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Multi-stand Forest Management Under a Climatic Risk:

Do time and Risk Preferences Matter?

Abstract

We propose a stochastic dynamic programming framework to model the manage-
ment of a multi-stand forest under climate risk (strong wind occurrence). The pref-
erences of the representative forest owner are specified by a non-expected utility in
order to separately analyze intertemporal substitution and risk aversion effects. A nu-
merical method is developed to characterize the optimal forest management policies
and the optimal consumption-savings strategy. The stochastic dynamic programming
framework is applied to a representative non-industrial private forest owner located in
North-East of France. We show that the optimal decisions both depend upon risk and

time preferences.
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1 Introduction

The economic literature on forest management has been dominated for a long time by the
Faustmann-Pressler-Ohlin (FPO) model, see Samuelson [1] and Mitra and Wan [2] among
others. However, a number of recent studies have pointed out that some important features
of the FPO framework still require further works, Johansson and Lofgren [3|, Pukkala and
Kangas [4] or Tahvonen and Salo [5]. Interdependences across age-class stands and forest
owner’s risk preferences constitute two good examples. A third dimension difficult to address
within the FPO framework is the long-term consumption-savings tradeoff that must be
solved, at least, by small private forest owners. For non-industrial private forest owners, the
timber production is often viewed as an asset that must be managed to secure consumption
over the long-run. Hence, the consumption-savings tradeoff should have an impact on the
forest management, and vice-versa.

The main objective of our article is to develop a unified framework to analyze the link-
age between consumption-savings, production decisions and risk management for a non-
industrial forest owner facing a climatic risk. More precisely, we propose three extensions to
the economic literature on optimal forest use in a stochastic environment. First, by using
a non-expected utility function, we assess the impact of time and risk preferences on the
optimal behavior of the forest owner. Second, we analyze a multiple age-class forest model.
Last, we introduce saving as a decision of the forest owner at anytime. The forest eco-
nomics literature has recognized the importance of each of these features without providing
a framework incorporating all of them.

Production risk is known to be an important ingredient of forest management modeling

(see the seminal work, Reed [6], on forest fires or the more recent article, Haight et al. [7],



for wind storms). Some models have incorporated forest owners’ risk aversion into stochastic
control problems, see Taylor and Forston [8], Kangas [9], Pukkala and Kangas [4] or Willassen
[10]. However, within the intertemporal setting of expected utility, the effect of time and risk
preferences on decision making cannot be identified, see Epstein and Zin [11] or Knapp and
Olson [12]. This is especially problematic due to the long-term horizon of forest managers.
Only two studies, Koskela and Ollikainen [13] and Peltola and Knapp [14], have used a non-
expected utility for characterizing forest owner preferences. They both conclude that risk
aversion and temporal preferences have an impact on optimal forest policies. We extend this
non-expected utility literature in forest management by introducing saving as a decision tool
and by considering a multiple stand model.

Forest management has been traditionally addressed at a single stand level. This is a
restrictive assumption as, in a stochastic environment, all forest stands may not be affected
in the same way by the climatic risk. Some authors have incorporated age-class dynamics
into forest models but these works don’t include risk, see Tahvonen [15] or Uusivuori and
Kuuluvainen [16] for recent surveys on age-class models.

Last, there exists only a few studies analyzing the consumption-savings tradeoff in the
context of forest management (Tahvonen [17], Tahvonen and Salo [5], Salo and Tahvonen
[18], Tahvonen [15], Uusivuori and Kuuluvainen [16]). These forest rotation models consider
this tradeoff within a maximizing utility framework and a purely deterministic context. We
propose to analyze the consumption-savings tradeoff within a stochastic framework.

The remaining of the paper is organized as follows. In Section 2, we describe the forest
management model and we present the stochastic dynamic programming (SDP) method we
will used. Section 3 deals with an empirical application to the case of a French representative

private forest owner. We conclude by a brief summary of our findings.



2 A SDP framework for multi-stand forest management

2.1 Specification of the model

Forest age classes: Let us consider a forest owner who possesses a forest with a total area
A (in ha). We denote by A;; Vi € {1,...,I} and t € {1,..., 00} the land area allocated to

age class, or stand, 7 at the beginning of date ¢. The following constraint:

I
S A+ A=AVt (1)

i=1
where A is the fallow land, must hold at each date.

An even-aged stand 7 of trees is characterized by the volume of timber per hectare denoted
by V; (in m?/ha) and by the price of timber per cubic meter denoted by P; (in thousand
euros/m?). Both V; and P; are assumed to be exogeneously given to the forest owner. The
volume of timber per hectare and the timber price per cubic meter increase with age classes,
Vi >V and P; > P; Vi > j. We assume that the growth process is finite. There is no forest
growth beyond the th age class, V; = V; Vi > I. We also assume that the price per cubic
meter remains constant for age classes older that the Tth, P, = Pr Vi > I. Tt follows that

age classes older than I are strictly equivalent both in terms of growth and price.

Strong wind risk: The risky environment of the forest owner is described by the risk
of windstorm occurrence and the risk of forest loss. We denote by p the probability of
strong wind realization. Given strong wind occurrence, an age class ¢ may or may not be
destroyed. We denote by ¢; the conditional probability of age class ¢ destruction given a
strong wind occurrence. As mentioned in Dhote [19], the wind resistance of forests varies
very significantly among age classes. This explains why the conditional probability of forest

h

loss depends upon the forest age class. For the i age class, the unconditional probability
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of forest loss is p - ¢;. The stochastic variable representing age class i loss is denoted by ¢;,

with €; = 1 in case of forest loss and ¢; = 0 otherwise.

