as defined in (7).  

Duration analysis builds on the so-called survival function, S(t), and hazard function, 

h(t). The survival function describes the probability of survival (in our case, survival of the 

old technology) beyond a certain point in time, t. The hazard function, h(t), describes the 
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probability of abandoning the old technology or the probability of adopting the new 

technology in the next “instant”, given that the old technology has survived up to time t.  

Let us assume that T is a positive random variable with a continuous probability 

distribution function (pdf), f(t). The cumulative distribution function is written 

( ) ( )
0

t

F t f ( s )ds P T t .= =∫ ≤         (10) 

We are interested in the probability ( )P T t>  which defines the survival function:11 

( ) ( ) ( ) ( )
0

1 1
t

t

S t F t f s ds f s ds.
∞

= − = − =∫ ∫       (11) 

The hazard function or hazard rate h(t) describes the rate at which individuals will 

adopt the technology in period t, conditional on not having adopted before t. Said differently, 

given that the old technology has survived until time t, the hazard rate will indicate how likely 

the farmer is to abandon it and adopt the new technology in the next interval Δ : t

( ΔP t T t t T t≤ ≤ + ≥ ) . The hazard function, h(t), corresponds to the limit of the latter 

probability when the time interval Δ :  0t →

 

( ) ( ) ( ) ( )
( )

( )
( )Δ 0 Δ 0

Δ Δ
Δ Δ

P t T t T t F t F t f t
h t lim lim

S t S t→ →

⎛ ⎞≤ ≤ + ≥ ⎛ ⎞+ −
= =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

= .   (12) 

 

In empirical work, it is common to specify the hazard function as the product of two 

components: the baseline hazard, h0(t), which is assumed to be common to all individuals and 

to depend only on time, and a component which depends on adopters’ characteristics (zi) in an 

exponential manner (to ensure a positive hazard). The hazard function is thus written: 

 

( ) ( ) ( )0 exph t , ,β h t β= '
iz iz          (13) 
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where zi is a set of explanatory variables and β  a vector of parameters to be estimated. The 

vector zi should include variables that are supposed to enter the arbitrage condition (7). These 

variables can either vary only across time (e.g., price of innovation), vary only across farmers 

(e.g., farm size, soil quality) or vary across both dimensions (e.g., farmer’s age).12  

The early literature on technology adoption has posed that the diffusion of technological 

innovations is the result of a process similar to the spread of a disease, with adoption rates 

depending on the interaction between adopters and potential adopters (Griliches; Mansfield). 

Karshenas and Stoneman assumed that these epidemic effects in diffusion are captured by the 

baseline hazard which is time dependent.13 

We choose to specify a parametric form for the baseline hazard .( )0h t 14 For the 

purposes of the present analysis we assume that the random variable T follows a Weibull 

distribution.15 The Weibull distribution is flexible in the sense that it accommodates hazard 

rates that increase or decrease exponentially with time. The hazard function under a Weibull 

distribution takes the following form: 

 

( ) 1α
ih t , ,β αt λ−=iz  with ( )iλ exp β≡ '

iz      (14) 

 

where  is the shape parameter. The hazard rate either increases monotonically with time 

if , falls monotonically with time if 

0α >

1α > 1α < , or is constant if 1α = .16 The latter case 

indicates that there are no epidemic effects in the diffusion process.   

Under the assumption that T follows a Weibull distribution, the set of unknown 

parameters  can be estimated by maximum likelihood techniques. Since, at the time of (α,β )

the survey, not all farmers have adopted the modern technology, the likelihood has to account 

for right-censoring of some observations. The log-likelihood is written: 
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( ) ( ) (
N N

= + − − )
1 1

1 1i i
i i

Ln L(α,β ) d  ln f t , ,α,β d ln F t , ,α,β
= =

⎡ ⎤⎣ ⎦∑ ∑i iz z  (15) 

or 

)    (16) 

 

where di = 1 if the ith spell is not censored and di = 0 if censored. In the context of the Weibull 

distribution, we have: 

( ) (
1 1

N N

i
i i

Ln L(α,β ) d  ln h t , ,α,β ln S t , ,α,β
= =

= +∑ ∑i iz z

 and ( ) ( )αi iS t , ,β exp λ t= −iz  with ( )iλ exp β≡ '
iz( ) 1α

ih t , ,β λ αt −=iz . 

The mean expected survival (i.e., adoption) time is calculated as: 

 

( )
1

1 1
α

1
i

E t Γ
λ α

= +⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

       (17) 

 

with !  being the Gamma function, and the marginal effects of the explanatory 

variables on the hazard rate and on the mean expected survival time are calculated from: 

18) 

and 

⎛ ⎞ ⎛ ⎞

( ) ( )1Γ n n= −

 

( ) ( )
kz kh t , ,α,β h t , ,α,β β′ =i iz z       (

( ) ( )
k

k
z

βE t E t
α

′ = −         (19) 

 

DATA DESCRIPTION AND MODEL SP

he data used in this study come from a detailed survey undertaken in the Greek island of 

technologies. The survey was 

undertaken within the context of the Research Program FOODIMA financed by the European 

ECIFICATION 

T

Crete about the adoption and diffusion of drip irrigation 

 11



Commission under the 6th Framework Program.17 The final sample consists of 385 randomly 

selected olive producing farms located in the four major districts of Crete namely, Chania, 

Rethymno, Heraklio and Lasithi during the 2005-06 cropping period.18 Detailed information 

about production patterns, input use, average yields, gross revenues, and structural 

characteristics of the surveyed farms were obtained via questionnaire-based, field interviews. 

