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Abstract

We consider a general equilibrium climate change model with two endogenous

R&D sectors. First, we characterize the set of decentralized equilibria: to each vector

of public tools � a carbon tax and a subsidy to each R&D sector � is associated a

particular equilibrium. Second, we compute the optimal tools. Third, we perform

various second-best analysis by imposing some constraints on one or several policy.

The main results of the paper are the following: i) both a carbon tax and a green

research subsidy contribute to the climate change mitigation; ii) R&D subsidies have

a large impact on the consumption, and then on the social welfare, as compared with

the carbon tax used alone; iii) those subsidies allow to spare the earlier generations

who are, on the other hand, penalized by a carbon tax.
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1 Introduction

The basic approach to examine interactions between energy, climate and economic growth

is called the "top-down" approach. The objective is to analyze the impact of several tech-

nological options or policies, such as CO2 taxation or quotas, by providing a theoretically

consistent description of the general economic system.1 A large number of top-down models

have been already developed: DICE (Nordhaus, 2008), ENTICE-BR (Popp, 2006a, 2006b),

MIND (Edenhofer et al., 2005, 2006), DEMETER (Gerlagh and van Der Zwaan, 2006),

WITCH (Bosetti et al., 2006)... Nevertheless, whatever are their degree of sophistication,

those models exclusively focus on the �rst-best optimum by determining the temporal tra-

jectories which maximize the social welfare subject to a set of technological and climatic

constraints. Sometimes, additional constraints are added, as in Popp (2006a) where the

results of a simulated optimal carbon tax without research subsidy are presented. How-

ever, to our knowledge, the basic problem of a policy-maker facing the agent behaviors in

a decentralized economy is generally neither formalized nor analyzed.

In the real world, it can be impossible to reach the �rst-best optimum for many reasons.

Some of them are standard in the literature, as the existence of ex-ante distortionnary taxes

in the system (Sandmo, 1975), or the restriction to linear taxes. For instance, Cremer

et al. (2001) study how second-best considerations change the level of the optimal tax

on a polluting good, but in a static model. In this paper, we assume that budgetary,

socioeconomic or political constraints, without no more speci�cation, can obstruct the

enforcement of the �rst-best policies. As an illustration, consider a policy-maker who

is restricted on the number and/or the level of policy tools among the vector of all the

instruments he can spare. This case occurs if, for instance, the environmental tax and/or

some research subsidies are set below their �rst-best levels. The policy-maker can thus

only play with the remaining unconstrained tools in order to maximize the social welfare.

The basic point is that the structure of the decentralized economy becomes an additional

constraint for him and then, he can only reach a second-best optimum.

Before conducting a second-best analysis, it is thus necessary to characterize the set of

equilibria: to each vector of economic policy tools, one associates a particular equilibrium.

Hence, if some of these tools are constrained, the policy-maker determines the other(s) in

order to maximize the welfare in the remaining sub-set of equilibria.

1The alternative approach, called "bottom-up", has almost the same objective, but it puts the emphasis
on a detailed technologically based treatment of the energy system. For that reason, bottom-up models
capture technology in the engineering sense, as pointed out by Kahouli-Brahmi (2008).
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The general equilibrium approach makes feasible any second-best analysis, but it also

has several other advantages. First, it allows to analyze the dissociated impacts of various

policy tools on the time pace of prices and quantities. For instance, one can study the

consequences of a change in the carbon tax, the other tools being given. Second, it allows

to understand the role of prices as channels by which policy tools act on the economy.

Third, it permits to avoid the inaccuracies inherent in any partial equilibrium analysis, as

for instance the ones implied by the use of the standard cost-bene�t approach when the

policy (or project) choices lead to more than marginal perturbations (see Dietz et al., 2008,

for the special case of climate change mitigation policies).

The objective of this paper is to propose a methodological framework to perform second-

best analysis in an endogenous growth/climate change model. More precisely, we study of

the set of equilibria in the decentralized economy. The main di�culty of this approach lies

in the way the research activity is modeled, in particular the type of innovation goods which

are developed, as well as their pricing. In the standard endogenous growth theory (Aghion

and Howitt, 1998; Romer, 1990...), the production of an innovation is associated with

a particular intermediate good. However, embodying knowledge into intermediate goods

usually becomes inextricable in more general computable endogenous growth models with

pollution and/or natural resources. In addition, those technical di�culties are emphasized

when several research sectors are under consideration, i.e. when there exists several types

of speci�c knowledge, each of them being dedicated to a particular input (resource, labor,

capital, backstop...), as it is proposed in Acemoglu (2002). To circumvent those obstacles,

we assume that the pieces of knowledge are directly priced (see for instance Grimaud

and Rougé, 2008). We compute the social and the market values of an innovation and

we suppose that the policy-maker can reduce the gap between these two values owing to

dedicated R&D subsidies.

We develop a model, based on Popp (2006a), in which energy services are provided

by a bundle of two primary energies: a polluting non-renewable resource, e.g. fossil fuels,

and a carbon-free substitute called backstop (solar, wind...).2 We introduce two R&D

sectors. The �rst one improves the e�ciency of energy production, the second one, the

e�ciency of the backstop. Then, we have to consider two types of market failures: the

2The use of the term "backstop" in this case is due to Popp (2006a), but it is a slight abuse of
language since the two kinds of resource can be used simultaneously. A more standard de�nition refers to
a technological breakthrough that drives the traditional fossil energy obsolete and that replaces this former
by a clean renewable source.
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pollution from the fossil resource use and the research spillovers in each R&D sector. In the

decentralized equilibrium, we thus introduce two kinds of economic policy instruments in

accordance: an environmental tax on the carbon emissions and a research subsidy for the

energy and backstop sectors. As a result, there exists a continuum of equilibria, each one

being associated to a particular vector of instruments. Clearly, when the public instruments

are optimally set, the equilibrium of the decentralized economy coincides with the �rst best

optimum.

We obtain numerical results that highlight the role of the research grants, in particular

the backstop ones. The model shows that the best way to mitigate climate change is to

implement a policy that combine both a carbon tax and a green research subsidy. However,

the carbon tax penalizes the consumption and then, the welfare of earlier generations,

whereas the research subsidy allows to spare them.

