
ar
X

iv
:q

ua
nt

-p
h/

05
04

01
0 

v2
   

18
 A

pr
 2

00
5

Quantum Games and Programmable

Quantum Systems

Edward W. Piotrowski

Institute of Mathematics, University of Bia lystok,
Lipowa 41, Pl 15424 Bia lystok, Poland

e-mail: ep@alpha.uwb.edu.pl

Jan S ladkowski
Institute of Physics, University of Silesia,

Uniwersytecka 4, Pl 40007 Katowice, Poland

e-mail: sladk@us.edu.pl

Abstract

Attention to the very physical aspects of information characterizes the
current research in quantum computation, quantum cryptography and
quantum communication. In most of the cases quantum description of
the system provides advantages over the classical approach. Game the-
ory, the study of decision making in conflict situation has already been
extended to the quantum domain. We would like to review the latest
development in quantum game theory that is relevant to information
processing. We will begin by illustrating the general idea of a quantum
game and methods of gaining an advantage over “classical opponent”.
Then we review the most important game theoretical aspects of quan-
tum information processing. On grounds of the discussed material,
we reason about possible future development of quantum game theory
and its impact on information processing and the emerging information
society. The idea of quantum artificial intelligence is explained.
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1 Introduction

Various sorts of computations permeate everyday life. As the leading paradigm
of computation is shifting from centralized and static to distributed, both
in time and space, or even mobile game theoretical methods are becoming
more end more important. Though classical computing is an extraordinary
success story we have arrived to the verge of questioning classical computa-
tional paradigms. Since the publication of Gödel theorems [1] and Turing and
Church models of computation [2] the opinion that human mind dominates
any conceivable computer prevails. But in the light of quantum information
processing [3] and scepticism concerning the role of quantum phenomena in
brain processes [4] we might be doomed to dreary future of coherent states
of quantum matter dominating human mind. A new fascinating field of re-
search has been started. Computational processes often take the form agents
predicting and analyzing their interactions and lead into the domain od game
theory. Quantum game theory [5]-[8] emerged as a valuable tool in this field
because a substantial part of front problems can be formulated in game the-
oretical terms. In this paper we would like to convince the reader that the
research on quantum game theory cannot be neglected because present tech-
nological development suggest that sooner or later someone would take full
advantage of quantum theory and may use quantum strategies to beat us
at some realistic game. At present, it is difficult to find out if human con-
sciousness explores quantum phenomena although it seems to be at least as
mysterious as the quantum world. Humans have been applying quantum
technologies more or less successfully since its discovery. Does it mean that
our intelligence is being transformed into quantum artificial intelligence (cf.
quantum anthropic principle as formulated in [9])? Humans have already
overcome several natural limitations with help of artificial tools. Is quan-
tum information processing waiting for its turn? To exploit emerging novel
nonclassical computational paradigms we must seek for them such rigor as is
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possible. What that science will look like is currently unclear, and it is diffi-
cult to predict which results would turn out to be fruitful and which would
have only marginal effect. The results of the research may found applica-
tions in quantum information and cryptography, social sciences, biology and
economics.

2 Programmable quantum systems

The ultimate goal of quantum technology is the ability of building quan-
tum systems with desired (controlled) properties. We will call them pro-
grammable quantum systems (PQS). These include systems that can perform
various computational tasks. Therefore considerable effort has been devoted
to investigating how to efficiently control the dynamics of quantum systems
and obtain and process information on the quantum level [10]. We believe
the best solution is that of building up complex behaviors out of simple
operations1. To this end we need specialized systems that interact with a
given quantum system to observe and control it. Lloyd, Landahl and Slo-
tine have described a simple quantum devise – a universal quantum interface
that is able to perform such tasks simply and effectively [12]. The universal
quantum interface Q consists of a single two-state quantum system (qubit)
that couples to a system S whose dynamics is governed by a Hamiltonian
H to be controlled or observed. The control is implemented via a Hamil-
tonian interaction of the form A ⊗ σz, where A is an Hermitian operator
on S and σz is the z Pauli matrix. They assume that both measurements
in the eigenvector basis of σz on Q and application of the Hamiltonian γσ,
where γ is an arbitrary real parameter, to Q can be efficiently performed.
The ability to measure with respect to the eigenvector basis combined with
the ability to perform arbitrary rotations by turning on and off various γσ
implies the ability to measure with respect to arbitrary basis. It follows that
it is possible to apply any evolution operator of the form exp(−G ⊗ σxt),
where G is an arbitrary Hermitian operator on S and the x Pauli matrix
acts on Q. If the interface is initially prepared in the eigenstate | + 1〉 of σz

then the evolution together with measurement of Q in the eigenvector basis
(| − 1〉, | + 1〉) effects the generalized ”yes-no” measurement on S because