Farmers were asked the exact time of adoption of drip irrigation technologies during the last 

twelve years (i.e., 1994-2005). Also farmers were asked to recall data on some key variables 

including family size, irrigation water use, land tenancy, farm specialization and size, 

extension outlets, total debts and off-farm income.19 Summary statistics for these variables 

together with those gathered from secondary sources are reported in Table 1. From the total of 

385 farms in the sample, 250 (64.9%) have adopted drip irrigation technologies during the 

1994-2005 period. The intertemporal distribution of adoption times is presented in Figure 1. 

Our final choice of the variables to be included in the irrigation technology diffusion 

model is dictated by the arbitrage condition in (7) and by the definition of irrigation 

effectiveness in (4). The first decisive factor concerning individual adoption times as 

underlined by relation (7) is the cost of installation of drip irrigation equipment. This cost 

includes the cost of design for the new irrigation infrastructure, the cost of investment in the 

new equipment (i.e., pipes, hydrometers, drips) and the cost of installation on field. Table 1 

shows that installation cost per stremma (one stremma equals 0.1 ha) was on the average €130 

varying from a minimum of €98 to a maximum of €185 during the period analyzed (monetary 

values reported by individual farmers were deflated prior to estimation). The rate of change of 

the installation cost was found to be decreasing on average by 10.1% annually (in Figure 2 the 

price index of installation cost per stremma for drip irrigation exhibits a decreasing trend from 

1.8 in 1994 to 0.8 in 2005).   
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The second important component arising from the arbitrage condition in (7) concerns 

the informational incentives that may change producers’ perception about the profit-

effect

 the new 

techn

iveness of new irrigation technologies. Although fixed initial costs are incurred, 

informational incentives may be less costly than financial incentives in the long-run as 

information spreads throughout the rural communities. To understand what lies behind that, it 

is useful to make use of Rogers (1995, p.12) distinction between the hardware and the 

software aspects of new technologies. The hardware is the object that embodies the 

technology, while the software is the information needed to use it effectively. Although some 

of the software can be transmitted impersonally through retailers or user’s manuals, much of 

the software of a particular technology is built up based on the experience of using it. And 

without good software knowledge, many potential users of the new irrigation technologies 

will not adopt the new technology, although they are aware of its existence. In our empirical 

model, we proxy this software information spread, by the number of on-farm visits by 

extension personnel (private and public). In both developed and developing countries 

agriculture, much of software knowledge is transmitted through extension agents.20  

However, to pass on software knowledge, potential users need to be able to 

communicate directly with current users who have accumulated experience with

ology, besides the passage of information by extension agents. That is, software 

knowledge may often follow a word of mouth information diffusion process in which previous 

users are the main source of information. This means that the conditions for adoption of drip 

irrigation improve with the passage of time as cumulative rural experience on the new 

technology makes learning from others more effective. Hence the mass of information 

available to a potential adopter is a function not only of time and on-farm extension visits, but 

also of the density of adopters in the area or village at the time of deciding whether to adopt or 

not.  
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This raises an important concern about the intra-farm communication and the 

transmission of software knowledge. Obviously the flow of information between farmers is 

not h

variab

jective perceptions about future yields under both types of irrigation 

techn

omogeneous and therefore the stock of adopters in rural areas may not speed up the 

diffusion rate. Usually, farmers tend to exchange information and imitate farmers with whom 

they share common characteristics (religious beliefs, education, age, etc). Using Rogers’ 

terminology it is more likely that farmers imitate and gather information from their 

homophylic neighbors. When the population of farmers is heterophylic, differences between 

farmers can impede the process of communication or, more likely, the process of persuasion.   

In order to capture these distinct effects of information dissemination among rural 

communities, we introduce in the diffusion model two different variables: a village level 

le reflecting the cumulative extent of drip irrigation adoption within each village in the 

year prior to making a decision, and the stock of homophylic adopters in the village (see Table 

1b). Given our data availability, we define homophylic farmers based on education level, age 

and farm specialization. Farms were classified into four quartiles using these variables and 

homophylic farmers were defined as those belonging to the same quartile according to all 

variables. Finally, as implied by arbitrage condition in (7), we take into account changes in 

this information dissemination process through years, considering the rate of change in the 

stock of both homophylic and total adopters and on-farm extension visits in each year for 

every village.  

