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Abstract

This paper makes two contribution to the literature on density forecasts. First, we propose a

novel bootstrap approach to estimate forecasting densities based on nonparametric techniques.

The method is based on the Markov Bootstrap that is suitable to resample dependent data. The

combination of nonparametric and bootstrap methods delivers density forecasts that are flexible

in capturing markovian dependence (linear and nonlinear) occurring in any moment of the distri-

bution. Second, we improve the testing approach to evaluate density forecasts by considering a

set of tests for dynamical misspecification such as autocorrelation, heteroskedasticity and neglected

nonlinearity. The approach is useful because rejections of the tests give insights into ways to im-

prove the forecasting model. By Monte Carlo simulations we show that the proposed evaluation

strategy has much higher power to detect misspecification of the density forecasts compared to

previous analysis. The proposed nonparametric-bootstrap forecasting method exhibits the ability

to capture correctly the dynamics of linear and nonlinear time series models. We also investigate

the performance at higher orders and propose methods to deal with the “curse of dimensionality”.

Finally, we empirically investigate the relevance of the method in out-of-sample forecasting the

density of 3 business cycles variables for the US: real GDP, the Coincident Indicator and Industrial

Production. The results indicate that the method gives reliable density forecasts for all variables

and performs better compared to parametric forecasting methods.
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1 Introduction

Linear processes are often used to model and forecast economic time series. However, since the past

two decades there has been a growing demand for models that can accommodate time series patterns

that depart from the usual assumptions of linearity and Gaussianity. In fact, it is now extensively

documented that economic time series exhibit significant nonlinear dependence. Hamilton (1989)

provides evidence that US real GNP is well explained by a markov switching model in which the

economy moves from a recessionary state with negative growth to an expansionary state with positive

growth. This evidence suggests that nonlinear models are able to offer new insights in the dynamics

of macroeconomic variables. Granger and Terasvirta (1993) reported successful application of these

models to a variety of economic time series. Extended surveys of nonlinear models are also provided

by Tong (1990), Krolzig (1997) and Terasvirta (1998). However, the significant in-sample evidence has

not translated into improved forecastability out-of-sample. de Gooijer and Kumar (1992) and more

recently Clements et al. (2004) review a large body of literature showing the failure of nonlinear models

in outperforming linear ones in out-of-sample prediction. An explanation is offered by Pesaran and

Potter (1997). They suggest that nonlinearities might be more effectively evaluated when forecasts

of higher moments (such as the conditional variance) are considered. This indicates that a more

appropriate comparison of linear and nonlinear models should examine the density forecasts rather

than point forecasts.

Another argument in favor of making use of density forecasts is provided by Granger and Pesaran

(2000a, 2000b). They argue that focusing on point forecasts is justified when the decision problem

faced by agents is linear in constraints and quadratic in loss function. In practice, economists are

interested in evaluating decisions that involve events such as recessions or that inflation will be in

a certain interval. This has also contributed to shift the attention toward producing density rather

than point forecasts. The advantage of density forecasts is that they provide an estimate of the future

probability distribution of a financial or economic variable, conditional on the information available at

the time the forecast is made. In that sense, a density forecast represents a complete characterization

of the uncertainty associated with the prediction. The practical relevance is also demonstrated by the

decision of the Bank of England and the Royal Bank of Sweden to report the uncertainty around their

point forecast of inflation and GDP.

The surge of interest for density forecasts required the development of suitable statistical tools for

their evaluation and comparison. Corradi and Swanson (2004) provide a survey of the work in the field.

The first method was proposed by Diebold et al. (1998). Their method is very convenient because it
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transform the problem of evaluating the conditional density into the problem of testing the properties

of the Probability Integral Transform (PIT). Hong et al. (2004) and Hong and Li (2005) compare

different models for the spot interest rate based on the evaluation of the density forecasts. In a recent

paper, Clements et al. (2003) investigate the power of point and density forecasts tests to distinguish

between linear and nonlinear forecasting models when the true model is in fact nonlinear. Their

results cast doubts on the ability of the evaluation tests to correctly identify the misspecification of

the linear density forecasts at the typical sample size of macroeconomic time series. This suggests that

the forecasting failure of nonlinear models could be attributed to the methodology used to evaluate

predictability rather than the inability of nonlinear models to capture genuine dependence in the data.

In this paper we make two contributions to the existing literature. First, we propose a nonpara-

metric bootstrap method for generating density forecasts. The method is data-driven and is preferable

when the analyst is uncomfortable with prior assumptions regarding the form of the dependence (e.g.,

linear or nonlinear) and/or the distribution of the error term (e.g., Gaussian). We adopt a novel

approach to estimate the conditional density that combines the flexibility of nonparametric methods

with bootstrap techniques. The method is based on a resampling technique for dependent data called

Markov Bootstrap. An early reference is Rajarshi (1990) and more recent work in the econometrics

literature are Paparoditis and Politis (2001, 2002) and Horowitz (2003). The method is able to account

for any type of (markovian) dependence that occurs in the conditional distribution, such as in the

conditional mean, variance and/or skewness. The assumption of markov dependence is not restric-

tive as it encompasses a wide range of relevant structures implied by various commonly used linear

and nonlinear models (e.g., AR and SETAR models). Other nonparametric methods to estimate the

forecasting density were proposed by Hyndman and Yao (2002) and de Gooijer and Zerom (2003).

Unlike these direct estimators, our method is an empirical one where density forecasts are produced

as outcomes of the Markov bootstrap procedure.

The second contribution of the paper is to elaborate an appropriate testing strategy to evaluate den-

sity forecasts. As mentioned earlier, Clements et al. (2003) report the low power of density evaluation

methods to detect the neglected nonlinearity. We augment the evaluation stage with suitable tests

for serial independence, ARCH and linearity. This addresses the problem of the low power of existing

tests to capture the misspecification of the dynamics of the forecasting densities.

The paper is structured as follows. In Section (2) we briefly review parametric bootstrap methods

to estimate the forecasting density and then introduce the nonparametric bootstrap method. We

discuss also the issue of the bandwidth choice. In Section (3) we present the testing approach. In

Section (4) we present the results of the Monte Carlo experiment. We investigate the power of the
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density forecasts tests and the performance of the Markov Bootstrap for various linear and nonlinear

time series models. In Section (5) we apply the method to the quarterly growth rate of US GDP

and to monthly growth rate of the Conference Board Coincident Index and US Industrial Production.

Finally, Section (6) concludes.

