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Abstract

We analyze a model of irreversible investment with two sources of uncertainty. A risk-
neutral decision maker has the choice between two mutually exclusive projects under input
price and output price uncertainty. We propose a complete study of the shape of the rational
investment region and we prove that it is never optimal to invest when the alternative invest-
ments generate the same payoff independently of its size. A key feature of this bidimensional
degree of uncertainty is thus that the payoff generated by each project is not a sufficient
statistic to make a rational investment. In this context, our analysis provides a new motive
for waiting to invest: the benefits associated with the dominance of one project over the
other. As an illustration, we apply our methodology to power generation under uncertainty.
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1 Introduction

How does uncertainty affect technology choice by a firm or a public authority? Since the early

works on the option value by Arrow and Fisher [2] and Henry [14], it has become common

knowledge that under uncertainty, it is not optimal to invest as soon as the net present value

generated by a project is positive. Indeed the option to wait in order to gather some information

on the evolution of the uncertain state variable has to be taken into account. Therefore, the

presence of uncertainty tends to delay investment. Recently, the question of the technology

choice has been addressed and it has been proved that having the choice between several tech-

nologies to undertake an investment creates an other source of delay: indeed, the investor wants

the two technologies to generate sufficiently different expected payoffs in order not to invest

in the technology that turns out to be the less favorable. This is the theoretical result proved

by Décamps et al. [6] who analyze the choice an investor faces in presence of one uncertainty

source on the output price. They find that as well when the expected profits of each project are

too low as when they are equal (around the “indifference point”), waiting is optimal as Figure

1 illustrates. If the initial price had been lower, the investor would have invested in the low

return project, and had it been higher, he would have invested in the high return project. But
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in this intermediate region, more information is needed to know in which direction the price

will evolve and to be sure of the decision that will be taken. Dias [7] and Dias et al. [8] find a

similar result, but they focus on the case of the petroleum industry and use simulation methods

to motivate their results. They analyze the case where three projects are available and show

numerically that there exist two inaction regions around the two indifference points. However,

in these different works, if at the beginning of the analysis the output price is low (lower than

p∗1 in Figure 1), investment will be triggered when the output price crosses the threshold defined

by Arrow and Fisher [2] and Henry [14], p∗1 in Figure 1, and the inaction region does not play a

role.

In our article, we propose a deeper analysis of the problem as far as we consider two un-

certainty sources. Two technologies, technology N and technology G, produce the same output

whose price is random. Technology G is moreover subject to a second uncertainty source: in-

put price uncertainty. This setting applies to a public utility who has the choice between two

technologies to produce electricity sold at an uncertain price: either a nuclear power plant char-

acterized by high sunk costs or a gas power plant that is more flexible but also subject to the

uncertain cost of gas. This is also the kind of questions that any petroleum industry faces before

it decides which field to exploit (as suggested by Dias [7] and Dias et al. [8]). Indeed, fields may

present different features: gas may be necessary to extract petroleum or to carry it. In Alberta,

for instance, petroleum extraction from bituminous sand is costly also from an environmental

viewpoint. These additional costs should be taken into account.

In our setting, as in the one-dimensional case, we prove the existence of inaction regions

when the two projects generate similar net expected present value. However, contrary to the

existing literature, we prove that for some parameters’ values there exists a path for the two state

variables (input and output prices) such that no investment is optimal, whereas an investment

could have been optimal in case the two technologies had been considered separately. One of the

major features of bidimensional investment problems like ours is that the investment value is

no longer a sufficient statistic to undertake optimally the project. Indeed, as we show, for some

parameters’ values, it may be optimal not to invest in any project even if their expected profit

tends to infinity. Moreover, we also prove that it is never optimal to invest when the two projects

generate the same expected payoff whatever size it has. This fact makes unexpected an explicit

computation of the optimal time to invest and that is the main reason why the bidimensional

investment models received little attention in the literature. Indeed, the introduction of input

price uncertainty in addition to the usual output price uncertainty makes the problem quite more

complex from a mathematical viewpoint. However, the presence of the two uncertainty sources

reinforces the applicability of our model. We also show that contrary to the one-dimensional

case, even if the state variables are low at the beginning, the optimal timing may be quite

different than in the case without choice. This issue on technology choice under uncertainty had

first been addressed by Dixit [10] but he did the implicit assumption that the date at which the

technology is chosen does not coincide with the date at which investment is triggered. Décamps
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et al. [6] propose a different analysis by assuming that as long as no investment has been

undertaken, the choice still exists: the two dates are thus the same. This is the approach we

also chose.

This work comes within the scope of the literature on investment under uncertainty that

has developed very quickly since the early works by Arrow and Fisher [2] or by Henry [14] who

show that investment under uncertainty creates what is commonly called a time value. The

existence of such an option value requires three features: i) the investment problem has to be

dynamic insofar as waiting allows to learn more on the state variables; ii) there must be some

uncertainty concerning the cash flow that will be generated in the future; iii) the investment

decision has to be irreversible. McDonald and Siegel [19] were the first to give an expression to

the option value. Moreover they showed that when the underlying value of the investment project

evolves as a geometric Brownian motion, the optimal strategy is usually a trigger strategy, that

is, invest as soon as the investment value is greater than a threshold that can sometimes be

explicitly computed using standard smooth-fit techniques (see Dixit and Pindyck [8]). Many

authors extended the original model in different directions. Dixit [9], Kandel and Pearson [16]

and Aguerrevere [1] studied how such an approach could be used by a firm to choose both

an optimal capacity and an optimal timing. Other authors rather concentrated on a strategic

viewpoint by considering not a monopolist but many firms and they tried to characterize the

competitive equilibrium. Leahy [17] showed that “the interaction of competition does not affect

the timing of irreversible investment decisions at all”.

Our results are also related to the literature concerning American options on multiple assets.

Broadie and Detemple [5] and Villeneuve [24] studied the exercise regions of such American

options (they mostly focused on convex payoff options) and both showed that exercise regions

may exhibit interesting shapes. In particular, in the case of an option on the maximum between

two assets, when the underlying assets are equal, it is not optimal to invest in one of them even if

the payoff process tends to infinity, but it is optimal to wait in order to collect information about

the evolution of the state variables. However we do not consider an option on the maximum

of two different assets, but on the maximum of two different linear combinations of assets and

this approach is new. This allows to introduce correlation in the two alternative projects. Last

Geltner et al. [12] considered an investor who has the choice to invest in a land but for two

different uses: if the first use is chosen, the value of the land follows a geometric Brownian

motion, but if the second use is chosen, the value is a different state variable that also follows a

geometric Brownian motion. The construction cost is assumed to be fixed and to be the same in

the two cases. The investor chooses the use that yields the highest payoff. Geltner et al. studied

the exercise region in this bidimensional setting and found that it can be decomposed into two

symmetric disjoint regions (one for each use). When the value of each use generates the same

profit, the investor prefers to wait than to invest in one of the two.
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As already explained above, this paper focuses on a bidimensional setting. But in contrast

to Geltner et al. [12], the output process is the same for both projects and the second source of

uncertainty comes from the input price. In our setting, we prove the existence of an “inaction

region”. When both projects have the same value or very similar values, it is optimal to wait

rather than to invest in one of the two. In this bidimensional setting, the investment value is

not a sufficient statistic to take a decision. Indeed, we prove that the investor might decide not

to invest in any project even if each payoff tends to infinity. The shape of the exercise regions

is quite different depending on the ranking of the output flow of project N, βN , relative to the

output flow of project G, βG. The investment decision thus not only depends on the level of the

state variable but also on the output flow. It is interesting to note that if each project had been

evaluated separately, exercise regions would have been quite different. Indeed we prove that the

introduction of the choice modifies the exercise regions of each project taken separately: it can be

optimal to delay investment whereas without this choice immediate investment would have been

optimal. We thus introduce the concept of choice value between the two alternative projects. It

is straightforward to extend these results to the case of n mutually exclusive projects.