Next, the stochastic element in the optimal decision in (7) is not observable as it reflects 

individual sub

ology. However, according to the relevant literature, these perceptions may be 

realistically assumed to be influenced by the farmer’s economic and socio-demographic 

characteristics which are both observable. Following this line of reasoning, the expected gross 

benefits from adopting drip irrigation technology at time τ can be modeled as it is presented in 
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(14) with z being a matrix of farm’s socio-economic and demographic characteristics. Our 

choice for the elements of z is based on the availability and reliability of the relevant 

information arising from our sample survey. Based on the primary data collected we classify 

the factors affecting the diffusion of drip irrigation technology into three categories: farm, 

household and market characteristics. 

First, we expect more educated farmers to adopt profitable new technologies faster since 

the associated payoffs from innovations are likely to be greater (Rahm and Huffman). The 

expec

 is again ambiguous. Larger farms may have a greater potential to adopt 

modern

ted impact of age on the timing of adoption is ambiguous since age captures the effect 

of both experience and planning horizon. On the one hand, farming experience, which 

provides increased knowledge about the environment in which decisions are made, is 

expected to affect adoption positively. On the other hand, younger farmers with longer 

planning horizons may be more likely to invest in new technologies as they have to take into 

account future generations. Farmers in our sample received 7.72 years of formal education on 

average. The average age of the household head is 53.3 years, while family size is 3.78 

persons on average.  

The average farm size is 29.1 stremmas in our sample. The expected impact of farm 

size on adoption time

 irrigation technologies because of the high costs involved in irrigation. On the other 

hand, larger farms may have less financial pressure to search for alternative ways to improve 

their income by switching to a different technology (Perrin and Winkelmann; Putler and 

Zilberman). Also, the size of the farm is usually correlated with farmer’s risk aversion, which 

in turn may impact the time to adoption. If farmers owning larger [smaller] farms are less 

[more] risk-averse, then they may be more likely to adopt a new technology that is risk-

increasing [risk-decreasing]. The role of production risk and farmer’s risk aversion are taken 

into account through the inclusion of the first four conditional moments of farm profits in the 
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diffusion model (Kim and Chavas; Koundouri, Nauges and Tzouvelekas). The computation of 

the first four moments of farm profits is described in Appendix I, while Tables 1a and 1b 

show some basic statistics. 

Since property is an element of the institutional environment, we include in our model 

land tenancy as an explanatory variable of irrigation technology diffusion (Braverman and 

Stigli

 for technical assistance and thus for information gathering as 

their 

 technologies as the opportunity cost of time 

rises. 

tz). The potential effect of land tenure on diffusion is ambiguous. A positive relationship 

would be consistent with the hypothesis that greater leasing (or share-cropping) motivates 

farmers to work harder to meet their contractual obligations. On the other hand, a negative 

relationship would be consistent with agency theory, reflecting monitoring problems and 

adverse incentives between the parties involved that diminish business performance and hence 

profitable adoption decisions.  

The degree of farm specialization may also affect the timing of adoption. Specialized 

farms have fewer requirements

know-how is continually improved over time. On the other hand, farmers growing a 

single crop are faced with a higher risk of income loss in case of adverse events, which in turn 

may induce a lower probability of adoption if farmers are risk-averse. Farm’s specialization is 

measured by the Herfindhal index.21 In our sample, this index has an average value of 0.64, 

which indicates a high degree of specialization.  

Off-farm income is hypothesized to provide financial resources for information 

acquisition and to create incentives to adopt new

On the other hand, the level of off-farm income may not be exogenous but influenced 

by the profitability of farming itself, which in turn depends on adoption decisions. However, 

in our survey, off-farm income arises mainly from non-farm business activities (i.e., tourism) 

and from employment in other non-farm sectors (i.e., public administration, construction 

work). Given that the skill requirements are different for these jobs, farm and off-farm income 
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may be realistically assumed to be non-competitive. Thus, we can assume that the level of off-

farm income could be largely exogenous to adoption decisions (we statistically examine this 

assumption, see last paragraph of this section).  

Further, our diffusion model of drip irrigation technology incorporates farm’s distance 

from the market and total debts of the household. The village location and remoteness from 

the m

ct irrigation effectiveness. 

Given

arket is likely to be an important feature influencing the probability of adoption, while 

total debts are utilized to test Jensen’s (1986) hypothesis that increased financial obligations 

stimulate effort by producers to improve their performance in order to meet these obligations. 

In our sample, farms are located 26.22 km away from the major city in their area, whereas 

individual household debts are 1,587 euros on average (Table 1b).   

Finally, as relation (4) implies, adoption behavior for irrigation technology may also be 

influenced by the environmental characteristics of the farm that affe

 this, we include in the diffusion model an aridity index, the altitude of the farm and 

four soil dummies as a proxy for soil quality. The aridity index and the altitude of farm 

location reflect on-farm weather conditions, whereas the soil quality dummies reflect the 

water holding capacity of the soil. The aridity index is defined as the ratio of the average 

annual temperature over total annual precipitation (Stallings). It is calculated for the whole 

period analyzed using data provided by the 36 local meteorological stations located 

throughout the island. Since the value of the aridity index is identical for some farms that are 

located in the same area, we also include the altitude of farm’s location as an additional 

variable reflecting weather conditions. Higher altitude is more likely to be associated with 

adverse weather. As shown in the lower panel of Table 1a, the average value of the aridity 

index is 0.89, whereas the average altitude is 365 meters. Farms are classified according to 

four different soil types with respect to their water holding capacity. Sandy and limestone 

soils exhibit a lower holding capacity than marls and dolomites soils. The majority of farms in 
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the sample are cultivating olive-trees in marls (35.24%), followed by limestone (28.1%), 

sandy soils (19.72%), and dolomites (16.92%).   