2 Estimation of the τ-step forecast density

Let Y1, · · · , YT denote realizations of a time series process. We consider the problem of forecasting

future values YT+1, · · · , YT+τ based on the observed data YT , YT−1, · · ·. In particular, our goal is

to estimate the out-of-sample τ -step forecast density for τ ≥ 1. The τ -step forecast density is the

conditional density of YT+τ given YT , YT−1, · · ·, i.e. fT+τ (y|·) where y ∈ IR. In tackling this problem,

by far the most common approach is to model the dependence of future observations on the past and

present via a parametric class of models.

Here, we introduce a nonparametric approach in which the estimation of the forecast density does

not require a priori specification of a model. To that purpose, we assume that the time series Yt is the

outcome of a p-th order Markov process,

P(Yt+1 ≤ yt+1|Yt = yt, Yt−1 = yt−1, . . .) = P(Yt+1 ≤ yt+1|Yt = yt, Yt−1 = yt−1, . . . , Yt−p = yt−p)

almost surely for yt+1, yt, yt−1, . . . and some finite integer p ≥ 1. The assumption of Markov dependence

is satisfied by a large class of linear and nonlinear models that are of interest in time series analysis and

forecasting. One frequently used special case of a Markov process is the conditionally heteroskedastic

autoregressive model of the following form

Yt+1 = µ(Xt, θ) + σ(Xt, β)ǫt+1 (1)

where Xt = (Yt, . . . , Yt−p+1)
′ is a p-dimensional vector, µ(·) is the conditional mean of the process, σ(·)

denotes the conditional variance, and ǫt+1 is an i.i.d disturbance term with zero mean. The vectors

θ and β denote the parameters in the conditional mean and the conditional variance of the process,

respectively. Model (1) includes several familiar time series models such as linear AR, ARCH, and

SETAR.

To motivate our method for estimating the forecast density, we first briefly review how model-

based τ -step forecast densities can be estimated via bootstrapping. An extensive account is given

in Clements and Smith (1997). The method to be introduced in section (2.1) can be interpreted as

a nonparametric generalization of the model-based bootstrap approach. The motivation to use the
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bootstrap in a parametric framework is twofold. First, the researcher might find restrictive to make

assumptions about a parametric distribution for the innovation ǫt+1. Second, for many nonlinear

models of interest there are no analytical expressions for the expectation τ -step ahead. Under the

model specification in (1) and conditional on current time period, say T , the bootstrap realization

one-step ahead is given by

Y ∗
T+1,b = µ(XT , θ̂) + σ(XT , β̂)ǫ̂∗t+1,b

where ǫ̂∗t+1,b are the i.i.d. resampled (bootstrap) residuals, and θ̂ and φ̂ are consistent estimators of

θ and β, respectively. The 1-step ahead forecast density, fT+1(·|XT ), at time T is then given by the

empirical density function of the bootstrap realizations, y∗T+1,b, b = 1, . . . , B where B is the desired

number of replications. For τ ≥ 2, the forecasting density can be obtained by applying an iterative

scheme. The 2-step ahead conditioning vector is updated to X∗
T+1,b = (Y ∗

T+1,b, YT , · · ·, YT−p+2) and

the forecast density, fT+2(·|XT ), is again the empirical density of the bootstrap realizations

Y ∗
T+2,b = µ(X∗

T+1,b, θ̂) + σ(X∗
T+1,b, β̂)ǫ̂∗t+2,b,

for b = 1, . . . , B. The forecast τ -step ahead is obtained by iterating the bootstrap procedure.

2.1 Markov Forecast Density

The model-based approach of forecast density estimation is a residual-based procedure in the sense that

it begins by estimating θ and β and subsequently uses i.i.d. resampling of the fitted residuals to form

bootstrap realizations. On the other hand, the Markov Forecast Density (hereinafter MFD) estimator

does not attempt to reduce the problem to i.i.d. residuals. Instead, an appropriate resampling

procedure is applied directly to the realizations Yt. In comparison to the model-based procedure,

the MFD offers at least two advantages. First, the nonparametric nature of the MFD avoids making

assumptions of a parametric specification that may be inappropriate. Second, MFD is valid for a class

of time series models that is wider than (1). The method is able to account for dynamics that occur

in any moment of the conditional distribution, such as the conditional mean and variance but also, for

example, the conditional skewness. In this sense it is a more general method compared to the model

assumed in Equation (1). The MFD procedure is outlined below.

Assume that the Markov order p of the time series realization Yt is known. Cheng and Tong (1992)

and Diks and Manzan (2002) propose nonparametric methods to select p. Suppose the forecast origin

is at time t = T and define the corresponding conditioning vector by XT = (YT , YT−1, . . . , YT−p+1)
′.

The object of interest is to estimate the out-of-sample τ -step forecast density fT+τ (·|XT ) using the

available data Y1, . . . , YT . For t = p, . . . , T − 1, define the vectors Xt = (Yt, Yt−1, . . . , Yt−p+1)
′. The
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strategy is to assign probability weights to each vector Xp, · · · , XT−1, and using those probabilities to

resample from their successors. The values of these probabilities will depend on the “closeness” of the

vectors Xt to the conditioning vector XT . Those states that are “close” to XT receive larger probability

weights compared to those that are further away. Thus, by suitably choosing these probability values,

we maintain the Markov dependence in the data. For the computation of the probability distribution,

a nonparametric ( kernel smoothing) approach is used. The algorithm is an extension of a recently

popularized local bootstrap approach by Paparoditis and Politis (2001, 2002) to the context of out-

of-sample forecast density estimation.

The algorithm is as follows:

Step 1 For t = p, . . . , T − 1, define probability weights

P (J = t) = K

(
XT − Xt

hT

)
/

T−1∑

m=p

K

(
XT − Xm

hT

)
. (2)

where hT > 0 is a bandwidth parameter and K(·) is a kernel function. K(·) should be a symmetric

probability density. Using the probability mass function above, draw with replacement from the

successors of Xt, i.e., Y ∗
T+1 = YJ+1.

Step 2 For τ ≥ 2:

Step 2.1 Define the new conditioning feature vector at time t = T + 1 as X∗
T+1 =

(Y ∗
T+1, YT , . . . , YT−p+2) and calculate the new probability weights

P (J = t) = K

(
X∗

T+1 − Xt

hT

)
/

T−1∑

m=p

K

(
X∗

T+1 − Xm

hT

)
.

Using the updated probability mass function above, draw with replacement from the

successors of Xt, i.e., Y ∗
T+2 = YJ+1.

Step 2.2 Continue from Step (2.1) until forecasts for period T + τ are obtained using a

conditioning vector X∗
T+τ−1 = (Y ∗

T+τ−1, Y
∗
T+τ−2, . . . , Y

∗
T+1, . . . , YT−p+τ ).

Step 3 Repeat Step (1) (and (2) if τ ≥ 2) B times.

