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1 Examples of effective labor possibilities frontiers

1.1 The ELPF with heterogenous distribution due to specialization

Let us set two labor-allocation thresholds θ̃1 ∈
(
0, θ̄
)

and θ̃2 ∈
(
θ̄,∞

)
, which define

λ1 = θ̃1ν̄ and ν2 = λ̄/θ̃2 (see the right panel of Figure 1). We assume that population

density is reduced to g1 < g in the area between the two rays θ̃1ν and θ̃2ν, and increased

to g2 > g1 in the rest of the rectangle. The choice of g1 and of g2 are constrained because

of the population size. To compute population size in the heterogenous case we add to

the uniform population with density g1 over the whole rectangle, the increment by g2− g1

over the two regions North-West of the θ̃2ν ray and South-East of the θ̃1ν ray and get

P = g1λ̄ν̄ + (g2 − g1)
1
2
(
λ1ν̄ + λ̄ν2

)
The maximum amount of effective labor in R&D is

n̄ =
∫ ν̄

0
g1λ̄ · νdν +

∫ ν̄

0
(g2 − g1) θ̃1ν · νdν +

∫ ν2=λ̄/θ̃2

0
(g2 − g1) θ̃2ν · (ν2 − ν) dν

= g1λ̄

∣∣∣∣ν2

2

∣∣∣∣ν̄
0

+ (g2 − g1) θ̃1

∣∣∣∣ν3

3

∣∣∣∣ν̄
0

+ (g2 − g1) θ̃2ν2

∣∣∣∣ν2

2

∣∣∣∣ν2=λ̄/θ̃2

0

− (g2 − g1) θ̃2

∣∣∣∣ν3

3

∣∣∣∣ν2=λ̄/θ̃2

0

= g1
1
2
λ̄ν̄2 + (g2 − g1)

1
3
θ̃1ν̄

3 + (g2 − g1)
1
2
θ̃2ν

3
2 − (g2 − g1)

1
3
θ̃2ν

3
2

= g1
1
2
λ̄ν̄2 + (g2 − g1)

1
3
λ1ν̄

2 + (g2 − g1)
1
6
λ̄ν2

2

and the maximum amount of effective labor in production is

l̄ =
∫ λ̄

0
g1ν̄ · λdλ +

∫ λ̄

0
(g2 − g1)

λ

θ̃2

λdλ +
∫ λ1=θ̃1ν̄

0
(g2 − g1)

λ

θ̃1

(λ1 − λ) dλ

= g1ν̄

∣∣∣∣λ2

2

∣∣∣∣λ̄
0

+ (g2 − g1)
1
θ̃2

∣∣∣∣λ3

3

∣∣∣∣λ̄
0

+ (g2 − g1)
λ1

θ̃1

∣∣∣∣λ2

2

∣∣∣∣λ1=θ̃1ν̄

0

− (g2 − g1)
1
θ̃1

∣∣∣∣λ3

3

∣∣∣∣λ1=θ̃1ν̄

0

= g1
1
2
λ̄2ν̄ + (g2 − g1)

1
3

λ̄3

θ̃2

+ (g2 − g1)
1
2

λ3
1

θ̃1

− (g2 − g1)
1
3

λ3
1

θ̃1

= g1
1
2
λ̄2ν̄ + (g2 − g1)

1
3
λ̄2ν2 + (g2 − g1)

1
2
λ2

1ν̄ − (g2 − g1)
1
3
λ2

1ν̄

= g1
1
2
λ̄2ν̄ + (g2 − g1)

1
3
λ̄2ν2 + (g2 − g1)

1
6
λ2

1ν̄

To built the ELPF we establish the amount of effective labor in each sector as a

function of the labor-allocation cut-off θ, n (θ) and l (θ), using the rule of efficient labor
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allocation of Proposition 1. Next we obtain the frontier l = l̂ (n) by substituting for θ.