Timing of forest decisions: The timing of the model is the following. First, the forest
owner chooses the area to be allocated to a new forest age class and the area to be harvested
for each existing age class. Then the strong wind risk is realized. If no catastrophic event
occurs, the forest age classes grow. If a catastrophic event occurs then, for each age class,
the risk of production loss is realized and the existing forest plot may be lost. If a forest plot

is destroyed by a strong wind, the fallow land is increased by the corresponding area.

Age class area’s dynamics: We describe now more formally the dynamics of the area
dedicated to each age class i € {1,...,1}.

At the beginning of period ¢, the forest owner can allocate some area to a new forest age
class (planting) and harvest existing forest age classes. At the beginning of period ¢ + 1,
the area allocated to age class 1 corresponds to the area planted with a new forest at the
beginning of period ¢, if this age class has not been destroyed by strong winds during period

t that is if €y, = 0. The resulting dynamic is:
A1,t+1 = af : (1 - g(),t) (2)

where A; ;. represents the area planted with age 1 trees at the beginning of period ¢ + 1.
The term a corresponds to the area planted with a new age class during ¢ (age zero at the
beginning of period t).

Next, we consider age classes 2 to I — 1 corresponding respectively to trees planted 2 and

I — 1 periods before the current one. The dynamics are:

Ai,t+1 = (Aifl,t - a?,l,t) : (1 - gifl,t) Vi e {27 Tt I— 1} (3)
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where a?ﬁu represents the area harvested during period ¢ with age class i — 1 trees, with
a?_u < A;_y;. The previous dynamic equation states that if no catastrophic risk occurs or
if the strong wind realization does not result in a production loss, the area at the beginning
of t + 1 planted with age 7 trees is equal to the area at the beginning of date ¢ planted with

age ¢ — 1 less the area harvested during that period, a?_ljt.

Last, let us consider the dynamic associated with age I trees:
Argppr = (Ao —ap_q) - (L= €ng) + (A —afy) - (1= &y). (4)

Since there is no growth beyond age I and since the price per cubic meter remains the same
once age I has been reached, all age classes older than [ are strictly equivalent. It follows
that, if no forest loss risk is realized, the area allocated to age class I at the beginning of
period ¢ + 1 is equal to the area allocated to age class I — 1 at the beginning of ¢ less the
harvested area in ¢ corresponding to this age class. It also includes the area allocated in ¢
to age class I less the corresponding harvested area a’}yt.

Due to a high planting cost, forest owners may find profitable not to re-plant all their

forest plots after a strong wind realization. The dynamic for fallow land is:

I
Al =A] +af +al €+ Z (Age — a?’t) G (5)
i=1

where al” represents the area which is converted during period ¢ from forest to fallow land

(al > 0) or from fallow land to forest (a!” < 0). At each period, we have:

I
al’ +al = Z a?’t. (6)
=1

Equation (6) states that at each time the area harvested must be equal to the area planted

with a new age class and the area converted from forest to fallow land.



Wealth stock dynamic: Harvested trees are sold and the resulting revenue can be used
either for consumption or for saving into a risk-free asset characterized by a given interest

rate r. By denoting W; the forest owner’s wealth at date ¢, the wealth dynamic is:
Wt+1 = Wt(]. + T) + Ht — C (7)

where ﬁt denotes the stochastic forest owner’s annual profit from wood sales and ¢; is the
consumption of the forest owner, at date t. We assume that the consumption decision is

taken once uncertainty about the catastrophic event realization is resolved.

Profits:  The forest owner pays three types of cost. First, there is a cost for planting a
new forest age class. We denote by PC'(a) the cost for planting an area a of land. Following
Guo [20], this function is assumed to be linear with respect to land area, PC(a) = k; - a.
Second, there is an harvesting cost. The harvesting cost for an area a, denoted by HC'(a), is
assumed to be linear, HC'(a) = ko - a. The last cost that must be paid by the forest owner is
a recovering cost in case of strong wind occurrence. In the case of forest losses due to wind
storm, the forest plots can be recovered and sold, but this requires additional expenses (due
for instance to a more difficult access to the forest plots). The recovering cost for a land
area a is denoted by RC(a) and is assumed to be linear, RC'(a) = k3 - a with k3 > k.

Using equations (2)-(4), the annual total cost for period ¢ is:
T T
PC(d}) +Y HC(al) + Y RC(Ay —al,) &y (8)
i=1 i=1

The two left-hand side terms respectively represent the planting cost for a new forest age
class and the harvesting cost for the existing ones. In the case of wind storm with age class
i destruction, an area A;; — a?’t must be recovered. Hence, for age class i, the associated

recovering cost writes RC'(A;; — al,).



We now define the revenue generated by wood sales. At date ¢, the total revenue is:

I T
Y oP-Vical 4 P Vi (Aig—aly) iy (9)
i=1 i=1

The first term represents the revenue generated by age classes harvesting. The revenue from

the recovered forest plots, in case strong wind occurrence, corresponds to the right hand-side

term. We assume that, in the case of forest losses due to wind storm, the forest owner can
recover and sell a proportion p € [0, 1] of the forest area destroyed. Empirical evidences
suggest that in the case of strong wind storm, the entire production is not definitively lost.

We assume that a fixed proportion of the total forest plots is recovered and sold. This

proportion, u, does not vary across age classes. This assumption fits the behavior of small

French forest owners after the 1999 strong wind but it can easily be extended to recovering

coefficients p varying across age classes. Of course, p equal to 1 means that strong winds do

not result in resource losses. The only effect is to impose harvesting at a time which may
not be optimal. On contrary, u equal to 0 means that no recovery is possible and a stand
destroyed by the strong winds is definitively lost. From equation (9), it is clear that another
interpretation could be given to the coefficient ;. One may consider that in case of strong
wind occurrence all the timber volume V; - (4;, — aﬁt) can be recovered but that it can be
only sold at a lower price p - P; < P, (the market reacts to the increase in wood supply
resulting from the storm or the wood quality is known to be altered).