To control for possible endogeneity of off-farm income, stock of adopters, stock of 

homophylic adopters, extension visits and debt, we implement a two-stage instrumental 

variab

TS AND SPECIFICATION TESTS 

The m mum likelihood parameter and standard error estimates of the hazard function are 

el is the natural logarithm of 

le procedure as suggested by Lee. In the first-stage we specify all the potential 

endogenous variables as functions of all other exogenous variables, plus a set of 

instruments.22 In the second-stage, the observed values of these variables are included along 

with the vector of their corresponding residuals, arising from the first-stage into the duration 

model. A simple t-test for the significance of the coefficients of the corresponding residuals is 

a test for the exogeneity of the suspicious variables (Smith and Blundell). Since we 

incorporate estimated values (i.e., profit moments) in the duration model, we use 

bootstrapping techniques to obtain consistent estimates of the corresponding standard errors 

(Politis and Romano).  

 

ESTIMATION RESUL

axi

shown in Table 2. The dependent variable in the diffusion mod

the “length of time” variable (measured in years) from first availability of the drip irrigation 

technology to when the farmer adopted it. In this framework, a negative coefficient estimate 

in the hazard function implies a negative marginal effect on duration time before adoption, 

that is, faster adoption. The overall fit of our model is satisfactory, since McFadden R2 

reaches 0.55. Several specification tests have been performed using the generalized 

likelihood-ratio (LR) test statistic (see Table 3).23  

We reject the null hypothesis of a constant baseline hazard model: the four district-

specific intercepts in the hazard function ( ( ) ( )1
iz r

r orh t , , t exp−= + '
izαβ α α β , where 1 4r , ,= …  
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stand

xcept for the district of Rethym le 2), and

n probabilities, 

condi

 to explain diffusion patterns across farms, i.e. if adoption of drip irrigation 

technology can be described by a sim

‘stock of adopters’, the stock 

of ho

ificant. A higher first moment, i.e., higher 

s for the four districts in the island, namely, Chania, Rethymno, Heraklio and, Lasithi) 

are all different from zero and positive, e no (Tab  

jointly different from zero (Table 3). This indicates that the rate at which farmers adopt the 

technology varies from one district to the other, all other things being equal.   

We reject the null hypothesis that the four district-specific intercepts are equal to one 

(H0:   α r = 1 ∀r ), which indicates positive duration dependence of adoptio

tional on the covariates (see Table 3), and hence the existence of epidemic effects in the 

diffusion process. The largest intercept is obtained for the district of Lasithi, where average 

annual rainfall is the lowest among all districts of the island, while the lowest intercept is 

obtained for Rethymno, which had the lowest average aridity index over the time period 

analyzed. The rate of adoption of more efficient irrigation technologies is thus found to be 

higher for farmers located in regions characterized by less favorable weather conditions (less 

rainfall).   

The next hypothesis we examine is whether the baseline hazard contains sufficient 

information

ple epidemic model of diffusion. The joint hypothesis 

that all farm-specific variables included in the hazard function are equal to zero is rejected, 

indicating that the adoption of drip irrigation technology by Cretan farmers cannot be 

explained by a process similar to the spread of a disease. 

Finally, three (out of five) residuals obtained from the first-stage instrumental variable 

regressions, are significant, indicating endogeneity of the overall 

mophylic adopters, and number of extension visits, thus providing support for our two-

stage instrumental variable estimation procedure.  

The effect of risk aversion is explicitly captured by the first four sample moments of 

profit, but only the first and third moments are sign
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expec

ducation and age 

on ado

 may suggest that the installation cost of the new 

technology is not a burden for small farms and that these farms adopt the new technology to 

ted profit, is found to increase the time to adoption, while a higher third moment, which 

captures downside risk, is found to reduce time to adoption.24 Hence, the length of adoption 

time will be shorter for farmers who are more sensitive to extreme events. This implies that 

one reason for the farmers in our sample to adopt drip irrigation technologies is to hedge 

against the risk of particularly bad outcomes. Moreover, a higher aridity index, a higher 

altitude and sandy soils are found to reduce time to adoption, significantly. Higher aridity and 

sandy soils both increase the water requirements of crops and thus increase the production 

risk related to adverse climatic conditions such as droughts (Koundouri, Nauges and 

Tzouvelekas). These results are consistent with the previous finding regarding risk aversion: 

farmers with a higher aridity index and sandy soils bear a higher risk of water shortage and 

hence are more likely to adopt a more efficient irrigation technology. In general, the role of 

risk aversion in explaining diffusion of modern irrigation technology is in line with the 

findings of Koundouri, Nauges and Tzouvelekas (who studied adoption of irrigation 

technologies under risk) using earlier data on farmers from the same region. 