Once the theoretical results have been presented, we turn to an application of our model

to power generation under uncertainty. We assume technology N produces electricity from a

nuclear power plant whereas technology G produces electricity from gas. Applying our results

to this example, we find that the investment decision not only depends on the values taken by

the state variables but also on the cash-flow generated by each technology (βN or βG). These

coefficients are function of the construction time and the lifetime of each technology.

indifference point 

p1
* 

pA

pB 

inaction region 

investment in the 
low return project 

investment in the 
high return project 

p

0-NPV 
threshold 

no investment 

Figure 1: Investment strategies in Décamps et al. [6]

The next section of this paper describes the model and gives the first properties of the

value function. In section 3, exercise regions are described for the different possible ranking

of the output flows and their different properties are carefully stated. Section 4 is devoted to
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the illustration of the theoretical model with power generation under uncertainty. Section 5

concludes.

2 The model

This is a model of choice between two technologies, technology N and technology G, both

producing the same output whose price is uncertain by different means. Technology G has a

stochastic input. Time is continuous and labeled by t ≥ 0. A single risk-neutral investor can

engage in one of these two projects. To give a rigorous formulation to our model, we start with a

probability space (Ω,F ,P) equipped with a filtration (Ft)t≥0 representing the information avail-

able at time t. We consider a bidimensional Ft-Brownian motion
(
W 1
t ,W

2
t

)
. The output price

P = {Pt; t ≥ 0} is a geometric Brownian motion with drift r − δP , strictly positive convenience

yield δP and volatility σP :

dPt
Pt

= (r − δP ) dt+ σPdW
1
t . (1)

Let P pt be the solution of (1) starting from P p0 = p. The input price X = {Xt; t ≥ 0} is also a

geometric Brownian motion with drift r−δX , strictly positive convenience yield δX and volatility

σX :

dXt

Xt
= (r − δX) dt+ σX

(
ρdW 1

t +
√

1− ρ2dW 2
t

)
. (2)

Let Xx
t be the solution of (2) starting from Xx

0 = x. The correlation between Pt and Xt equals

ρt. The instantaneous cash-flow generated by each project equals βiPt, i = N,G. We refer to

βi as the output flow or as the price sensibility of technology i. For a sake of completeness, we

study the three different cases: βN > βG, βN < βG and βN = βG. The sunk cost of project

N , IN , is greater than the sunk cost of project G, IG. The second project is the only one to

generate a strictly positive variable cost γGXt. The net expected profits are thus equal to

ΨN (p) = βNp− IN for technology N and, (3)

ΨG (p, x) = βGp− γGx− IG for technology G. (4)

Let T be the set of all stopping times adapted to Ft. Because the investor has the opportunity to

choose between the two projects, he shall invest in the project with the highest payoff. The value

function associated to this investment problem can thus be formulated as an optimal stopping

time problem

V (p, x) = sup
τ∈T

E
[
e−rτ max (ΨN (P pτ ) ,ΨG (P pτ , X

x
τ ))
]
, (5)

that is defined for p ≥ 0 and x ≥ 0. The way the problem is stated implies that until no decision

has been taken, the investor is still free to choose one or the other technology. Note that the

problem involving

Vinf (p, x) = max
(

sup
τ∈T

E
[
e−rτΨN (P pτ )

]
, sup
τ∈T

E
[
e−rτΨG (P pτ , X

x
τ )
])

,
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illustrates a completely different setting. Indeed, Vinf represents the value function a decision

maker faces when he has the choice between two technologies but the choice has to be imme-

diately done. Given the choice he is committed to, he then determines the optimal timing.

V ≥ Vinf: in the first case, the technology choice is only done at the date at which investment

is triggered, whereas it is immediately done in the second case. There is thus a choice value in

the first case leading to a greater value function.

We define the investment region as

I =
{

(p, x) ∈ R2
+ |V (p, x) = max (ΨN (p) ,ΨG (p, x))

}
. (6)

The investment region is the set where the decision maker can invest optimally. Since the func-

tion (p, x) 7→ max (ΨN (P pt ) ,ΨG (P pt , X
x
t )) is continuous and since e−rt (ΨN (P pt ) ,ΨG (P pt , X

x
t ))

converges to 0 as t ↑ +∞, Theorem 10.1.9 by Øksendal [20] gives that τI , defined by τI =

inf {t ≥ 0 | (Pt, Xt) ∈ I}, is an optimal stopping time. Analytically, this means that if (p, x) ∈ I

V (p, x) = E
[
e−rτI

(
ΨN

(
P pτI
)
,ΨG

(
P pτI , X

x
τI

))]
. (7)

We also define the indifference line as

D =
{

(p, x) ∈ R2
+|ΨN (p) = ΨG (p, x)

}
. (8)

For a vector (p, x) of output/input values that belongs to D, the two alternative technologies

deliver the same payoff and a decision maker who would be forced to immediately invest would

be indifferent between the two projects. If (p, x) ∈ D then the following relation holds

βNp− IN = βGp− γGx− IG,

or written in a different way{
p = 1

βN−βG (IN − IG − γGx) if βN 6= βG,
x = IN−IG

γG
if βN = βG.

We denote p̃ the ratio
IN − IG
βN − βG

that corresponds to the output value for which the payoff

of the two projects are the same when the input price is zero. We start our analysis with a

proposition that summarizes the most intuitive properties of the value function V . To clarify

the presentation of our results, all proofs have been relegated to the Appendix.

Proposition 1 The following properties on the value function V hold:

1. ∀ (p, x) ∈ R2
+, V (p, x) < +∞,

2. p 7→ V (p, x) is an increasing function,

3. x 7→ V (p, x) is a decreasing function,

4. (p, x) 7→ V (p, x) is a convex function.
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When the value of the output price increases, the investment opportunity becomes more

valuable since the promised payoffs are higher. Furthermore, when the input price increases,

the opportunity to invest becomes less valuable since technology G induces a higher production

cost. Concerning the convexity result 4, the decision maker is ready to accept risky bets on the

initial values for the output and input prices simultaneously.

3 Shape and properties of the investment region

We analyze in this section the properties of the investment region I. We first try to elicit

information from the one-dimensional setting. In the standard real option framework, an increase

in the output price does not change the decision to invest when it has already crossed the

investment threshold. Indeed, if Pt lies in the investment region, then it is also true for λPt for

any λ > 1. By analogy, it seems reasonable to claim that if (Pt, Xt) lies in I, so lie (λPt, Xt) and(
Pt,

1
λXt

)
. It seems also reasonable to claim that investment is optimal as soon as the payoff is

sufficiently large. We will see that these two conjectures turn out to be false.