1Such a division is not unique and there are models for quantum computing that have
no natural into parts at all [11].
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the system evolves from ρS(0) into either ρ+ = cos(γGt)ρS(0)cos(γGt) or
ρ−S = sin(γGt)ρS(0)sin(γGt) with probabilities P+ = tr cos2(γGt)ρS(0) and
P− = tr sin2(γGt)ρS(0), respectively. The efficiency and faithfulness of this
procedures can be analyzed analogously to the Solovay-Kitaev theorem [3].
In general, a multiple quantum interfaces would be necessary for efficient
connection and controlling even a small number of quantum systems. The
universal quantum interface can control a given quantum system, observe it
and communicate between various systems. It can be also used to protect the
system from disturbances 2. Together with quantum error correcting systems
it can be used to engineer quantum subsystems in any desired fashion [12].
Unfortunately, this does not imply that such a system would not be extremely
complex. Therefore to implement a general purpose information processing
machine we need a possibly minimal set of universal quantum information
processing systems that can be connected and controlled by quantum inter-
faces to perform a given task. Such universal systems do exists – they are
called universal gates or universal primitives. But, as we would like to focus
on game-theoretical aspects, before proceeding to universal gates we give a
short introduction to quantum games.

3 Quantization of games

Classical games usually cannot be quantized in a unique way because they are
only asymptotical “shadows” of a wide spectra of quantum models. There
are two obvious modifications of classical simulation games.

1 – prequantization: Redefine the game so that it becomes a reversal op-
eration on qubits representing player’s strategies. This already allows
for quantum coherence of strategies3.

2 – quantization: Reduce the number of qubits and allow arbitrary uni-

2Physically realizable quantum programable systems operate in a regime of extreme
sensitivity to decoherence and disturbances [13]. Therefore some extra tools would be
necessary to increase reliability and stability of quantum circuits. Quantized Parrondo’s
paradox [14] and quantum Zeno effect might turn out useful.

3This may result from nonclassical initial strategies or classically forbidden measure-
ments of the state of the game (end of the game).
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tary4 transformation so that the basic features of the classical game
are preserved. At this stage ancillary qubits can be introduced so that
possibly all quantum subtleties can be explored (e.g. entanglement,
measurements and the involved reductions of states, nonlocal quantum
gates etc.).

Basically, any quantum system that can be manipulated by at least one party
and where the utility of the moves can be reasonably defined, quantified and
ordered may be conceived as a quantum game. The quantum system may
be referred to as a quantum board although the term universum of the game
seems to be more appropriate. We will suppose that all players know the state
of the game at the beginning and at some crucial stages that may depend an
the game being played. This is a subtle point because it is not always possible
to identify the state of a quantum system let alone the technical problems
with actual identification of the state (one can easily give examples of systems
that are only partially accessible to some players ). A “realistic” quantum
game should include measuring apparatuses or information channels that
provide information on the state of the game at crucial stages and specify the
way of its termination. We will neglect these nontrivial issues here. Therefore
we can suppose that a two–player quantum game Γ = (H, ρ, SA, SB, PA, PB)
is completely specified by the underlying Hilbert space H of the physical
system, the initial state ρ∈S(H), where S(H) is the associated state space,
the sets SA and SB of permissible quantum operations of the two players,
and the pay–off (utility) functions PA and PB, which specify the pay–off
for each player. A quantum strategy sA ∈ SA, sB ∈ SB is a collection of
admissible quantum operations, that is the mappings of the space of states
onto itself. One usually supposes that they are completely positive trace–
preserving maps. The quantum game’s definition may also include certain
additional rules, such as the order of the implementation of the respective
quantum strategies or restriction on the admissible communication channels,
methods of stopping the game etc. We also exclude the alteration of the pay–
off during the game. The generalization for the N players case is obvious.
The real challenge is to describe quantum games with unlimited and changing
number of players. The players should be able to change their strategies

4At least one of the performed (allowed) operations should not be equivalent to a clas-
sical one. Otherwise we would get a game equivalent to some variant of the prequantized
classical game.
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during the course of the game (tactics)5. A possible approach is as follows.
If a game allows a great number of players in it is useful to consider it as
a two–players game: the k-th trader against the Rest of the World (RW).
Any concrete algorithm A should allow for an effective strategy of RW (for
a sufficiently large number of players the single player strategy should not
influence the form of the RW strategy). Tactics and moves are performed
by unitary transformations on vectors in the Hilbert space (states). This
approach is suitable for description of quantum market games [15]. Let the
real variable q

q := ln c−E(ln c)

denotes the logarithm of the price at which the k-th player can buy the
asset G shifted so that its expectation value in the state |ψ〉k vanishes. The
expectation value of x is denoted by E(x). The variable p

p := E(ln c) − ln c

describes the situation of a player who is supplying the asset G according
to his strategy |ψ〉k. Supplying G can be regarded as demanding $ at the
price c−1 in the 1G units and both definitions are equivalent. Note that we
have defined q and p so that they do not depend on possible choices of the
units for G and $. For simplicity we will use such units that E(ln c) = 0.
The strategies |ψ〉k belong to Hilbert spaces Hk. The state of the game
|Ψ〉in :=