Finally, the profit generated by the forest harvest is:

I I
I = ZR'W'“2t+ZB'W'(Ai,t—GZt)'/L'?z',t
=1 i=1

I

I
—PC(a}) =Y HC(al}) = Y RC(Ay —all,) - &, (10)
=1

=1

The profit is simply equal to the revenue resulting from wood sales less the forest management
costs (planting, harvesting and recovering costs).
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2.2 The stochastic dynamic optimization problem

The dynamic optimization problem consists at each period in determining if a forest age
class must be harvested or not, in choosing the share of fallow land to be planted and in
deciding if the revenue flow is used for consumption or saving such as the objective function

of the forest owner is maximized. More formally, the stochastic control problem, P, is:

;

maX{Ctaa?aa_h,t}t=l,...,oo Z/{({Ct, a’f) aﬁt}t:l,...,oo)
s.t. Wit = Wl +7) + 11, — ¢

Al,t+1 = af : (1 - EO,t)

Ajppr = (Aisg—al ) - (1—61y) Vief2,...,.1-1}
Pl .
Apppr = (Arsiy —af ) - (L =€) + (A —apy,) - (1 =€)
Al = AT +af +af &+ 25:1 (Aig —af,) - €
S A+ A=A

(A_yo, Ag, Wo) given

.
where U(.) represents the objective function of the forest owner, ﬁ; is the profit defined by
equation (10), a”, = (a},, ..., a},) is the vector of harvested areas and A ; = (A1, ..., Ary)
is the vector of areas allocated to forest age classes.

Since the problem is dynamic and stochastic, the optimal decision path should both
depend on forest owner risk and time preferences. Risk preferences refer to the forest owner
desire to smooth consumption across states of the nature whereas time preferences reflect
the forest owner propensity to limit consumption fluctuations over time. Historically, the
expected utility model (EU) has been the most common way to integrate risk preferences into

forest planning, and more generally into natural resource management problems. However,

in the case of dynamic and stochastic environments, using the EU model raises a number of

vt

vt

vt

vt

vt
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substantial issues. First, as stressed by Epstein and Zin [11], this framework does not allow
to make a distinction between preference toward risk and toward time since both concepts are
encompassed into the curvature of the utility function. This is especially problematic in the
case of forest management since there is a priori no reason to believe that these preferences
should be linked. A second drawback of the EU framework is that the decision-maker only
takes into account the final consequences of his choices, neglecting the timing of uncertainty
resolution: the individual’s choice behavior is independent of the dynamic choice problem he
is facing. Given the very long time horizon of forest owner, such a property of the EU model
is clearly problematic. Last, as recently stressed by Chavas [21], concerns about the future
likely vary with income level. It follows that discounting the future should both depend
upon income and consumption levels. This suggests a move away from the standard time
additive models, where utility of future consumption is discounted at a constant rate.

Recursive preferences have been proposed as a way to incorporate time and risk pref-
erences into the decision-maker problem. Moreover, in a model with recursive preferences,
the decision-maker integrates the timing of uncertainty resolution as a part of the decision
problem. Following Epstein and Zin [11, 22|, we use an isoelastic formulation of Kreps and
Porteus preferences. Hence, the forest owner’s objective function is given by its recursive
utility at time ¢, U; defined by:

fed

vi={(0-5) a7 +BEUL] T )T (12)

where ¢; represents the consumption of the forest owner, 5 € [0, 1] is the subjective discount
factor, o €]0,00) is the Arrow-Pratt constant relative risk-aversion, o €]0,00) is elasticity
of intertemporal substitution (EIS) and E is the expectation with respect to all stochastic

variables of the model. The left handside term in parentheses of equation (12) measures



the utility directly derived from consumption at date ¢. The right handside term measures
the expected future utility given the information available at date ¢. Aggregation of both
terms then depends upon risk and time preferences of the decision-maker. Notice that the
recursive preferences nest the EU model as a special case since by setting o = é, we get the
familiar constant relative risk aversion expected utility function.

The stochastic control problem consists in choosing a sequence of decision rules that
maximizes the objective function (12) subject to the previously defined equations of motion

and constraints in P;.

2.3 Solving the stochastic dynamic programming problem

Since the problem is autonomous, we can drop the time subscript and make the value func-
tion of the problem solely dependent on the initial conditions for any period (all model
parameters and functions are the same for all decision stages, which means that the problem
is stationary). The stochastic dynamic recursive equation defining the optimal forest and

saving management is:

o—1 o

J (AW, A",@) = Mazg, 4y { (1-8) BT 4 B[BT' = (4, W,47,8) ] 77 |7 (13)

where J(.) is the value function. We have to solve a stochastic dynamic programming prob-
lem. Since the discount factor is bounded, the mapping underlying the Bellman’s equation
is a strong contraction on the space of bounded continuous functions and, thus it yields to a
unique value function. A value iteration method will be used for solving the SDP problem,
see Judd [23]. As it will be discussed in the next section, it consists in assigning an initial
guess for the value function, and then in recursively solving the maximization problem until
the implied carry-over value function converges to an invariant approximation.
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3 An application to spruce in North-East of France

3.1 Specification of the empirical model

Descriptions of the region and of the forest estate: The model is calibrated to
represent the behavior of a representative non-industrial private forest owner located in
Lorraine, a region located in North-East of France. The Lorraine’s region produces around
10% of total French timber production. This region ranks second for forestry after the
Aquitaine (located in the South-West of France). The private forest estate is assumed to
produce spruce, one of the most common stands observed in the North-East of France. The
spruce production in Lorraine represents 20% of the total timber production in France. With
25 million cubic meters on the ground in 1999, Lorraine was the second devastated French

region by the December exceptional storms.