In order to describe the investment region I, let us remind the investment thresholds corre-

sponding to the two competitive projects taken separately.1 If we only focus on an investment

in technology N, we consider

VN (p) = sup
τ∈T

E
[
e−rτ (βNPτ − IN )

]
. (9)

The investment threshold corresponding to this project is equal to

p∗N =
β

β − 1
IN
βN

, (10)

where β is the positive root of the usual characteristic equation 1/2σ2
Pβ (β − 1)+(r − δP )β−r =

0 (see Dixit and Pindyck [11]).2 Similarly, if we only focus on an investment in technology G,

we consider

VG (p, x) = sup
τ

E
[
e−rτ (βGP pτ − γGXx

τ − IG)
]
. (11)

In the special case where x = 0, we obtain

VG (p) = sup
τ∈T

E
[
e−rτ (βGPτ − IG)

]
, (12)

and the investment threshold that triggers investment is equal to

p∗G =
β

β − 1
IG
βG

. (13)

According to Loubergé et al. [18], the investment region corresponding to the general case

(x > 0) takes the following form

ĨG = {(x, p) |VG (p, x) = βGp− γGx− IG} ,

= {(x, p) |p ≥ C1x+ p∗G} .
1These results can be found in Dixit and Pindyck, chapter V [11].
2This quadratic equation comes from the second order equation satisfied by VN , 1

2
σ2
PP

2V ′′N (P ) +
(r − δP )PV ′N (P )− rVN (P ) = 0.
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A more involved problem we can focus on is the special case of our bidimensional problem when

the input price is zero. In this case, the value function becomes

V (p) = sup
τ∈T

E
[
e−rτ max (βNPτ − IN , βGPτ − IG)

]
. (14)

This problem has been deeply studied by Décamps et al. [6]. Under the assumption that p∗N < p̃,

they find that there exist two thresholds p1 and p2 such that for every p ∈ [p∗G, p1[, it is optimal

to invest in technology G, and that ∀p ∈ ]p2,+∞[, it is optimal to invest in technology N. But

for p ∈ ]p1, p2[, it is not optimal to invest neither in technology N nor in technology G. They

call the interval (p1, p2) the “inaction region” (see Figure 1).

Before giving further results in our setting, let us put some restrictions on the parameters’

values. From now on, we assume that

Assumption 1 p∗N < p̃.

Assumption 1 means that there exists an inaction region in the one-dimensional setting (see

Décamps et al. [6] p.431). Since β > 1, then β
β−1 > 1. Therefore, if p∗N < p̃, then IN

βN
< IN−IG

βN−βG ,

implying that p∗G < p∗N . When the input price equals zero, another result allows to rank the

different thresholds.

Proposition 2 A lower bound for the threshold p2 exists and is given by

p2 >
β

β − 1
p̃.

We are now in a position to prove the existence of a similar inaction region in the bidimen-

sional setting.

Theorem 1 The indifference line D never belongs to the investment region. Analytically,

V (p, x) > βNp− IN for all (p, x) ∈ D.

This result extends the one-dimensional result obtained by Décamps et al. [6]. The investor’s

preference to wait in order to collect more information about the dominance of one project over

the other before investing creates an inaction region. In a two-dimension space, the interpretation

is the same. When the variables are on the indifference line, the investor prefers to wait in

order to collect more information about the dominance of one project over the other. If the

initial output price decreases, the investor may optimally content to invest in the low return

technology rather than wait with the hope to reach the set of optimal investment in the high

return technology. On the contrary, if the output price increases relative to the input price,

the investor has more chances to invest in the technology with the highest return. In fact, this

kind of result has already been obtained by Broadie and Detemple [5] or Villeneuve [24] in the

case of financial options. They show indeed that with an American option on the maximum of

two assets, it is never optimal to exercise the option when the prices of underlying assets are
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equal. Our setting is close to this one, except that in our case, the underlying assets are more

complicated since we have linear combinations of state variables. According to this result, we

now have a more precise idea of the shape of the investment region. It can be decomposed into

two disjoint sets I = IN
⋃
IG. IN is the investment region in which it is optimal to invest in

technology N and IG the one in which it is optimal to invest in technology G. IN and IG are

defined by

IN =
{

(p, x) ∈ R2
+|V (p, x) = βNp− IN

}
and, (15)

IG =
{

(p, x) ∈ R2
+|V (p, x) = βGp− γGx− IG

}
. (16)

We focus on the shape of the investment regions and we give some general properties.

Proposition 3 Let (p0, x0) ∈ R2
+. The following properties hold

1. If (p0, x0) ∈ IG, then ∀x ≤ x0, (p0, x) ∈ IG,

2. If (p0, x0) ∈ IN , then ∀x ≥ x0, (p0, x) ∈ IN ,

3. If βN ≥ βG and if (p0, x0) ∈ IN , then ∀p ≥ p0, (p, x0) ∈ IN ,

4. If βG ≥ βN and if (p0, x0) ∈ IG, then ∀p ≥ p0, (p, x0) ∈ IG.

Result 1 states that if it is optimal to invest in technology G, it will remain so if the input

price decreases. Indeed, its expected profit increases whereas the expected profit generated by

technology N remains constant. On the contrary, when investment in technology N is optimal,

it remains so if the input price increases (Result 2). Such an increase indeed has no effect on

the expected payoff generated by technology N and at the same time it makes technology G

less competitive. In the case where the price sensibility of technology N is higher than the one

of technology G, if it is already optimal to invest in technology N for a given level of output

price, it is all the more optimal to invest in technology N with a higher output price and hence

a higher profit (Result 3). Result 4 tells the same story in the case where the price sensibility

of technology N is lower than the one of technology G.

This proposition gives a first idea of the shape of the investment regions. But a more precise

study requires a separation of the different cases depending on the ranking of the output flows.

Before going further, we present the graphs of the two investment regions in the three cases

βN > βG, βG > βN and βN = βG.

We begin with a careful examination of the case βN > βG. As the remaining two cases will

exhibit similar properties, developments will be shorter.

3.1 The output flow of technology N is higher than the output flow of tech-
nology G: βN > βG

In this paragraph, we describe the exercise region that corresponds to the investor’s problem

when the output flow generated by technology N is greater than that generated by technology

9



Case β N > β G
p

x

pN
∗  

−1
IN
N

pG
∗  

−1
IG
G

p  IN−IG
N−G

p1

p2

P1,N
∗

X1,G
∗

IG

IN

D

p  1
N−G

IN − IG − Gx

Figure 2: Shape of the investment regions when βN > βG

Case β G > β N

pN
∗  

−1
IN
N

pG
∗  

−1
IG
G

IG IN

D

p  IN−IG
N−G

X2,N
∗

P2,G
∗ p  1

G−N
Gx − IN − IG 

p

x

Figure 3: Shape of the investment regions when βN < βG
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Case β G= β Np

pN
∗  

−1
IN
N

pG
∗  

−1
IG
G

IG

P3,G
∗

P3,N
∗

IN

D

xIN−IG
G

Figure 4: Shape of the investment regions when βN = βG

G. First, we study the investment region for which it is optimal to invest in technology N, IN .

Let us define

P ∗1,N (x) = inf {p ∈ R+| (x, p) ∈ IN} , (17)

which is the minimal level of output price for which it is optimal to invest in technology N given

that the input price equals x. Next proposition gives the main features of this function P ∗1,N .

Proposition 4 (MacDonald and Siegel [19] or Dixit and Pindyck [11])

Function P ∗1,N exhibits the following properties:

1. x 7→ P ∗1,N (x) is a decreasing function,

2. x 7→ P ∗1,N (x) is a convex function,

3. P ∗1,N (0) = p2,

4. lim
x→+∞

P ∗1,N (x) = p∗N .

Proposition 4 describes the shape of the investment region IN . Result 1 states that when the

input price increases, the threshold value of the output price for which it is optimal to invest in

technology N decreases. Indeed, when the input price increases, the expected payoff generated

by technology G decreases whereas the expected payoff generated by technology N remains

constant. Knowing that technology G becomes less profitable, the investor chooses a threshold

value of the output price for which it is optimal to invest in technology N that is decreasing

with the input price. This effect decreases as the input price increases (Result 2): in this case,

technology G is less competitive and plays almost no role in the decision any more. Ultimately,

when the input price tends to infinity, project G totally disappears, coming back to the basic
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setting where there is only one project. It is thus optimal to invest as soon as the output price

is greater than the usual threshold p∗N (Result 4).

Concerning investment region IG, we have to prove first that it is nonempty under Assump-

tion 1.

Proposition 5 Under Assumption 1, IG is nonempty.