The above procedure creates a distribution of values for each τ given by Y ∗,1
T+τ , Y

∗,2
T+τ , . . . , Y

∗,B
T+τ . The

τ -step MFD estimator, f̂T+τ (·|XT ), is defined as the kernel density estimate of these B-observations.

The MFD estimator for τ = 1 can be written as

f̂T+1(y|XT ) =
T−1∑

j=p

WaT

(
y − Yj+1

aT

)
P (Y ∗

T+1 = Yj+1|Xt = XT ) (3)
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where y ∈ IR, WaT
(·) = 1/aT W (·) in which W (·) is a kernel function, and aT > 0 is a bandwidth

parameter. The asymptotic validity of this estimator is discussed in Section (2.2). In Section (4), we

empirically evaluate the finite-sample performance of MFD using a battery of specification tests.

The above algorithm for calculating the MFD estimator may seem involved. But, essentially, its

implementation only requires two simple steps. Take the case of τ = 1. In the first step, we calculate

the weights as in equation (2) and use these probability mass to resample the data with replacement,

i.e. Y ∗,1
T+1, Y

∗,2
T+1, . . . , Y

∗,B
T+1. In the second step, we compute the kernel density estimate based on the

resampled data. Most statistical software packages have routines to perform the second step.

2.2 Theoretical justification for the MFD estimator

We begin with τ = 1. Using equation (2), i.e., P (Y ∗
T+1 = Yj+1|Xt = XT ) = P (·), we can write

equation (3) as

f̂T+1(y|XT ) =
T−1∑

t=p

WbT

(
y − Yt+1

aT

)
K

(
XT − Xt

hT

)
/

T−1∑

t=p

K

(
XT − Xt

hT

)
. (4)

We can see from the above equation that our 1-step MFD estimator is essentially the classical

Nadaraya-Watson estimator of the conditional density suitably adapted to forecasting. Now, let

(Xt, Zt), where Zt = Yt+1, be a sequence of IRp × IR-valued strictly stationary process. The con-

sistency of the conditional density estimator was proved by Hyndman et al. (1996) for the case of

independent (Xt, Zt), and by Fan et al. (1996) and de Gooijer and Zerom (2003) in the case of

dependence. Under certain mixing conditions on the process (Xt, Zt) and some technical regularity

assumptions, f̂T+1(y|XT ) is a consistent estimator of fT+1(y|XT ), i.e., as T → ∞,

f̂T+1(·|XT )
P
→ fT+1(·|XT ). (5)

As outlined in the algorithm, when τ ≥ 2, the MFD estimator is defined by repeating one-step ahead

predictions τ times, treating the bootstrap value from the last round as the true value. In this way, the

τ -step MFD can be viewed as a one-step plug-in estimator. The asymptotic consistency result for the

1-step MFD also holds for τ -step MFD. We only need to show that replacing actual values by bootstrap

replicates is valid. For example, for τ = 2, it suffices to show the validity of replacing YT+1 by the

bootstrap counterpart Y ∗
T+1. Let C denotes a fixed compact subset of IRp on which the marginal density

of x is lower bounded by some positive constant. Under a set of regularity conditions, Paparoditis and

Politis (2001, 2002) show that the one-step transition distribution function F ∗(y|x) that governs the

law of the Markov bootstrap process satisfies the following uniform convergence property (see Theorem

3 in Paparoditis and Politis (2002)): supy∈R supx∈C |F
∗(y|x) − F (y|x)| → 0 a.s where F (y|x) is the
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true one-step transition distribution function. Now, replacing the conditioning vector x by XT , it is

easy to see that

sup
y∈IR

|F ∗(y|XT ) − F (y|XT )|1(XT ∈ C) ≤ sup
y∈R

sup
x∈C

|F ∗(y|x) − F (y|x)|

where 1(A) denotes the indicator function for set A. Therefore,

sup
y∈IR

|F ∗(y|XT ) − F (y|XT )| → 0 a.s.

Because F ∗(y|XT ) is the law that generates Y ∗
T+1 and F (y|XT ) is the law that generates YT+1, we

can replace YT+1 by Y ∗
T+1. For τ > 3, the same argument holds by induction.

2.3 Choice of bandwidth

As is the case for all kernel-based nonparametric methods, the asymptotic validity of our multi-

step forecast density estimator requires the bandwidth parameters hT → 0 and aT → 0 as T →

∞. However, in practice the sample size T is fixed. Thus, some decisions have to be made before

calculating the forecast density. Note that, unlike other nonparametric conditional density estimators,

our estimator does not require both aT and hT to be chosen simultaneously. By construction, the

estimator is implemented in two stages. Furthermore, detailed simulation experiments suggest that

our estimator is not sensitive to the choice of aT as long as aT ∼ T−1/5. On the other hand, the choice

of hT is critical to the quality of the forecast density estimator.

For fixed T , when hT → 0, the τ -step forecast density will tend to accurately capture the depen-

dence structure or dynamical properties of the data. The problem is that the forecast density becomes

excessively peaked compared to the true density; see the Monte Carlo simulation experiment Section

for more on this situation. On the other hand, when hT → ∞, the τ -step forecast density does not

reflect the dependence structure of the data. The latter case represents a situation where the data

are in fact independent. Notice that when hT → ∞, the probability weight P (J = s) → 1/(T − p)

suggesting the information contained in XT is irrelevant. Therefore, to obtain a forecast density that

is well behaved while accurately mimicking the dependent characteristics of the data, hT should lie

between the above two extremes.

The probabilities P (·) used to resample the data are just kernel estimates scaled by kernel densities.

We suggest a two-step bandwidth selection procedure. We first estimate a pilot density estimate using

hT that is suited for i.i.d. data, i.e. hT (fixed) = σ̂T− 1

p+4 , where σ̂ is the standard deviation of the

sample (i.e. a scale parameter for the data). As is well known, this fixed bandwidth is not adaptive to

the data configuration of Xt. In particular, it gives inaccurate estimates in those regions of the data
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where observations are scarce. The problem of data scarcity for the fixed bandwidth becomes even

more serious when the data are time series. Dependence has a tendency to accentuate the problem

of data sparsity. Thus, we use the pilot density estimate to adjust the fixed bandwidth in such a way

that areas of high density use a small bandwidth and areas of low density use a larger bandwidth.

Following Silverman (1986), we define local bandwidth factor, λt, by λt =

{
f̂(Xt)

g

}−α

where g is the

geometric mean of f̂(Xt), i.e. log g = 1
T

∑T
t=1 log f̂(Xt), and α (0 ≤ α ≤ 1) denotes the sensitivity

parameter that regulates the amount of weight that is attributed to the observations in the low density

regions. We fix α = 0.5. Using the local bandwidth factor λt, an adaptive bandwidth is defined as

hT (adaptive) = λthT (fixed). In Section (4), we compare the performances in finite samples of both

fixed and adaptive bandwidths.