The procedure is applied to each of the four different regions as θ varies from 0 to ∞:

• For θ ∈ [0, θ̃1]

n (θ) =
∫ ν̄

0
g2θν · νdν = g2θ

∣∣∣∣ν3

3

∣∣∣∣ν̄
0

= g2
1
3
θν̄3

l (θ) = l̄ −
∫ λ̃=θν̄

0
g2

λ

θ

(
λ̃− λ

)
dλ = l̄ − g2

λ̃

θ

∣∣∣∣λ2

2

∣∣∣∣λ̃=θν̄

0

+ g2
1
θ

∣∣∣∣λ3

3

∣∣∣∣λ̃=θν̄

0

= l̄ − g2
λ̃3

θ

(
1
2
− 1

3

)
= l̄ − g2

1
6
θ2ν̄3

so that

l̂ (n) = l̄ − 3
2

1
g2ν̄3

n2

and n bounded between n (0) = 0 and n
(
θ̃1

)
= g2θ̃1ν̄

3/3 = g2λ1ν̄
2/3 ≡ n1;

• For θ ∈ [θ̃1, θ̄]

n (θ) =
∫ ν̄

0
g1θν · νdν +

∫ ν̄

0
(g2 − g1) θ̃1ν · νdν

= g1θ

∣∣∣∣ν3

3

∣∣∣∣ν̄
0

+ (g2 − g1) θ̃1

∣∣∣∣ν3

3

∣∣∣∣ν̄
0

= g1
1
3
θν̄3 + (g2 − g1)

1
3
λ1ν̄

2

l (θ) = l̄ −
∫ λ̃=θν̄

0
g1

(
ν̄ − λ

θ

)
λdλ−

∫ λ1=θ̃1ν̄

0
(g2 − g1)

(
ν̄ − λ

θ̃1

)
λdλ

= l̄ − g1

[
1
2
λ̃2ν̄ − 1

3
λ̃3

θ

]
− (g2 − g1)

[
1
2
λ2

1ν̄ −
1
3

λ3
1

θ̃1

]
= l̄ − g1

(
1
2
− 1

3

)
λ̃2ν̄ − (g2 − g1)

(
1
2
− 1

3

)
λ2

1ν̄

= l̄ − g1
1
6
θ2ν̄3 − (g2 − g1)

1
6
λ2

1ν̄

Rearranging n (θ) we have:

θ = 3
1

g1ν̄3

[
n− (g2 − g1)

1
3
λ1ν̄

2

]
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Substituting in l (θ) we get:

l̂ (n) = l̄ − (g2 − g1)
1
6
λ2

1ν̄ −
3
2

1
g1ν̄3

[
n− g2

1
3
λ1ν̄

2 + g1
1
3
λ1ν̄

2

]2

n is bounded between n1 and n
(
θ̄
)

= g1ν̄
3θ̄/3 + (g2 − g1) λ1ν̄

2/3 = g1λ̄ν̄2/3 +

g2λ1ν̄
2/3− g1λ1ν̄

2/3 = g2λ1ν̄
2/3 + g1

(
λ̄− λ1

)
ν̄2/3 ≡ n2;

• For θ ∈ [θ̄, θ̃2]

n (θ) =
∫ ν̃=λ̄/θ

0
g1θν · νdν +

∫ ν̄

ν̃=λ̄/θ
g1λ̄ · νdν +

∫ ν̄

0
(g2 − g1) θ̃1ν · νdν

= g1θ

∣∣∣∣ν3

3

∣∣∣∣ν̃=λ̄/θ

0

+ g1λ̄

∣∣∣∣ν2

2

∣∣∣∣ν̄
ν̃=λ̄/θ

+ (g2 − g1) θ̃1

∣∣∣∣ν3

3

∣∣∣∣ν̄
0

= g1
1
3

λ̄3

θ2
+ g1

1
2
λ̄ν̄2 − g1

1
2

λ̄3

θ2
+ (g2 − g1)

1
3
θ̃1ν̄

3

= g1
1
2
λ̄ν̄2 − g1

1
6

λ̄3

θ2
+ (g2 − g1)

1
3
λ1ν̄

2

l (θ) =
∫ λ̄

0
g1

λ

θ
· λdλ +

∫ λ̄

0
(g2 − g1)

λ

θ̃2

· λdλ

= g1
1
3

λ̄3

θ
+ (g2 − g1)

1
3

λ̄3

θ̃2

= g1
1
3

λ̄3

θ
+ (g2 − g1)

1
3
λ̄2ν2

Rearranging n (θ) we have:

1
θ

=
(

6
g1λ̄3

)1/2 [
g1

1
2
λ̄ν̄2 + (g2 − g1)

