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Abstract: In this paper, we analyze infinite discrete-time games between hydraulic and thermal power 

operators in the wholesale electricity market. Two types of games are considered: Cournot closed-loop game 

and Stackelberg closed-loop game. We consider a deregulated electrical industry where certain demand is 

satisfied by hydraulic and thermal technologies. The hydraulic operator decides the production in each season 

of each period that maximizes the sum of expected profit from power generation with respect to the stochastic 

dynamic constraint on the water stored in the dam, the environmental constraint and the non-negative output 

constraint. In contrast, the thermal plant is operated with quadratic cost function, with respect to the capacity 

production constraint and the non negativity output constraint. This paper is devoted to the numerical 

computations of equilibrium strategies and value function in each kind of games. We show that under imperfect 

competition, the hydraulic operator has a strategic storage of water in the peak season.  Then, we quantify the 

strategic inter annual and intra annual water transfer in the both games and we compare the numerical results. 

Under Cournot closed-loop game, we show that the traditional principle of least-cost operation is inverted at the 

binding capacity constraint of thermal operator. Finally, under Stackelberg closed-loop game, we show that 

thermal operator can restrict the hydraulic output without compensation. The technical complementarities and 

Stackelberg competition may distorted the traditional "merit order" operating principal. 
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DYNAMIC GAMES IN THE WHOLESALE  

ELECTRICITY MARKET 

1-INTRODUCTION 
    In the last decades, the electricity industry set out the very important structural reform by 

inserting a competition in generation of high voltage. The transmission and distribution of 

electricity have been considered by most economists as "natural monopoly". These changes 

have split the single state owned firm into several private owned firms that compete in a 

single market: the wholesale electricity market. The economic analysis has been turned 

toward some problems like as congestion of transmission electric power network, 

concentration measures, horizontal market power, electricity spot market, bilateral 

transaction, nodal pricing in a simple and a complex network, etc; and which has been made 

in a static framework compatible with thermal power generation system. Thus, there are few 

analyses concerning the restructuring of the electricity industry with heterogeneous 

technologies. This paper takes part in the new research field concerning the mixed 

hydrothermal system operating problems under deregulated industry. The objectives of the 

paper are also to compute numerical equilibrium strategies in two kinds of games and to find 

the conditions under which the imperfect competition breeds a distortion to traditional least-

cost rule used in the mixed system operating. 

    In several countries, the liberalization process had led to different asymmetric duopoly. The 

first asymmetric case concerned the British electricity supply industry which has been 

transferred to two successors companies: National power and Gen power. In this case, Green 

and Newbery (1992) have shown that "... in an asymmetric case, less output would be sold at 

higher price, and industry operating costs will be further raised for any level of output since 

the stations will no longer operate in "merit order". The second asymmetric case is spreading 

across countries owned with significant hydraulic resources like as Norway, New Zealand, 

Western United States, etc. In the economic literature, there are few studies on the strategic 

behavior of hydraulic and thermal operators after the reform of the electricity industry. In the 

New Zealand case, Scott T. J and E. G. Read (1996) have developed a dual dynamic 

programming approach in order to characterize an optimal hydraulic schedule for a strategic 
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firm that controls all the storage hydro capacity in a market with other Cournot producer that 

controls the thermal generation. They show that «... there is relatively little loss in 

coordination efficiency if, but only if, there is a high level of contracting and / or a high 

effective elasticity". The same problem has been analyzed in J. Bushnell (1998) model which 

developed a sub-game perfect equilibrium of a multi-period Cournot game between strategic 

producer who controls both hydro and thermal technologies. In the latter, the author has 

shown that hydraulic releases are directly done in contradictory to the principle of least-cost 

production since this decision appears as profitable for certain firms. Also, C. Crampes and 

M. Moreaux (2000) have analyzed the strategic behavior of thermal and hydraulic operators 

in closed-loop game and open-loop game with two periods. The authors have shown how the 

presence of the hydroelectric station changes the optimal as well as the market equilibrium 

outputs of the thermal station. They found that the thermal plant facing hydro plants has to be 

managed as if it were dynamically connected. The interrelation between heterogeneous 

technologies can imply other results. Indeed, the technological complementation may incite, 

under some conditions, operators to behave strategically in the electricity market and in the 

inverse to the traditional "merit order" operation. 

    None of theses models take into account the uncertainty in hydraulic resource evolution. 

The objective of this paper is to develop a multi-periods game between thermal and hydraulic 

operators in an uncertain framework. We based our analyses on the C. Crampes and M. 

Moreaux model in order to develop a more realistic asymmetric case. Indeed, the main 

characteristic of the thermal plants is the possibility to supply certain but an expensive output. 