Forest age class characteristics: In order to be tractable, the number of forest age
classes has been limited to 5, 7 = 1,---,5. Given the growth process of spruce, the time
index t represents a 20 year interval. Hence, the age class ¢ corresponds to trees of age
20 x ¢ at the beginning of period t. The volumes per ha for each age class of the spruce
species in North-East of France are derived from Vanniére [24]| and are presented in Table 1.
The unit prices for each forest age class are derived from Guo [20]. In Table 1, the fourth
column gives the annual gross return based on the production value (notice that this return
does not include neither the planting nor the harvesting costs). A 12.48% annual return for
the first age class means that the value of the forest increases on average by 12.48% each
year from year 20 to 40. The annual gross returns should be compared to the interest rate

for the risk-free asset, r, arbitrary fixed at 3%. Last, the cost functions associated with
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forest management (planting, harvesting and recovering cost) are derived from Guo [20].
The unit cost of planting and harvesting (k; and ky) are respectively equal to 2.1038 and
0.0037 thousand euros per ha. The unit cost of recovering ks is 50% higher than the unit
harvesting cost. Last, we assume that in case of strong wind and production loss, only 10%

of the forest area can be recovered and sold (u is equal to 0.1).

Distribution of the strong wind risk: = We first need to define the probability of strong
wind realization, p. According to Picard et al. [25|, the annual probability of strong wind
realization is 3.1° /gy for France. As the time period in the SDP problem represents a 20
year interval, we must compute the probability associated with the occurrence of at least
one strong wind during 20 years. By assuming that the occurrences of strong winds are
independent and identically distributed, this probability can be computed using a binomial
distribution:

p=)Y _ P(X=k) with X « Bin(20,0.0031). (14)

The probability associated with the occurrence of at least one strong wind event during 20
years is equal to 5.86%. It is interesting to notice that, in the economic literature on forestry,
the catastrophic event occurence has often been modelled using a Poisson process (Reed [6],
Haight et al. [7]). We do not strictly depart from this literature since the binomial law
converges in distribution toward a Poisson process (for a sufficient number of trials and a
low probability).

When a strong wind occurs, the forest owner faces a conditional risk of production loss
specific to each forest age class. It is difficult to evaluate this probability because it depends
on the stem weight, the tree species, the soil type and the forest culture practices. From

forest expert interviews, we have computed the conditional probability of overturning by
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age classes for spruce in Lorraine. As suggested by Dhote [19], this conditional probability
increases with the age class. It varies from 1% for the first age class to 72% for the fifth.
For each forest age class, the unconditional probability of loss is obtained by multiplying
the probability of the strong wind realization by the unconditional probability of forest loss.
This unconditional probability is presented in the last column in Table 1. For instance, with
a probability of 3.79%, an age class 3 is destroyed by a strong wind event during each time
period (20 years). Given the stochastic specification of the model, there are, at each period,
33 possible states of the nature. In the first state of the nature, the strong wind does not
occur and the associated probability is 1 — p = 0.9414. The 32 = 2° remaining states of the
nature correspond to the realization of the strong wind with or without production loss for
each age class. The associated probabilities are directly computed using the probability of
strong wind realization and the conditional probability of forest loss associated with each

age class. They are used to derive the expectation in the Bellman’s equation (13).

Forest owner’s characteristics: In France, non-industrial private forest owners consti-
tute the main type of forest ownership, representing roughly three quarters of the forest
areas (10.9 millions of hectares). Approximately 68% of that area consists of small-scale
forest holdings of less than one hectare. As a result, we have normalized the area of the
forest estate to 1 ha, A = 1. This assumption is not restrictive and higher forest areas may
be considered. Forest owners are also characterized by their time and risk preferences. There
is currently no estimation available for these parameters in the case of small forest owner
facing a climate risk. More generally, there is neither no consensus on the level of the EIS
and the coefficient of risk aversion for economic agents. For instance, according to the study

considered, the consumer EIS may range from zero, Hall [26], all the way to 0.87, Epstein
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and Zin [22]. For the risk aversion coefficient, « ranges from 0.82, Epstein and Zin [22] to
1.5, Normandin and Saint-Amour [27]. By reference to Epstein and Zin [11] and previous
empirical studies, we have considered the following values = 0.98, « = 0.9 and o = 1/2.
These values are consistent with the range of reported estimates in the economic literature.
They correspond to a low level of risk aversion and a high willingness to substitute con-
sumption across time. This case will be termed the recursive utility benchmark case in the

remaining of the article.