1
3
λ1ν̄

2 − n

]1/2

Substituting in l (θ) we get:

l̂ (n) = (g2 − g1)
1
3
λ̄2ν2 +

(
2
3
g1λ̄

3

)1/2 [
g2

1
3
λ1ν̄

2 + g1
1
2
(
λ̄− λ1

)
ν̄2 − n

]1/2

n is bounded between n2 and n
(
θ̃2

)
= g1λ̄ν̄2/2− g1λ̄

3/
(
6θ̃2

2

)
+ (g2 − g1) λ1ν̄

2/3 =

g1λ̄ν̄2/2−g1λ̄ν2
2/6+(g2 − g1) λ1ν̄

2/3 = g2λ1ν̄
2/3+g1

(
λ̄− λ1

)
ν̄2/3+g1λ̄

(
ν̄2 − ν2

2

)
/6 ≡

n3;
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• For θ ∈ [θ̃2,∞]

n (θ) = n̄−
∫ ν̃=λ̄/θ

0
g2

(
λ̄− θν

)
· νdν

= n̄− g2λ̄

∣∣∣∣ν2

2

∣∣∣∣ν̃=λ̄/θ

0

+ g2θ

∣∣∣∣ν3

3

∣∣∣∣ν̃=λ̄/θ

0

= n̄− g2λ̄
ν̃2

2
+ g2θ

ν̃3

3
= n̄− g2

1
2

λ̄3

θ2
+ g2

1
3

λ̄3

θ2

= n̄− g2
1
6

λ̄3

θ2

l (θ) =
∫ λ̄

0
g2

λ

θ
· λdλ = g2

1
θ

∣∣∣∣λ3

3

∣∣∣∣λ̄
0

= g2
1
3

λ̄3

θ

Rearranging n (θ) we have:

1
θ

=
(

6
g2λ̄3

)1/2

(n̄− n)1/2

Substituting in l (θ) we get:

l̂ (n) =
(

2
3
g2λ̄

3

)1/2

(n̄− n)1/2

n is bounded between n3 and n̄.

The ELPF is now the envelope of four concave functions

l̂ (n) =


l̄ − 3

2

(
g2ν̄

3
)−1

n2 ∀n ∈ [0, n1]

l̄ − g2−g1

6 λ2
1ν̄ − 3

2

(
g1ν̄

3
)−1 (

n− n1 + g1

3 λ1ν̄
2
)2 ∀n ∈ [n1, n2]

g2−g1

3 λ̄2ν2 +
(

2
3g1λ̄

3
)1/2 (

n2 − n + g1

6 λ̄ν̄2
)1/2 ∀n ∈ [n2, n3](

2
3g2λ̄

3
)1/2 (n̄− n)1/2 ∀n ∈ [n3, n̄]

where n1 ≡ g2

3 λ1ν̄
2, n2 ≡ n1 + g1

3

(
λ̄− λ1

)
ν̄2, n3 ≡ n2 + g1

6 λ̄
(
ν̄2 − ν2

2

)
, n̄ = n3 + g2

6 λ̄ν2
2 ,

and l̄ = g1

2 λ̄2ν̄ + g2−g1

3 λ̄2ν2 + g2−g1

6 λ2
1ν̄.

When comparing this case with the case of uniform population density g over Γ, we

impose the following constraint on g1 and g2 to maintain the population size constant:

g − g1

g2 − g1
=

1
2

(
λ1

λ̄
+

ν2

ν̄

)
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1.2 The ELPF with uniform distribution over a segment

Individual sector-specific skills are a function of individual ability ai ∼ U [0, 1] as

νi = αν + βνai and λi = αλ + βλai

This representation is equivalent to constraining the domain to Γα ≡ {ν, λ̃ (ν) |ν ∈ [αν , ν̄]} ⊂
Γ where λi = λ̃ (ν) ≡ α+βνi, with α ≡ αλ−ανβλ/βν and β ≡ βλ/βv, and ν̄ = αν +βν so

that λ̄ = αλ + βλ, implying λ ∈
[
αλ, λ̄

]
. Define θ ≡ αλ/αν and θ̄ ≡ (αλ + βλ)/(αν + βν).

Denote by x ∈ [0, 1] the fraction of the population P that is employed in R&D. The

units of effective labor input in each sector are computed as the product of the mass of

individuals and the average productivity, as function of x. First we consider the case of

positive correlation between individual skills (from case a to c), then the case of negative

correlation (case d). These different cases are illustrated in Figure 6.