Regarding hydraulic plant, its output is linked to a sub-renewal resource with intrinsic 

uncertain profile. Before the inflows realization, hydraulic power is provisory an exhaustible 

resource and any additional release reduces the residual water quantity stored in the dam. But, 

once the inflows are realized, any quantity of water devoted for power generation can be 

totally or partially renewed by the natural process. We think that this kind of uncertainty and 

the technical complementation may be in favor of strategic behavior particularly in higher 

priced peak market. Consequently, this may distort the traditional "merit order" rule and 

which is against the target of the structural change in the electricity industry. 

    The rest of the paper proceeds as follow. In the section 2, we present the model. Then, in 

section 3, we deal with a Cournot closed-loop game between thermal and hydroelectric 

operators in the wholesale electricity market. Section 4 is devoted to the numerical analysis of 

Stackelberg closed-loop game between the two operators. Next, we compare the numerical 

results of imperfect competition. We conclude in section 5. 
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THE MODEL 
 

    Consider a multi-periods model where electric power is generated by two technologies: 

thermal technology (T) and hydraulic technology (H). The total output is used to satisfy a 

known demand. Since electric power demand is characterized by fluctuation, then we divide 

time into infinite years indexed by 0,1,...t = ; and the year is divided into two seasons 

( { },j h l= , the peak season ( ) and the off-peak season ( ). Let  be the inverse 

demand function in the season

h l (j jtP q )
j . It is assumed to be a linear demand 

function: ( ) H T
jtj jt j jtP q a q q= − − , where H

jtq

T
jt

 is the electricity demand satisfied by the 

hydroelectric technology,  is the electricity demand satisfied by the thermal technology 

and  is a positive constant representing the demand characteristic in each season. From year 

to year, we take the assumption of the stationary of electrical demand function. Since in each 

season the output of two plants is homogenous then total electric power generation is written 

as the some of thermal plant output, q  and hydroelectric plant output 

T
jtq

ja

H
jtq  : for a period t  and 

a season j , H T
jt jt jtq q q= + . 

    The hydraulic plant uses as input a sub-renewable resource stored in a dam. In every year t , 

the total output must satisfy the following technical constraint: 1 1
hH lH

t t t t tS S q q f+ += − − + . We 

denote by  the current stock and tS 1tf +  the inflow assumed to be observed at the end of the 

period . To simplify we do not consider the technical limit in terms of water turbinet 1and we 

assume that hydraulic generation is costless. The inflows of period t  are denoted by a random 

variable 1tf +  with density probability function ( )1tfφ +′  defined on 0, F⎡ ⎤⎣ ⎦ , where F  is the 

maximum inflow. In addition, we assume that inflows are represented by a random and a 

stationary process, { }1 0,1,2,...t t
f + =

 defined on 0, F⎡ ⎤⎣ ⎦ . In addition, the hydroelectric operator must 

satisfy an environmental constraint: his storage at the end period must be at a known level . 

Where  is the level at which if it is not respected, the producer must pay a cost assumed to 

*S
*S

                                                 
1 Bernard J. T. and J. Chatel (1984) are analyzed operating and investment problem in a mixed hydrothermal 
system with technical limit in terms of water turbine. 
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be quadratic: ( 2*
1

1
2 tS S +− − ) . This assumption is compatible also with a mobile dam2 and a 

fixed dam. First, if the dam is mobile, then  represents the maximum capacity of the fixed 

part which to simplify is confounded with maximum alert level. Consequently, any current 

stock  beyond the level  represents the supplementary water resource stored by closing 

the gates in order to avoid flood. Second, if the dam is a fixed one, then the penalty cost paid 

by producer is due to bad release policy not compatible with flooding period. This case is 

observed in July1996 in Kénogami dam located in sanguinary region in Quebec. During this 

period, the planner observed an abundant in flows in three days which has affected the water 

level. The water level attends 166,08 m which exceeds the maximum capacity of the dam 

equals to 165,67 m. Since the planner does not adopt a release policy compatible with this 

flooding period, then this over taking of maximal capacity cause a flood with enormous 

damages. Consequently, the quadratic form penalty cost compatible with the area flooded 

around the dam. Now, if the expected storage at the end of a period t is less then the level , 

then it causes a negative externality on other activity around the dam such as navigation, 

agriculture...etc. 

*S

tS *S

*S

j    The technical characteristics of the thermal plant are the following. At each season  

during the period t , the generation of  units of energy from thermal plant needs a total cost 

equals to . We assume that the thermal operating cost function is quadratic on

T
jtq

( T
jtC q ) 0,

T⎡ ⎤
⎢ ⎥⎣ ⎦

q : 

For all  0,T
jtq ⎡∈ ⎢

T
q

⎣ ⎦
⎤
⎥  and for all season { },j h l∈ : ( ) ( )21

2
T
jt j jtC q c q= T . Where  is a positive 

constant for all season 

jc

{ }j ,h l∈  and 
T

q is a known and a positive constant representing the 

installed capacity. By this hypothesis we neglect the depreciation problem linked to thermal 

plant operating. 