∑

k |ψ〉k is a vector in the direct sum of Hilbert spaces of all play-
ers. We define canonically conjugate Hermitian operators of demand Qk

and supply Pk for each Hilbert space Hk analogously to their physical po-
sition and momentum counterparts. This can be justified in the following
way. Let e−p be a definite price, where p is a proper value of the operator
Pk. Therefore, if one have already declared the will of selling exactly at the
price e−p (the strategy given by the proper state |p〉k) then it is pointless to
put forward any opposite offer for the same transaction. The capital flows
resulting from an ensemble of simultaneous transactions correspond to the
physical process of measurement. A transaction consists in a transition from
the state of traders strategies |Ψ〉in to the one describing the capital flow

5In the standard matrix formulation of the game all strategies are listed and defined
at the beginning. We would like to describe more general situations, where the player can
change his mind, and, for example, instead of buying sells some financial asset. To this
aim tactics changing strategies are necessary.
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state |Ψ〉out := Tσ|Ψ〉in, where Tσ :=
∑

kd
|q〉kdkd

〈q|+
∑

ks
|p〉ksks

〈p| is the pro-
jective operator defined by the division σ of the set of traders {k} into two
separate subsets {k} = {kd} ∪ {ks}, the ones buying at the price eqkd and
the ones selling at the price e−pks in the round of the transaction in question.
The role of the algorithm A is to determine the division σ of the market, the
set of price parameters {qkd

, pks
} and the values of capital flows. The later

are settled by the distribution

∫ ln c

−∞

|〈q|ψ〉k|2

k〈ψ|ψ〉k
dq

which is interpreted as the probability that the trader |ψ〉k is willing to buy
the asset G at the transaction price c or lower. In an analogous way the
distribution

∫ ln 1

c

−∞

|〈p|ψ〉k|2

k〈ψ|ψ〉k
dp

gives the probability of selling G by the trader |ψ〉k at the price c or greater.
These probabilities are in fact conditional because they describe the situation
after the division σ is completed. If one considers the RW strategy it make
sense to declare its simultaneous demand and supply states because for one
player RW is a buyer and for another it is a seller. To describe such situa-
tion it is convenient to use the Wigner formalism6. The pseudo–probability
W (p, q)dpdq on the phase space {(p, q)} known as the Wigner function is
given by

W (p, q) := h−1
E

∫ ∞

−∞
eiℏ−1

E
px

〈q + x
2
|ψ〉〈ψ|q − x

2
〉

〈ψ|ψ〉 dx.

In general, this measure is not positive definite. In the general case the
pseudo–probability density of RW is a countable linear combination of Wigner
functions, ρ(p, q) =

∑

nwnWn(p, q), wn ≥ 0,
∑

n wn = 1.

One of the most appealing features of quantum games is the possibility
that strategies can influence each other and form collective strategies. Else-
where [17], we have defined the alliance as the gate CNOT (C) regardless of
its standard name controlled-NOT because it can be used to form collective

6Actually, this approach consists in allowing pseudo–probabilities into consideration.
From the physical point of view this is questionable but for our aims its useful, cf. the
discussion of the Giffen paradox [16].
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strategies as follows. Most of two-qubit quantum gates are universal in the
sense that any other gate can be composed of a universal one [18]-[20]. There-
fore it is sufficient to describe a collective tactic of N players as a sequence
of various operations Uz,α belonging to SU(2) performed on one-dimensional
subspaces of players’ strategies and, possibly, alliances C among them (any
element of SU(2N) can be given such a form [21]). Alliances are, up to
equivalence, the only ways of forming collective games. An alliance has the
explicit form CNOT := |0〉〈0| ⊗ I + |1〉〈1| ⊗NOT , where the tactic NOT is

represented in the qubit basis (|0〉, |1〉) by the matrix

(

0 i
i 0

)

∈SU(2). An

alliance allows the player to determine the state of another player by entering
into an alliance and measuring her resulting strategy. This process is shortly
described as

C |0′〉|m′〉 = |m′〉|m′〉, C |m〉|0〉 = |m〉|m〉,

where m= 0, 1. The corresponding diagrams are shown in Fig. 1. The left
diagram presents measurement of the observable X ′ and the right one mea-
surement of X . Any measurement would demolish possible entanglement of

|0′〉 ⌢ր|?′〉

⊕ |0〉 ⊕ ⌢ր|?〉

Figure 1: The alliance as a mean of determining others’ strategies. The sign
“⌢ր” at the right ends of lines representing qubits symbolizes measurement.

strategies. Therefore entangled quantum strategies can exist only if the play-
ers in question are ignorant of the details of their strategies. To illustrate
the problem we analyze three simple games involving alliances. They can
be used as partial solutions in more complicated situations. To taste power
of the formalism let us investigate the Newcomb’s paradox [22]. Any circuit
is more or less vulnerable to random errors. Consider the simple quantum
circuit presented in Fig. 2. The gate I/NOT is defined as a randomly chosen
gate from the set {I,NOT}) and is used to switching-off the circuit in a
random way. It can be generalized to have some additional control qubits.
In a game-theoretical context such circuits can be used to neutralization of
disturbances caused by measuring strategies, c.f. [3]. For example, it can be
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|1/0〉

|0〉 ⊕ ⌢ր
−→

|1/0〉

|0〉 I/NOT ⊕ ⌢ր

Figure 2: Neutralization of a quantum measuring system by a switch I/NOT
applied (I/NOT → NOT ), when |1/0〉= |1〉 (see the text).