Case (a): If θ = θ̄, then β = θ̄ and all individuals are characterized by the same rela-

tive skill index independently of their ability. The opportunity cost of providing effective

labor inputs to R&D is therefore independent of the relative size of the R&D sector. This

is exactly the same situation as in the one-point distribution case. The ELPF is linear.

Case (b): θ > θ̄ according to Proposition 1 in the R&D sector individuals with higher

ai are employed first. Hence the average productivity of workers decreases with the size

of the R&D sector

n (x) = xP
(
αν + βν − βν

x

2

)
l (x) = (1− x) P

(
αλ + βλ

1− x

2

)
Implying dn/dx = P (αν + βν − βνx) > 0, d2n/dx2 = −βνP < 0, dl/dx = −P [αλ + βλ(1−
x)] < 0 and d2l/dx2 = βλP > 0. Hence

dl

dn
=

dl

dx

dx

dn
= −αλ + βλ (1− x)

αν + βν (1− x)
< 0

d2l

dn2
=

d
(

dl
dx

)
dx

dx

dn
=

ανβλ − αλβν

P [αν + βν (1− x)]3
< 0

where the sign is established using θ ≡ αλ/αν > (αλ + βλ)/(αν + βν) ≡ θ̄, implying that

αλ/αν > βλ/βν ≡ β. This is the special case considered in O. Galor and D. Tsiddon’s pa-

per ‘Technological progress, mobility and economic growth’ (American Economic Review
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87(3), 363-382, 1997).

-

6λ

ν
-

6λ

ν

αλ

αλ + βλ

αν + βναν

αλ + βλ

αλ

αν αν + βν

(a) (b)

-

6λ

ν
-

6λ

ναν + βν

αλ

αλ + βλ

αλ + βλ

αλ

αν + βν
αν

(c) (d)

αν

Figure 6: Uniform distributions over a segment.

Case (c): θ < θ̄ according to Proposition 1 in the R&D sector individuals with lower

ai are employed first. Hence the average productivity of workers increases with the size of

the R&D sector

n (x) = xP
(
αν + βν

x

2

)
l (x) = (1− x) P

(
αλ + βλ − βλ

1− x

2

)
7



Implying dn/dx = P (αν + βνx) > 0, d2n/dx2 = βνP > 0, dl/dx = −P [αλ + βλx] < 0 and

d2l/dx2 = −βλP < 0. Hence

dl

dn
=

dl

dx

dx

dn
= −αλ + βλx

αν + βνx
< 0

d2l

dn2
=

d
(

dl
dx

)
dx

dx

dn
=

αλβν − ανβλ

P (αν + βνx)3
< 0

where the sign is established using θ ≡ αλ/αν < (αλ + βλ)/(αν + βν) ≡ θ̄, implying that

αλ/αν < βλ/βν ≡ β.

Case (d): If β < 0 there is negative correlation of sector-specific skills across individ-

uals. Here ai is not an index of absolute competence over all sectors, i.e., “ability”, but

rather an index of comparative advantage in R&D. Starting from no R&D activity, the

first individuals to be employed are the best researchers, who are also the least effective

workers in the production sector. Let x be the share of population employed in R&D.

Effective labor inputs are given by

n (x) = xP

(
αν +

βν

2
x

)

l (x) = (1− x) P

[
αλ +

βλ

2
(1− x)

]
The two equations define implicitly a strictly concave frontier, since

dl̂ (n) /dn = (dl (x) /dx) (dx/dn) = − (αλ + βλ − βλx) / (αν + βν) < 0

since αλ + βλ > 0 and x ∈ [0, 1], while

d2 l̂ (n) /dn2 =
(
d2l (x) /dx2

)
(dx/dn) = βλ/ (αν + βν) < 0.

1.3 Fully specialized individuals

Assume g̃ (ν, λ) > 0 only for skill bundles lying on the axes of Γ, i.e., ∀i ∈ [0, P ] νi > 0

⇒ λi = 0 and λi > 0 ⇒ νi = 0. It is impossible to increase effective labor inputs in

one sector by diverting raw labor from the other sector. The ELPF equals l̄ ∀n ∈ [0, n̄),

can take any value l ∈ [0, l̄] for n = n̄, and l = 0 ∀n > n̄, where n̄ =
∫ ν̄
0 νg̃ (ν, 0) dν and

l̄ =
∫ λ̄
0 λg̃ (0, λ) dλ. The ELPF has the shape of a Leontief production function (see the

working paper version of this article available of LERNA’s web site as w.p. n.06.22.215).
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2 Dynamic analysis

This section presents the details of the analysis of the dynamic system obtained in section

3 of the paper from the social planner optimization problem.