    We consider a wholesale electricity market with duopolistic structure. We assume that each 

operator controls one process. The new industrial structure is represented as following: 

                                                 
2 More information about mobile dam and a fixed dam are available on line at 

http://retd.edf.fr/futur/publications/disponible.htm. 
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Fig 1: The new structure of electricity industry. 

COURNOT CLOSED-LOOP GAME 
    In this section, we assume that the two operators compete in Cournot closed-loop game in 

the electricity market.  

    The thermal operator chooses the output in the peak and off-peak season of every period 

that maximizes his profit and where the hydroelectric operator output H
jtq , for { },j l h∈  is 

taken as given. The thermal operator solves the following problem: 

{ }
( ) ( ) ( ) ( )

,
max

T T
lt ht

T H T T T H T T
h ht ht ht h ht l lt lt lt l lt

q q
P q q q C q P q q q C q+ − + + −      (1) 

 With respect to the capacity constraint and the non negativity constraint: 

0
TT

jtq q≤ ≤   , for all { },j h l∈   and all 0,1,...t =                      (2) 

 The thermal operator problem is a static one. The first order conditions are: 

( ) ( ) ( ) 0j jH T T H T T T T
jt jt jt j jt jt jt jt jtT T

jt jt

P dC
q q q P q q q

q dq
μ θ

∂
+ + + − − + =

∂
     (3) 

( ) 0
TT T

jt jtq qμ − =   ,  0T T
jt jtqθ =                              (4) 

0T
jtμ ≥   ,   ,         (5) 0T

jtq ≥ 0T
jtθ ≥

 Where T
jtμ  and T

jtθ  are the multipliers associated respectively to the capacity constraint and 

the non-negativity constraint. 
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    The first order conditions give the reaction function of the thermal operator in each season 

of the period t : 

( )
2

H
j jtT H

jt jt
j

a q
R q

c
−

=
+

      (6) 

    Let (T H
jt jt )R q  be the reaction function of thermal operator in season j  of period t . Given the 

assumption on the inverse demand function and the cost function, then the reaction function is 

a strictly decreasing one:
( )2

1 0
2

T
jt
H
jt j

dR
dq c

= − <
+

. 

    The hydraulic operator maximizes the sum of expected profit from power generation under 

the stochastic dynamic constraint on the water stored in the dam, the environmental constraint 

and the non-negativity output constraint. The hydraulic operator solves the following 

problem, where , are taken as given, for alltS T
jtq { },j h l∈ : 

{ }
( ) ( ) ( )

0

0

2*
1

, 0

1max
2H H

lt ht t

T H H T H H
h ht ht ht l lt lt lt t

q q t

E P q q q P q q q S S
+∞

=

+∞

+
=

⎧ ⎫+ + + − −⎨ ⎬
⎩ ⎭
∑  

  

With respect to the dynamic constraint: 

1 1
hH lH

t t t t tS S q q f+ += − − + ,   for all 0,1,...t =  

0S is given. 

 The closed-loop strategy of hydraulic operator satisfies the Bellman equation: 

( )
{ }

( ) ( ) ( ) ( )
0

2*
1 1

, 0

1max
2H H

lt ht t

c T H H T H H c
t h ht ht ht l lt lt lt t t t

q q t
J S P q q q P q q q E J S S S

+∞

=

+∞

+ +
=

⎧ ⎫= + + + + − −⎨ ⎬
⎩ ⎭

∑  

Where  is the mean operator conditional to the information at period t which includes  

and  is the current value function associated to the stochastic dynamic program. It is 

assumed to be quadratic with unknown coefficients  and

( )tE ⋅

( )c ⋅

tS

J

cb cB : 

( ) ( )21
2

c c c
t tJ S b S B S= − t

                                                

 

In the stochastic dynamic programming terminology, this solution is called the closed-loop 

strategy. Under the above hypothesis, the equilibrium strategy exists and it is unique3. 

 
3  See Blume L. Easley D. and M. O'Harra (1982). 
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    The first order condition in the season j at period  is: t

( ) ( ) 1
j H T H H T c

jt jt jt j jt jt tH
jt

P
q q q P q q V

q +

∂
+ + + =

∂
 

1
1 1j c

t
jt

P V
η +

⎛ ⎞
+ =⎜ ⎟⎜ ⎟

⎝ ⎠
 

    Where ( ) { }*1
c c

t t t tV E J E S S+ ′= − −1+  represents the net marginal value of the hydraulic 

resources in stock under the decentralized industry. Since is a concave function then cJ 1
c

tV +  is 

an increasing function in  and a decreasing function in 4jH
tq tS . We denote jtη  the demand 

elasticity in season j  of period t . We assume that jtη  is negative and ht ltη η< . 