The article is organized as follows. In section 2, we sketch the model and present the

decentralized economy. We also solve the equilibrium. In section 3, we characterize the

�rst-best optimal solutions and we compute the optimal policy tools that implement it.

In section 4, we analyze a selection of second-best cases and we illustrate numerically our

main results. We conclude in section 5.

2 The decentralized economy

The model is mainly based on the DICE-07 and the ENTICE-BR models (Nordhaus, 2008

and Popp, 2006a, respectively). We consider a worldwide decentralized economy containing

four production sectors: �nal output, energy services and two primary energy inputs,

namely a fossil fuel and a carbon-free backstop (cf. �gure 1). The fossil fuel (e.g. re�ning

industry in the case of oil) is obtained from a non-renewable resource whose combustion

yields carbon emissions. Those emissions accumulate into the atmosphere and bring about

an increase of the mean atmospheric temperature. Retrospectively, global warming imposes

some penalties on society. As in Nordhaus (2007 and 2008), we assume here that these

penalties take the form of a damage function a�ecting the level of �nal output, instead of the

consumer's utility. The production of �nal energy services and backstop requires speci�c

knowledges provided by two speci�c R&D sectors. We assume that all sectors, except

R&D sectors, are perfectly competitive. Population, i.e. labor supply, grows exogenously.

Finally, in order to correct the two types of distortions involved by the model (pollution

and research spillovers in each R&D sector), we introduce two types of policy tools: an
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environmental tax on the fossil fuel use and a subsidy for each R&D sector. The model is

calibrated to �t the world 2005 data (details of calibration are provided in appendix). A

detailed analysis, sector by sector, is developed in the following subsection
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Figure 1: Description of the model

2.1 Behavior of agents

2.1.1 The �nal good sector

Production is represented by the same modi�ed production function than in Nordhaus

(2008). We assume that global warming a�ects the economy through the �nal output

such that, when the average temperature increase is Tt, the instantaneous penalty rate

is D(Tt) = 1/(1 + αTT
ηT
t ), αT , ηT > 0. At each time t, the production of �nal out-

put is D(Tt)Qt, where Qt is given by the following constant-return-to-scale Cobb-Douglas

production function:

Qt = Q(Kt, Et, Lt, At) = AtK
γ
t E

β
t L

1−γ−β
t , β, γ ∈ (0, 1), (1)

in which Kt, Et, Lt and At denote the stock of capital, the �ow of energy services, the

labor force and the total productivity of factors (i.e. a Hicks-neutral technological change),

respectively. We assume that Lt and At are exogenously given: Lt ≡ L0e
∫ t
0 gL,sds and At ≡
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A0e
∫ t
0 gA,sds, where the growth rates gL,t and gA,t are de�ned by the following exponential

declining form: gj,t = gj0e
−djt, dj > 0, ∀j = {A,L}.3

Denoting respectively by pE,t, wt, rt and δ the price of energy services, the real wage,

the interest rate and the depreciation rate of capital, and normalizing the output price

to one, the instantaneous pro�t of the �nal output producer writes4: ΠQ
t = D(Tt)Qt −

pE,tEt−wtLt−(rt+δ)Kt. At each time t, the program of the �nal output producer consists

in choosing Kt, Et and Lt that maximizes ΠQ
t , subject to (1). The �rst order conditions

are:

D(Tt)QK − (rt + δ) = 0 (2)

D(Tt)QE − pE,t = 0 (3)

D(Tt)QL − wt = 0, (4)

where JX stands for the partial derivative of function J(.) with respect to X.

2.1.2 The �nal energy sector

We use the energy production function introduced by Popp (2006a and 2006b). At each

time t, the production of a �ow of energy services Et depends both on a bundle of imperfect

substitute primary energies and on technical change:

Et = E(Ft, Bt, HE,t) =
[
(F ρBt +BρB

t )
ρH
ρB + αHH

ρH
E,t

] 1
ρH , αH , ρH , ρB ∈ (0, 1), (5)

where Ft is the fossil fuel input, Bt is a carbon-free energy source, namely the "backstop",

and HE,t represents a stock of speci�c technological knowledge dedicated to energy e�-

ciency. Denoting by pF,t and pB,t the prices of fossil fuel and backstop and by τt the carbon

tax, assumed here to be additive, the energy producer must chooses Ft and Bt at each time

t that maximizes ΠE
t = pE,tEt − (pF,t + τt)Ft − pB,tBt, subject to (5). Note that, because

of the carbon tax, the fuel price paid by the �rm, i.e. pF,t + τt, is larger than the selling

price pF,t, i.e. the price which is received by the resource-holder. The �rst order conditions

3As in Nordhaus (2008), the TFP growth is exogenous in order to circumvent the large source of
uncertainty on its projection. It is assumed to slow gradually over the next three centuries until eventually
stopping. The same trajectory shape also apply for the labor force, i.e. the population. Long-term
projections of the United Nations predict a declining growth rate so that total population approaches a
limit of 8.6 billion.

4We assume here that the representative household holds the capital and rents it to �rms at the rental
price pK,t. Standard arbitrage conditions imply pK,t = rt + δ.
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write:

pE,tEF − pF,t − τt = 0 (6)

pE,tEB − pB,t = 0. (7)

2.1.3 The fossil fuel sector

The fossil fuel "production/extraction" function is derived from the Popp's extraction cost

function (Popp, 2006a). We assume that it depends on a stock of carbon-based non-

renewable resource and on speci�c productive investment (Grimaud et al., 2007):

Ft = F (QF,t, Zt) =
QF,t

cF + αF (Zt/Z̄)ηF
, cF , αF , ηF > 0, (8)

where QF,t is the amount of �nal product devoted to the production/extraction of fossil

fuel and Zt, Zt ≡
∫ t
0 Fsds, is the cumulative extraction of the exhaustible resource from

the initial date up to t, with Z̄: Zt ≤ Z̄, ∀t ≥ 0. Then, the fuel supply is constrained by

the resource scarcity. The instantaneous pro�t of the fuel producer is: ΠF
t = pF,tFt −QF,t

and its program consists in choosing {QF,t}∞0 that maximizes
∫∞
0 ΠF

t e
−
∫ t
0 rsdsdt, subject

to Zt =
∫ t
0 Fsds and (8). Denoting by ηt the multiplier associated with the state equation,

static and dynamic �rst order conditions are:

(pF,tFQF − 1)e−
∫ t
0 rsds + ηtFQF = 0 (9)

pF,tFZe
−
∫ t
0 rsds + ηtFZ = −η̇t, (10)

together with the transversality condition limt→∞ ηtZt = 0. Integrating (10) and using

(9), it comes:

pF,t =
1

FQF
−
∫ ∞
t

FZ
FQF

e−
∫ s
t rxdxds, (11)

which reads as a speci�c version of the standard Hotelling rule in the case of an extraction

technology given by function (8).