applied to solve the famous Newcomb’s free will paradox. The problem, orig-
inally formulated by William Newcomb in the 1960, was described by Martin
Gardner in the following way [23]. An alien Omega being a representative of
alien civilization (player 2) offers a human (player 1) a choice between two
boxes. The player 1 can take the content of both boxes or only the content
of the second one. The first one is transparent and contains $1000. Omega
declares to have put into the second box that is opaque $1000000 (strategy
|1〉2) but only if Omega foresaw that the player 1 decided to take only the
content of that box (|1〉1). A male player 1 thinks: If Omega knows what I am
going to do then I have the choice between $1000 and $1000000. Therefore
I take the $1000000 (strategy |1〉1). A female player 1 thinks: Its obvious
that I want to take the only the content of the second box therefore Omega
foresaw it and put the $1000000 into the box. So the one million dollar is in
the second box. Why should I not take more – I take the content of both boxes
(strategy |0〉1). The question is whose strategy, male’s or female’s, is better?
In he measuring system presented in Fig. 2 the initial value |0〉 of the lower
qubit corresponds to the male strategy and the values |1〉 and |0〉 of the up-
per qubit correspond to male and female tactics, respectively. The outcome
|0〉 of a measurement performed on the lower qubit indicates the opening
of both boxes with contents prepared by Omega before the alliance CNOT
was formed. If Omega installed in the circuit a breaker of the form I/NOT
(before or after the alliance CNOT he would use it when (and only then)
the human adopted the female tactics. But this would mean that Omega is
cheating (the breaker is installed after the alliance) or is able to foretell the
future (the breaker is installed before the alliance). In the quantum setting
the situation is different. The quantization of the problem is presented in
Fig. 3. It consists in replacing of the circuit-breaker I/NOT by a pair of

Hadamard gates H := i√
2

(

1 1
1 −1

)

∈ SU(2). Due to their jamming effect

on the human’s tactics, we can call them a quantum Trojan horse (qutro-
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|1/0〉

|0〉 I/NOT ⊕ ⌢ր
−→

|1/0〉

|0〉 H ⊕ H ⌢ր

Figure 3: Solution to the Newcomb’s paradox: quantum device that neutral-
izes measurement. In the quantization process the gate I/NOT is replaced
by a qutrojan (see the text) that acts independently of the value of the qubit
|1/0〉 and is composed of two Hadamard gates H .

jan)7. We can hardy use the term trojan with respect to the circuit-breaker
I/NOT because of its paradoxical correlation with human tactics. Note that

H · NOT · H =

(

−i 0
0 i

)

, hence any attempt at measuring squared abso-

lute values of coordinates of the human strategy qubit will not detect any
effectiveness of the female tactics.

4 Universal primitives of quantum games

There are two main approaches to the universality problem of quantum com-
putation. First approach consist in approximation of a unitary transforma-
tion U = exp(−iHt) in a way analogous to infinitesimal operators in Lie
group theory [18, 26, 27]. In the alternative approach one tries to repre-
sent the matrix of a given unitary transformation as a product of one- and
two-qubit gates from a possibly minimal set - set of universal primitives. A
related approach follows the methods used in teleportation – the dominant
role play measurements. Raussendorf and Briegel [28, 29] proposed the so
called cluster-state model that forms a powerful tool in quantum complexity
theory [30]. A more practical approach to the measurement-based model of
quantum computation was proposed by Nielsen [31, 3]. This model of quan-
tum computation has been further developed by Leung [32] and Leung and
Aliferis [33] who exhibited a universal family of universal primitives com-
posed of 4 two-qubit measurements (4 auxiliary qubits are necessary). The
most important result in measurement-based models of computation was ob-
tained by Perdix [34] who has introduced a model of measurement-based

7Problems connected with the definition of trojan are discussed in [24].
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quantum computation that makes use of what he calls the state transfer. In
this model of quantum computation to simulate any n-qubit unitary trans-
formation one auxiliary qubit is required – a universal family of observables
could be formed by 3 one-qubit measurements and only one two-qubit mea-
surement. Perdrix’s [34] approach improves previous results by reducing both
the number of auxiliary qubits and the number of two-qubit measurements
required for quantum universality. From the theoretical point of view8 the
minimal amounts of necessary resources are reached in this approach. It
follows that quantum games with a “fixed quantum board” that is imple-
mented as a fixed quantum circuit have the same universal properties as the
circuit used for their implementation. In an open dynamical setting, such as
in quantum market games the situation is slightly more complicated but a
concise dictionary of universal primitives can be given [38] if one follows the
way paved by Perdix [34, 37]. In this case measurements also form sufficiently
powerful and effective tools in manipulation of quantum tactics. A measure-
ment of tactics consists in determination of the strategy or, more precise,
finding out which of its fixed points we have to deal with. If the tactics
being measured changes the corresponding strategy, then the non-demolition
measurement reduces the strategy to one of its fixed points and the respec-
tive transition amplitudes are given by coordinates of the strategy in the
fixed point basis. A dominant role of measurements in implementations of
this type suggests that quantum games may be free from psychological fac-
tors, such as phobia, intention, irrationality and so forth. Following Perdrix
[34, 38], we can see that measurements of the tactics X, G and X⊗X ′, where

X := σx , X
′ := σz = HXH , G := 1√

2
(X ′ +X ′′) .

suffice to implement quantum market games. Graphically, these measure-
ments will be represented as 9.