We define function

p 7→ X∗1,G (p) = sup {x ∈ R+|V (x, p) = βGp− γGx− IG} (18)

which has to be viewed as the maximal level of input price for which it is optimal to invest in

technology G given that the output price equals p. Its main features are summarized in the

following proposition.

Proposition 6 Function X∗1,G exhibits the following properties:

1. p 7→ X∗1,G (p) is a concave function,

2. X∗1,G (p∗G) = 0.

Concavity of function X∗1,G implies the existence of a maximum level of input cost above

which it is never optimal to invest in technology G. As soon as the input cost increases, the

set of output prices for which it is optimal to invest in technology G becomes smaller and tends

to disappear. Moreover, the shape of the investment region gives some counterintuitive results.

Let us imagine that the input/output prices are such that they are “just above” IG so that it is

not optimal to invest immediately. If the output price decreases and the input price increases in

such a way that they fall into IG, it becomes optimal to invest in technology G though both the

output and the input prices decreased. In this case, the investor is indeed sure that it will be too

long and thus costly to reach IN . He thus accepts to invest in the project with the lowest price

sensibility. When we consider the two projects simultaneously, the investment regions are quite

different from the case where each project is taken separately. The presence of the two projects

makes the investor more reluctant to invest in one of the two projects when the projects’ profits

are close and even if they are very high. He prefers to wait to obtain more information about

the dominance of one project over the other: a choice value is created. Note that contrary to

Décamps et al. [6], if at the beginning, the two state variables present low values, investment

may be triggered later than if no choice had been available.

Let us look at two extreme cases. If the two state variables Pt and Xt tend to 0 when t tends

to +∞ (what happens when r < min (δP , δX)), there exist paths such that if, at the beginning,

the state variables do not belong to any exercise region, no investment will never be undertaken

before both state variables reach the point (0, 0). If only one technology had been available,

an investment may have been optimally triggered. Conversely, if the two state variables tend
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to +∞ when t tends to +∞ (what happens when r > max (δP , δX)), an investment will be

triggered for sure. Let us now turn to the case where the output flow from technology G is

greater than the one of technology N.

3.2 The output flow of technology G is higher than the output flow of tech-
nology N : βG > βN

In order to study the shape of the investment regions, we define P ∗2,G (x) = inf {p ∈ R+| (x, p) ∈ IG}.
To be more explicit, we have

P ∗2,G (x) = inf {p ∈ R+|V (x, p) = βGp− γGx− IG} . (19)

P ∗2,G has to be viewed as the minimal level of output price for which it is optimal to invest in

technology G given that the input price equals x. We first focus on investment region IG and

on the general properties of function P ∗2,G.

Proposition 7 Function P ∗2,G exhibits the following properties:

1. x 7→ P ∗2,G (x) is an increasing function,

2. x 7→ P ∗2,G (x) is a convex function,

3. P ∗2,G (0) = p∗G.

These results are very similar to the ones obtained in Proposition 4 when βN > βG. As

the input price increases, the threshold value of the output for which it is optimal to invest

in technology G increases. Indeed, for a given output price, when the input price increases,

the expected payoff generated by technology G decreases. Therefore, in order technology G to

remain the optimal choice, the optimal threshold has to increase (Result 1). Convexity of the

optimal threshold (Result 2) shows that the choice value created by the competition between the

two projects is all the more important as the input price increases. When the input price is equal

to zero, technology G dominates technology N since it has a higher payoff and a lower cost. It

is indeed as if technology N did not exist any more and it is optimal to invest in technology G

as soon as the output price exceeds the usual threshold p∗G (Result 3). Next proposition states

precisely the behavior of function P ∗2,G for large input price and confirms that the choice value

increases with the input price. In order to prepare the statement of the proposition, we need to

recall some results concerning the price of an exchange option.

Let Ce(p, x) be the price of an exchange option defined by

Ce(p, x) = sup
τ

E
[
e−rτ (P pτ −Xx

τ )
]
.

It is well known (see for instance Brodie and Detemple [5]) that the exercise region (the set

where Ce(p, x) = p− x) of the exchange option is given by the set

{(p, x) ∈ (0,∞)2 ; p ≥ κ∗x}

where κ∗ is a real number larger than one.
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Proposition 8 Function P ∗2,G exhibits the following property

lim sup
x→+∞

P ∗2,G (x)
x

≤ γG
βG − βN

κ∗,

and

lim inf
x→+∞

P ∗2,G (x)
x

>
γG

βG − βN
.

The limit of P ∗2,G is difficult to obtain. However, its asymptotic behavior can be determined.

We observe in particular that as the input price x increases, P ∗2,G moves away the indifference

line D. Therefore, there is an open cone on the left side of the indifference line (likely with a

very small aperture) where it is never optimal to exercise. As a consequence, for any fixed time

horizon T , there is a path with positive probability that remains inside the cone up to time T .

Thus, it is optimal not to invest in any project even if their expected profit tends to infinity.

This feature depends crucially on the bidimensional setting. The choice value is thus unbounded

for large values of both input and output prices. Now, we focus on the other investment region

IN and on function

p 7→ X∗2,N (p) = inf {x ∈ R+|V (p, x) = βNp− IN} , (20)

which is the minimal level of input price for which it is optimal to invest in technology N .

Proposition 9 Function X∗2,N exhibits the following properties:

1. p 7→ X∗2,N (p) is a convex function,

2. lim
p↓p∗N

X∗2,N (p) = +∞.

The findings concerning the investment regions are symmetric with the case βN > βG. Along

the indifference line and despite the fact that the profit is unbounded, it is not optimal to invest

in any project due to the choice value generated by the competition between the two projects.

Moreover, there is a minimum level of input price that makes investment in technology N

optimal. For a given input price that is very low, investment can only occur in technology G.

On the contrary, for a given input price that is high enough, investment can occur in the two

technologies depending on the level of the output price. As in the previous case, when Pt and

Xt tend to (0, 0) (that is if r < min (δP , δX)), there exist paths such that no investment will be

triggered even if the state variables are high at the beginning, under the condition that they do

not belong to any investment region. If only one technology had been available, an investment

might have been optimal. We study the last case where the two technologies generate exactly

the same output flow.

14



3.3 The output flow of both technologies are equal: βN = βG

In this section, the two technologies present the same price sensibility. The indifference line is

then equal to x = IN−IG
γG

. It is interesting to note that the three different cases are described by

a rotation of the indifference line. Here, we are in the extreme case where the indifference line

is vertical. As in the first two cases, we define

P ∗3,G (x) = inf {p ∈ R+|V (p, x) = βGp− γGx− IG} and (21)

P ∗3,N (x) = inf {p ∈ R+|V (p, x) = βNp− IN} . (22)

Proposition 10 The following properties concerning functions P ∗3,G and P ∗3,N hold:

1. x 7→ P ∗3,G (x) is an increasing and convex function,

2. x 7→ P ∗3,N (x) is a decreasing and convex function,

3. P ∗3,G (0) = p∗G and lim
x↑ IN−IG

γG

P ∗3,G (x) = +∞,

4. lim
x↓ IN−IG

γG

P ∗3,N (x) = +∞ and lim
x→+∞

P ∗3,N (x) = p∗N .

When the input price is zero, this is as if technology G were unique and investment in

technology G is thus optimal as soon as the output price is greater than the usual threshold

p∗G. On the contrary, when the input price tends to +∞, this is as if there were only technology

N and investment is optimal as soon as the output price is greater than p∗N . Here the two

investment regions are clearly separated by a vertical line that corresponds to the indifference

line. When the input price is lower than IN−IG
γG

, any potential investment would only occur

in technology G, whereas when the input price is greater than IN−IG
γG

, it would only occur in

technology N. That P ∗3,G is increasing and P ∗3,N is decreasing illustrates the interaction between

the two technologies. This effect is at its height when the input price exactly equals IN−IG
γG

,

since the investor will never invest in any of the two projects even if the common profit tends to

infinity. Indeed, his indifference makes him wait to choose the most favorable technology. With

this extreme case, we see that the level of the future cash-flow is not a sufficient statistic to take

any decision in this bidimensional setting.