2.1.4 The backstop sector

Similarly to the fossil fuel technology, the backstop production function is also based on the

corresponding cost function used by Popp (2006a). This technology requires some speci�c

investment and knowledge:

Bt = B(QB,t, HB,t) = αBQB,tH
ηB
B,t, αB, ηB > 0, (12)
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where QB,t is the amount of �nal product that is devoted to the backstop production

sector and HB,t is the stock of knowledge pertaining to the backstop. At each time t,

the backstop producer maximizes its pro�t ΠB
t = [pB,tBt −QB,t], subject to (12), which

implies the following �rst order condition:

pB,tBQB − 1 = 0. (13)

2.1.5 The R&D sectors

There are two stocks of knowledge, HE and HB, each associated with a speci�c R&D sector

(i.e. the energy and the backstop ones). We consider that each innovation is a non-rival,

indivisible and in�nitely durable piece of knowledge (for instance, a scienti�c report, a data

base, a software algorithm...) which is simultaneously used by the sector which produces

the good i and the R&D sector i, i = {B,E}.

Here, an innovation is not directly embodied into tangible intermediate goods and thus,

it cannot be �nanced by the sale of these goods. However, in order to fully describe the

equilibrium, we need to �nd a way to assess the price received by the inventor for each

piece of knowledge. We proceed as follows: i) In each research sector, we determine the

social value of an innovation. Since an innovation is a public good, this social value is the

sum of marginal pro�tabilities of this innovation in all sectors which use it. If the inventor

was able to extract the willingness to pay of each user, he would receive this social value

and the �rst best optimum would be implemented. ii) In reality, there are some distortions

that constrain the inventor to extract only a part of this social value5. This implies that

the market value (without subsidy) is lower than the social one. iii) The research sectors

are eventually subsidized in order to reduce the gap between the social and the market

values of innovations.

Let us apply this three-steps procedure to the R&D sector i, i = {B,E}. Each in-

novation produced by this sector is used by the R&D sector i itself as well as by the

production technology of good i. Thus, at each date t, the instantaneous social value of

this innovation is v̄Hi,t = v̄iHi,t + v̄HiHi,t, where v̄
i
Hi,t

and v̄HiHi,t are the marginal pro�tabilities

of this innovation in the production and R&D sectors i, respectively. The social value of

this innovation at t is V̄Hi,t =
∫∞
t v̄Hi,se

−
∫ s
t rxdxds. We assume that, without any public

intervention, only a share γi of the social value is paid to the innovator, with 0 < γi < 1.

However, the government can decide to grant this R&D sector by applying a non-negative

5For instance, Jones and Williams, 1998, estimate that actual investment in research are at least four
times below what would be socially optimal; on this point, see also Popp, 2006a.
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subsidy rate σi,t. Note that if σi,t = 1− γi, the market value matches the social one. The

instantaneous market value (including subsidy) is:

vHi,t = (γi + σi,t)v̄Hi,t, (14)

and the market value at date t is:

VHi,t =
∫ ∞
t

vHi,se
−
∫ s
t rxdxds. (15)

Note that di�erentiating (15) with respect to time leads to the usual arbitrage relation:

rt =
V̇Hi,t
VHi,t

+
vHi,t
VHi,t

, ∀i = {B,E} , (16)

which reads as the equality between the rate of return on the �nancial market and the rate

of return on the R&D sector i.

We can now analyze the behaviors of the R&D sectors. The dynamics of the stock of

knowledge in sector i is governed by the following innovation function H i(.) (cf. Popp,

2006a):

Ḣi,t = H i(Ri,t, Hi,t) = aiR
bi
i,tH

φi
i,t , (17)

where ai > 0, and bi, φi ∈ [0, 1], ∀i = {B,E}. Ri,t is the R&D investment into sector i,

i.e. the amount of �nal output that is devoted to R&D sector i. At each time t, each

sector i, i = {B,E}, supplies the �ow of innovations Ḣi,t at price VHi,t and demands

some speci�c investment Ri,t at price 1, so that the pro�t function to be maximized is

ΠHi
t = VHi,tH

i(Ri,t, Hi,t)−Ri,t. The �rst order condition implies:

∂ΠHi
t

∂Ri,t
= 0 ⇒ VHi,t =

1
H i
Ri

. (18)

The marginal pro�tability for speci�c knowledge of R&D sector i is:

v̄HiHi,t =
∂ΠHi

t

∂Hi,t
= VHi,tH

i
Hi =

H i
Hi

H i
Ri

. (19)

Finally, in order to determine the social and the market values of an innovation in all

research sectors, we need to know the marginal pro�tabilities of innovations in the back-

stop and the energy production sectors. From the expressions of ΠB
t and ΠE

t , those values

are given respectively by v̄BHB ,t = ∂ΠB
t /∂HB,t = BHB/BQB and v̄EHE ,t = ∂ΠE

t /∂HE,t =

EHE/EBBQB . Therefore, the instantaneous market values (including subsidies) of innova-

tions are:

vHB ,t = (γB + σB,t)

(
BHB
BQB

+
HB
HB

HB
RB

)
(20)

vHE ,t = (γE + σE,t)

(
EHE

EBBQB
+
HE
HE

HE
RE

)
. (21)
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2.1.6 The household and the government