    The combination of the two first order conditions implies 

( )* 11 1 1
3 3 3 3

c cc c
jtH T H

jt jt t j tc c c c

a b S B fB Bq q S q
B B B B′

− − + ++ +
= − + − +

+ + + +
 

 For all  andj j′≠ ( ) { } { }, , ,j j h l h l′ ∈ × ; where f  represents the inflows mean. 

    This equation gives the hydroelectric output in the peak season as a function of the thermal 

operator output in the same season, the current state of the hydraulic storage and the water 

release in the off-peak season at the period . t

    The resolution of Bellman equation by undetermined coefficient method gives the 

equilibrium strategy of each player in period t 5. The results are presented in the following 

proposition. The resolution of this equations system determines the hydraulic operator 

strategy in each season as a function of the current stock: ( ) ( ) ( )* * *,Hc Hc Hc
t t ht t lt tq S q S q S⎡ ⎤= ⎣ ⎦ . 

Next, we replace this strategy in the reaction function of thermal operator; we find that this 

latter is written as a function of the current stock of hydraulic operator ( )Tc Hc
jt jt jt tq R q S⎡ ⎤= ⎣ ⎦ . 

The equilibrium strategy of thermal operator in the period t  is written 

as: . ( ) ( ) ( )* * *,Tc Tc Tc
t t ht t lt tq S q S q S⎡ ⎤= ⎣ ⎦

 

 

                                                 

4 
2

1
2

1

1 0
c c

t
t

t t

V d JE
S S
+

+

⎧ ⎫∂
= −⎨ ⎬∂ ⎩ ⎭

<  and 1 1 0
c c

t t
jH

t t

V V
q S

+ +∂ ∂
= − >

∂ ∂
. 
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Proposition 1 

    In a closed-loop game, the thermal and the hydroelectric operators output in the peak 

season and in the off-peak season is given by the following equations: 

( ) ( ) ( ) ( ) *
*

4 8 3 10 1 25 125 1
97 52 97 52

c c cc
ht ltHc

ht tc c

cB a B a B f SB
q S

B B

b⎡ ⎤+ − + − + − −+ ⎣ ⎦= +
+ +

 

( ) ( ) ( ) ( ) *
*

13 8 2 1 5 15 1
97 52 97 52

c c cc
ht ltTc

ht tc c

cB a B a B f SB
q S

B B

b⎡ ⎤+ + + + + − −+ ⎣ ⎦= − +
+ +

 

( ) ( ) ( ) ( ) *
*

2 14 5 12 1 27 127 1
97 52 97 52

c c cc
lt htHc

lt tc c

cB a B a B f SB
q S

B B

b⎡ ⎤+ − + − + − −+ ⎣ ⎦= +
+ +

 

( ) ( ) ( ) ( ) *
*

23 14 4 1 9 19 1
97 52 97 52

c c cc
lt htTc

lt tc c

cB a B a B f SB
q S

B B

b⎡ ⎤+ + + + + − −+ ⎣ ⎦= − +
+ +

 

2.0527cB =  and 4 *2.96 10 1.29 0.37c
ht ltb f S a−= × − − − a  

    We remark that both thermal operator strategy and hydraulic operator strategy depend on 

current stock , on the inflows meantS f , on the storage level  and on the electric demand in 

the peak season and off-peak season. The comparative static in the regulated industry ( ) 

*S

m
6and the Cournot competition case ( ) is given by the following table: c

t  Systems *H
htq  *T

htq  *H
ltq  *T

ltq  

c 0,374 -0,075 0,405 -0,134  

tS  m 0,322 -0,08  0,48 -0,24 

c 0,118 0,169 -0,349 0,115  

hta  m 0,6 0,1 -0,165  0,3 

c -0,195  0,038 0,187 0,269  

lta  m -0,11 0,22 0,4 0,3 

c -1,9�10�³ -0,03 -0,4�10�³ -3,05.10��  

f  m 0,4 -0,1 0,6 -0,3 

c -1,098 0,221 -1,193 0,397  

*S  m -0,32 0,08 -0,48 0,24 

 

Table 3: Comparative static in the  Cournot competition case. 

                                                                                                                                                         
5 See Basar T. and Olsder G. J (1995). 
6 See Dakhlaoui A. and M. Moreaux (2004). 
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    From this table, we remark that any increase in water resource encourages the hydraulic 

operator to make an intra-annual transfer from peak season to off-peak season. We compare 

the Cournot solution with the first best solution; we conclude that the intra-annual transfer 

sense is maintained also with the structural change in the electricity industry. There is a 

change only in the volume of transfer. Indeed, the intra-annual transfer is appraised at 

0,158  under the regulated industry and it is appraised only at 0,031  under Cournot 

competition. This show that, for a given period, the use of supplementary resource in the peak 

season under deregulated system is greater than those under regulated system. Thus, the 

storage effect (

tSΔ tSΔ

H
t tSE S q= Δ −Δ t )7 of competition solution is greater than the storage effect of 

the first best solution8. In addition, the intra-annual transfer affects the thermal operator 

strategy. Indeed, this latter cannot decrease his output only with a quantity equals to 0,075 tSΔ  

units in the peak season and with a quantity equal to 0,134 tSΔ  units in the off-peak season. 