X , G , X⊗X ′ . (1)

8We neglect here the problem of optimal convergence. Other classes of universal primi-
tives are usually introduced to analyze this nontrivial issue. For example, a set of quantum
gates is said to be computationally universal if it can be used to simulate to within ε er-
ror any quantum circuit which uses n qubits and t gates from a (strictly) universal set
with only polynomial overheads in (n, t, 1

ε
). A non-minimal set might be more effective in

simulations [35, 36]
9We follow the Qcircuit.tex convention [39]. Thus rounded off shape is used to distin-

guish measuring gates.
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Measurement of the tactics X⊗X ′ provides us with information whether the
two strategies agree or disagree on the price but reveals no information on
the level of the price in question. To get information about the prices we
have to measure X ⊗ I and I ⊗X ′, respectively. Note that the measurement
of X ′ can be accomplished implicitly by measurement of X and subsequently
X ⊗X ′. Graphically this is represented as [34, 37]:

( X
X⊗X ′

)
=⇒ X ′ ,

where the parentheses are used to denote auxiliary qubits. The following
sequence of measurements shows that a strategy encoded in one qubit can
be transferred to another qubit (from the upper one to the lower one in the
figure bellow) and changed with the tactics σH , where σ is one of the Pauli
matrices (including the identity matrix):

X⊗X ′
X ′ )

( X

=⇒ σH . (2)

Thus the strategy encoded in the upper state is transferred from the
lower qubit and changed with the tactics σH . It is obvious that the same
tactics is adopted if we switch the supply measurements with the demand
ones (X↔X ′). Simple calculation shows that the composite tactics HσH
and σiσk reduce to some Pauli (matrix) tactics. Therefore an even sequence
of tactics (2) can be perceived as a Markov process over vertices of the graph

I

X

X ′ X ′′
I

I

I I

X′X′′

X

I

X′

I

X′′

X

It follows that any Pauli tactics can be implemented as an even number of
tactics-measurements (2) by identifying it with some final vertex of random
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walk on this graph. Although the probability of drawing out the final vertex
at the first step is 1

4
, the probability of staying in the “labirynth” decreases to

zero exponentially with time. Having a method of implementation of Pauli
tactics allows us to modify the tactics (2) so that to implement the tactics
H — the fundamental operation of switching the supply representation with
the demand representation. It can be also used to measure compliance with
tactics representing the same side of the market (direct measurement is not
possible because the agents cannot make the deal):

X⊗X := X⊗X ′
H H

,

X ′⊗X ′ := H
X⊗X ′ H

.

In addition, this would allow for interpretation via measurement of random
Pauli tactics σ because due to the involutiveness of H the gate (2) can be
transformed to

H
X⊗X ′

X ′ )

( X
= X ′⊗X ′

X )

( X
=

(3)

X⊗X
X ′ )

( X ′
=⇒ σ .

The gate (3) can be used to implement the phase-shift tactics:

T :=

(

1 0
0 1+i√

2

)

.

T commutes with X ′, hence:

σT ⇐= X ′⊗X ′
T−1X T )

( X
.

Elementary calculation demonstrates that T−1XT = X−X′′

√
2

and HX−X′′

√
2
H=

G, therefore

H
X⊗X ′

G )

( X

=⇒ σT .
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We have seen earlier that it is possible to remove the superfluous Pauli op-
erators, cf. (3). To end the proof of universality of the set of gates (1) we
have to show how to implement the alliance Cnot (note that {H, T, Cnot} a
set of universal gates [40]). This gate can be implemented as the circuit [37]
(as before, the gate is constructed up to a Pauli tactics):

X ′⊗X
( X

X ′⊗X X ′ ) =⇒
• σa

σb

.

Actually, simple calculation [34] prove that the universality property has
any set of primitive that contains the controlled H gate and measurements
Xk, Xp⊗Xq, Xr⊗Xs, where p 6=q, r 6=s i p 6=r. It follows, that to implement a
quantum market10 it suffices to have, beside possibility of measuring strategy-
qubits and control of the supply-demand context, a direct method measuring
entanglement of a pair of qubits in conjugated bases. The universal quantum
interfaces can be used to connect and control an a priori arbitrary number
of information processing units11. Some interesting technical details can be
found in Ref. [41]. It is natural to wonder how small such a primitive
processing unit could be. A single atom or a molecule are examples of a
possible simple quantum computing units [42] but the feasibility of framing
them into an all-purpose quantum computer is currently out of reach.