Here also, when Pt and Xt tend to (0, 0) (r < min (δP , δX)), there exist paths such that no

investment is undertaken, whereas an investment may have been triggered if the two technologies

had been separately available. When Pt and Xt tend to (+∞,+∞) (r > max (δP , δX)), an

investment will be triggered in one or the other technology. We now have a precise idea of the

shape of the investment regions for different values taken by the pair input/output prices and

by βN and βG. We can go to the next section that proposes an application of this model to

power generation under uncertainty.
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4 Application: power generation under uncertainty

The multiple technologies to produce electricity makes any investment decision difficult. For

instance, what should an investor choose between a technology with high sunk costs and a high

price sensibility and a technology that is more flexible but that presents a lower price sensibility

at the same time? Moreover, how to take into account the characteristics of the electricity

market? This is the kind of questions we are trying to answer in this section. We consider two

ways to produce electricity:

- technology N produces electricity with a nuclear power plant,

- technology G produces electricity with a gas power plant.

In this particular case, P can be considered as the electricity price, whereas X can be viewed

as the cost of supplying gas. Bøckman et al. [4] review the different models for electricity price.

They recall that Schwartz and Smith [23] and Pindyck [22] prove that long term electricity

price can be modelled as a geometric Brownian motion, this approximation leading to only

small errors. Gollier et al. [13] also model electricity price as a geometric Brownian motion.

Concerning gas price, Pindyck [21] explains that “for purposes of making investment decisions,

one could just as well treat the price of oil as a geometric Brownian motion”. Each technology

presents the following features.

-Technology N. TN years are needed to build the production unit. This means that once

the investment decision has been taken, the investor does not get any profit immediately:

there is a lag between the time at which investment is decided and the time at which

power generation starts. We assume moreover that the production unit lasts LN years,

implying that, following an investment at date t, the profit flow only exists on the time

period [t+ TN , t+ TN + LN ]. Sunk capital cost is denoted IN . The profit is thus given by

the following function:

ΨN (p) = e−rTNE
[∫ TN+LN

TN

P (t) e−rtdt|P (0) = p

]
− IN .

According to the dynamic of Pt, for t ≥ TN ,

Pt = PTN exp
{(

r − δP −
1
2
σ2
P

)
(t− TN ) + σP

(
W 1
t −W 1

TN

)}
.

Therefore

E
[∫ TN+LN

TN

P (t) e−rtdt|P (0) = p

]
=

1
δP

(
1− e−δPLN

)
E
[
e−rTNPTN |P (0) = p

]
,

=
p

δP
e−δPTN

(
1− e−δPLN

)
.

We finally have that

ΨN (p) = βNp− IN (23)
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with βN = 1
δP
e−(r+δP )TN

(
1− e−δPLN

)
. We recover the expression of the initial model with

the output flow βN . βN that can also be seen as the price sensibility of the technology is

an increasing function of LN , and a decreasing function of TN . The more important is the

time lag between the decision and the effective electricity generation, the less profit the

investor gets.

-Technology G. TG years are needed to build the production unit that lasts LG years. Sunk

capital cost is denoted IG. The amount of gas required to generate one electricity unit is

equal to lG. The profit is given by the following function:

ΨG (p, x) = e−rTGE
[∫ TG+LG

TG

P (t) e−rtdt|P (0) = p

]
−e−rTGE

[∫ TG+LG

TG

lGX (t) e−rtdt|X (0) = x

]
− IG.

By making similar computations than in the case of the nuclear technology, we easily

obtain that

ΨG (p, x) = βGp− γGx− IG, (24)

with βG = 1
δP
e−(r+δP )TG

(
1− e−δPLG

)
and γG = lG

δX
e−(r+δX)TG

(
1− e−δXLG

)
.

As for technology N, βG is increasing in LG and decreasing in TG. But the effect on the

profit function is not clear, because the variable cost has to be taken into account and

γG is increasing in LG and decreasing in TG. Therefore, the total effect of LG and TG on

ΨG (p, x) is not determined.

We make the following assumptions on the parameters’ values:

- IN > IG,

- lG > 0 and so γG > 0.

Thanks to these assumptions and depending on the values taken by Ti and Li, for i = N,G, the

three cases concerning the ranking of the price sensibility βi may arise. We suppose that the

length of life of a nuclear power plant is twice longer than that of a thermal power plant and

that there exists ξ > 1 such that TN = ξTG. The three following cases arise:

−If ξ ∈
]
1, 1 +

1
(r + δP )TG

ln
(

1− e−2δPLG

1− e−δPLG

)[
, then βN > βG,

−If ξ ∈
]
1 +

1
(r + δP )TG

ln
(

1− e−2δPLG

1− e−δPLG

)
,+∞

[
, then βG > βN ,

−If ξ = 1 +
1

(r + δP )TG
ln
(

1− e−2δPLG

1− e−δPLG

)
, then βN = βG.

With the assumption on the length of life, the output flow generated by the nuclear power plant

is greater than the one generated by the thermal power plant if the construction time of a nuclear

power plant is not too long relative to the thermal power plant. We recover the characteristics
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of the investment regions obtained in the previous part. In the case where the output flow of

the nuclear power plant is greater than the one of the gas power plant, it can be optimal to

invest in a gas power plant after a fall in the electricity price and an increase in the gas price.

Indeed, the investor prefers to be sure he does not lose an opportunity to invest in the nuclear

power plant, therefore he waits until it becomes too costly to invest in the nuclear technology.

When the price sensibility of the gas power plant is higher than the one of the nuclear power

plant, the optimal choice goes from the gas power plant to the nuclear technology as the cost of

supplying gas increases. If gas is not too costly, it is preferred because the technology is more

flexible than a nuclear power plant. Another surprising result occurs when βN = βG. Indeed,

when x = IN−IG
γG

, we are on the indifference line and even if the output price tends to infinity,

the investor is indifferent between the two projects. Although it is possible for him to obtain

an infinite profit, he prefers to wait to know in which direction the state variables are going to

evolve and which technology to select. We recover the fact that the profit level is not a decision

variable any more. These extreme results should of course be understood with care notably with

respect to the assumptions: no competition, no terminal date... The presence of the terminal

date for instance would trigger an investment even in the inaction region. Bobtcheff [3] analyzes

the role of competition in such a model of technology choice with one uncertainty source and

shows that under competition, the inaction regions may disappear. However assuming that

the construction times of the two plants are not too different, βN will be greater than βG and

investment in the nuclear technology is more likely to be optimal.

However we think that our analysis allows to have some insights on the investment policy

in the energy sector, where some choices are done by the public authority and the effect of

competition is thus alleviated. Indeed, according to the International Energy Agency, “electricity

capacity reserve margins are declining in most OECD countries signalling the need for new

investment. The supply disruptions in parts of North America and Europe in summer 2006

have raised again questions about the adequacy of generation margins and investment in network

infrastructure”.3 Here our interpretation of this fact is that the simultaneous presence of different

technologies (coal, gas and nuclear plant, renewable resources) in the electricity sector creates a

source of delay in such an investment decision. Note also that the results are highly dependent

on the characteristics of each power plant. In this application, depending on the values given

to the construction lag and to the lifetime of the production unit, we may obtain very different

results as far as the ranking of βN with respect to βG may change.