Consequently, the substitution of expensive technology output with costless. Technology 

output under competition is less than the substitution under regulated system9. Regarding the 

satisfaction of any increase in the peak demand, both the thermal operator and the hydraulic 

operator increase their output in different proportions. The hydraulic producer prefers to make 

an intra-annual transfer from off-peak season to peak season. Indeed, the release increase in 

the peak season and it is appraised at 0,118 htaΔ  units, but the release decrease in the off-peak 

season is appraised at 0,349  units. For the thermal operator, he increases the output in 

both seasons in order to let possible the storage of water resource in the off-peak season. We 

remark that the hydraulic operator does not use all the intra-annual transfer to satisfy the 

supplementary demand because the storage in the off-peak season is greater than the release 

in the peak season. Thus, there is storage of water resource appraised at 0,231  units that 

will be used for the satisfaction of electricity demand for the following periods. 

htaΔ

htaΔ

                                                 
7 Storage effect is defined as the interaction between the increase in inter annual transfers comes from preceding 
periods ( ) and the increase in the release from the stock at the end of period t . tSΔ
8 If the renewable effect is nil, then  and0.221c

tSE S= Δ 0.198m
tSE S= Δ . 

9 The substitution of thermal output by hydraulic output is equals to 0,299 tSΔ  under competition and it is equal 

to 0,322  under regulated industry. tSΔ

 

 9



    The numerical approximation lets possible both the quantification of water transfer and the 

substitution between technologies. We conclude the structural reform in the electricity 

peak-season. Implicitly, we consider a large capacity constraint which is impossible to be 

bound in the off-peak season. In this case, the thermal operator cannot produce only

industry not only changes solution greatness, but also it saves the least cost operating 

principle if the thermal operator does not hurt a binding capacity constraint problem.  

    Now, we assume that the thermal operator has a binding capacity constraint problem in the 

T

hydraulic operator must satisfy the residual demand:

q . The 
T

htq q− , where htq  is the total demand in 

the peak-season of period t. The hydraulic operator can choose between Cournot equilibrium 

output or to exert a market power on the residual demand with an output T
htq  less than Tc

htq . 

The strategic behavior of hydraulic operator leads to an increase in energy price in the peak-

season. This behavior affects the strategy of two players in the off-peak season. Thus, the 

output decreasing is in favor of intra-annual transfer from peak season to off-peak season. 

Besides the transfer under constrained Cournot competition is greater than the transfer under 

unconstrained Cournot competition, it is not used to increase the off-peak season supply and 

consequently to substitute the thermal energy. The hydraulic operator tends to storage much 

water resource in order to push the thermal operator to produce more than the Cournot 

equilibrium output. This strategic behavior is, then, in favor of an important storage effect. 

This hydraulic storage is done in a strategic motivation in the peak-season of following 

periods. At the binding capacity constraint, the peak-season thermal plant operating is greater 

than those of hydraulic plant even with abundant water resource. Consequently, we can 

conclude that the binding capacity constraint is among the conditions under which the 

operating 

k season. Then, the hydroelectric 

operator decides its output with respect to the current stock of water, the stochastic futur 

storage in the dam and the output of the thermal operator. 

system rule is inverted in a deregulated industry. 

STACKELBERG CLOSED-LOOP GAME 
 

    We analyze an other kind of quantity game in the wholesale electricity market such as the 

Stackelberg game between hydroelectric and thermal operator. We assume that the thermal 

operator constitute a dominant firm in the market. At each period the thermal operator first 

decides its production also in the peak and the off-pea
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        Given the thermal strategy, the hydroelectric player decides the energy output that 

maximizes the expected sum of its annual profit with respect to the stochastic dynamic of the 

water stock stored in the dam. 