The time to adoption of drip irrigation technologies is significantly shorter for farmers 

with higher level of education and for older farmers. The marginal effect of e

ption time is estimated at -1.93 and -0.75 years, respectively. These results indicate that 

knowledge and experience, as approximated by education and age, are important factors in 

inducing faster adoption of efficient irrigation technologies in this region. Moreover, the 

impact of extension services is found to be quite strong (the marginal effect is the highest: -

2.22 years), which confirms the hypothesis that information dissemination reduces time 

before adoption of the new technology. 

The estimated coefficient of farm size is positive, which indicates that time to adoption 

is longer for larger farms. This result
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cope a

. The negative coefficient of off-farm income is also as expected and confirms 

the as

CONCLUSIONS AND POLICY IMPLICATIONS 

In this paper we extend the traditional (theoretical) model of diffusion technology to account 

for production uncertainty and the value of information about the new technology, and apply 

sample of 385 farms located in Crete. 

gainst the risk of water shortage (which is likely to be higher for small farms). As 

expected, higher installation costs (and an increase in installation costs over time) induce an 

increase in the time to adoption. The marginal effect on adoption time is almost one year, 

while the coefficients of the four variables measuring imitation effects are significant. The 

negative signs of the two stocks variables confirm that the mass of adopters and the possibility 

of learning from others do matter in explaining diffusion of new technologies. The marginal 

effect of the stock of homophylic adopters on adoption time (-1.46 years) is about ten times 

the marginal effect of the total stock of adopters in the village (-0.14 years). This result 

indicates that farmers tend to learn more from and/or imitate farmers that are “more similar”, 

in our case this refers to farmers with common characteristics in terms of education level, age 

and farm specialization. The changes in the ‘stock of adopters’ has the opposite sign because, 

as time passes, more and more farmers have already adopted the new technology (i.e., the 

‘stock of farmers’ increases) but, at the same time, the number of new adopters each year 

decreases.  

The negative coefficient of the variable measuring total debt confirms Jensen’s 

hypothesis that increased financial obligations stimulate effort by producers to improve their 

performance

sumption that off-farm income creates incentives to adopt more efficient technologies as 

the opportunity cost of time rises. Finally, family size, land tenancy, farm specialization, and 

distance to the market are not found significant in this model. 

 

it to the case of irrigation technology diffusion, on a 
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Our results indicate that the role of risk aversion in explaining diffusion of modern irrigation 

technology is significant and the length of adoption time will be shorter for farmers who are 

more sensitive to downside risk. These findings are consistent with the result that farmers 

with a higher aridity index and sandy soils bear a higher risk of water shortage and hence are 

more likely to adopt the more efficient irrigation technology. In general, the role of risk 

aversion in explaining diffusion of modern irrigation technology is in line with the findings of 

Koundouri, Nauges and Tzouvelekas (who studied adoption of irrigation technologies under 

risk) using earlier data on farmers from the same region. Knowledge, experience and 

information dissemination are found to reduce time before adoption of the new technology, 

while farmers tend to learn more from and/or imitate farmers that are homophylic to them 

with respect to their education level, age and farm specialization.  

These results have significant policy implications with regards to creating incentives 

for technology adoption and regulating the pattern and timing of technology diffusion. First, 

the regulator must recognize that farmers face production uncertainty (mainly with respect to 

exogenous weather conditions), that farmers’ risk preferences will affect the timing of 

technology adoption and that new water-conservation irrigation technologies can be used as a 

means for production risk management. Hence these preferences must be uncovered and 

integrated in relevant water-related, agricultural and environmental management policies. 

Second, to increase the speed of technology adoption, the policy makers should invest in 

campaigns and educational programs that increase the knowledge and information 

dissemination with regards to the specific technology under investigation. Moreover, these 

campaigns will have higher feedback if directed to more experienced farmers. Finally, the 

regulator must recognize the importance of understanding the pattern of technology diffusion, 

which is significantly influenced by the similarity (with regards to education, age and farm 

specialization) between farmers. This implies that policies/campaigns that increase the 
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homogeneity of the farmers with regards to these characteristics will increase the speed of 

technology diffusion and as a result economize on the use of irrigation water. 

An interesting extension of this work is to attempt to introduce in the econometric 

model, and estimate, dynamic imitation effects. In particular, one could follow the theoretical 

results by Schlag, who identifies a uniquely optimal individual rule for the imitation process 

(both for the social planner and the boundedly rational individual), which describes how to 

choose future actions. If this rule is empirically translated and incorporated in the estimated 

model it can inform the time-series dimension of technology diffusion and allow further 

refinement of technology adoption policy. Such an extension would require panel data.      
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APPENDIX: COMPUTATION OF THE FOUR SAMPLE MOMENTS 

The first four moments of the profit distribution are derived following a sequential estimation 

procedure. In the first step, profit is regressed on the contemporaneous input variables to 

provide an estimate of the “mean” effect. The model has the following general form: 

 

( )i ;= ix γϖ ϕ iu+         (A.1) 

 

where  denotes individual farmers in the sample, 1i , N= … ϖ  is the profit per hectare, x is the 

vector of variable inputs, and extra shifters reflecting farm characteristics and, ui is the usual 

iid error term. Specifically, vector x includes capital stock measured in euros, irrigation water 

use measured in m3, cultivated area measured in stremmas, intermediate inputs (i.e., chemical 

fertilizers and pesticides) measured in euros, farmer’s education level measured in years, the 

aridity index as a proxy of environmental conditions and on-farm extension visits.  