3.2 Solving the SDP problem

We need to estimate the value function J (A., W, AF,Ej defined by the recursive equation
(13). Given the high non-linearity of the problem, no analytical solution of this equation
can be found. Hence a numerical procedure must be implemented. We use a value iteration
approach that is we seek a numerical approximation J (.) to the infinite horizon value function
that maximizes the value of the problem resulting from decisions carried out in the future.
The main steps of the value iteration algorithm are presented in the chapter 12 of Judd
[23]. We propose here to extend the approach followed by Howitt et al. [28] to the case
of multi-dimensional state variables. In order to solve the Bellman’s equation, a specific
functional form for J(.) must be chosen to approximate the solution to the infinite-horizon
problem. Howitt et al. [28] have for instance used a Chebychev Polynomial form. The main
difficulty with this class of polynomial approximation is that the number of parameters
to be estimated exponentially increases with the number of state variables. As 7 state
variables must be considered in our SDP problem, we have used a more simple polynomial
approximation, namely a second-order polynomial approximation. As neither the objective

function is quadratic nor the constraints are linear, we know that the value function is not
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quadratic. An important issue we will discuss in the next paragraph is to check ex-post that
the second-order polynomial approximation is an accurate approximation of the unknown

value function. The polynomial approximation simply writes:
j(A.,VV,AF,E) = ZUi'Ai+77F'AF+77W'W
i
+ Z Nii - A Ai + npp - ATAT + qww - WIW
i

+ 3w - WA + nqwp - WAT

+3 npi - AT A;
+ Z nij + AiAj. (15)
i,5/5>1

The polynomial approximation is fully characterized by 35 parameters that must be esti-
mated. In order to make the SDP numerically operational, the state variables must be
discretized. The wealth’s stock has been discretized in 3 points {10,40,70}. The areas
allocated to each age class together with the fallow land have been discretized in 5 points
{0,0.2,0.4,0.6,0.8,1}. Notice that as the total area is normalized to 1 ha, the forest state
variables can be interpreted as the proportion of land allocated to each age class.

The value function iteration program has been written in GAMS. The code and the data

are available from authors for replication of results.

3.3 The solution to the empirical SDP problem
3.3.1 Accuracy of the second-order polynomial approximation

The stabilization of value function parameters has been achieved after 260 iterations and
a few hours of computing time. At the 260" iteration, the sum of squared errors between
parameter estimates is smaller than 0.00001. This means that the value iteration algorithm
converges toward a stable approximation of the value function within the class of second-order

15



polynomial forms. In order to evaluate the accuracy of the second-order approximation, the
SDP has also been solved with a third-order polynomial form and we have compared the
resulting estimated value functions at each grid point. The two polynomial approximations
give similar results, the absolute relative difference being 2.15% on average (the maximum
absolute relative difference at a given grid point is 6.25%). However, the computing time is
more than 10 times higher with the third-order polynomial approximation (189 parameters
must be estimated compared to 35 with the second-order approximation), the computing
time for one iteration being 6 minutes on a computer with a pentium 1600 Mhz processor.
In term of cost-benefit analysis, the precision loss due to the second-order polynomial ap-
proximation seems largely balanced by the increased speed of the value iteration algorithm.
A last accuracy check of the second-order polynomial approximation has been to compute
the residuals of the Bellman’s equation (13) at each discretized point. The residuals are
small enough for considering that the second-order polynomial form is a good approxima-
tion of the unknown value function. Although the true value function is not quadratic, the

second-order polynomial approximation offers an accurate approximation.

3.3.2 The estimated value function

Value function coefficients: Table 2 gives the 35 coefficients of the value function of
the SDP problem. The estimated value function possesses good concavity properties as it
increases with each state variable, but at a decreasing rate.

The coefficients ny; reflecting the link between the wealth and the forest age class areas
worth being investigated. The sign associated with coefficients ny; results from three effects.
First, in case of a low level of wealth, the marginal value of harvesting forest plots is high

as consumption is constrained. This has a negative impact on the value of forest plots. As
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harvesting is highly valued by customers, it is optimal to harvest important quantity of wood
which can be achieved only if the value of forest plots is low. This wealth effect results in
negative parameters ny;. Second, in case of a low level of wealth, the forest owner may
prefer reducing risk exposition. This implies a low value associated with forest age class
plots. This risk exposition effect results in negative parameters ny,;. On the contrary, in case
of a low level of wealth, harvesting forest plots implies low forest areas at the beginning of
the next period and a high risk of lowering future consumption. In order to reduce the cost
of a low future consumption, forest plots must be attributed a high value. This continuation
effect results in positive parameters ny;. The optimal value of forest plots and the optimal
harvesting and planting strategies balance these three effects. For age classes 1 to 4, the
continuation effect dominates the two other effects (at a decreasing rate with tree age). For
the fifth age class, the wealth effect and the risk exposition effect dominates. Keeping oldest

tree is risky and harvesting is more likely to be the optimal strategy.

The value of forest plots: Next, we investigate how the forest plot value differs among
age classes. In Figure 1, we have plotted the value of a given age class (assuming that
no other age class is planted at the same time) as a function of forest owner wealth. For
instance, the curve corresponding to A; gives the value of one hectare planted with the first
age class. This value measures the expected flow of utility that will result from an optimal
forest use in the future. Since fallow must be planted before being able to generate any
positive profit, the value to be attributed to fallow is lower than the value of any forest class.
Second, for a given level of wealth, the value of a forest plot increases with the age class.
This is an intuitive result since the older is a forest age class, the higher is the profit per unit

of area. Third, the difference between forest age class value functions appears to be finally
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quite limited. For example, the value of the age class 3 forest plot is less than 5% higher
than the value associated with the age class 2 plot. This is surprising compared to the value
per ha, more than three times higher for age class 3. One possible explanation is that the
revenue from saving dominates the revenue from forest plots. Last, the difference between
forest plot values decreases with the wealth stock. This is also an intuitive result. In the
case of a low level of wealth, maintaining the consumption flow requires to harvest forest
plots. Hence, the continuation effect is limited and the value of a forest plot is more driven
by the its instantaneous return, that is by its wood productivity. In case of a high level of
wealth, the consumption flow more largely depends on savings. The impact of the climatic
risk on the value of forest plots is limited because consumption is secured by the high wealth

stock and the continuation effect dominates, in such a case, the two other effects.