3 Forecasting Densities Evaluation

In the previous Section we proposed a nonparametric method to forecast the density of a time series.

The next step consists of evaluating the goodness of the densities to explain the conditional distribution

of the data. In regression analysis the model is evaluated by testing the residuals against various forms

of misspecification. Rejections of the residuals tests indicate that the model is inappropriate and that

improvements are required. In the context of density forecasts a similar approach is proposed by

Diebold et al. (1998) based on the Probability Integral Transform (PIT). The method is convenient

because it transforms the problem of testing the goodness of the forecasting densities into the problem

of testing the properties of the PIT random variable. Under the hypothesis of correct specification,

the PIT is i.i.d. uniformly distributed in the interval [0,1]. By testing the properties of the PIT it

is possible to evaluate the goodness of the conditional density in explaining the distribution and the

dependence in the time series. Tests used for the residuals of a regression can be extended to testing

the PIT. Denote by f(Yt+τ |Xt) the true conditional density of the time series and by f̂(Yt+τ |Xt) the

forecasting density. We assume that the forecasting exercise starts at time T and the aim is to predict

τ step ahead the next P realizations of the process. We first consider the case of testing the density

forecasts for τ = 1 and we will discuss later in the section the approach to test when τ ≥ 2. The PIT

denoted by zs, for s = 1, · · · , P , is defined as

zs =

∫ y
T+s

−∞
f̂T+s−1(u)du (6)

where f̂T−s+1(·) indicates the forecasting density at time T + s − 1. Under the assumption that

fT−s+1(·) = f̂T−s+1(·), zs is i.i.d. uniformly distributed in the interval [0,1]. Diebold et al. (1998)
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propose to evaluate the goodness of the forecasting density by testing the uniformity of the PIT us-

ing the Kolmogorov-Smirnov (KS) test. However, this test evaluates only the distributional part of

the assumption and not the independence of the PIT. This issue explains the results of Clements et

al. (2003). They investigate the power of the uniformity test to distinguish between a linear and

nonlinear forecasting density when the DGP is actually nonlinear. They show that it has negligible

power to indicate the misspecification of the linear density at the sample sizes typically available for

macroeconomic time series. Recently, Hong et al. (2004) and Hong and Li (2005) use a test of the

joint hypothesis of uniformity and i.i.d. based on the generalized spectrum. They also consider test

statistics of the hypothesis of dependence occurring for powers of zs. This is a relevant information

because it suggests directions in which the forecasting density could be improved to correctly account

for the dynamics of the series. In this paper, we propose a similar approach to evaluate the inde-

pendence assumption of the PIT. We test for specific directions of dynamic misspecification, such

as autocorrelation, ARCH and nonlinearity in the PIT. To achieve this goal we adopt the following

testing strategy. We assume that the PIT zs follows the process

(zs − z̄) = α1(zs−1 − z̄) + · · · + αq(zs−q − z̄) + ǫs (7)

and test the hypothesis that all the αi’s (for i = 1, · · · , q) are equal to zero. This can be carried out

using an LM-type test with statistic equal to P times the R2 of Equation (7) that is distributed as a

χ2(q). Rejection of the null hypothesis suggests that there is linear dependence unaccounted by the

forecasting model. We will denote the test for serial correlation as SC in the following sections. An-

other alternative of interest is that the density forecasts do not correctly account for ARCH structure.

To test against this hypothesis we perform an ARCH LM test. We regress the squared residuals of

Equation (7) on r lags

ǫ2s = β1ǫ
2
s−1 + · · · + βrǫ

2
s−r + ηs (8)

and test the null hypothesis that the βj (for j = 1, · · · , r) are jointly equal to zero. The test statistic

is P times the R2 of Equation (8) and it is distributed as a χ2(r). We denote this test as ARCH

in the simulation and empirical part. In addition, we are also interested in evaluating the ability of

the forecasting model to account for the nonlinearity of the underlying process. We use the V23 test

proposed by Terasvirta et al. (1993) to test the hypothesis of neglected nonlinearity in the conditional

mean of the PIT. We interpret the rejection of the hypothesis as evidence that the forecasting density

does not account for nonlinear dynamics of the time series under investigation. We denote this test

as V 23.
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We described the testing approach for one-step ahead density forecasts. When the interest is a

τ larger than 1, it should be taken into account the (τ − 1) dependence of the forecasts. Diebold et

al. (1998) propose an easy approach to solve this problem. They suggest to consider the sub-series

(z1, z1+τ , z1+2τ , · · ·), (z2, z2+τ , z2+2τ , · · ·) and (zτ , z2τ , z3τ , · · ·) that should be i.i.d.. The same battery

of tests described above can be applied to the sub-series of the PIT using a significance level equal to

α
τ , where α is the size of the test and τ the forecasting step. The null hypothesis is rejected if any of

the τ tests rejects.

4 Monte Carlo Results

We examine by simulation the ability of the MFD to correctly account for the dynamics of some

linear and nonlinear time series models. We proceed as follows. We simulate a time series and predict

recursively τ -step ahead from observation T to T − τ . We then test the P out-of-sample forecasts

with the battery of misspecification tests introduced in the previous section. In all simulations we

limit the analysis to τ = 1. We consider three (in-)sample sizes T equal to 300, 600 and 900 and

values for the prediction period P equal to 100 and 300. This means that for T = 300 and P =

100 we generate a series of length 400 and forecast the last 100 observations. We fix the number of

bootstrap replications to 1000 and the number of simulations to 2000. We consider first and second

order markovian processes. The higher dimensional case allows the evaluation of the incidence of the

curse of dimensionality and the benefit (if any) of adopting the adaptive bandwidth.

4.1 Markov processes of order 1

We consider the following time series models:

AR(1): yt = φyt−1 + ǫt

ARCH(1): yt = σtǫt and σt = (1 − α) + αy2
t−1

SETAR(1): yt = [−1.25 − 0.7yt−1 + σ1ǫt]I(yt−1 ≤ r) + [0.3yt−1 + σ2ǫt]I(yt−1 > r)

where ǫt is standard normally distributed and φ, α and (σ1, σ2, r) are parameters. The first model

is a linear homoskedastic AR(1) process. The second model is an ARCH(1) process and the third

represents a SETAR specification. For the last model we fix the parameters in the regimes and

consider two situations, one in which the regimes are homoskedastic (σ1 = σ2) and the other in which

they are heteroskedastic (σ1 6= σ2). Clements et al. (2003) show that the KS uniformity test has

very low power to detect the dynamical misspecification of linear forecasting densities when in fact
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the underlying process is of the SETAR type above. In the previous section we argue that a more

effective approach consists of investigating the dynamical properties of the PIT that could indicate the

neglected dependence in the forecasting density. We perform a power analysis of the testing strategy

and we later discuss the performance of MFD in forecasting the densities of the processes considered.