5 Concluding remarks

This paper studies the choice by an investor between two mutually exclusive projects under both

output price and input price uncertainty. In this bidimensional setting, the main difficulty is to

determine the set of values for which it is optimal to invest. Our main finding is that it is never
3See World Energy Outlook 2006 [15].
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optimal to invest when the competitive projects yield the same profit, that is when the investor

is indifferent between the two. The interpretation is that the investor prefers to wait in order to

collect information rather than to invest too fast in a project that turns out to be unprofitable.

The study of the different possible investment regions shows us that they are quite different

depending on the values taken by the price sensibilities. When βG ≥ βN , for low values of the

input price, optimal investment may only occur in technology G, and for high values of the input

price, optimal investment occurs more likely in technology N. When βN > βG, for high values

of the input price, optimal investment can only occur in technology N, and for low values of

the input price, optimal investment may occur in both technology. The shape of the exercise

regions is very different than if each project were taken separately: the interaction between the

two projects creates what we shall call a choice value. It has to be added to the time value that

corresponds to the optimal moment to invest and that has been demonstrated by McDonald

and Siegel [19] or by Henry [14]. A natural extension could be to consider such a technology

choice in a competitive setting. Do firms still take the time to ensure their investment decision?

The fear of being preempted will certainly decrease the choice value but to which extent? Are

firms going to differentiate one from the other by doing asymmetric investment? Some of these

questions have been analyzed by the first author under one uncertainty source (see Bobtcheff

[3]).
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A Proof of Proposition 1

To prove Result 1, we fix a stopping time τ :

E
[
e−rτ max (ΨN (P pτ ) ,ΨG (P pτ , X

x
τ ))
]
≤ E

[
e−rτ (ΨN (P pτ ))

]
+ E

[
e−rτ (ΨG (P pτ , X

p
τ ))
]
,

≤ E
[
e−rτ (βNP pτ − IN )

]
+ E

[
e−rτ (βGP pτ − γGXx

τ − IG)
]
,

≤ E
[
e−rτ (βNP pτ − IN )

]
+ E

[
e−rτ (βGP pτ − IG)

]
,

≤ sup
τ

E
[
e−rτ (βNP pτ − IN )

]
+ sup

τ
E
[
e−rτ (βGP pτ − IG)

]
.

This implies that V (p, x) ≤ VN (p) + VG (p, 0). Because δP > 0 and δX > 0, VN (p) and VG (p, 0) are
explicit functions (see MacDonald and Siegel [19] or Dixit and Pindyck [11]) that are finite. The value
function V is thus finite.
Results 2 and 3 immediately follow from a composition of monotonic functions.
Concerning Result 4, we have to show that

V (λp0 + (1− λ) p1, λx0 + (1− λ)x1) ≤ λV (p0, x0) + (1− λ)V (p1, x1) ,

for any (p0, x0), (p1, x1) and λ ∈ [0, 1].
By definition, putting p(λ) = λp0 + (1− λ) p1 and x(λ) = λx0 + (1− λ)x1 we have

V (p(λ), x(λ)) = sup
τ∈T P

E
[
e−rτ max

(
ΨN

(
P p(λ)
τ

)
,ΨG

(
P p(λ)
τ , Xx(λ)

τ

))]
.

Focusing on the right hand side, we have

E
[
e−rτ max

(
βNP

λp0+(1−λ)p1
τ − IN , βGPλp0+(1−λ)p1

τ − γGXλx0+(1−λ)x1
τ − IG

)]
= E

[
e−rτ max {βN (λP p0τ + (1− λ)P p1τ )− IN , βG (λP p0τ + (1− λ)P p1τ )− γG (λXx0

τ + (1− λ)Xx1
τ )− IG}

]
≤ λE

[
e−rτ max (βNP p0τ − IN , βGP p0τ − γGXx0

τ − IG)
]

+ (1− λ) E
[
e−rτ max {βNP p1τ − IN , βGP p1τ − γGXx1

τ − IG}
]
.

Because this inequality is true for every stopping times τ , it follows that

V (λp0 + (1− λ) p1, λx0 + (1− λ)x1) ≤ λV (p0, x0) + (1− λ)V (p1, x1) ,

what concludes the proof. 2

B Proof of Proposition 2

Let us introduce the value function

C (p) = sup
τ

E
[
e−rτ ((βN − βG)Pτ − (IN − IG))+

]
.

Using that max (x, y) = (x− y)+ + y, we have

E
[
e−rt max (βNPτ − IN , βGPτ − IG)

]
= E

[
e−rt ((βN − βG)Pτ − (IN − IG))+

]
+ E

[
e−rt (βGPτ − IG)

]
.

Taking the supremum over the stopping times τ gives the inequality V (p) ≤ C (p) + VG (p). According
to MacDonald and Siegel [19] or Dixit and Pindyck [11], the optimal threshold above which the value
function C(p) has to be exercised is given by

β

β − 1
IN − IG
βN − βG

=
β

β − 1
p̃.

Therefore, for any p ≥ β
β−1 p̃, we have V (p) ≤ βNp−IN . It follows that V (p) = βNp−IN and p2 ≥ β

β−1 p̃.
2
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C Proof of Theorem 1

For every t ≥ 0, we have by definition of the value function

V (p, x) ≥ E

[
e−rt max

(
βNpe

(
r−δP−

σ2
P
2

)
t+σPW

1
t − IN , βGpe

(
r−δP−

σ2
P
2

)
t+σPW

1
t

−γGxe

(
r−δX−

σ2
X
2

)
t+σX

(
ρW 1

t +
√

1−ρ2W 2
t

)
− IG

)]
,

≥ E
[
max

(
βNpe

−δP t+σPW 1
t −

σ2
P
2 t − IN , βGpe−δP t+σPW

1
t −

σ2
P
2 t

−γGxe
−δXt+σ2

X

(
ρW 1

t +
√

1−ρ2W 2
t

)
−σ

2
X
2 t − IG

)]
,

≥ E
[
max

(
βNp

(
1 + σPW

1
t

)
− IN , βGp

(
1 + σPW

1
t

)
− γGx

(
1 + σX

(
ρW 1

t +
√

1− ρ2W 2
t

))
− IG

)]
+ E

[
f
(
t,W t

1 ,W
t
2

)]
,

= βNp− IN + E
[
max

(
βNpσPW

1
t , βGpσPW

1
t − γGxσX

(
ρW 1

t +
√

1− ρ2W 2
t

))]
+ E

[
f
(
t,W t

1 ,W
t
2

)]
,

where the last equality comes from the fact that (p, x) belongs to the indifference line and where the
function f(.) is defined as

f (t, y1, y2) = max(βNpe−(δP+
σ2
P
2 )t+σP y1 − IN , βGpe−(δP+

σ2
P
2 )t+σP y1 − γGxe

−(δX+
σ2
X
2 )t+σX

(
ρy1+
√

1−ρ2y2
)

− IG)

− max
(
βNp− IN + βNpσP y1, βGp− γGx− IG + βGpσP y1 − γGxσX

(
ρy1 +

√
1− ρ2y2

))
.

Now, we are going to show that for t small enough E|f
(
t,W 1

t ,W
2
t

)
| ≤ ct where c is a constant. Using

that max(a, b)−max(c, d) ≤ max(a− c, b− d), we have:

f (t, y1, y2) ≤ max
[
βNpe

−(δP+
σ2
P
2 )t+σP y1 − βNp (1 + σP y1) , βGpe−(δP+

σ2
P
2 )t+σP y1 − βGp (1 + σP y1)

−
(
γGxe

−(δX+
σ2
X
2 )t+σX

(
ρy1+
√

1−ρ2y2
)
− γGx

(
1 + σX

(
ρy1 +

√
1− ρ2y2

)))]
,

≤
∣∣∣∣βNpe−(δP+

σ2
P
2 )t+σP y1 − βNp (1 + σP y1) |+ |βGpe−(δP+

σ2
P
2 )t+σP y1 − βGp (1 + σP y1)

∣∣∣∣
+
∣∣∣∣(γGxe−(δX+

σ2
X
2 )t+σX

(
ρy1+
√

1−ρ2y2
)
− γGx

(
1 + σX

(
ρy1 +

√
1− ρ2y2

)))∣∣∣∣ .
For each of the three terms of the right hand side, we use the following inequality: |ey − 1− y| ≤ y2

2 e
|y|.