In order to characterize the dynamics of the system, we need to obtain the two functions

defining the phase diagram in the (R,n) plane. First we determine and analyze the

schedule Ṙ = 0, then we turn to the locus ṅ = 0.

Finally we linearize the dynamic system around the steady state to obtain the eigen-

values that are used in the reversed shooting procedure for the simulation.1

Determining the locus Ṙ = 0. By definition of Rt, taking logs and differentiating

with respect to time, then using (8) and (6), we have:

Ṙt

Rt
= bnt −

Al̂ (nt)
Rt

(19)

Hence the schedule Ṙ = 0 is given by the function nR (R), defined implicitly by:

G (R,n) ≡ bn− Al̂ (n)
R

= 0

We check that ∂G
∂n = b − Al̂′(n)

R > 0 and ∂G
∂R = Al̂(n)

R2 > 0. The Ṙ = 0 locus is therefore

downward sloping
dnR

dR
= −∂G/∂R

∂G/∂n
= − Al̂ (n)

bR−Al̂′ (n)
< 0

Furthermore along nR, R = (A/b)
(
l̂ (n) /n

)
(where l̂ (n) /n is the slope of the ray from

the origin to l̂ (n)), so that if R → 0, l̂ (n) /n → 0 and n → n̄ along nR, while if R →∞,

l̂ (n) /n →∞ and n → 0 along nR. Since ∂G/∂R > 0, if R is reduced from nR (R), holding

n constant (i.e. below the schedule) then Ṙ < 0, and vice versa on the North-East of the

schedule Ṙ > 0.

Determining the locus ṅ = 0. We begin by substituting (13) in the F.O.C. (9) to
1The procedure and program were adapted from M. Brunner and H. Strulik’s paper ‘Solution of perfect

foresight saddlepoint problems: a simple method and applications’ (Journal of Economic Dynamics and
Control 26: 737-753, 2002).
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get: [
Al̂ (nt)

]−ε
e−ρtAl̂′ (nt) = µAB−1

t l̂′ (nt)− bµSt

c−ε
t e−ρtAl̂′ (nt) = µ

A

Bt

[
l̂′ (nt)−

b

A
BtSt

]
c−ε
t e−ρt =

µ

Bt

[
1− b

A

Rt

l̂′ (nt)

]
c−ε
t e−ρt =

µ

Bt
[1− bX (Rt, nt)]

Taking logs and differentiating with respect to t:

−ε
ċt

ct
− ρ = −Ḃt

Bt
− bẊt

1− bXt
(20)

From the Leontief technology we know that ct = Al̂ (nt), and therefore:

ċt

ct
=

l̂′ (nt)

l̂ (nt)
ṅt =

l̂′ (nt)

l̂ (nt)
nt

ṅt

nt
= −σ (nt)

ṅt

nt
(21)

From the definition of X (Rt, nt) we have:

Ẋt

Xt
=

Ṙt

Rt
− ṅt

nt

l̂′′ (nt) nt

l̂′ (nt)

which taking into account (19) and the definition of η (nt) gives

Ẋt

Xt
= bnt −

Al̂ (nt)
Rt

− η (nt)
ṅt

nt

substituting into (20), using (21), we get

−εσ (nt)
ṅt

nt
+ ρ = bnt +

bXt

1− bXt

[
bnt −

Al̂ (nt)
Rt

− η (nt)
ṅt

nt

]

=
1

1− bXt

[
bnt − bXt

l̂ (nt)

l̂′ (nt)

1
Xt

− bXtη (nt)
ṅt

nt

]

Taking all terms in ṅt on the right-hand-side and simplifying

[
εσ (nt)−

bXt

1− bXt
η (nt)

]
ṅt

nt
=

bnt

1− bXt

[
l̂ (nt)

l̂′ (nt) nt

Xt

Xt
− 1

]
+ ρ

10



We have therefore determined the law of motion of n as function of n and R as given by

ṅt

nt
=

ρ− bnt
1−bXt

[
1 + 1

σ(nt)

]
εσ (nt)− bXt

1−bXt
η (nt)

(22)

The locus ṅ = 0 in the (R,n) plane is given by the function nn (R) defined implicitly by

ṅt

nt
= 0 ⇔ F (R,n) =

bnt

1− b Rt

Al̂′(nt)

[
1 +

1
σ (nt)

]
− ρ = 0 (23)

To study the slope of this schedule, we need to explore how F depends on n and R.