Under expected profit maximization the explanatory variables are assumed to be 

exogenous and thus the OLS estimation of (A.1) provides consistent and efficient estimates of 

the parameter vector γ. Then, the jth central moment of profit ( )2j , ,m= …  conditional on 

input use and farm characteristics is defined as: 

 

( ) ( ){ }1

j

j E .μ ϖ μ⎡= −⎣. ⎤⎦        (A.2) 

 

where μ1 represents the mean or first moment of profit. Thus, the estimated errors from the 

mean effect regression � �( )u ϖ ϕ⎡ = −
⎣

x; ⎤
⎦

γ  are estimates of the first moment of the profit 

distribution. The estimated errors �u  are then squared and regressed on the same set of 

explanatory variables: 

 28



 

l ( )
2

iu g ;= ix δ �iu+        (A.3) 

 

The application of OLS on (A.3) provides consistent estimates of the parameter vector 

 and the predicted values  are consistent estimates of the second central moment of the 

profit distribution (i.e., the variance). We follow the same procedure to estimate the third and 

fourth central moments, by using the estimated errors raised to the power of three and four, 

respectively, as dependent variables in the estimated models.  

δ lm2

iu
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Figure 1.  Diffusion of Drip Irrigation in Crete, Greece. 
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Figure 2.  Cost of Installation Equipment for Drip Irrigation. 
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Table 1a. Definitions and Descriptive Statistics of the Variables: household, farm 
characteristics and environmental conditions. 

Variable Name Mean St Dev 
Duration length (years) Time 5.63 4.89 
Household Characteristics:   
Education (years of schooling) Edu 7.72 3.41 
Age (years) Age 53.3 13.1 
Family size (no of persons) Fam 3.78 1.43 
Farm Characteristics:   
Irrigation water use (m3) Water 30.83 15.12 
Land tenancy (% of rented land) Ten 0.29 0.21 
Capital Stock (€) Cap 3,147.34 1,514.12 
Specialization (Herfindhal index) Spec 0.64 0.13 
Farm output (kg) Out 18,547 4,521.04 
Intermediate inputs (€) Intm 2,058 987.17 
Farm size (stremmasa) Size 29.12 14.52 
1st profit Moment Mom1 2.03 0.81 
2nd profit Moment Mom2 0.72 0.33 
3rd profit Moment Mom3 0.89 0.61 
4th profit Moment Mom4 2.10 1.14 
Environmental Conditions:   
Aridity index Ard 0.89 0.34 
Altitude (meters) Alt  365.42 231.43 
Soil Type (% of farm Land):   

Sandy San 19.72  
Limestone Lim 28.12  
Marls Mar 35.24  
Dolomites Dol 16.92  

Districts (no of farms):   
Chania Cha 79  
Rethymno Rth 41  
Heraklio Her 84  
Lasithi Las 46  

a one stremma equals 0.1 ha. 



Table 1b. Definitions and Descriptive Statistics of the Variables: information and market 
characteristics. 

Variable Name Mean StDev

Information:   

Extension services (no of visits) Ext 18.12 15.78

Rate of change in extension (%) ΔExt 1.17 0.23

Market Characteristics:   

Installation cost (€ per stremmaa) Cost 130.15 21.37

Rate of change in installation cost (%) ΔCost -10.12 1.32

Stock of adopters (no of farms) Stock 132.67 90.09

Rate of change in stock of adopters (%) ΔStock 20.76 10.21

Stock of homophylic adopters (no of farms) HStock 13.45 5.23

Rate of change in the stock of homophylic adopters (%) ΔHStock 3.09 2.11

Interest rate (%) r 8.12 1.11

Distance from the market (km) Dist 26.22 12.34

Total debts (€) Dbt 1,587.11 942.36

Off-farm income (€ per year) Off 987.34 678.93

Extension outlets (no of outlets) ExtOut 4.62 2.87

Distance from extension outlets (km) ExtDist 37.12 21.58

Tourist arrivals (thousands of persons) Tour 432.12 157.01

Distance from district capital (km) Distc 42.36 14.48
a one stremma equals 0.1 ha. 
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Table 2.  Maximum Likelihood Parameter Estimates of Hazard Function for Adoption of 
Drip Irrigation Technology.  