5 Quantum gambling

Sophisticated technologies that are not yet available are not necessary to
implement quantum games [43]. Simulation of quantum games can be per-
formed in an analogous way to precision physical measurements during which
classical apparatuses are used to explore quantum phenomena. We envisage
that quantum lotteries will soon emerge and will challenge the present day
lottery market based randomized events or pseudo-randomness. In games
of chance the player is betting in advance on the outcomes of several in-
compatible measurements. Quantum phenomena offer true random event
and commercial random event generators should appear on the market at

10Actually any finite-dimensional quantum system can be implemented in that way [37].
11The idea that a single quantum interface that can dynamically moved between system

is attractive but is probably hard to put into effect.
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moderate prices [44]. At the present stage of our technological development
it already is feasible to open quantum casinos, where gambling at quantum
games would be possible. Of course, such an enterprise would be costly but
if you recall the amount of money spent on gambling, lotteries and advertis-
ing various products it seems to us that it is a worthy cause. Goldenberg,
Vaidman and Wiesner described the following game based on the coin toss-
ing protocol [45]. Alice has two boxes, A and B, which can store a particle.
The quantum states of the particle in the boxes are denoted by |a〉 and |b〉,
respectively. Alice prepares the particle in some state and sends box B to
Bob. Bob wins in one of the two cases:

1. If he finds the particle in box B, then Alice pays him 1 monetary unit
(after checking that box A is empty).

2. If he asks Alice to send him box A for verification and he finds that she
initially prepared a state different from |ψ0〉 = 1/

√
2 (|a〉 + |b〉), then

Alice pays him R monetary units.

In any other case Alice wins, and Bob pays her 1 monetary unit. They have
analyzed the security of the scheme, possible methods of cheating and calcu-
lated the average gain of each party as a result of her/his specific strategy.
The analysis shows that the protocol allows two remote parties to play a
gambling game, such that in a certain limit it becomes a fair game. No
unconditionally secure classical method is known to accomplish this task.
This game was implemented by Yong–Sheng Zhang et al, [46]. Other pro-
posals based on properties of non–orthogonal states have been put forward
by Hwang, Ahn, and Hwang [47] and Hwang and Matsumoto [48]. Witte
has proposed a quantum version of the Heads or Tails game [49]. Piotrowski
and S ladkowski have suggested that although sophisticated technologies to
put a quantum market in motion are not yet available, simulation of quan-
tum markets and auctions can be performed in an analogous way to precision
physical measurements during which classical apparatuses are used to explore
quantum phenomena. People seeking after excitement would certainly not
miss the opportunity to perfect their skills at “using quantum strategies”.
To this end an automatic quantum game will be sufficient and such a device
can be built up due to the recent advances in technology [17, 44]. Segre has
published an interesting detailed analysis of quantum casinos and a Mathe-
matica packages for simulating quantum gambling [50]. He has introduced
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a quantum analogue of the Law of Excluded Gambling Strategies of Clas-
sical Decision Theory. The necessity of keeping into account entanglement
requires to adopt the general algebraic language of Quantum Probability
Theory. There is a deep link between the theory of winning quantum gam-
bling strategies and the central notion of Quantum Algorithmic Information
Theory – quantum algorithmic randomness. Quantum gambling besides its
commercial significance is closely related to quantum logic, decision theory
and can be used for defining a Bayesian theory of quantum probability [51]
– interesting fields of research with various possible commercial applications.

6 Quantum combinatorial games and quan-

tum automata

To our knowledge, algorithmic combinatorial games, except for cellular au-
tomata, have been completely ignored by quantum physicists. This is aston-
ishing because at least some of the important intractable problems might be
attacked and solved on a quantum computer. Consider some problem X. Let
us define the game kXcl: you win if and only if you solve the problem (per-
form the task) X given access to only k bits of information. The quantum
counterpart reads: solve the problem X on a quantum computer or other
quantum device given access to only k bits of information. Let us call the
game kXcl or kXq interesting if the corresponding limited information–tasks
are feasible. Let OckhamXcl (OckhamXq) denotes the minimal k interest-
ing game in the class kXcl (kXq). There are a lot of intriguing questions that
can be ask, for example for which X the meta–game Ockham(OckhamXq)cl
can be solved or when, if at all, the meta–problem Ockham(OckhamXq)q is
well defined problem. Quantum automata (quantum state machines) [52]-[54]
play in quantum information theory role analogous to that of finite automata
in Turing-Church model of computation. Quantum automaton can be de-
fined as a quadruple A = (S, s0, α, U), where S is the set of allowed internal
states, s0 ∈ S the initial state vector α the input alphabet and U a unitary
transition matrix for each symbol a ∈ α [55]. Primary interest in quantum
automata stems from the research into the structure of quantum grammars
and quantum languages but being simple quantum systems they are natural
candidates for elementary units in programmable quantum systems. From
the point of view of possible applications the theory of quantum lattice gas
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automata [56, 57] deserves special attention. Vlasov [58] has considered a
simple model of a quantum system whose Hilbert space H can be decom-
posed into two components H = Hl ⊗ HS where Hl corresponds to spatial
degrees of freedom of a hypercubic lattice and HS to internal states. He
calls it the quantum bot (qubot). The evolution of qubot is described by
conditional quantum dynamics [59] and its excitation can be programmed.
So far we have considered quantum systems that occupy a definite space,
say a physical laboratory. Benioff [60] has considered quantum computers to
be parts of larger systems where interactions between quantum computers
and external systems form an essential part of the overall system dynam-
ics – quantum robots. A quantum robot is a mobile system that carries
a programmable quantum system, and all necessary ancillary systems (e.g.
memory) on board. Quantum robots can carry out tasks whose goals include
specified changes in the state of the environment or carrying out measure-
ments on the environment. Each task is a sequence of alternating computa-
tion and action phases. Computation phase activities include determination
of the action to be carried out in the next phase and possible recording of
information on neighborhood environmental system states. Action phase ac-
tivities include motion of the quantum robot and changes of neighborhood
environment system states. At this stage quantum feedback control seems
to be the most effective strategy: we obtain information about the evolving
system through measurement, process the information and feed it back to
the system to actively control the system in a desired way. Various methods
of quantum feedback have been proposed [61]. In Benioff’s model each task
is represented by a unitary step operator T that describes single time steps
of quantum robot’s dynamics. T = Ta + Tc is a sum of action phase (Ta)
and computation phase (Tc) step operators. Schematic description the task
in terms of decision trees is possible. No definite times or durations are asso-
ciated with the phase steps in the tree. Detailed description of a robot that
performs Grovers search algorithm is presented in Ref. [60]. He has conjec-
tured that there is an equivalent Church-Turing hypothesis for the collection
of all tasks that can be carried out by quantum robots. It follows that there
may be a similar hypothesis for the class of feasible physical experiments.
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7 Quantum programming