We use the same CES utility function U(.) than Nordhaus (2008). The social welfare

function is thus de�ned as:

W =
∫ ∞

0
U(Ct)e−ρtdt =

∫ ∞
0

Lt
(Ct/Lt)1−ε

(1− ε)
e−ρtdt, (22)

where Ct is the aggregate consumption, ρ, ρ > 0, is the (constant) social rate of time

preferences and ε, ε > 0, is the elasticity of marginal utility. The households maximize W

subject to the following budget constraint:

It + Ct + T at = (rt + δ)Kt + wtLt + Πt, (23)

where It is the instantaneous investment in capital de�ned by It = K̇t + δKt, Πt is the

total pro�ts gained in the economy and T at is a lump-sum tax (subsidy-free) that allows to

balance the budget constraint of the government. This maximization leads to the following

condition:

ρ− U̇ ′(Ct)
U ′(Ct)

= rt ⇒ U ′(Ct) = U ′(C0)eρt−
∫ t
0 rsds. (24)

Assuming that the government's budget constraint holds at each time t (i.e. sum of

the various taxes equal R&D subsidies), then it writes:

T at + τtFt =
∑
i

σi
(γi + σi)

VHi,tḢi,t, i = {B,E} . (25)

Finally, remark that expanding Πt = ΠQ
t + ΠE

t + ΠB
t + ΠF

t + ΠHB
t + ΠHE

t into (23) and

replacing T at by its value coming from (25), we obtain:

D(Tt)Qt = Ct +QF,t +QB,t + It +RE,t +RB,t, (26)

thus verifying that the �nal output is devoted to the aggregated consumption, the fossil

fuel production, the backstop production, the investment in capital, and in the two R&D

sectors.

2.2 The environment

Pollution is generated by fossil fuel burning. Let ξ, ξ > 0, be the unitary carbon content

of fossil fuel, G0 the stock of carbon in the atmosphere at the beginning of the planning

period, Gt the stock at time t and ζ, ζ > 0, the natural rate of decay. As in the DICE-07

model (Nordhaus, 2008), the atmospheric carbon concentration does not directly enter
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the damage function. In fact, the increase in carbon concentration drives the global mean

temperature away from a given state � here the 1900 level � and the di�erence between this

state and the present global mean temperature is taken as an index of climate change. Let

Tt denote this di�erence. Then, the climatic dynamic system is captured by the following

two state equations:

Ġt = ξFt − ζGt (27)

Ṫt = Φ(Gt)−mTt = αG logGt −mTt, αG,m > 0. (28)

Function Φ(.), which links the atmospheric carbon concentration to the dynamics of tem-

perature, is in fact the reduced form of a more complex function that takes into account

the inertia of the climate dynamics (i.e. the radiative forcing, see Nordhaus 2008)6.

2.3 Characterization of the decentralized equilibrium

From the previous analysis of individual behaviors, we can now characterize the set of

equilibria, which is done by the following proposition:

Proposition 1 For a given triplet of policies {σB,t, σE,t, τt}∞t=0, the equilibrium conditions

can be summed up as follows:[
D(Tt)QEEF − τt −

1
FQF

]
U ′(Ct)e−ρt +

∫ ∞
t

FZ
FQF

U ′(Cs)e−ρsds = 0 (29)

D(Tt)QEEBBQB = 1 (30)

D(Tt)QK − δ = ρ− U̇ ′(Ct)
U ′(Ct)

(31)

−
ḢB
RB

HB
RB

+ (γB + σB,t)

(
BHBH

B
RB

BQB
+HB

HB

)
= ρ− U̇ ′(Ct)

U ′(Ct)
(32)

−
ḢE
RE

HE
RE

+ (γE + σE,t)

(
EHEH

E
RE

EBBQB
+HE

HE

)
= ρ− U̇ ′(Ct)

U ′(Ct)
. (33)

6In the analytical treatment of the model, we assume, for the sake of clarity, that the carbon cycle
through atmosphere and oceans as well as the dynamic interactions between atmospheric and oceanic
temperatures, are captured by the reduced form (27) and (28). Goulder and Mathai (2000), or Kriegler
and Bruckner (2004), have recourse to such simpli�ed dynamics. From the DICE-99 model, the formers
estimate parameters ξ and ζ that take into account the inertia of the climatic system. They state that
only 64% of current emissions actually contribute to the augmentation of atmospheric CO2 and that the
portion of current CO2 concentration in excess is removed naturally at a rate of 0.8% per year. However,
in the numerical simulations, we adopt the full characterization of the climate dynamics from the 2007
version of DICE (Nordhaus, 2008).
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Proof. See Appendix A1.

A particular equilibrium is associated with a given triplet of policies {τt, σB,t, σE,t}∞t=0

and the set of equations given by Proposition 1 allows to compute the quantities for this

equilibrium. The corresponding prices r∗t , w
∗
t , p
∗
E,t, p

∗
F,t, p

∗
B,t and V

∗
Hi,t

are given by (2), (4),

(3), (11), (13) and (18), respectively. If the triplet of policy tools is optimally chosen, this

set of equations characterizes the �rst-best optimum, together with the system of prices

that implement it. Note that we will get the same kind of conditions than the ones of

Proposition 1 to characterize the �rst-best optimum (cf. Proposition 2 below), so that we

defer their interpretations to the next section.

3 Implementation of the �rst-best optimum

The social planner problem consists in choosing {Ct, QB,t, QF,t, RB,t, RE,t}∞t=0 that max-

imizes W , as de�ned by (22), subject to the output allocation constraint (26), the tech-

nological constraints (1), (5), (8) and (12), the environmental constraints (27) and (28),

and, �nally, the stock accumulation constraints (17), (23) and Żt = Ft. After eliminating

the co-state variables, the �rst order conditions reduce to the �ve characteristic conditions

of Proposition 2 below, which hold at each time t (we drop time subscripts for notational

convenience).