4.2 Power of the Tests

To investigate the power of the tests we draw with replacement past observations of the simulated

series and assume that the forecasting density is given by the empirical distribution function of the

bootstrap replications. In this way we destroy the serial dependence in the time series although

maintaining the unconditional shape of the distribution.

Table (1) shows the frequency of rejections of the four tests at 5% significance level for the simulated

processes. We consider both a forecasting period of 100 and 300 periods. The results show that the

best performance of the KS test for uniformity occurs for the AR(1) model where it rejects in 22% of

the simulations. For the other processes the power is lower. This confirms the result of Clements et

al. (2003) that the KS test of the PIT is hardly informative about the dynamic misspecification of the

forecasting densities. Instead, the SC test for first order autocorrelation of the PIT correctly detects

that the density forecasts for the AR(1) process are misspecified. The rejection rate is close to 100%

already for the 100 out-of-sample forecast period. As expected, for the ARCH(1) process the SC test

rejects approximately 6.3% of the times. The SETAR specification has some linear dependence in

addition to the nonlinear one. This is captured by the SC test that rejects (P=300) in 98% and 56%

of the simulation for the homoskedastic and heteroskedastic cases, respectively. The HET test applied

to the PIT of the ARCH process rejects in 32% of the simulations for P = 100 and in 83% of the

cases in the longer sample. Although power increases slowly with sample size, there is an indication

that the test correctly points to the lack of ARCH dynamics in the forecasting model. For the AR(1)

and homoskedastic SETAR the rejection frequencies are close to the 5% nominal level. Some ARCH

dependence is detected when the heteroskedastic SETAR is considered. The HET test rejects in 15%

of the simulations for P=300. It is probably due to the change in the volatility level of the time

series due to the switching between the two regimes. This suggests that a spurious ARCH effect can

arise when nonlinear models are considered. Finally, the V23 linearity test correctly suggests that the

first two simulated models do not show evidence of neglected nonlinear structure in the conditional

mean. Instead, the test has very high power against SETAR dynamics: in the homoskedastic case the

rejections increase from 60% to 97% for the largest sample, and from 74% to 99% in the heteroskedastic

case.
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Table (1) here

Overall, the simulation results confirm previous evidence that testing the uniformity of the PIT

does not have high power to detect the dynamic misspecification of the forecasting densities. In

addition, it does not indicate a direction toward which improvements of the forecasting model can be

made. However, the testing strategy proposed represents a practical way to investigate the directions

of dynamical misspecification of the forecasting model. In particular, the V23 test is a powerful

approach when the analysts suspects the presence of nonlinearities in the data.

4.3 Performance of the MFD

The previous results suggest that for P=300 the tests have high power to detect the dynamic mis-

specification of the forecasting densities. In order to have a more compact presentation of the results

we report only the rejection frequencies for the longest forecasting period. We implement the MFD

with the fixed and adaptive bandwidths described in Section (2.3). We use a gaussian kernel and

consider three bandwidths equal to 0.5, 0.75 and 1 time hT (fixed) and hT (adaptive) in Section (2.3).

The objective of this exercise is to investigate the effect of the bandwidth on the performance of the

proposed method.

Tables (2) to (5) report the frequencies of rejection of the null hypotheses of the tests for the MFD

and for the linear parametric bootstrap as assumed in Equation (1) where µ(·) is assumed linear and

σ(·) is constant. We consider the performance of the linear forecasting densities as a benchmark for

comparing the MFD.

Table (2) shows the frequencies of rejection (at 5% significance level) for the AR(1) process with coef-

ficient equal to 0.5. In this case the linear parametric bootstrap is the appropriate forecasting method

and the tests do not indicate misspecification. The MFD implemented with the fixed (rule-of-thumb)

bandwidth captures correctly the dynamics in the simulated series for c = 0.5 but overrejects for

c = 1: for T = 300 the rejection frequency increases from 5.6% to 9.3% for the largest value. However,

increasing T to 600 and 900 observations contributes to correct the problem. The opposite situation

occurs for the HET test when T = 300: increasing the bandwidth from c = 0.5 to 1 decreases the re-

jections from 14% to 6.9%. Also in this case larger samples contribute to drive the rejection frequency

toward the nominal value. It is clear that the choice of the value of the bandwidth is a very relevant

issue for the performance of the method. A too small bandwidth accounts correctly for the dynamics

in the time series at the cost of a spuriously volatile PIT. This is due to the fact that the forecasting

density is excessively peaked around the realization compared to the true density and creates periods
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of small and large values of the PIT. This effect is picked up by the HET test. A too large bandwidth

achieves the opposite effect. The KS and V23 tests have frequencies very close to 5% in all cases.

This evidence suggests that for T = 300 and c = 0.75 the MFD delivers quite good results although

increasing the sample size improves significantly the performance. The only remarkable difference

between the fixed and adaptive bandwidths concerns the HET test. The adaptive has lower rejection

frequencies for all c considered: in the case of T = 600 and c equal to 0.5 the rejections decrease from

11% to 7.3% when using the adaptive.

Table (2) here

Summarizing the results for the AR(1), the MFD accounts reasonably well for the dynamics of the

underlying model. Already for T = 300 the results are satisfactory, in particular when the adaptive

bandwidth is considered. Undersmoothing using a bandwidth of around 0.75 times the standard value

achieves the best results.

The results for the ARCH(1) model with α = 0.3 are in Table (3). In this case, the linear

forecasting densities are misspecified and this is clearly detected by the HET test that rejects in 83%

of the simulations. Concerning the MFD, for all sample sizes and bandwidths the KS, SC and V23

tests do not deviate significantly from the nominal rejection level. However, there are significant over-

rejections for the HET test. For the fixed bandwidth and T = 300, the rejection frequency is 23% for

c = 0.5 and 17% for the largest value. These values become smaller when the sample is increased to T

= 900 but they are still significantly larger than the nominal level. The adaptive bandwidth performs

better compared to the fixed one but it is still not satisfactory: it rejects in 17% of the simulations for

T=300 and c=0.5 and in 14% for c=1. When the sample is increased to T = 900 the rejections range

from 11% to 7.8% for c equal to 0.5 and 1, respectively. Although we only considered bandwidths

ranging from 0.5 to 1 the standard values, it is clear that for this model there is a tendency to benefit

from oversmoothing. Considering values of c larger than 1 would probably achieves better results.