    The value function  , evaluated at the period t must satisfy the Bellman equation: ( )s
t tJ S

{ }
( ) ( ) ( ) ( )

0

2*
1 1 1

, 0

1( )
2H H

ht lt t

s T H H T H H s
t t h ht ht ht l lt lt lt t t t t

q q t

J S Max P q q q P q q q E J S S S
+∞

=

+∞

+ + +
=

⎧ ⎫= + + + + − −⎨ ⎬
⎩ ⎭

∑  

Where  is the mean operator conditional to the information at period t which include .  ( )tE ⋅ tS

At each season j  of the period , the hydroelectric operator decides the quantity produced 

given the thermal operator strategy and the current stock of water. The reaction functions of 

the hydroelectric operator are solutions of theses equations: 

t

    At the peak season of the period t : 

( ) ( ) { } ( )* 1
1 1

1

0
s

T H H T Hh t
ht ht ht h ht ht t t t tH

ht t

P dq q q P q q E S S E S
q d

+
+ +

+

⎧ ⎫∂
+ + + − − − ⎨ ⎬∂ ⎩ ⎭

J
S

=  

    At the off-peak season of the period t  : 

( ) ( ) { } ( )* 1
1 1

1

0
s

T H H T Hl t
lt lt lt l lt lt t t t tH

lt t

P dq q q P q q E S S E S
q d

+
+ +

+

⎧ ⎫∂
+ + + − − − ⎨ ⎬∂ ⎩ ⎭

J
S

=      

Theses equations give the peak season hydroelectric production as a function of the water 

release at the off-peak season, the thermal output at the peak season and the stock of water 

available at the period t. The same resolution at the of-peak season: 

( ), ,H H T T
ht ht lt ht tq Q q q S=  

( ), ,H H T T
lt lt lt ht tq Q q q S=  

     The thermal profit of season j  at the period t  is equals to the total receipt of energy 

purchase comes from thermal plant mines the total cost of production: 

( ) ( ) ( ),T H T H T T T
jt jt jt j jt jt jt j jtq q P q q q C qπ = + −  

    Given the hydroelectric operator strategy at current period, 

and , the thermal operator decides to supply energy 

that maximizes the profit with respect to the capacity constraint and the non-negativity output 

constraint. The reaction function of the thermal operator is a solution this problem: 

( ), ,H H T T
ht ht lt ht tq Q q q S= ( , ,H H T T

lt lt lt ht tq Q q q S= )

( ) ( ) ( ) (
,T T

ht lt
)H T T T H T T T

t h ht ht ht h ht l lt lt lt l lt
q q
Max P q q q C q P q q q C qπ = + − + + −  

With respect to the constraints: 
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( ), ,H H T T
ht ht lt ht tq Q q q S=  

( ), ,H H T T
lt lt lt ht tq Q q q S=  

 

    The thermal operator problem is a static one. The Lagrange function is written as: 

( )( ) ( ) ( )( ) ( )
,

, , , ,
T T
ht lt

s H T T T T T Ts T H T T T T T Ts T
h ht lt ht t ht ht h ht ht ht l lt lt ht t lt lt l lt lt lt

q q
J Max P Q q q S q q C q q P Q q q S q q C q qθ θ= + − + + + − +

 

Where Ts
jtθ is the multiplicator of non negativity output constraint of the thermal plant in 

period j  at the period t , for all { },j h l∈ .To simplify, we neglect the turbinate capacity of 

thermal plant. 

    The reaction function of the thermal operator is characterized by the Kuhn-Tucker 

conditions. For the season { },j h l∈ at period t : 

0
H

j jt jT Th
jt j htT T H T

jt jt jt jt

P Q P dCq P
q q q dq

θ
∂ ∂ ∂

⋅ + ⋅ + − + =
∂ ∂ ∂

, 0T T
jt jtqθ = ,  and . 0T

jtq ≥ 0T
jtθ ≥

If the multiplicator of non-negativity output constraint is nil, the thermal operator strategy is a 

solution of following system:
H

j jt jTh
jt jT T T H

jt jt jt jt

P Q PdC q P
dq q q q

∂ ∂ ∂
= ⋅ + ⋅ +
∂ ∂ ∂

      

The resolution of the equations system gives the thermal operator strategy at the two seasons 

as a function of the current water stock of the thermal operator: , for all ( )Ts T
jt jt tq Q S=

{ },j h l∈ . 

    We replace the thermal operator strategy at the first order conditions of the hydroelectric 

operator. In the season j at the period t  : 

( )( ) ( )( ) { } ( )* 1
1 1

1

s
j T H H T H t

jt t jt jt j jt t jt t t t tH
jt t

P dJQ S q q P Q S q E S S E S
q d

+
+ +

+

∂

S
⎧ ⎫

+ + + = − + ⎨ ⎬∂ ⎩ ⎭
 

     

The resolution of theses equations system gives the hydroelectric operator strategy at the 

equilibrium as a function of the current water stock: ( )Hs H
jt jt tq Q S= .      