In classical computer science high level programming languages allow to mas-
ter the more and more complex hardware. Currently no quantum computer is
available and we have only vague idea what quantum programming should be
like. Classical concepts like hardware abstraction, data classification, mem-
ory management, can hierarchical and structured programming should have
quantum counterparts. The purpose of programming languages is both to
express the semantics of the computation and generation sequences of ele-
mentary operations to be performed by a concrete computing unit. From
this point of view the formalism of Hilbert spaces and their transformation
as the mathematical description of quantum algorithms provides no means
to derive their representation as sequences of elementary operations to con-
trol a given quantum hardware. Currently known quantum algorithms are
described in terms of quantum random access machine (QRAM) model [62]
that is an extension of a classical random access machine which is capable
of both quantum and classical computations. In such machines the mas-
ter classical machine uses the quantum subsystems as a black-box or oracle
co-processing unit. The no-cloning theorem excludes replications of quan-
tum systems. To handle this problem a new type of data, the quantum
register has been introduced. Quantum register objects are collections of cu-
bits addresses. They can overlap. Quantum operators encode definitions of
quantum circuits and execute the circuits on supplied registers. Sanders and
Zuliani [63] extended probabilistic versions of imperative languages to include
quantum primitives. The resulting language (qGCL) is capable of program-
ming universal quantum computer. Ömer has given an excellent analysis
of quantum structured programming and developed a procedural formalism
called QCL in his PhD thesis [64]. In both languages unitary transformations
are functions and their manipulation is difficult. To solve this inconvenience,
Bettelli, Calarco and Serafini [65] put forward an architecture that is capable
of compact expression and reduction to sequences of elementary operation of
quantum algorithms due to introduction of quantum operator objects that are
easy to handle. Altenkirch and Grattage have taken more abstract path and
introduced a functional language for quantum computation of finite types -
the language QML [66]. The programs are interpreted by morphism in the
category FQC of finite quantum computation12. Objects of these categories

12The classical counterpart FCC is also introduced
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are sets. Classical computations are carried out on elements of finite sets and
quantum computations take place in finite dimensional Hilbert spaces. A re-
versible finite computation is modelled by a reversible operation, which is a
bijection of finite set in the clasical case, and a unitary transformation on the
Hilbert space in the quantum case. Guided by this they have described the
semantics the language QML that extends a classical finitary language. They
are currently working on implementation of a compiler for QML in Haskell.
Game theory in the form of competitive analysis is now a well established
tool in analysis of algorithms [67]. Quantum games being on the verge of var-
ious approaches seem to be essentially more dynamical than the traditional
games in the “gaming situations” that arise from computational problems
[68, 15, 69]. Semantic analysis of these games reformulated as Hilbert space
problem and the categorical technics should set off differences and similar-
ities between classical and quantum descriptions. The formalization must
support strategies that are sensitive to any aspects of the situation, includ-
ing not just the opponents’ moves, but also the assumptions about their
counter-strategies that can make the most of quantum phenomena such as
interaction-free measurements or counterfactual computations. The hope is
that the careful analysis will provide new defence protocols – sustainable
strategies against possible attacks13. The quantum description would sup-
port systematic development and provide means for dealing with the future
challenges and complexities of real systems [3].