Proposition 2 At each time t, the optimal solution is characterized by the following �ve

conditions: [
D(Tt)QEEF −

1
FQF

]
U ′(Ct)e−ρt +

∫ ∞
t

FZ
FQF

U ′(Cs)e−ρsds

+ξ
∫ ∞
t

[∫ ∞
s

D′(Tx)QxU ′(Cx)e−ρx−m(x−s)dx

]
Φ′(Gs)e−ζ(s−t)ds = 0 (34)

D(Tt)QEEBBQB = 1 (35)

D(Tt)QK − δ = ρ− U̇ ′(Ct)
U ′(Ct)

(36)

HB
HB

+
HB
RB
BHB

BQB
−
ḢB
RB

HB
RB

= ρ− U̇ ′(Ct)
U ′(Ct)

(37)

HE
HE

+
HE
RE
EHE

EBBQB
−
ḢE
RE

HE
RE

= ρ− U̇ ′(Ct)
U ′(Ct)

. (38)

Proof. See Appendix A2.
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Equation (34) reads as a particular version of the Hotelling rule in this model, which

takes into account the carbon accumulation in the atmosphere, the dynamics of tempera-

tures and their e�ects on the output. Equation (35) tells that the marginal productivity of

speci�c input QB,t equals its marginal cost. The three last equations are Keynes-Ramsey

conditions. Equation (36) characterizes the optimal intertemporal trade-o� between cap-

ital Kt and consumption Ct, as in standard growth models. Equation (37) (resp. (38))

characterizes the same kind of optimal trade-o� between speci�c investment into backstop

R&D sector, RB,t (resp. energy R&D sector, RE,t) and consumption.

Recall that for a given set of public policies, a particular equilibrium is characterized by

conditions (29)-(33) of Proposition 1. This equilibrium will be said to be optimal if it satis-

�es the optimum characterizing conditions (34)-(38) of Proposition 2. By analogy between

these two sets of conditions, we can show that there exists a single triplet {σB,t, σE,t, τt}∞t=0

that implements the optimum.

First, by comparing conditions (29) and (34), the optimal pollution tax can be identi�ed

as:

τ ot = − ξ

U ′(Ct)

∫ ∞
t

[∫ ∞
s

D′(Tx)QxU ′(Cx)e−(ρ+m)(x−s)dx

]
Φ′(Gs)e−(ρ+ζ)(s−t)ds. (39)

Next, the correspondence between the equilibrium characterizing condition (32) (resp.

(33)) and the optimum characterizing condition (37) (resp. (38)) is achieved if and only if

σi,t is equal to 1− γi, i = {B,E}, i.e. if both sectors are fully subsidized. The remaining

conditions of the two sets are equivalent. These �ndings are summarized in Proposition 3

below.

Proposition 3 The equilibrium de�ned in Proposition 1 is optimal if and only if the triplet

of policies {σB,t, σE,t, τt}∞t=0 is such that σB,t = 1 − γB ≡ σoB, σE,t = 1 − γE ≡ σoE and

τt = τ ot , for all t ≥ 0.

The optimal tax (39) requires some comments. Formally, this expression corresponds

to the ratio between the marginal social cost of climate change � the marginal damage in

terms of utility coming from the consumption of an additional unit of fossil resource � and

the marginal utility of consumption. In other words, it is the environmental cost of one

unit of fossil resource in terms of �nal good: at date t, the increase by one unit of fossil fuel

consumption, and then of carbon emissions, increases the stock of carbon in the atmosphere

Gt by an equivalent amount and rises the current temperature level by Φ′(Gt). Since the

13



environmental externality is captured here by a stock, and not a �ow, this temperature

change involves a unitary damage equal to
∫∞
t D′(Ts)QsU ′(Cs)e−(ρ+m)(s−t)ds, i.e. to the

sum of the �ow of marginal damages as measured in terms of utility, discounted at rate

(ρ + m) in order to take into account the climatic inertia. The full marginal damage in

terms of utility is obtained by multiplying this unitary damage by the e�ective change in

temperature and by integrating this expression over time, with a discount rate equal to

(ρ+ζ) to take into account the natural regeneration process of the atmosphere. Finally, in

order to get a positive tax expressed in monetary value, we multiply the previous expression

by −1/U ′(C), which yields expression (39).

Lastly, a worthwhile remark concerns the dynamic pace of such an optimal tax. By

computing its growth rate, we can show that it is not necessary monotonous:

τ̇ ot
τ ot

=

(
ζ + ρ− U̇ ′

U ′

)
−

Φ′(Gs)
∫∞
t D′(T )QU ′(C)e−(ρ+m)(s−t)ds∫∞

t

[∫∞
s D′(T )QU ′(C)e−(ρ+m)(x−s)dx

]
Φ′(G)e−(ρ+ζ)(s−t)ds

. (40)

The �rst term into brackets is strictly positive and works as the e�ective discount rate

that takes into account the natural decarbonization rate of the atmosphere (i.e. the real

interest rate rt = ρ−U̇ ′/U ′ augmented by ζ). By concavity of the utility function, this term

decreases over time as the economy, and thus the consumption, grows. The second term is

the share of the instantaneous marginal damage in the cumulated marginal damage, which

is positive and smaller than 1. Hence, τ̇ ot /τ
o
t can be either positive or negative. Moreover,

in the case where the second term increases over time as atmospheric carbon emissions

accumulate, we can get, as shown in our numerical developments, a trajectory which is

�rst increasing and next, declining.

4 Second-best policies

4.1 Methodology

The characteristic conditions of Proposition 1 yield the intertemporal equilibrium pro�les

of quantities {Cet , T et , F et , ...}
∞
0 and prices

{
peF,t, p

e
B,t, ...