3.4 Assessing the impact of time and risk preferences on decisions
3.4.1 Time and risk preferences and optimal policies

The optimal forest decisions: We consider an initial land allocation where each forest
class age is attributed the same area (20% of the total area). The optimal planting and
harvesting strategies are then derived for different levels of wealth, see Table 3. We first focus
on the optimal forest and consumption-savings strategies in the recursive utility benchmark
case. In the case of a low wealth level (W = 10 or W = 20), age classes 3 to 5 are harvested.
The wealth and the risk exposure effects dominate the continuation effect and it is optimal
to harvest the young forest age classes. As the wealth level increases, consumption is less
constrained, even in the case of strong winds, and the forest owner is ready to take more risks,

that is to expose older age classes to the climatic risk (in order to get higher returns). For a
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very high level of wealth (W = 60), neither harvesting nor planting are optimal strategies.
The consumption flow only relies on the saving stock. This explains why, in Figure 1, the
value of the forest plots converges toward a unique equilibrium as the wealth level increases.

It is interesting to compare the optimal forest decisions in the recursive utility benchmark
case to those obtained in an EU framework. For instance, in an EU context with a higher EIS
(o0 = é = 1.11 > 0.9), it is optimal to harvest age classes 4 and 5 for an initial wealth equal
to 20. Compared to the recursive utility benchmark case, the forest owner doesn’t harvest
age class 3 which corresponds to transferring a current consumption toward a future one.
This is made possible by the higher EIS which means that substitution across periods is more
desirable and that consumption can fluctuate over time. A symmetric result is obtained for
an initial wealth level equal to 50. In that case, it is optimal to harvest age classes 4 and 5
in an expected utility context with a higher EIS whereas, in the recursive utility benchmark

case, harvesting is restricted to the fifth age class. A higher EIS allows to transfer a future

consumption toward current one if the wealth level is high enough.

The optimal consumption-savings decisions: Next we investigate, for different wealth
levels, the consumption-savings tradeoff still assuming that each forest age class is attributed
20% of the total area. The optimal consumption-savings decisions are reported in Table 4.
As the initial wealth increases, the consumption flow more heavily depends on saving. For the
highest initial wealth level, W = 60, consumption is made possible exclusively using savings
since no forest age class is harvested. As it could be expected, the flow of consumption
increases with the initial wealth. Moreover, the higher is the initial wealth, the higher is the
share of consumption to the available wealth (from less than 30% if W = 10 to around 50%

in the higher initial wealth case, W = 60).
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3.4.2 Time and risk preferences and the long-run equilibrium

In this subsection, we simulate the model over a very long time horizon (400 periods) assum-
ing that no catastrophic event occurs. Such a situation allows us to analyze the long-run
equilibrium of the dynamic model. In order to evaluate the impact of time and risk pref-
erences on the long-run equilibrium, the SDP recursive equation has been solved for three
levels of the Arrow-Pratt constant relative risk-aversion coefficient, «, and for three levels of

EIS, o, see Table 5.

Measuring the impact of forest owner preferences: For each («, o), all state variables
converge toward a unique long-run equilibrium for which only the fifth forest age class is
harvested. This result could be related to the high level of wealth at the equilibrium, higher
than 50. At this wealth level, the continuation effect dominates the risk exposure and the
wealth effects. Second, at the long-run equilibrium the area dedicated to age classes 1 to
4 is the same: A = ... = ALE  This result comes directly from the fact that these age
classes are not harvested. Notice finally that, at the long-run equilibrium, the area allocated
to age classes 1 to 4 differs from the fifth age class forest plot, AL®. This may result from
the fact that, as the growth process is finite, the dynamic of the last age class differs from
other age classes dynamic. Without strong wind occurrence, the optimal forest management
tends toward a normal forest structure where only the oldest forest age class is harvested.
Notice that the convergence of optimal forestry programs toward a normal forest structure
has recently received a considerable attention in the forest economics literature (see Salo and
Tahvonen [18], and Uusivuori and Kuuluvainen [16] among others).

We wish now to investigate the impact of the forest owner time preferences on the long-

run equilibrium. For a given level of the risk parameter, the lower is the EIS, the higher is
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the savings and the lower is the age class 5 forest area. The explanation is quite intuitive.
Lowering the EIS implies that substitution across periods is less desirable. Hence, consump-
tion should be stabilized over time. This can be first achieved though a high level of savings
(with a risk-free return r) and second, through a lower final forest area exposed to the catas-
trophic risk. This second mechanism is made possible by harvesting a higher proportion of
forest plots. In other words, a higher saving and a higher harvesting rate provide a greater
insurance against the variation of consumption due to catastrophic events.

The nature of the impact of the risk preferences on the long-run equilibrium is less
straightforward. In case of a high level of EIS (¢ = 2/3), the higher is the parameter of
risk aversion, the higher is the savings and the lower is the age class 5 forest area. This can
be explained intuitively. A risk averse forest owner wants to secure income. This can be
achieved by having a higher level of wealth and a lower area dedicated to the fifth age class.
In case of a low level of EIS (¢ = 1/3), the relationship between risk aversion and wealth
(or forest plots) appears to be non monotonic.

The preferences for intertemporal substitution seem to have a much more important
effect of the system than risk preferences. This is a striking result in view of the importance
of risk aversion in static models of risk and uncertainty. We do not have a full explanation
of this result but we conjecture that it may result from the difference in the structure of
decision making between the static and dynamic cases. In the static case, decisions are
made before uncertainty is resolved thus the net returns bear the full brunt of uncertainty.
In the dynamic case, some decisions are taken after uncertainty is resolved (this is the case
here for the consumption choice). It may be possible that some of the adverse effects of
uncertainty in the static case are mitigated in the dynamic case, even before risk aversion is

considered. Another explanation is that, at the long-run equilibrium without risk occurrence,
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the value of the forest plots may become too low compared to saving. In such a case, the
catastrophic risk will only have a minor impact on forest owner wealth and risk does not
matter as much as intertemporal substitution. Notice that in a one-period age class model,
Peltola and Knapp [14] have also found that the intertemporal elasticity of substitution does
significantly affect forest management. In particular, they have shown that with a low EIS,
harvesting starts sooner as the forest owner does not want to postpone consumption for
the sake of a higher biological productivity. With a high EIS, consumption is on contrary

sacrificed at the beginning for a gain in future biological productivity.