Table (3) here

Table (4) shows the rejection frequencies for the homoskedastic SETAR model with σ1 = σ2 = 1

and r = −0.20. The V23 test applied to the linear forecasting densities indicates the neglected

nonlinearity with a rejection frequency of 94%. The SC and HET tests also overreject slightly. The

KS test shows very low power to detect the misspecification of the conditional mean of the model.

The V23 test for the MFD clearly indicates that the method is correctly accounting for the nonlinear

dependence in the data already for T = 300. This is a robust result across types and values of the
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bandwidth. The KS and SC tests do not suggest misspecification of the forecasting densities. However,

the spurious ARCH effect is present also for this model at the smallest value of the bandwidth. For

c equal to 0.5 the rejections for the fixed bandwidth are 17% when T = 300 and 9.1% for T = 900.

Instead, for c=1 the rejection frequencies are much closer to the nominal level: 7.6%, 7.3% and 6.5%

as the sample size is increased from 300 to 900. The adaptive bandwidth performs slightly better

compared to the fixed one. The MFD appears to be quite successful in modeling the nonlinearity of

the homoskedastic SETAR model. The choice of a bandwidth close to the standard value is able to

model correctly the dynamics and avoid the danger of the spurious ARCH effect.

Table (4) here

This simulation shows the main contributions of the paper. On the one hand, we propose a test

that has very high power to detect the misspecification of the linear forecasting densities when the

true density is in fact nonlinear. The second innovative aspect is that the proposed Markov Predictive

Densities correctly account for the nonlinearity in the SETAR model when measured by the V23 test.

In this respect we offer a new method and evaluation strategy compared to the previously mentioned

results of Clements et al. (2003).

The final model that we consider is a SETAR specification where the variances in the regimes are

different. We assume that σ1 = 1, σ2 = 2 and r = −0.10. The V23 test for the linear forecasting

densities has almost unit power against the alternative. The misspecification of the parametric boot-

strap shows up also in the overrejections for the SC and HET tests. The performance of the MFD

depends on the value of the bandwidth: the nonlinearity is correctly accounted when c is equal to

0.5 and slightly deteriorates at the largest value (considering the case of T = 300). On the other

hand, undersmoothing give rise to the spurious evidence of ARCH structure that declines when the

bandwidth is large. The mid-value of c equal to 0.75 seems to balance between the two effects, in

particular when the adaptive smoothing is considered. For this value of the adaptive bandwidth and

T = 300 the V23 and HET are slightly larger than the nominal level. However, for larger samples

they seem to converge toward the correct rejection rate.

Table (5) here

4.4 Performance of the MFD at higher orders

The previous results involved Markovian processes of order 1. It is also interesting to investigate the

performance of the MFD for higher orders and the role played by the adaptive bandwidth. Here we

consider two variations of the homoskedastic SETAR model presented earlier:
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SETAR(2): yt = [−1.25 − 0.7yt−2]I(yt−2 ≤ r) + 0.3yt−2I(yt−2 > r) + σǫt

SETAR(1-2): yt = [−1.25 − 0.7yt−1]I(yt−2 ≤ r) + 0.3yt−2I(yt−2 > r) + σǫt

where in SETAR(2) the dependence occurs only in the second lag whereas in SETAR(1-2) there

is dependence both in the first and second lags. For generating the forecasting densities (linear and

markovian) and for testing we assume that the order is equal to 2 and assume that σ = 1 and

r = −0.10. In Table (6) and (7) we also report the rejection frequency for bootstrap under the null of

independent data (indicated as IND). This let us evaluate the power of the tests in the higher order

case.

Table (6) shows the results for the second order SETAR. The V23 test shows that for both the

fixed and adaptive smoothing there are no dramatic deviations of the rejection frequencies from the

nominal level. The values of c seem not to play a relevant role in modeling the nonlinearity in the time

series. As expected, the spurious ARCH effect discussed earlier is more serious in the higher order

case. For the fixed bandwidth and c = 0.5 the rejections are 60% for T = 300 and 44% for T = 900.

When c assumes the largest value the frequencies are 14% and 12% as the sample size increases. The

benefit deriving from the adaptive bandwidth is now clear: for T = 300 the HET rejects in 36%, 17%

and 8.7 for c that increases from the smallest to the largest value. Overall, the previous conclusion

that c equal to 1 gives better results for the homoskedastic SETAR is confirmed also for the second

order case. However, the adaptive bandwidth is now a crucial element to achieve reasonable rejection

frequencies. The HET and V23 tests are around 8% rejections for T = 300 and decrease toward the

nominal level for larger samples.

Table (6) here

Table (7) shows the rejection frequencies for the SETAR model with dependence both in the first

and second lag. The SC and V23 tests have almost unit power to detect the linear and nonlinear

dependence in the simulated model. The power against the HET alternative is somewhat higher

than expected but probably the result of the misspefication of the forecasting densities. The linear

parametric bootstrap accounts for most of the linear dependence in the data but the V23 still points

to the deficiency in modeling the nonlinearity. The previous discussion of the performance of the

MFD largely holds also when the dependence occurs both in the first and second lag. The adaptive

smoothing is important to correctly model the tails of the distribution and minimize the spurious

ARCH effect.

Table (7) here
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4.5 Discussion

The Monte Carlo results show that the Markov Forecasting Density (MFD) is a useful approach to

model dependence in the data. It is able to capture both linear and nonlinear structures as the

previous simulation exercise indicates. This is particularly helpful in a forecasting framework in which

the main goal is to generate reliable predictions rather than understanding the underlying dynamics.

The simulations also suggest some practical direction for the implementation of the method. First,

the use of an adaptive bandwidth is a convenient method to deal with the “curse of dimensionality” in

higher orders. It is advisable to use an adaptive smoothing scheme to implement the MFD. Another

fact that emerge from the simulations is that excessive undersmoothing could lead to forecasting

densities that are too concentrated. Although this helps in tracking closely the underlying evolution

of the time series, it underestimates the variance of the forecasting density and shows up as periods of

small values of the PIT followed by periods of large values. A safe choice for the bandwidth appears to

be in the range 0.75 and 1 time the values of the adaptive bandwidth hT (adaptive). The method has

reasonable performances already for in-sample length of 300, even though for some models a larger

sample is required to have rejection frequencies close to the 5% level.

5 Empirical Application

As discussed in the Introduction, a successful field of application of nonlinear time series models

has been to modeling business cycles. An early reference is the markov-switching model of Hamilton

(1989) for the growth rate of real GDP. However, more recent work shows that the in-sample success of

nonlinear models does not translate in improved out-of-sample predictability. Evaluating forecasting

ability using the RMSPE (Root Mean Square Prediction Error), nonlinear models perform as well as

linear models. The alternative discussed earlier is to evaluate the density forecasts rather than limiting

the comparison to point forecasts. However, further problems arise as we argued in Section (3). Testing

the uniformity of the PIT might have negligible power in detecting the dynamic misspecification of

the forecasting densities. In this Section, we re-evaluate these results by using an extended battery of

tests to detect misspecification of the linear (and nonlinear) model.