}∞
0

associated with any pro�le of

policy tools {τt, σB,t, σE,t}∞0 belonging to the de�nition set Ω. For each equilibrium so-

lution, one can compute the associated welfare value as a function of those public tools:

W
(
{τt, σB,t, σE,t}∞0

)
. When W is maximized simultaneously with respect to the three

tools, one gets the �rst-best optimum as described by Proposition 3: {τ ot , σoB, σoE}
∞
0 =

argmax W
(
{τt, σB,t, σE,t}∞0

)
.
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Assume now that the social planner faces some constraints on her choices. For instance,

she cannot subsidy research, or she cannot implement the �rst-best carbon tax. In this

case, she only uses the remaining unconstrained tool(s) to maximize the social welfare in

the remaining sub-set of equilibria. Formally, if we denote by Θ ⊆ Ω this subset of con-

straints, then the second-best optimal policies are such that:
{
τ sbt , σ

sb
B,t, σ

sb
E,t

}∞
0

= argmax

W
(
{τt, σB,t, σE,t}∞0

)
subject to {τt, σB,t, σE,t}∞0 ∈ Θ. Among the in�nity of possible

second-best problems, we focus on the particular cases described in Table 1.

Case τt σE σB Comment

FB τ ot σoE σoB First-best optimum

LF 0 0 0 Laisser-faire

SB1 τ sb1t 0 0 Second-best, no R&D subs.

SB2 τ sb2t σoE 0 Second-best, no green R&D subs.

SB3 τ sb3t 0 σoB Second-best, no energy R&D subs.

SB4 0 σsbE σsbB Second-best, no carbon tax

Table 1: Summary of the various cases

In table 1, polar cases "FB" and "LF" refer to the �rst-best and the laisser-faire,

respectively. All the other cases are second-best analysis. "SB1" is the case where neither

energy nor backstop R&D can be subsidized and it gives the associated second-best carbon

tax τ sb1t . "SB2" (resp. "SB3") is the case where the green (resp. energy) research cannot

be granted, the other subsidy been set at its �rst-best optimal level; the associated second-

best tax is denoted by τ sb2t (resp. τ sb3t ). Finally, "SB4" is the case where the fossil resource

is not taxed at all.

4.2 Main results

4.2.1 Second-best instruments

The �rst and second-best carbon taxes are depicted in Figure 2(a). We can observe that

when the social planner is not able to grant research at all, she must impose a higher

carbon tax than the �rst-best one: τ ot < τ sb1t . In order to identify the relevant research

sector to explain this result, we must look at "SB2" and "SB3". It appears that only green
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R&D matters. Then, under a strict welfare-maximization point of view, an insu�cient σB

can be partially balanced by a higher carbon tax, but not an insu�cient σE . To sum up,

one gets:

τ lf = τ sb4 = 0 < τ ot ≈ τ sb3t < τ sb1t ≈ τ sb2t , ∀t ≥ 0.

In scenario SB4 (when the carbon tax is nil at each point of time), for computational

convenience, we impose the two additional constraints that the subsidy rates are equal and

constant over time.7 Under these assumptions, we �nd the following associated second-best

R&D subsidies:

σsbi = 1.04× σoi , i = {B,E} .

4.2.2 Policy e�ects on energy/climate

The ranking of the various taxes given in the previous subsection is transfered to the fossil

fuel market prices, i.e. the selling prices including tax, as shown in Figure 2(b):

plfF,t ≈ p
sb4
F,t < poF,t ≈ psb3F,t < psb1F,t ≈ psb2F,t , ∀t ≥ 0.

If R&D subsidies would remain unchanged, this ranking of taxes and fossil prices would

lead to a corresponding inverted ranking of the extraction trajectories. However, those

subsidies are set to di�erent levels in scenarios SB1 to SB4. That explains why, as shown

in Figure 2(c), the expected ranking is not observed. Indeed, we have (at least until the

end of this century):

F lft ≈ F sb4t > F sb1t ≈ F sb2t > F ot ≈ F sb3t , ∀t ≥ 0.

The �rst inequality is the expected one: an increase in τ causes F to decrease. However,

as compared to "FB", the carbon tax increases in "SB1" and "SB2", but the fossil fuel

extraction �ow also increases. This is due to the decrease in σB when moving from FB

to SB1 or SB2. As a result, the e�ect of the green research subsidy overrides the carbon

tax one in that case. To go more into details, as long as the carbon is not taxed, R&D

subsidies do not have any e�ect on fossil fuel use (LF versus SB4). When the tax becomes

positive, F is reduced only if σB is increased (from SB1 and SB3, τ decreases, σE remains

nil, σB rises, but F diminishes). Conversely, an increase in σE has not any impact on F

(SB1 versus SB2).

From Figures 2(d) and 2(e), we observe that the carbon tax has a very weak e�ect on

the backstop price and production, and on the green R&D (not shown). The basic relevant

7For a discussion about dynamic R&D subsidies, see Gerlagh et al. (2008).
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Figure 2: Results in resources and pollution
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policy tool on these markets is the speci�c subsidy σB: an increase in σB reduces pB and

increases B.

To sum up, both a carbon tax and a green research subsidy contribute to the climate

change mitigation, as illustrated in Figure 2(f).8 The carbon tax has a direct e�ect on

climate through its impact on the market price of the fossil fuel, but it has not indirect

e�ect on the backstop sector. The green R&D subsidy rate has a direct e�ect on the

backstop sector and thus an indirect e�ect on the fossil fuel use, because of substitutions

between these two primary energy sources.

4.2.3 E�ects on the output

Figure 3 focuses on more general macroeconomic e�ects of the various scenarios. Figure

3(a) depicts the variations of the climatic damage, as measured in percentage of the �nal

output, formally 100∗(1−D)/D. Unsurprisingly, the results directly follow the variations of

carbon accumulation � and thus of temperatures � analyzed above. Figure 3(b) represents

the present value of this damage, i.e. the discounted sum of the instantaneous climate

change costs, as expressed in USD, with a discount rate equal to the interest rate. We

obtain the following ranking:

PV LF > PV SB4 > PV SB1 ≈ PV SB2 > PV SB3 ≈ PV FB.

Then, as already mentioned in the previous subsection, both a carbon tax and a green

R&D subsidy are required to minimize the cost of global warming in terms of output (we

will talk about the question of social costs later).

In Figure 3(c), we analyze the losses and gains in GWP (i.e. in �nal output), implied by

the various public interventions, as compared with the laisser-faire case. First, whenever a

positive carbon tax is levied, we can observe a loss for the earlier generations. Second, the

larger the carbon tax is, the stronger this loss. Third, one can attenuate the output losses

caused by the carbon tax and reach earlier the date at which gains will occur again, by

increasing simultaneously the green research subsidy. Finally, the intergenerational e�ort

can be smoothed if the planner uses less the tax and more the subsidy. However, in this

case, the long run GWP gain reveals to be less important than the one implied by the use

of the carbon tax alone.