So, for the first term, we obtain for t small enough,∣∣∣∣βNpe−(δP+
σ2
P
2 )t+σP y1 − βNp (1 + σP y1)

∣∣∣∣ =
∣∣∣∣βNpe−(δP+

σ2
P
2 )t+σP y1 − βNp

(
1− (δP +

σ2
P

2
)t+ σP y1

)
− βNpδP t| ,

≤ βNp

(
σP y1 − (δP + σ2

P

2 )t
)2

2
e|σP y1−(δP+

σ2
P
2 )t| + βNp(δP +

σ2
P

2
)t,

≤ c1t.

Hence, by repeating this operation twice, we obtain that E|f
(
t,W 1

t ,W
2
t

)
| ≤ (c1 + c2 + c3) t = ct. It

follows that

V (p, x) ≥ βNp− IN
+ E

[
max

(
βNpσPW

1
t , βGpσPW

1
t − γGxσX

(
ρW 1

t +
√

1− ρ2W 2
t

))]
+ o(t).
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Because W 1
t (resp. W 2

t ) has the same law as
√
tg1 (resp.

√
tg2), where the gi are Gaussian random

variables, we have
V (x, p) ≥ βNp− IN +

√
tE [max (h1, h2)] + o(t), (A.1)

where h1 = βNpσP g1 and h2 = (βGpσP − γGxσX)g1 −
√

1− ρ2γGxσXg2 are also Gaussian random
variables. According to the standard property:

If Eg = Eh = 0 and P (h 6= g) > 0, then E max (g, h) > 0,

we have that V (x, p) > βNp− IN which concludes the proof.

D Proof of Proposition 3

Case 1 : ∀x ≤ x0,

0 ≤ V (p0, x)− V (p0, x0)
= sup

τ∈T P
E
[
e−rτ max (ΨN (Pτ ) ,ΨG (Xx

τ , Pτ ))
]

− sup
τ∈T P

E
[
e−rτ max (ΨN (Pτ ) ,ΨG (Xx0

τ , Pτ ))
]

≤ sup
τ∈T P

E
[
e−rτ (max (ΨN (Pτ ) ,ΨG (Xx

τ , Pτ ))−max (ΨN (Pτ ) ,ΨG (Xx0
τ , Pτ )))

]
,

= sup
τ∈T P

E
[
e−rτ (max (0, γG (Xx0

τ −Xx
τ )))

]
,

≤ γG (x0 − x) .

Because V (p0, x0) ≤ βGp0 − γGx0 − IG, we get V (p0, x) ≤ βGp0 − γGx− IG, and thus (p0, x) belongs to
the investment region.

Case 2 : ∀x ≥ x0, V (p0, x) ≤ V (p0, x0). So, we have V (p0, x) ≤ βNp0 − IN .
It follows that V (p0, x) = βNp0 − IN , which ends the proof.

Case 3 : In this case, βN ≥ βG and we take p ≥ p0:

V (p, x0)− V (p0, x0) ≤ (p− p0) sup
τ∈T P

E
[
e−rτ max

(
βNe

(r−δN− 1
2σ

2
N)τ+σNW 1

τ , βGe
(r−δN− 1

2σ
2
N)τ+σNW 1

τ

)]
.

As βN ≥ βG, it follows that V (p0, x) − V (p0, x0) ≤ (p− p0)βN . Because we assume V (p0, x0) =
βNp0 − IN , we have: V (p, x0) ≤ βNp− IN and the result follows.

Case 4 : As p ≥ p0, we have the same inequality than above:

V (p, x0)− V (p0, x0) ≤ (p− p0) sup
τ∈T P

E
[
e−rτ max

(
βNe

(r−δN− 1
2σ

2
N)τ+σNW 1

τ , βGe
(r−δN− 1

2σ
2
N)τ+σNW 1

τ

)]
.

But, now, βG ≥ βN and consequently, V (p0, x) − V (p0, x0) ≤ (p− p0)βG. An analogous argument as
above with V (p0, x0) = βGp0 − γG − IG leads to the result. 2

E Proof of Proposition 4

Result 1 : Let (x0, x1) ∈ R2 such that x0 < x1. By definition of P ∗1,N ,
(
x0, P

∗
1,N (x0)

)
∈ IN . According to

the previous proposition,
(
x1, P

∗
1,N (x0)

)
∈ IN . By definition of P ∗1,N ,

P ∗1,N (x1) ≤ P ∗1,N (x0). It follows that P ∗1,N (.) is a decreasing function.

Result 2 : In order to show that P ∗1,N is a convex function, we are going to proceed in several steps. The
first step consists in proving that IN is a convex set. We want to show that if (x0, p0) and (x1, p1) ∈ (IN )2,
then (λx0 + (1− λ)x1, λp0 + (1− λ) p1) ∈ IN .

V (λp0 + (1− λ) p1, λx0 + (1− λ)x1) ≤ λV (p0, x0) + (1− λ)V (p1, x1) ,
= λ (βNp0 − IN ) + (1− λ) (βNp1 − IN ) ,
= βN (λp0 + (1− λ) p1)− IN .
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But, knowing that

V (λp0 + (1− λ) p1, λx0 + (1− λ)x1) ≥ max {βN (λp0 + (1− λ) p1)− IN ,
βG (λp0 + (1− λ) p1)− γG (λx0 + (1− λ)x1)− IG} .

This implies that

V (λx0 + (1− λ)x1, λp0 + (1− λ) p1) = βN (λp0 + (1− λ) p1)− IN
and thus

(λx0 + (1− λ)x1, λp0 + (1− λ) p1) ∈ IN .
The second step consists in showing that P ∗1,N is effectively a convex function. As IN is a convex set,(

λx0 + (1− λ)x1, λP
∗
1,N (x0) + (1− λ)P ∗1,N (x1)

)
∈ IN .

By definition, we have the following inequality:

P ∗1,N (λx0 + (1− λ)x1) ≤ λP ∗1,N (x0) + (1− λ)P ∗1,N (x1) ,

and it follows that P ∗1,N is a convex function.
Note that we have also proven that (p, x) 7→ V (p, x) is a convex function.
Result 3 : This result has been shown by Décamps, Mariotti and Villeneuve [6].
Result 4 : Once again, we are going to demonstrate this result using several steps.
Note that VN (p) ≤ V (p, x). Let us define the set N =

{
(x, p) ∈ R2

+|βNp− IN > βGp− γGx− IG
}

and
take (p, x) ∈ N with p < p∗N . We have the following inequalities:

V (p, x) ≥ VN (p) ,
> βNp− IN .

It follows that (p, x) does not belong to IN . Moreover, we have lim
x→+∞

V (p∗N , x) ≥ VN (p∗N ).

The next step consists in proving that lim
x→+∞

V (p∗N , x) = V∞ (p∗N ).

We take (xn)n≥0 that tends to +∞. If n is high enough, (p∗N , xn) ∈ N .