Measuring the impact of uncertainty: In the previous analysis, the annual strong
wind probability was 3.1 °/g9. In order to assess the impact of uncertainty on forest owner
behavior, the SDP problem has been solved with a higher probability, 5 °/gy, and with a
lower one, 2 9/y. In Table 6, we characterize the long-run equilibrium corresponding to the
recursive utility benchmark case.

As expected, for a given level of time and risk preferences, the higher is the probability of
strong wind occurrence, the higher is the precautionary saving. Moreover, the area allocated
to the fifth age class decreases with the level of uncertainty, whereas the area allocated
to age classes 1 to 4 increases. In the case of a high probability of strong winds, it is
optimal to diversify risks toward younger age classes with a lower conditional probability
of forest loss in case of strong wind realization. In a two-period one-class forest model,
Koskela and Ollikainen [13| observe the same precautionary behavior. They report that
a rise in the multiplicative forest growth risk increases current harvesting but decreases
the future one. The fact that the long-run consumption increases with the probability of

strong wind occurrence does not mean that a higher level of risk should be preferred. The
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long-run equilibrium values correspond to an hypothetical situation without strong wind
realization. A higher probability of strong winds means that such an event will occur more
often. It follows that the flow of consumption will more often deviate from the long-run
equilibrium. This will have a negative impact on the utility of a forest owner wishing to
stabilize consumption over time: a low risk environment will always be preferred to a high
risk one. Last, the strong wind risk has an important impact on the optimal forest portfolio.
For instance, when the strong wind risk probability goes from 2 °/¢y to 5 °/g0, the land

allocated to the fifth age class goes from 0.625 to 0.520 ha.

3.4.3 Time and risk preferences and optimal dynamic paths

Next, we analyze the optimal management of forest age classes and wealth stock in a situation
where the catastrophic risk may occur. The model has been simulated over 400 periods. At
each date, the realization of the strong wind is drawn from the binomial distribution described
by equation (14). We present these simulations for & = 0.1 and ¢ varying from 1/3 (low
EIS) to 2/3 (high EIS). Some simulations have also been conducted for other values of the
constant relative risk aversion coefficient but as the qualitative results do not significantly
differ, we only discuss the impact of the EIS on the optimal forest owner decisions. Figure
2 presents how the dynamic of wealth and consumption reacts to the occurrence of strong
wind events.

We first focus on the recursive utility benchmark case. As it can be seen, a strong wind
event is realized at date 69. The instantaneous impact of the strong wind event is to increase
the forest owner wealth stock (as 10% of the forest age classes destroyed can be recovered
and sold) from the long-run equilibrium, 55.01 to a higher level, 65.75. The realization of

strong wind may appear to be “good news” for the forest owner as the wealth’s stock initially
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increases but strong the wind realization implies a loss of surplus because first, it imposes
a harvest at a date that may not be optimal and second, it generates higher future costs.
At the same time some forest age classes are lost (age classes 4 and 5) and the proportion
of fallow increases. The forest owner anticipates that the future consumption will have to
be reduced (due to forest planting costs and since the new forest age class will be harvested
later). Hence, the annual consumption falls from the long-run equilibrium level, 1.76, to 1.38.
During the following period, all the fallow land (59% of the total area) is replanted with a
new forest age class. As a consequence, the wealth stock decreases and at the same time the
consumption increases. Finally, the dynamic of the system starts converging toward the long-
run equilibrium. Figure 2 also allows us to analyze the impact of forest owner preferences for
intertemporal substitution. As mentioned previously, a low value for o corresponds to a low
EIS which implies that substitution across periods is less desirable and that consumption
should be stabilized over time. In the case of a low EIS (0 = 1/3), the forest owner tries to
maintain a high level of precautionary saving (as mentioned previously the wealth long-run
equilibrium decreases with o). Once strong wind is realized, the high wealth level allows to
maintain the consumption at a higher level (1.55 for 0 = 1/3 compared to 1.38 for o = 1/2
and 1.30 for o = 2/3). In the same vein, the deviations from the long-run equilibrium, both in
terms of wealth and consumption, increase with the EIS. On Figure 2, the consumption loss
following a strong wind realization represents —0.33 monetary units for o = 1/3 compared
to —0.39 for 0 = 1/2 and —0.43 for o = 2/3.

These simulations suggest that time preferences profoundly affect both forest manage-
ment decisions and the optimal consumption-savings dynamic path. Hence, the decision
maker time and risk preferences should be viewed as important features of any framework

aiming at modeling forest owner decisions facing a climatic risk.
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4 Conclusion

We have used a non-expected utility approach (recursive preferences) for jointly analyzing
the saving and forestry decisions of a small forest owner facing a climatic risk. This approach
can contribute to forestry management as well as to natural resource economics under risk
by providing an alternative structure to the usual expected utility model. Hence, the class
of recursive preferences allows to separately analyze the impact of risk and time preferences
on the forest owner optimal decision whereas these two distinct concepts are unattractively
linked within the expected utility model. In order to solve the stochastic dynamic program-
ming problem, we have extended the numerical approach followed by Howitt et al. [28] to
the case of multi-dimensional state variables.