We replace this strategy in the Bellman equation; we can find the value function associated to 

the hydroelectric operator in the Stackelberg competition with the thermal operator: 
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( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( )2*
1 1

1
2

s T H H T H H
t h ht t ht t ht t l lt t lt t lt t

s H H H H
t t lt t lt t t lt t lt t t

J S P q S q S q S P q S q S q S

E J S q S q S f S q S q S f+ +

⎡ ⎤= + + +⎣ ⎦
⎧ ⎫+ − − + − + + −⎨ ⎬
⎩ ⎭

 

 

NUMERICAL APPROXIMATION OF EQUILIBRIUM: LINEAR-QUADRATIC CASE 

 
    We consider a linear inverse demand function at the electricity market: 

( )H T H
j jt jt j jt jtP q q a q q+ = − − T . Let's ( )s

tJ S

( )

 the value function associated to the hydroelectric 

operator problem under Stackelberg competition between the two producers. We assume that 

the value function is quadratic: 21
2

s s
t t

s
tb S B S= −J S , where sb  and sB  are unknown 

coefficients. 

The hydroelectric operator strategy at the two seasons verifies the Bellman equation: 

( ) ( ) ( ) ( ){ }
( ){ } ( ){ }
( ){ }

2*
1

1 1

2

1

1
2

1
2

1
2

s H T H H T H H H
t t h ht ht ht l lt lt lt t t ht lt t

s H H s H H
t t ht lt t t t ht lt t

s H H
t t ht lt t

J S a q q q a q q q E S S q q f

E b S q q f B E S q q f

B E S q q f

+

+ +

+

= − − + − − − − + + −

+ − − + − − − +

− − − +

 

Given , the first order conditions are given by the following equations: ( )s
t tJ S

( ) ( ) ( ) ( ){ }
( ){ } ( ){ }

2*
1

2

1 1

1
2

1
2

s H T H H T H H H
t t h ht ht ht l lt lt lt t t ht lt t

s H H s H H
t t ht lt t t t ht lt t

J S a q q q a q q q E S S q q f

E b S q q f B E S q q f

+

+ +

= − − + − − − − + + −

+ − − + − − − +
 

The combination of the two latter equations gives the hydroelectric operator output at the 

peak season as a function of the thermal operator output at the peak and the off-peak season: 

1 2 3 0
H H T H H T hH
ht ht t ltq L q L S L q L= + + +  

Where  

( )1
3

4 2

s
h

s

BL
B

+
= −

+
,

( )2
1

2 2

s
H

s

BL
B

+
=

+
,

( )3
1

4 2

s
H

s

BL
B

+
= −

+
and 

( ) ( ) ( )
( )

*

0

3 1 2 1

4 2

s s s
ht lthH

s

sB a B a B f S b
L

B

⎡ ⎤+ − + + + − −⎣ ⎦=
+

. 

    For the hydroelectric output at the off-peak season:  
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1 2 3 0
H H T H H T lH
lt lt t htq L q L S L q L= + + +  

Where 
( ) ( ) ( )

( )
*

0

3 1 2 1

4 2

s s s
lt htlH

s

sB a B a B f S b
L

B

⎡ ⎤+ − + + + − −⎣ ⎦=
+

 . 

  The thermal operator decides the output given the hydroelectric operator strategy. The 

thermal operator problem is written as: 

( ) ( )

( ) ( )

2

1 2 3 0
,

2

1 2 3 0

1
2

1
2

T T
lt ht

H T H H T hH T T T
t ht ht t lt ht ht h ht

q q

H T H H T lH T T T
lt lt t ht lt lt l lt

Max a L q L S L q L q q c q

a L q L S L q L q q c q

π = − − − − − −

+ − − − − − −
 

The first order conditions give the thermal operator output as a function also of his production 

in the other season and the current water stock: 1 2
T T T T h
ht lt tq q S 0

Tθ θ θ= + +  and 

1 2
T T T T l
lt lt tq q S 0

Tθ θ θ= + + . 

Where
( )1

1
5 3 2 2

s
T

s s
h

B
B B c

θ +
=

+ + +
,

( )2
1

5 3 2 2

s
T

s s
h

B
B B c

θ +
= −

+ + +

( ) ( ) ( )
( )

*

0

5 3 1 2 1

2 5 3 2 2

s s s
ht lthT

s s
h

sB a B a B f S b

B B c
θ

⎡ ⎤+ + + − + − −⎣ ⎦=
⎡ ⎤+ + +⎣ ⎦

and 

( ) ( ) ( )
( )

*

0

5 3 1 2 1

2 5 3 2 2

s s s
lt hthT

s s
l

sB a B a B f S b

B B c
θ

⎡ ⎤+ + + − + − −⎣ ⎦=
⎡ ⎤+ + +⎣ ⎦

 .       

The combination of the two equations implies the thermal operator output strategy as a 

function of the current water stock of the hydroelectric operator. The same thing for the 

hydroelectric operator. 

