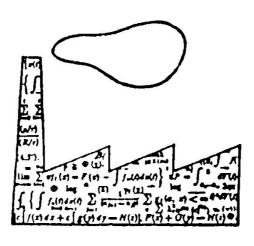
(RePEc:sla:eakjkl:99PL 17-II-2003)

KOMITET MATEMATYKI POLSKIEJ AKADEMII NAUK
ZARZĄD GŁÓWNY POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO
INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK
POLSKIE STOWARZYSZENIE AKTUARIUSZY
POŁUDNIOWA DYREKCJA OKRĘGOWA KOLEI PAŃSTWOWYCH

DWUDZIESTA PIĄTA OGÓLNOPOLSKA KONFERENCJA ZASTOSOWAŃ MATEMATYKI

pod honorowym patronatem
PREZESA POLSKIEJ AKADEMII NAUK
PROF. DR. HAB. LESZKA KUŹNICKIEGO

Zakopane - Kościelisko, 17-24. IX. 1996



WARSZAWA 1996

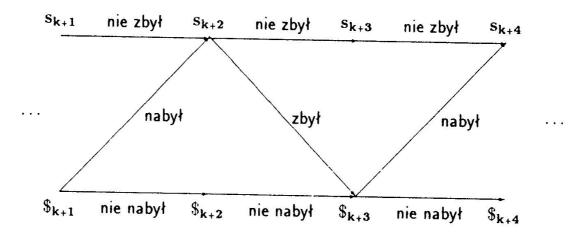
Andrzej Karpio
Edward W. Piotrowski
Filia Uniwersytetu Warszawskiego, Instytut Fizyki
ul. Lipowa 41, 15–669 Białystok
e-mail: ep@nemezis.uw.bialystok.pl

Optymalizacja gry giełdowej z niekompletną informacją

Ograniczmy się do gry na akcjach jednej spółki giełdowej.

Wykres funkcji zysku z akcji w mijających momentach notowań jest piłokształtny o ograniczonych z dołu wysokościach wcięć i zębów (z przyczyny kosztów operacji - zob. "Transakcje giełdowe i model Isinga").

Załóżmy, że kolejne wysokości wcięć i zębów to niezależne zmienne losowe o rozkładach odpowiednio w(x) i z(x). Niech a(W,Z) oznacza strategię "gry na pile" polegającą na zakupie akcji w chwili pojawienia się wcięcia o głębokości co najmniej W i sprzedaży w sytuacji natrafienia na ząb o wysokości nie mniejszej niż Z. Ze względu na losowy charakter wcięć i zębów gra będzie wędrówką wzdłuż poniższego grafu.



Ilość ścieżek, którymi można dojść do $\mathbf{s_m}$ (czy $\mathbf{s_m}$), jest liczbą Fibonacciego (jest to jedyne jak dotychczas, racjonalnie uzasadnione pojawienie się idei Leonarda z Pizy w opisie gry giełdowej).

Oznaczmy przez $a(W^*, Z^*)$ strategię dającą przeciętnie największą wygraną wśród wszystkich $a(\ldots, \ldots)$.

- 1. Znajdź jawną zależność W^* i Z^* od w(x) i z(x).
- 2. Czy istnieje strategia dająca przeciętnie wyższą wygraną niż strategia $a(W^\star,Z^\star)$?