 
Variable Estimate Std Error Variable Estimate Std Error 

αCha 2.0158 (0.6587)* βExt -0.5141 (0.1147)* 

αRth 0.9857 (0.8356) βΔExt 0.1458 (0.0705)** 

αHer 1.1241 (0.4541)* βDist 0.1105 (0.1359) 

αLas 2.3651 (0.6025)* βSize 0.0751 (0.0329)** 

βCost 0.4025 (0.1025)* βWater -0.5085 (0.1698)* 

βΔcost 0.0141 (0.0066)** βTen -0.0066 (0.0091) 

βStock -0.0385 (0.0195)** βSpec 0.1425 (0.1014) 

βΔstock 0.0068 (0.0036)** βDbt -0.0958 (0.0447)** 

βHstock -0.4021 (0.2001)** βOff -0.0135 (0.0068)** 

βHΔStock 0.0958 (0.0412)** βArd -0.1412 (0.0692)** 

βEdu -0.4528 (0.1458) * βAlt -0.0662 (0.0344)** 

βFam 0.0098 (0.0103) βSan -0.1304 (0.0625)** 

βMom1 0.0745 (0.0403)** βLim -0.0854 (0.1147) 

βMom2 0.0421 (0.0621) βMar 0.0625 (0.0847) 

βMom3 -0.0748 (0.0321)** βAge -0.1745 (0.0925)** 

βMom4 -0.0085 (0.0097)    

βOff_Res 0.0055 (0.0092) βExt_Res 0.0517 (0.0142)* 

βStock_Res -0.0147 (0.0041)* βDbt_Res -0.0589 (0.0747) 

βHStock_Res 0.0417 (0.0112)*    

Ln(θ) -304.187 No of observations 385 

McFadden R2 0.5547 No of adopters 250 
* (**) indicate significance at the 1 (5) per cent level. Standard errors were obtained using block re-sampling 
techniques which entails grouping the data randomly in a number of blocks of farms and re-estimating the model 
leaving out each time one of the blocks of observations and then computing the corresponding standard errors 
(Politis and Romano). For variable definitions see Tables 1a and 1b.  
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Table 3. Model Specification Tests.  
 
Null hypothesis Parameter Restrictions LR-test Critical value 

(α=0.05) 

1. Constant baseline hazard α r = 0 ∀r  244.87 2
4 9.49χ =  

2. No epidemic effects  α r = 1 ∀r  35.89 2
4 9.49χ =  

3. Epidemic model of diffusion 0   k kβ = ∀  385.44 2
32 44.01χ �  
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Table 4. Marginal Effects of the Explanatory Variables on the Hazard Rate and Mean 
Expected Adoption Time of Drip Irrigation Adoption (indicate percentage change 
in the hazard rate).  

 

Variable Hazard Rate Adoption Time 

Installation cost  -17.14 0.95 

Change in installation cost -0.69 0.05 

Stock of adopters  3.12 -0.14 

Change in stock of adopters -0.49 0.03 

Stock of homophylic adopters 20.15 -1.46 

Change in stock of homophylic adopters -4.87 0.35 

Education  26.15 -1.93 

Family size  -0.38 0.02 

1st Profit moment -0.023 0.011 

2nd Profit moment -0.010 0.007 

3rd Profit moment 0.019 -0.008 

4th Profit moment 0.001 0.000 

Extension services  34.19 -2.22 

Change in extension services -5.08 0.36 

Distance from the market  -5.17 0.32 

Farm size  -4.42 0.28 

Irrigation water use  28.19 -2.03 

Land tenancy  0.38 -0.04 

Specialization -5.23 0.41 

Total debts  5.58 -0.33 

Off-farm income  0.92 -0.04 

Aridity Index  9.53 -0.53 

Altitude  3.82 -0.22 

Sandy soils 0.08 -0.06 

Limestone soils 0.02 -0.01 

Marble soils  -0.01 0.001 

Age  9.17 -0.75 
 

 



ENDNOTES 

                                                 
1  Dixit and Pindyck argue that favorable but irreversible technology adoption decisions 

require positive net present values to reflect the opportunity cost to the farm of keeping its 

investment options open in the future.  

2 Hannon and McDowell and David provide empirical evidence on the important role of 

institutions in technology diffusion.  

3 Empirical agronomic evidence suggests that irrigation technologies may well affect the use 

of other variable inputs in crop production such as fertilizers or labor (for instance when 

fertilization is applied through drip irrigation system). Therefore the irrigation technology 

index may be directly included in the production function. In order to keep our empirical 

analysis tractable, we assume irrigation technologies to be the only source of farm innovation.  

4 Sherlund, Barrett and Adesima showed that neglecting “environmental factors” leads to 

omitted variable bias in the estimated parameters of the production function and hence, on 

conventional factors’ marginal productivities.  

5 According to Schoengold and Zilberman applied water is the total amount of water that is 

used by the farmer on the field, while effective water is the amount of water actually used by 

the crop.  

6 Soil is a dynamic system which acts as a reservoir and buffer against plant dehydration. 

Whether enough water is stored for the plant to avoid water deficiency and stress depends on 

several soil characteristics such as its slope, salinity, and water retention. The combination of 

these characteristics provide an index of the soil water holding capacity. 