8 Quantum artificial intelligence

Analogously to the terminology used in computer science, we can distinguish
the shell (the measuring part) and the kernel (the part being measured) in a
quantum game that is perceived as an algorithm implemented by a specific
quantum process. Note that this distinction was introduced on the basis of
abstract properties of the game (quantum algorithm, quantum software) and
not properties of the specific physical implementation. Quantum hardware
would certainly require a lot of additional measurements that are nor specific
to the game (or software), cf. the process of starting a one-way quantum
computer. Adherents of artificial intelligence (AI) should welcome the great
number of new possibilities offered by quantum approach to AI (QAI). For

13and vice versa, unfortunately.
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example, consider a Quantum Game Model of Mind (QGMM) exploring
the confrontation of quantum dichotomy between kernel and shell with the
principal assumption of psychoanalysis of dichotomy between consciousness
and unconsciousness [70]. The relation is as follows.

• Kernel represents the Ego, that is the conscious or more precisely, that
level of the psyche the it is aware of its existence (it is measured by
the Id). This level is measured due to its coupling to the Id via the
actual or latent (not yet measured) carriers of consciousness (in our
case qubits representing strategies)

• Shell represents the Id that is not self-conscious. Its task is monitoring
(that is measuring) the kernel. Memes, the AI viruses [71], can be
nesting in that part of the psyche.

Memes being qutrojans, that is quantum parasitic gates (not qubits!) can
replicate themselves (qubits cannot – no-cloning theorem). Very little is
known about the possible threat posed by qutrojans to the future of quan-
tum networks. In quantum cryptography teleportation of qubits will be help-
ful in overcoming potential threats posed by qutrojans therefore we should
only worry about attacks by conventional trojans [72]. If the qutrojan is able
replicate itself, it certainly deserves the name quvirus. A consistent quantum
mechanism of such replication is especially welcome if quantum computers
and cryptography are to become a successful technology. In the QGMM
approach external measuring apparatus and “bombs” reducing (projecting)
quantum states of the game play the role of the nervous system providing
the “organism” with contact with the environment that sets the rules of the
game defined in terms of supplies and admissible methods of using of tac-
tics and pay-offs [17]. Contrary to the quantum automaton put forward by
Albert [52] in QGMM model there is no self-consciousness – only the Ego is
conscious (partially) via alliances with the Id and is infallible only if the Id
is not infected with memes. Alliances between the kernel and the Id (shell)
form states of consciousness of QAI and can be neutralized (suppressed) in
a way analogous to the quantum solution to the Newcomb’s paradox [22]. In
the context of unique properties of quantum algorithms and their potential
applications the problem of deciding which model of AI (if any) faithfully de-
scribes human mind is fascinating but a secondary one. The discussed above
variant of the Elitzur-Vaidman breaker suggests that the addition of the third
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qubit to the kernel could be useful in modelling the process of forming the
psyche by successive decoupling qubits from the direct measurement domain
(and thus becoming independent of the shell functions). For example dreams
and hypnosis could take place in shell domains that are temporary coupled
to the kernel in this way. The example discussed in the previous section illus-
trates what QAI intuition resulting in a classically unconveyable belief might
be like. What important is, QAI reveals more subtle properties than its clas-
sical counterparts because it can deal with counterfactual situations [73, 73]
and in that sense analyze hypothetical situations (imagination). Therefore
QAI is anti-Jourdainian: Molier’s Jourdain speaks in prose without knowing
it; QAI might be unable to speak but know it would have spoken in prose
were it possible. The idea of strong artificial life of building (computational)
models that are so life-like that they cease to be models of life and become
examples of life themselves should also be invoked here [75, 76]. An agent
based model consists of a collection of ”primitive” computational entities14,
called agents. Such agents can in principle be implemented in the form of
quantum programable systems. Quantum game theoretical aspects of such
models have not yet been investigated. In their particular form known as
artificial chemistry [77] genuinely novel phenomena may arise at the level of
collective interactions of quantum agents [78]. It certainly would influence
the discussion of classical paradigms of artificial intelligence [79].

9 Conclusion

Classical computing, though successful, is certainly not the full story. The
opinion that it encompasses only a subset all computational possibilities has
growing number of supporters. Humans have already overcome several nat-
ural limitations with help of artificial tools. Are we at the verge of dramatic
developments that would change our computational paradigms? Quantum
information processing with possible inspirations from physics and biology
holds great promise. Intellectual investment over many years is turning craft
into science. Examining how Nature solves its computational problems would
probably result in revolutionary changes in computational paradigms [80].
Currently, we have to accept the following facts:

14For example, a cellular automata
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The particular choice of physical implementation of computing units matters
and may have consequences

It may not be necessary to run the computer to get a result

The trajectory taken by a computational process can be more interesting
than the final result

Quantum game theory also has its weak points but there is no doubt that it
will be a crucial discipline for the emerging information society. Information
processing is undergoing a revolutionary stage of development. If you ask
about its future you get nearly as many different answers as the number of
scientists being asked. We have presented our personal view that might not
come true.
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[79] Sullins III, J. P., Gödel’s incompletness theorems and artificial life, Jour-
nal of the Society for Philosophy and Technology 2 (1997) 141.

[80] Stepney, S, et al. Journeys in Non-Classical Computation: A
Grand Challenge for Computing Research; University of Kent (2003):
http://www.cs.kent.ac.uk/pubs/2003/1713/ .