We have that
∂F

∂R
=

b2nt[
1− b Rt

Al̂′(nt)

]2 [1 +
1

σ (nt)

]
1

Al̂′ (nt)
< 0

which is negative because l̂′ < 0 and σ > 0. When differentiating F with respect to n, we

need to go through some tedious algebra to determine the sign.

∂F

∂n
=

[
1 +

1
σ (nt)

] ∂

(
bnt

1−b
Rt

Al̂′(nt)

)
∂n

+
bnt

1− b Rt

Al̂′(nt)

∂1/σ (nt)
∂n

=
[
1 +

1
σ

] b
(
1− b R

Al̂′

)
− bnbR Al̂′′

[Al̂′]2[
1− b R

Al̂′

]2 +
bn

1− b R
Al̂′

−∂σ/∂n

[σ]2

=
[
1 +

1
σ

]
b (1− bX)− b2n R

Al̂′
A
A

l̂′′

l̂′

(1− bX)2
+

bn

1− bX

l̂′ l̂ + l̂′′ l̂ − l̂′nl̂′(
σl̂
)2

=
b

1− bX

[
1 +

1
σ

]
− bX

(1− bX)2
bη

[
1 +

1
σ

]
+

bn

1− bX

l̂2(
l̂′n
)2

l̂l̂′ + l̂l̂′′

l̂2
− b

1− bX

1
σ2

(
l̂′n

l̂

)2

=
b

1− bX

1
σ
− bX

(1− bX)2
bη

[
1 +

1
σ

]
+

b

1− bX

[
l̂

l̂′n
+

l̂

l̂′n

l̂′′n

l̂′
1
n

]

=
b

1− bX

1
σ
− bX

(1− bX)2
bη

[
1 +

1
σ

]
− b

1− bX

1
σ

[
1 +

η

n

]

11



and continuing

∂F

∂n
= − bX

(1− bX)2
bη

[
1 +

1
σ

]
− bX

1− bX

1
σ

η

n

= − bXη

(1− bX)

[
b

1− bX

(
1 +

1
σ

)
+

1
σ

1
n

]
= − bXη

n (1− bX)

(
ρ +

1
σ

)
> 0

Substituting for bn
1−bX

(
1 + 1

σ

)
= ρ we obtain

∂F

∂n
= − bXη

n (1− bX)

(
ρ +

1
σ

)
> 0

The sign is determined knowing that η > 0, X < 0, b > 0, σ > 0, n > 0.

We conclude that the ṅ = 0 schedule is upward sloping in the (R,n) plane since

dnn

dR
= −∂F/∂R

∂F/∂n
=

bn
(
1 + 1

σ

)
Al̂′η

[
bX − 1

σ
1
n + 1

σ
1
nbX

] > 0

We also have that ṅ < 0 North-West of the nn schedule and vice versa n increases

South-East of the schedule. In fact, starting from a point on the nn schedule, hold R con-

stant and increase n. This change implies F > 0 since ∂F/∂n > 0, i.e., bn (1 + 1/σ) / (1− bX) >

ρ which with (22) determines ṅ < 0.

Figure 7 illustrates the phase diagram. The steady state is a saddle path stable.
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Figure 7: Phase diagram.
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Linearization. Consider the system of non-linear differential equations given by (14)

and (15):  Ṙ ≡ f1 (R,n) = bnR−Al̂ (n)

ṅ ≡ f2 (R,n) =
ρ− bn

1−bX (1+ 1
σ )

εσ− bX
1−bX

η
n

where time subscripts have been dropped. To linearize the system around the steady state

it is necessary to perform a Taylor expansion of the first order, i.e.∣∣∣∣∣ Ṙ

ṅ

∣∣∣∣∣ =
∣∣∣∣∣ f1 (R∗, n∗)

f2 (R∗, n∗)

∣∣∣∣∣+
∣∣∣∣∣f1

R (R∗, n∗) f1
n (R∗, n∗)

f2
R (R∗, n∗) f2

n (R∗, n∗)

∣∣∣∣∣
∣∣∣∣∣ R−R∗

n− n∗

∣∣∣∣∣+ ◦

Of course f1 (R∗, n∗) = f2 (R∗, n∗) = 0, by definition of R∗ and n∗. Before computing the

partial derivatives of the differential equations, let us recall a few definitions:

σ = − l̂′(n)

l̂(n)
n > 0 ; η =

l̂′′ (n)

l̂′ (n)
n > 0

X = R
Al̂′(n)

< 0 ; R∗ =
A

ρ
l̂
(ρ

b

)
> 0

and n∗ = ρ/b > 0. We have that:

f1
R = bn

implying:

f1
R (R∗, n∗) = ρ > 0

and

f1
n = bR−Al̂′ (n)

so that

f1
n (R∗, n∗) = −Al̂′

(ρ

b

)(
1 +

1
σ∗

)
> 0

Turning to the differential equation describing the optimal evolution of the control variable,

we find

f2
R =

bn
(1−bX)2

∂X
∂R

εσ − bX
1−bX η

[
ρ− bn

1−bX

(
1 + 1

σ

)
εσ − bX

1−bX η
η − bn

(
1 +

1
σ

)]

where ∂X/∂R = X/R =
[
Al̂′ (n)

]−1
. Using the fact that at steady state bX∗ = −1/σ∗

13



and bn∗

1−bX∗

(
1 + 1

σ∗

)
= ρ, we get

f2
R (R∗, n∗) = −

ρ2/
[
Al̂′
(ρ

b

) (
1 + 1

σ∗

)]
εσ∗ + η∗

1+σ∗

=
ρ2

εσ∗ + η∗

1+σ∗

1
f1

n (R∗, n∗)
> 0

Finally the partial derivative with respect to R&D employment is

f2
n =

1
εσ − bX

1−bX η

[
ρ− 2

bn

1− bX

(
1 +

1
σ

)
+

bn

1− bX

n

σ2

∂σ

∂n
−
(

bn

1− bX

)2(
1 +

1
σ

)
∂X

∂n

−
ρ− bn

1−bX

(
1 + 1

σ

)
εσ − bX

1−bX η
n

(
ε
∂σ

∂n
− bX

1− bX

∂η

∂n
− bη

(1− bX)2
∂X

∂n

)]

where ∂σ
∂n = σ

n (1 + σ + η), ∂η
∂n = η

n

(
1− η + l̂′′′(n)

l̂′′(n)
n
)
, and ∂X

∂n = − 1
nXη. Using this and

again 1−bX∗ = 1+1/σ∗ and bn∗

1−bX∗

(
1 + 1

σ∗

)
= ρ, the expression simplifies at steady state

to

f2
n (R∗, n∗) =

1
εσ∗ + η∗

1+σ∗

[
ρ− 2

bρ/b

1 + 1
σ

(
1 +

1
σ

)
+

bρ/b

1 + 1
σ

ρ/b

σ2

σ

ρ/b
(1 + σ + η)

−

(
bρ/b

1 + 1
σ

)2(
1 +

1
σ

)
b

ρ

1
bσ∗ η∗ − 0 · ...


=

1
εσ∗ + η∗

1+σ∗

[
ρ− 2ρ + ρ

(
1 +

η∗

1 + σ∗

)
− ρ

η∗

1 + σ∗

]
= 0

Hence the linearized system can be computed as Ṙ = ρ (R−R∗) +−Al̂′
(ρ

b

) (
1 + 1

σ∗

)
(n− n∗)

ṅ = ρ2

εσ∗+ η∗
1+σ∗

1
f1

n(R∗,n∗) (R−R∗) + 0 · (n− n∗)

that is  Ṙ = ρR−Al̂′
(ρ

b

) (
1 + 1

σ∗

)
n + Aρ

b l̂
′ (ρ

b

)
ṅ = ρ2

εσ∗+ η∗
1+σ∗

1
f1

n(R∗,n∗)R− ρ2/b
εσ∗(1+σ∗)+η∗
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The matrix of the corresponding linear autonomous system of differential equations is

M ≡

∣∣∣∣∣∣
ρ −Al̂′

(ρ
b

) (
1 + 1

σ∗

)
− ρ2

εσ∗+ η∗
1+σ∗

1
Al̂′( ρ

b )(1+ 1
σ∗ ) 0

∣∣∣∣∣∣
This matrix has a negative determinant

det (M) = − ρ2

εσ∗ + η∗

1+σ∗

< 0

meaning that the eigenvalues are real and of opposite sign. The steady state is character-

ized by saddle-path dynamics.
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