Proposition 2 

    The Stackelberg closed-loop game equilibrium is given by the following equations: 
*0.087 0.1708 0.077 0.057 0.1078T

ht t h lq S a a S= − + + + − f  

*0.3313 0.422 0.206 0.2169 0.41H
ht t h lq S a a S= − − − + f  

*0.087 0.1104 0.325 0.1 0.1164T
lt t h lq S a a S= − + + + − f  

*0.364 0.1246 0.1694 0.2383 0.4504H
lt t h lq S a a S= − + − + f  

    The value function associated to the hydro electrical operator is: 

( )2 *0.435 0.2279 0.4053 0.2377 0.4491s
t t h lJ S a a S= − + + + − tf S  
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 The comparative static in the regulated and unregulated industry is given by the following 

table 
t  Systems *H

htq  *T
htq  *H

ltq  *T
ltq  

s 0,331 -0,087 0,364 -0,087  

tS  m 0,322 -0,08  0,48 -0,24 

s -0,422 0,170 -0,124 0,110  

hta  m 0,6 0,1 -0,165  0,3 

s -0,206  0,077 0,169 0,325  

lta  m -0,11 0,22 0,4 0,3 

s 0,410 -0,107 0,450 -0,116  

f  m 0,4 -0,1 0,6 -0,3 

s -0,216 0,057 -0,238 0,1  

*S  m -0,32 0,08 -0,48 0,24 

 

Table 2: The static comparative in a Stackelberg closed-loop game 

 

FORCED STORAGE 
We assume that the two producers observe a demand increase at the peak season equals to 

. At the sequential asymmetric game, the supplementary demand energy is satisfied only 

by the T plant. Indeed, the H operator output at the peak season decreases by the 

quantity .  The conservation of the water resources is not entirely compensated by 

an increase in the production of the power station. The T operator increase production by a 

quantity equal to  units of energy. The position of the T operator on the market 

reduces the production of the H operator especially at the season  without compensation. 

This little increase in the production allows to the T operator profit coming from the high 

price of energy at the season h  . The T operator adopts the same strategy at the season  but 

in the different sizes. Thus, the increase in the T production is evaluated at 

haΔ

0,4224 ha− Δ

0,1708 haΔ

h

l

0,1104 haΔ  

whereas the increase in the H production achieve only 0,1246 ha− Δ . This kind of game does 

not make it possible to the H operator to intervene by his free technology to satisfy the 

increase in demand at season h . On the other hand, the T operator obliges the H operator to 

preserve his resources in order to exert a power of market on this additional demand. In this 

case, the inter annual transfer, the intra-annual transfer and the technological 
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complementarities do not make it possible to mitigate the perverse effects of the position of 

the T operator. 

FORCED CYCLIC HYDROELECTRIC SEEDLING  
 

    With the difference of the preceding section, an increase in the demand at the season of a 

quantity equal to  requires the recourse, in different proportions, at the same time with the 

T station and the H power station. The production of the T operator increases by a quantity 

equals to   whereas that of the H operator increases only by 0  units. To 

satisfy this additional request, one calls more upon the T station that with the H station. The 

increase in H operator output comes from the intra-annual transfer from the h  season to the l  

season. The H operator preserves 

l

laΔ

laΔ0,3257 ,1694 laΔ

0,206 laΔ  units of water at the season and it uses only a 

quantity equal to  to satisfy the additional demand of the season l . The position of 

the T operator on the market prevents the H operator from using all or a higher part of its 

transfer to the season l . It obliges the H operator to preserve 

h

la

0,1694 laΔ

0,0366Δ  units of water to 

satisfy any increase in demand at the season l  of the following periods and not to satisfy the 

increase in demand in the season  . The T operator increases his production at the season  

in such way that it does not compensate for the fall of production of the H operator. 

h h

CONCLUSION  
 

    In this paper, we have analyzed the effect of imperfect competition one the optimal order in 

operating the mixed hydrothermal system. This operating is based one the substitution of 

costly technology output by the costless technology output. This substitution is only possible 

with the potential energy transfers. In contrast, the Cournot competition in power generation 

favored the strategic storage of water resource. Consequently, this behavior of hydraulic 

operator lets the additional uses of thermal technology greater then that under regulated 

industry. We show that the least cost operating rule is preserved also with this hydraulic 

operator in the non-constraint model; but it is inverted at the binding capacity constraint of the 

thermal operator. Under Stackelberg competition, we have shown that the thermal operator 

position on the market can increase the conservation of hydraulic resources in the two 

seasons.  In this type of competition, the inter annual transfers and the intra annual transfers 

do not have any role. One solution of this problem is to set, by a contract, the minimal peak 
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season output supplied by both operators on the market. To extend this paper, we proposes to 

analyze the effect of technical complementation and congestion of transmission network one 

the behavior of operators in the market. Future For research we proposes to study the effect of 

imperfect competition of each operator endowed by two heterogeneous technologies.  
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