We consider the real GDP for U.S. from 1955 to the end of 2004. The series is at the quarterly

frequency and relatively short for the nonparametric technique and the evaluation tests to give powerful

answers. Hence, we consider also other variables that are interpreted as indicators of the business cycle

condition: the Coincident Indicator (from the Conference Board) and Industrial Production. Both

series are at the monthly frequency and the sample size increases to 532 observations. For all series
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we consider the growth rate. Details of the sample period and the number of observations is given

in Table (8). We chose to approximately split the full sample in half for estimation and the second

half for forecasting. We forecast one-step ahead with the in-sample set expanding to include the

new observations. For the MFD we select the order based on the δ(pMFD) test proposed in Diks

and Manzan (2002) for the first available in-sample period. The results strongly indicate that 3 is

the optimal order for the series considered. Based on the simulation results, we use a bandwidth

equal to 0.75 the fixed and adaptive bandwidth values described in Section (2.3). To make our results

comparable we also present the results for a linear AR specification (indicated LIN) and a two-regimes

SETAR(pTAR, d) model defined as

Yt+1 = [Xtθ1 + σ1ǫt+1]I

{(
d−1∑

i=0

Yt−i

)

≤ r

}

+ [Xtθ2 + σ2ǫt+1]I

{(
d−1∑

i=0

Yt−i

)

> r

}

(9)

where Yt+1 denotes the growth rate of the series and Xt is a pTAR-dimensional vector of lagged values

of Yt+1. The switching in the model depends on the cumulative growth rate in the last d months. The

vectors θ1 and θ2 represent the parameters governing the dynamics in the two regimes. We allow for

heteroskedastic regimes and denote the variances of the innovations by σ1 and σ2, respectively. We

followed the approach of Siliverstovs and van Dijk (2003) and select recursively the lags pAR, pTAR

and d based on a search up to lag 5 and the AIC criterion. The forecasting densities are then obtained

by drawing with replacement from the standardized residuals of the models. The density evaluation

is based on the tests introduced earlier with a lag order of 5 (for SC, HET , and V 23).

Table (8) shows the p-values of the evaluation tests of the forecasting densities for the different

series. We forecast the real US GDP growth rate series from the first quarter of 1980 until the forth

quarter of 2004 (100 observations both in- and out-of-sample). The linear AR model performs poorly:

the KS, HET and V23 reject the respective null hypothesis at 5% level while the SC test has a p-value

of 0.06. This suggests that the LIN model does not account properly for the dynamics of the series.

It neglects to account for nonlinear and heteroskedastic effects in the data. The SETAR and MFD

perform significantly better with p-values larger than the significance level. These results suggest that

the nonlinearity in the GDP growth is properly characterized by the regime-type dynamics of the

SETAR model.

More discriminatory power can be achieved by considering monthly observations of economic variables

often considered indicators of the business cycle situation. The variables mentioned above are for the

period from January 1960 until April 2004 and we forecast out-of-sample starting from January 1986

(??? observations). The US Coincident Indicator is an index produced by the Conference Board
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and it represents a weighted average of the information contained in four business cycle variables

(employment, income, industrial production and sales). The target of this indicator is to measure the

status of the cycle. Also for this variable, the linear forecasting densities shows signs of misspecification.

The KS test rejects the null of uniformity of the PIT while the V 23 has a p-value equal to 0.09. For

this variable, the finding of neglected nonlinearity are less strong compared to the results for GDP

growth. However, both SETAR and MFD seem to account more properly for the nonlinearity in the

data. For the SETAR density forecast the KS test suggests the departure from uniformity of the

distribution of the PIT. Instead, the MFD shows no signs of misspecification in the tests considered.

The third business condition indicator that we consider is Industrial Production. Table (8) indicates

that both the KS and the V 23 tests reject their null hypothesis for the AR density forecasts. Contrary

to the results above, the SETAR density seem to leave some unexplained nonlinear features in the

growth rate of IP. The V 23 test for neglected nonlinearity rejects the null with a p-value equal to

0.03. A possible explanation for this rejection is the assumption of a two-regimes dynamics for the

threshold model. In this case it is clear the advantage of considering a nonparametric approach: the

MFD (in particular with adaptive bandwidth) does not indicate signs of misspecification in any of the

tests considered.

This empirical application makes clear the two main contribution of the paper. First, considering

nonparametric density forecasts is very useful in properly accounting for the dynamics in economic

variables. On the one hand, linear models are proved to have poor ability to forecast the variables

considered. On the other hand, nonlinear models require the specification of a functional form that

might be inappropriate for the economic variable considered. In the regime-switching setup some

choices to make are the number of regimes and the variable that governs the transition between

regimes. As we argued earlier, in a forecasting setup the interpretability of the model might be less

interesting compared to having a very flexible specification able to capture the many different nonlinear

features of economic variables. The second contribution of the paper is to stress the importance of

testing for the misspecification of the PIT. If we suspect that the dynamics of the variables is nonlinear,

we need to evaluate the ability of the density forecasts to take that into account. In the application

above, our findings would be very different if we disregard the V 23 test. We would conclude that the

AR forecasts show some departure from uniformity but account correctly for the dynamics of the US

Industrial Production growth rate. We would also conclude that the SETAR is a proper forecasting

model. However, the V 23 test suggests that both AR and SETAR density forecasts miss to account

for some nonlinear features in the dynamics of the business cycle variables. Thus, a valid alternative

to consider is the nonparametric approach proposed in this paper.
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6 Conclusions and Future Work

In this paper we propose a nonparametric bootstrap technique to predict the density of markovian

time series. In addition, we also extend the testing approach for forecasting densities to include test

against specific alternatives, such as autocorrelation, ARCH and linearity. By simulation we show that

the method is successful in accounting for linear and nonlinear dependence. This is a useful property

of the method, in particular in cases in which the analyst suspects the existence of nonlinearities in the

data under investigation. In addition, the empirical application to business cycles variables suggests

that the nonparametric method performs well for all them while parametric specification might fail

to correctly identify the nonlinearity in the data.

However, the approach is quite new and requires more work on some relevant issues. In this

paper we only consider a forecasting horizon of 1-step ahead. It would be relevant to examine the

performance of the MFD on multi-step ahead forecasts. In this case, the comparison between di-

rect and iterative schemes might show a difference in performance among them. Another interesting

development is to investigate the performance of data-driven methods for bandwidth selection. The

Monte Carlo experiments suggest that different models might require different degrees of smoothing.