8The variations of temperatures follow the same time pace than the atmospheric carbon concentration
(not shown here).
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c) Variations of the output from LF case
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Figure 3: Impacts on damage and GWP

4.2.4 E�ects on the welfare

We �rst examine how consumption reacts when the policy tools vary. Figure 4(a) works

like �gure 3(c) and gives the deviation in percents from the LF trajectory. We can remark

some di�erences between these two graphs, which are due to the impact of the carbon

tax and the research subsidies on the various investments (in capital, in primary energy

production and in R&D). As shown in �gure 3(d), the general impacts of the environmental

and research policies on the total investment (i.e. I+RE +RB +QF +QB) are symmetric

to the ones observed on the �nal output. Moreover, they exhibit approximatively the

same order of magnitude. Without going into detail, an increase in τ diminishes the total

investment, essentially by increasing QF ; simultaneously, an increase in σB stimulates the

total investment through its e�ect on RB andQB whereas the e�ects of σE reveal negligible.

As a result, the depressive e�ect on the �nal output observed (essentially in the short run)

in the scenarios within a carbon tax is levied, is partially attenuated on the consumption

by a decrease in the total investments.

Last, Figure 4(b) gives some insights on the relative impacts of both the carbon tax and
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Figure 4: Impacts on consumption and welfare

the R&D subsidies on the social welfare (i.e. the present value of the �ows of instantaneous

utility). In order to discuss about intergenerational equity, we distinguish the welfare

variation from the LF case for the "present" generations (i.e. until 2065) and the future

ones (after 2065). The main results are the following: i) an increase in τ leads to an

increase in the total welfare, with a slight shortening for the earlier generations and a raise

for the future ones (cf. "SB1"); ii) without any ambiguity, an increase in σE enhances the

welfare for all generations (cf. "SB1" vs "SB2"); iii) an increase in σB essentially augments

the welfare of future generations (cf. "SB1" vs "SB3"). Finally, the gap between "FB" and

"SB1" (resp. "SB4") measures the welfare loss caused by an absence of research subsidy

in any R&D sector (resp. by a zero carbon tax). In a second-best world, a carbon tax used

alone leads to a higher social cost (with respect to the �rst-best) than a research policy

alone. This result is due to the fact that, in the last case (a zero carbon tax), the impact

of the research subsidies on the environmental is weak and it is overridden by the direct

impact on the output (and its growth). This analyze illustrates that the objective of any

policy (output, welfare, consumption, environment, ...) must be carefully de�ned. In the

limit case where the objective turns on the climate, the basic public tool is the carbon

tax; but it could lead to a welfare loss for early generations. On the contrary, by mainly

focusing on the social welfare and the intergenerational equity, the question of the climate

may be under-estimated.

5 Conclusion

We have conducted various second-best analysis in a general equilibrium climate change

model with endogenous and dedicated R&D. To do that, we have characterized the set of
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equilibria in the decentralized economy, and we have imposed some institutional constraints

on the policy tool(s): i) the impossibility to implement the �rst-best carbon tax; ii) the

impossibility to subsidize one or two R&D sectors. In each case, we have computed the

second-best level of the remaining unconstrained tool(s). The second-best results have

been compared with, on the upper side, the �rst-best trajectories and, on the lower side,

the laisser-faire ones. Those comparisons have allowed to appreciate the e�ects of each

policy tool on the trajectories of the main following variables: fossil fuel extraction and

price, backstop use and price, atmospheric carbon concentration, instantaneous damage,

�nal output. We have also illustrated the assessment of each tool in terms of social welfare

gain with respect to the laisser-faire benchmark case.

The main results have highlighted the role of the research grants, in particular the

backstop ones. The model shows that the best way to mitigate climate change is to

implement a policy that combine both a carbon tax and a green research subsidy. However,

the carbon tax penalizes the consumption and then, the welfare of earlier generations,

whereas the research subsidy allows to spare them.
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Appendix

A1. Proof of Proposition 1

The �rst characterizing condition (29) is obtained by replacing η into (9) by its value

η0 −
∫ t
0

[
FZ/FQF exp

(
−
∫ s
0 rdu

)]
ds and by noting that pF = pEEF − τ from (6), where

pE = D(T )QE from (3) and exp(−
∫ t
0 rds) = U ′(C) exp(−ρt) from (24). Combining (3),

(7) and (13) leads to condition (30). Next, using (2) and (24), we directly get condition

(31). Finally, the di�erentiation of (18) with respect to time leads to:

V̇Hi
VHi

= −
Ḣ i
Ri

H i
Ri

, i = {B,E} .

Substituting this expression into (16) and using (14), (18) and (19), it comes:

r = −
Ḣ i
Ri

H i
Ri

+ (σi + γi)H i
Ri

(
v̄iHi +

H i
Hi

H i
Ri

)
, ∀i = {B,E, S} .

We obtain the two last characterizing equilibrium conditions (32) and (33) by replacing

into this last equation v̄BHB and v̄EHE by their expressions.