7 In traditional irrigation technologies like furrow, large quantities of water are applied in a 

short period of time. Water is spread from the distribution pipes across fields using gravity 

forces that often result in a non-uniform application. On the other hand, capital intensive 

 36



                                                                                                                                                         

( )S t−

modern irrigation technologies like drip apply less amount of water over longer time periods, 

while both capital equipment and pressure ensure a uniform distribution throughout the plot. 

8 In a similar context Rosenberg and Tsur, Sternberg, Hochman model the diffusion process 

as a result of a dynamic optimization procedure under the assumption that decision makers 

have perfect foresight regarding the effects of present decisions on future events.   

9 Since farmers do not have any kind of market power producing a variety of crops, their 

adoption decision rarely influences the output price.  

10 For example drip irrigation technology may involve higher pressurization cost. On the other 

hand, since farmers are assumed to be price takers in both output and input markets, the 

marginal cost of all other factors of production is not affected by their choice of irrigation 

technology.  

11 For an individual farm, 1  gives the probability that the farmer will have adopted the 

innovation by time t, but if one considers the whole population of farmers, all of whom are 

present at the date of innovation, it will also represent the expected diffusion of the innovation 

through that population of farmers, that is, the share of farmers that has adopted the 

innovation. 

12 Time-varying variables can follow either a continuous time path (e.g., farmer’s age) or be 

step-functions over time (e.g. price of innovation). 

13 Karshenas and Stoneman also introduced a multiplicative epidemic baseline hazard 

function. However, recognizing that it is not econometrically possible to identify separately 

these functions, they implicitly assumed that the epidemic hazard is absorbed into the baseline 

hazard. 

(14 The choice of a specific structure for )0h t  is subject to the peculiarities of each case study. 

The baseline hazard can be either semi-parametric, as in the Cox proportional hazard model 
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where explanatory variables shift the baseline hazard function, or parametric according to 

which a specific functional form defines the baseline hazard for all individuals over the whole 

period. Semi-parametric models are more flexible as no distributional assumption is required 

about the shape of the hazard function. However, they ignore what happens to explanatory 

variables in periods where no adoption occurs. On the other hand, parametric models are more 

efficient in their use of information provided by the data. The most widely used parametric 

specifications include the logistic, Weibull, exponential, log-normal, log-logistic and 

Gompertz probability distributions. More details on these particular probability distributions 

functions within duration analysis are provided by Kiefer. 

15 Although Karshenas and Stoneman suggested that the choice of a baseline hazard structure 

seems to make little difference as far as parameter estimates and inferences are concerned, the 

appropriateness of our choice will be validated next.  

16 For  the Weibull distribution reduces to the exponential distribution. For α , the 

Weibull distribution becomes the Rayleigh distribution which has linearly increasing hazard 

rate as t increases. For 3.4 the Weibull distribution resembles closely the normal distribution 

whereas for , the Weibull distribution asymptotically approaches the Dirac delta 

function. 

17 The FOODIMA project (EU Food Industry Dynamics and Methodological Advances) is 

financed within the 6th Framework Programme under Priority 8.1-B.1.1 for the Sustainable 

Management of Europe’s Natural Resources. More information on the FOODIMA project can 

be found in www.eng.auth.gr/mattas/foodima.htm. 

18 Using the Agricultural Census published by the Greek Statistical Service, farms were 

classified according to their size and activities. Then with the help of extension agents from 

the Regional Agricultural Directorate of Crete a randomly sample of farms was selected. In 
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the case that farmers were not available or not willing to provide the required information, 

they were replaced by similar ones from the same area.   

19 Running a pilot survey we found that nobody had adopted drip irrigation technologies 

before 1994. So in the final survey, interviewers were asking recall data only for that period.  

20 In a traditional sense, agricultural extension is a mechanism by which information on new 

technologies, and better farming practices can be transmitted to farmers (Owens, Hoddinott 

and Kinsey). 

21 The Herfindhal index was calculated as ∑  where  is the share of crop i in total 

farm production. 

is

22 For the off-farm income equation, the set of instruments includes the distance from district 

capital in kilometers and the number of tourist arrivals in the island. For the stock of adopters 

and homophylic adopters we include the farm population in the area and the share of farms 

cultivating olive-trees. For on-farm extension visits, we use the number of extension outlets 

(public and private) in the area and the distance of the farm to the extension outlets in 

kilometers. Finally, for household debts, the instruments were capital stock and a 

dichotomous variable indicating whether farms use mechanical harvesting equipment or not. 

23 The LR test statistic is computed as: ( ) ( ){ }0 12LR ln L H ln L H= − − ( )0L H

( )1

 where  and 

L H  denote the values of the likelihood function under the null ( )0H

( )1H

 and the alternative 

 hypothesis, respectively. The LR-test follows approximately a χ2 distribution with 

degrees of freedom equal to the number of restrictions. 

24 Downside risk aversion means that when there is a choice between two output distributions 

with the same mean and variance, the output distribution which is less skewed to the left is 

preferred. 