0 ≤ V (p∗N , xn)− VN (p∗N ) ,

≤ E
[
e−rτn max

(
βNP

p∗N
τn − IN , βGP

p∗N
τn − γGXxn

τn − IG
)]
− E

[
e−rτn

(
βNP

p∗N
τn − IN

)]
,

with τn = inf
{
t ≥ 0|

(
P
p∗N
t , Xxn

t

)
∈ I
}

. It follows that:

0 ≤ V (p∗N , xn)− VN (p∗N ) ,

≤ E
[
e−rτn

(
(βG − βN )P p

∗
N

τn − γGXxn
τn − (IG − IN )

)
+

]
,

≤ E
[
e−rτn

(
IN − IG − γGXxn

τn

)
+

]
,

≤ sup
τ

E
[
e−rτ (IN − IG − γGXxn

τ )+
]
,

= P (γGxn) ,

where P (γGxn) is the price of a put option with a strike equal to IN − IG. But, we know that
lim

n→+∞
P (γGxn) = 0.

It follows that lim
n→+∞

V (p∗N , xn) = VN (p∗N ). Note that we have also proven that

lim
n→+∞

E
[
e−rτn

(
βNP

p∗N
τn − IN

)]
= βNp

∗
N − IN . (A.2)

The last step consists in proving that (τn)n tends in probability to 0. We have the following inequalities:

E
[
e−rτn

(
βNP

p∗N
τn − IN

)]
≤ E

[
e−rτnVN

(
P
p∗N
τn

)]
,

= βNp
∗
N − IN + E

∫ τn

0

e−ru
(
rIN − δPP

p∗N
u

)
I
P
p∗
N

u ≥p∗N
du,

≤ βNp
∗
N − IN + (rIN − δP p∗N ) E

∫ τn

0

e−ruI
P
p∗
N

u ≥p∗N
du.
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Since rIN − δP p∗N is nonpositive, (A.2) gives

lim
n→+∞

E
∫ τn

0

e−ru11
{P

p∗
N

u ≥p∗N}
du = lim

n→+∞
E
∫ τn

0

e−ru11{σPWu+(r−δP− 1
2σ

2
P )u≥0}du,

= 0,

which implies that (τn)n tends in probability to 0.
Finally, suppose lim

x→+∞
P ∗1,N (x) = l > p∗N and let ε be such that ε < l − p∗N . Let us define M = IN−IG

γG

and the stopping times τnM = inf {t ≥ 0|Xxn
t ≤M}, and τε = inf

{
t ≥ 0|P p

∗
N

t ≤ p∗N + ε
}

.
We have τn ≥ τnM ∧ τε and lim

n→+∞
τnM ∧ τε = τε, what leads to a contradiction

All these steps allow us to conclude that lim
x→+∞

P ∗1,N (x) = p∗N . 2

F Proof of Proposition 5

We will make a proof by contradiction assuming that IG is empty. As a consequence, optimal stopping
theory (see Theorems 10.1.9 and 10.1.12 in Øksendal [20]) gives

V (p, x) = E
[
e−rτI max(ΨN (PτI ),ΨG(PτI , XτI ))

]
,

= E
[
e−rτI (βNPτI − IN )

]
,

≤ VN (p).

Therefore, we have V (p, x) = VN (p). But, for x < βN−βG
γG

(p̃− p∗N ), we get

βGp
∗
N − γGx− IG ≤ V (p∗N , x),

= VN (p∗N ),
= βNp

∗
N − IN ,

< βGp
∗
N − γGx− IG,

which yields to a contradiction. 2

G Proof of Proposition 6

Concerning Result 1, we are going to use the same steps as the ones used to prove the convexity of the
function P ∗1,N . IG is a convex set which implies that(

λX∗1,G (p0) + (1− λ)X∗1,G (p1) , λp0 + (1− λ) p1

)
∈ IG.

But, we also have that (
X∗1,G (λp0 + (1− λ) p1) , λp0 + (1− λ) p1

)
∈ IG.

Therefore by definition of X∗1,G,

X∗1,G (λp0 + (1− λ) p1) ≥ λX∗1,G (p0) + (1− λ)X∗1,G (p1) .

Concerning Result 2, recall that function VG defined in the previous section is such that VG (p, x) ≤
V (p, x). It follows that X∗1,G (p) ∈ ĨG. Therefore

0 ≤ X∗1,G (p) ≤ p− p∗G
C1

.

By letting p tend to p∗G, we conclude that X∗1,G (p∗G) = 0. 2
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H Proof of Proposition 8

Let us explicit the exchange option price by:

Ce (p, x) = sup
τ

E
[
e−rτ

(
pe(r−δP

1
2σ

2
P )τ+σPW 1

τ − xe(r−δX−
1
2σ

2
X)τ+σX

(
ρW 1

τ+
√

1−ρ2W 2
τ

))]
.

Using

max (βNp− IN , βGp− γGx− IG) = max (βNp− IN + IG, βGp− γGx)− IG,
= max (− (IN − IG) , (βG − βN ) p− γGx)− IG + βNp,

≤ max (0, (βG − βN ) p− γGx)− IG + βNp,

we obtain
V (x, p) ≤ Ce ((βG − βN ) p, γGx) + C (βN , p, IG) ,

where C (βN , p, IN ) is the price of a call option defined by

C (βN , p, IG) = sup
τ

E
[
e−rτ (βNP pτ − IG)

]
.

If we take p > max
{

γG
βG−βN κ

∗x, β
β−1

IG
βN

}
, we have

V (p, x) ≤ (βG − βN ) p− γGx− IG + βNp,

= βGp− γGx− IG.

In fact, the condition p > max
{

γG
βG−βN κ

∗x, β
β−1

IG
βN

}
becomes p > γG

βG−βN κ
∗x for x high enough. And for

such an x, we finally have: V (p, x) = βGp− γGx− IG.
It follows that

lim sup
x→+∞

P ∗2,G (x)
x

≤ γG
βG − βN

κ∗.

To prove the other part of the proposition, we set p̂ = IN−IG
βG−βN . We then customize the indifference line

by the pair (p̂+ γG
βG−βN x, x). For every h > 0, we have using equation (A.1)

V (p̂+ (1 + h)
γG

βG − βN
x, x) ≥ V (p̂+

γG
βG − βN

x, x)

≥ βN (p̂+
γG

βG − βN
x)− IN +

√
tE(max(h1, h2)) + o(t),

where h1 = βNpσP g1 and h2 = (βGpσP − γGxσX)g1 −
√

1− ρ2γGxσXg2. Because g1 and g2 are two
independent Gaussian random variables, Jensen’s inequality gives

E(max(h1, h2)) ≥ γGxE(max(0, σXg2).

Thus, we obtain

V (p̂+(1+h)
γG

βG − βN
x, x) ≥ βN (p̂+

γG
βG − βN

x)−IN+
βGγG

βG − βN
x
√
t

(
βG − βN
βG

E(max(0, σXg2)) + o(1)
)
.

We choose t small enough to have o(1) > − 1
2
βG−βN
βG

E(max(0, σXg2)). Therefore, for every h ≤
√
t 12

βG−βN
βG

E(max(0, σXg2)),
we have

V (p̂+ (1 + h)
γG

βG − βN
x, x) > βN (p̂+

γG
βG − βN

x)− IN + h
βGγG

βG − βN
x.

Thus, the pair (p̂+ (1 + h) γG
βG−βN x, x) does not belong to the investment region and because h does not

depend on x, we have

lim inf
x→+∞

P ∗2,G (x)
x

>
γG

βG − βN
.

2

27



I Proof of Proposition 10

The proof of the first two results comes directly from the properties of functions x 7→ P ∗2,G (x) and
x 7→ P ∗1,N (x).

Concerning Result 3, as x 7→ P ∗3,G (x) is an increasing and convex function, and as the indifference
line does not belong to the stopping region, lim

x↑ IN−IG
γG

P ∗3,G (x) = +∞.

A similar arguments holds for Result 4, and the limit when x → +∞ comes from the limit of
x 7→ P ∗1,N (x). 2
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