A2. Proof of Proposition 2

Let H be the discounted value of the Hamiltonian of the optimal program:

H = U(C)e−ρt + λD(T )Q {K,E [F (QF , Z), B(QB, HB), HE ]}

−λ

(
C +QF +QB + δK +

∑
i

Ri

)
+
∑
i

νiH
i(Ri, Hi)

+µG [ξF (QF , Z)− ζG] + µT [Φ(G)−mT ] + ηF (QF , Z).
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The associated �rst order conditions are:

∂H

∂C
= U ′(C)e−ρt − λ = 0 (41)

∂H

∂QF
= λ[D(T )QEEFFQF − 1] + ξµGFQF + ηFQF = 0 (42)

∂H

∂QB
= λ[D(T )QEEBBQB − 1] = 0 (43)

∂H

∂Ri
= −λ+ νiH

i
Ri = 0, i = {B,E} (44)

∂H

∂K
= λ[D(T )QK − δ] = −λ̇ (45)

∂H

∂HB
= λD(T )QEEBBHB + νBH

B
HB

= −ν̇B (46)

∂H

∂HE
= λD(T )QEEHE + νEH

E
HE

= −ν̇E (47)

∂H

∂G
= −ζµG + µTΦ′(G) = −µ̇G (48)

∂H

∂T
= λD′(T )Q−mµT = −µ̇T (49)

∂H

∂Z
= λD(T )QEEFFZ + ξµGFZ + ηFZ = −η̇ (50)

The transversality conditions are:

lim
t→∞

λK = 0 (51)

lim
t→∞

νiHi = 0, i = {B,E} (52)

lim
t→∞

µGG = 0 (53)

lim
t→∞

µTT = 0 (54)

lim
t→∞

ηZ = 0 (55)

First, from (41), (42) and (50), we can write the following di�erential equation:

η̇ = − FZ
FQF

U ′(C)e−ρt.

Integrating this expression and using transversality condition (55), we obtain:

η =
∫ ∞
t

FZ
FQF

U ′(C)e−ρsds. (56)

From (41) and (49), we have:

µ̇T = mµT −D′(T )QU ′(C)e−ρt.

Using (54), the solution of such a di�erential equation can be computed as:

µT =
∫ ∞
t

D′(T )QU ′(C)e−[m(s−t)+ρs]ds. (57)
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Equations (48) and (53) imply:

µG =
∫ ∞
t

µTΦ′(G)e−ζ(s−t)ds. (58)

Replacing into (42) λ, η, µT and µG by their expressions coming from (41), (56), (57) and

(58), respectively, gives us the equation (34) of Proposition 1.

Second, equation (36) directly comes from condition (43). Next, log-di�erentiating (41)

and (44) with respect to time yields:

λ̇

λ
=

U̇ ′(C)
U ′(C)

− ρ (59)

λ̇

λ
=

ν̇i
νi

+
Ḣ i
Ri

H i
Ri

. (60)

Combining (59) and (45) yields condition (36). Condition (37) comes from (44), (46),

(59) and (60), and from (43) by using D(T )QEEB = 1/BQB . Similarly, conditions (38) is

obtained from the equations (44), (47), (59) and (60).

A3. Calibration of the model

Here we provide some informations on the basic calibration of key model parameters. The

model begins in 2005, and it is solved in 10-years increments for 350 years. As described

in Table 2, we use the calibrations of the DICE-07 model for the 2005 structural data,

the output production function, the damage function and the utility form. A complete

description of the the DICE-07 dynamic climatic system of equations and the associated

parametrization is provided in Nordhaus (2008), chapters 2 and 3. Calibration of the energy

and R&D sectors comes from the ENTICE-BR model and is detailed in Popp (2006a and

2006b).

According to IEA (2007), world carbon emissions in 2005, the reference year, amounted

to 17.136 MtCO2. We retain 7.401 GtCeq as the initial fossil fuel consumption, given in

gigatons of carbon equivalent. In addition, carbon-free energy produced out of renewable

energy represented 6.8% of total primary energy supply. We thus retain another 0.504

GtCeq as the initial amount of backstop energy use. The 2005 market prices of crude oil,

coal and natural gas amounted to 55 USD per barrel, 65 USD per ton and 7 USD per

MBtu, respectively. Converting these values, �rst in USD per gigajoules and next in USD

per gigatons by applying the appropriated carbon content rate, and weighting them by

the relative share of each fossil fuel in the total primary fossil energy consumption (i.e.
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43.2% of oil, 31.25% of coal and 25.55% of gas according to IEA, 2007), we obtain 345

USD/GtCeq as fossil fuel price index.

Finally, the elasticity of substitution for the backstop in the energy production function

is chosen so that it is consistent with the program of the energy sector (pF /pB = EF /EB).

Initial values of TFP and productive investments into fossil fuel and backstop are calibrated

to �t the 2005 data.

ρB =
log cF + logαB
logF0 − logB0

+ 1,

QB,0 =
B0

αBH
ηB
B,0

,

QF,0 = cFF0,

A0 = D(T0)Q0K
−γ
0 E−β0 L

−(1−γ−β)
0 .
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Source Param. Value Description

Nordhaus Q0 61.1 2005 world gross output (trill. USD)
(2008): L0 6514 2005 world population millions

K0 137 Initial capital stock
γ 0.3 Capital elasticity in output production
β 0.07029 Energy elasticity in output production
δ 0.1 Depreciation rate of capital per year
αT 0.0028388 Scaling param. of the damage function
ηT 2 Parameter of the damage function
ε 2 Elasticity of intertemporal substitution
ρ 0.015 Time preference rate
Z̄ 5500 Max extractible fossil fuels (GtC)
1/αB 1035 2005 backstop price (USD/GtC)
gA,t TFP growth trend
gL,t World population growth trend

Popp ρE 0.38 Elasticity of subs. for energy
(2006a): αH 0.336 Scaling param. of HE on energy

αF 700 Scaling param. on fossil fuel cost
ηF 4 Exponent in fossil fuel production
ηB 1 Exponent in backstop production
aB 0.0122 Scaling param. in backstop innovation
aE 0.0264 Scaling param. in energy innovation
bB 0.3 Rate of return of backstop R&D
bE 0.2 Rate of return of energy R&D
Φi 0.54 Elasticity of knowledge in innovation
HB,0 1 Initial value of backstop TC
HE,0 0.0001 Initial value of energy TC
RB,0 0.001 Initial level of backstop R&D (trill. USD)
RE,0 0.01 Initial level of energy R&D (trill. USD)

Computed F0 7.401 2005 fossil fuel use in GtC
from cF 345 2005 fossil fuel price in USD/GtC
IEA (2007): B0 0.504 2005 backstop use in GtC

Calibrated: ρB Elasticity of substitution for backstop in energy
A0 2005 level of TFP
QB,0 2005 investment in backstop production
QF,0 2005 investment in fossil fuel production

Table 2: Calibration of parameters
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