We have applied the stochastic dynamic programming model to the management of a
French representative forest owner facing a strong wind risk. We have first shown that the
linkage between consumption-savings decisions and forest management is a complex issue.
This relationship is driven by a wealth, a risk-exposure and a continuation effects. The net
impact of these effects crucially depends on the forest owner wealth. For instance, for a low
level of wealth the risk-exposure effect and the wealth effect dominate the continuation effect.
Hence, it is optimal to harvest young forest age classes. On contrary, for higher wealth level,
the continuation effect dominates and only the oldest age classes are harvested. This suggests
that concerns about the future likely vary with income level. Hence, discounting the future
should both depend upon income and consumption levels. A move away from the standard
time additive models, where utility of future consumption is discounted at a constant rate,
seems justified. We have also demonstrate that time and risk preferences affect forest owner

decisions (consumption, harvesting and planting) in a very different way. The numerical
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simulations have revealed that the impact of risk aversion on harvesting and saving decisions
is not straightforward. The forest owner behavior is more driven by intertemporal substitu-
tion preferences than by risk aversion. This constitutes another important motivation from
moving away from the expected utility framework.

There are several interesting directions for future researches. First, some form of insur-
ance could be introduced into the model (private insurance, self-insurance or public funds).
Another possible extension could be to introduce self-protection of forest owners into the
model. In that case the conditional probability of forest loss is affected by forest owner deci-
sions. The problem is no more stationary and the Bellman’s equation can not be solved using
conventional stochastic dynamic programming techniques. Last, there is now an important
literature on non-market value of forests. Introducing these valuations could significantly
alter the optimal duration of forest rotations. It has been shown, for instance, that the
rotation length of tree stands is an effective way for managing the forest carbon budget. The
forest owner should then balance longer rotations favorable to carbon sequestration with the

risk increase.
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Tables

Table 1: Characteristics of forest age classes

Age class Ve P? P «V; Annual  Unconditional Probability
i (m3/ha) (10%euros/m?) (10%euros/ha) return (%) of age class loss¢ (%)

1 24.60 0.0053 0.1303 12.48 0.06

2 112.20 0.0122 1.3688 9.50 1.75

3 353.50 0.0238 8.4133 4.94 3.79

4 601.40 0.0367 22.0713 1.71 4.14

5 694.70 0.0446 30.9836 0.14 4.20

®: Adapted from Vanniére [24].
b From Guo [20].
¢ Using Picard et al. [25] and based on forest expert interviews.

Table 2: Estimated parameters of the value function, @ = 0.9 and o0 = 1/2

Wealth Age classes Fallow
1 2 3 4 5

Linear terms | 1.53  28.85 32.89 39.09 48.76 52.74 24.56

Cross terms

Wealth -0.01 034 0.29 0.18 0.03 -0.03 0.40
Age class 1 -1.93 -3.29 -1.72 -0.25 0.05 -4.46
Age class 2 -1.56 -1.65 -0.44 -0.25 -3.87
Age class 3 -0.46 -0.24 -0.26 -2.15
Age class 4 -0.41 -1.18 -0.37
Age class 5 -0.82  0.05
Fallow -2.71
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Table 3: Optimal harvesting and planting strategies, « = 0.9 and o = 1/2

Initial wealth

10 20 30 40 50 60
Clh* - - - - —
he
Qy - - - - -
a* 102 02 - - - -
ai* 102 02 02 02 - -
a 102 02 02 02 02 -
an | - - - - -
a’* | 0.6 0.6 04 04 02 -

Table 4: Optimal consumption-savings decisions, & = 0.9 and o = 1/2

Initial wealth

10 20 30 40 50 60

Forest profit 13.54 13.54 10.74 10.74 5.78 0.00
Saving 18.06 36.12 54.18 72.24 90.31 108.36
Available wealth 31.60 49.66 64.93 82.99 96.09 108.36
— Used for consumption 9.15 13.73 19.63 28.40 39.40 51.98
— Used for saving 22.45 35.93 45.29 54.59 56.69 56.38
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Table 5: Long-run equilibrium and forest owner preferences

o p WLR LR A%R A allzL ) AéR gLR AFTR FLE
05 1/3[50.168 1.021 0.136 0 0458 0.136 0 0
05 1/2(55.003 1.762 0.104 0 0585 0104 0 0
05 2/3(53.910 1.722 0098 0 0610 0.098 0 0
0.9 1/3(58350 1.885 0.25 0 0500 0125 0 0
0.9 1/2|55.014 1.762 0104 0 0584 0104 0 0
0.9 2/3(53.980 1.727 0.099 0 0603 009 0 0
6 1/3(58451 1.891 0.128 0 0489 0128 0 0
6 1/2|55174 1772 0108 0 0567 0108 0 0
6 2/3|54.209 1.743 0.106 0 0575 0106 0 0

The superscript LR denotes long-run equilibrium value.

Table 6: Long-run equilibrium and uncertainty, « = 0.9 and o = 1/2

p WZLR LR AfR . ailzL . AéR agLR AFLR FLE
290 | 54475 1.735 0.004 0  0.625 0.094 0 0
319 | 55.014 1762 0.104 0 0584 0104 0 0
5% | 55526 1.795 0120 0 0520 0.120 0 0

The superscript LR denotes long-run equilibrium value.

32



Figures

Figure 1: Value of forest age classes as a function of wealth, J(4; =1,A_; =0,W)
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Figure 2: Wealth and consumption dynamic paths

(a)  =0.9 and o = 1/3 (low EIS)
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(b) @ = 0.9 and 0 = 1/2 (recursive utility benchmark case)
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