A data-driven selection of the degree of smoothing would automatically adapt to the need of the time

series at hand.

In this paper we also proposed a testing framework based on the PIT by extending the use of standard

tests used in econometrics. The testing strategy has the advantage of suggesting to the analyst the

directions in which the forecasting model could be improved. More work should focus on elaborating

tests that have high power also in small samples and for multistep horizons. Finally, the MFD method

relies on nonparametric estimation of multivariate densities. As discussed earlier, when the markov

order is high it requires large sample sizes to give reliable results. An improvement would be to impose

some structure on the forecasting density such that the nonparametric problem is reduced to a lower

dimension.
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Table 1: Power of the Predictive Density Evaluation Tests

Model KS SC HET V23

P=100 P=300 P=100 P=300 P=100 P=300 P=100 P=300

AR(1) - φ=0.5 20 22 99 100 5.9 7.2 5.2 5.0

ARCH(1) - α=0.3 4.4 5.2 6.3 7.6 32 83 5.9 5.8

SETAR - hom. reg. 10 11 60 98 4.3 6.7 60 97

SETAR - het. reg. 8.9 10 24 56 11 15 74 99

Percentage of rejections of the null hypotheses of the tests at the 5% significance level based on 2000 sim-

ulations. The forecasting density is obtained by resampling the observations of the process. For SC, HET

and V 23 tests we use one lag.
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Table 2: Simulated Model: AR(1) - φ = 0.5

T P Test LIN MFD fixed MFD adaptive

c = 0.5 c = 0.75 c = 1 c = 0.5 c = 0.75 c = 1

300 300 KS 4.3 5.3 5.0 5.1 5.1 4.8 5.5

SC 5.6 5.8 6.5 9.3 6.4 7.0 9.8

HET 5.2 14 8.0 6.9 11 5.8 5.9

V23 5.2 5.5 5.1 6.0 5.2 5.0 5.9

600 300 KS 4.3 4.7 4.9 4.8 4.3 5.5 4.5

SC 5.3 5.8 6.7 7.9 6.2 7.4 8.9

HET 4.5 11 6.4 5.8 7.3 5.8 4.9

V23 4.0 4.8 5.6 4.8 5.2 5.6 4.7

900 300 KS 3.9 4.3 4.8 4.9 3.9 4.9 4.3

SC 5.3 5.2 6.0 6.2 5.7 6.6 7.1

HET 5.4 8.6 7.1 5.2 6.8 5.5 4.2

V23 5.1 5.2 5.5 5.1 5.0 5.4 5.3

Percentage of rejections of the null hypothesis of the tests based on 2000 simulations. The number of bootstrap

is equal to 1000 for all methods. The lag in the MFD, LIN and the tests is set equal to 1. Significance level

for all tests is 5%.

Table 3: Simulated Model: ARCH(1) - α = 0.3

T P Test LIN MFD fixed MFD adaptive

c = 0.5 c = 0.75 c = 1 c = 0.5 c = 0.75 c = 1

300 300 KS 5.6 6.8 5.7 4.4 6.5 5.6 4.9

SC 9.7 6.3 4.4 3.7 6.0 4.0 3.3

HET 83 23 19 17 17 15 14

V23 5.9 5.6 5.4 4.4 5.1 4.8 4.0

600 300 KS 4.7 4.2 4.6 5.1 4.3 4.3 4.9

SC 8.0 5.1 4.7 5.8 4.4 4.5 5.6

HET 84 18 15 12 13 12 11

V23 6.5 5.5 5.8 4.3 5.5 5.2 4.4

900 300 KS 4.8 5.2 4.8 4.3 5.0 4.8 4.1

SC 7.2 4.7 5.3 4.8 4.9 5.1 5.0

HET 84 15 12 9.6 11 9.8 7.8

V23 6.3 5.3 5.1 5.9 5.3 5.2 5.1

Percentage of rejections of the null hypothesis of the tests based on 2000 simulations. The number of bootstrap

is equal to 1000 for all the methods. The lag in the MFD, LIN and the tests is set equal to 1. Significance

level for all tests is 5%.

23



Table 4: Simulated Model: SETAR(1) - homoskedastic regimes

T P Test LIN MFD fixed MFD adaptive

c = 0.5 c = 0.75 c = 1 c = 0.5 c = 0.75 c = 1

300 300 KS 7.0 4.3 4.2 3.9 4.8 4.7 4.3

SC 12 4.9 4.9 3.7 4.7 4.9 4.0

HET 8.4 17 12 7.6 16 11 7.0

V23 95 4.9 6.3 6.3 4.7 6.7 8.1

600 300 KS 5.1 5.0 3.4 3.6 4.8 3.4 3.7

SC 13 5.2 4.8 4.5 5.1 5.7 4.9

HET 8.7 11 8.8 7.3 10 7.4 6.5

V23 94 4.8 5.2 6.9 5.3 5.6 7.7

900 300 KS 6.9 4.9 4.5 4.2 5.2 3.9 4.5

SC 13 5.1 4.7 5.2 5.1 4.5 5.6

HET 8.2 9.1 6.9 6.5 8.4 6.8 6.0

V23 94 4.9 4.7 6.5 4.9 4.5 6.9

Percentage of rejections of the null hypothesis of the tests based on 2000 simulations. The number of bootstrap

is equal to 1000 for all the methods. The lag in the MFD, LIN and the tests is set equal to 1. Significance

level for all tests is 5%.

Table 5: Simulated Model: SETAR(1) - heteroskedastic regimes

T P Test LIN MFD fixed MFD adaptive

c = 0.5 c = 0.75 c = 1 c = 0.5 c = 0.75 c = 1

300 300 KS 7.6 4.4 4.9 5.3 4.3 5.3 5.2

SC 10 5.9 5.9 5.5 5.5 5.5 5.1

HET 15 19 14 8.3 16 8.3 7.3

V23 99 5.7 7.9 12 5.6 12 13

600 300 KS 7.2 4.3 5.0 4.6 4.1 5.1 5.6

SC 11 5.8 5.6 7.0 5.9 5.1 6.7

HET 16 14 9.6 6.9 12 8.8 6.0

V23 100 6.0 7.0 9.1 6.3 7.5 10

900 300 KS 8.3 4.8 4.2 5.0 4.4 4.0 5.0

SC 8.7 5.9 5.8 6.0 5.8 5.7 5.3

HET 17 12 8.6 7.2 11 8.1 6.8

V23 98 6.3 6.1 8.5 6.1 6.7 10

Percentage of rejections of the null hypothesis of the tests based on 2000 simulations. The number of bootstrap

is equal to 1000 for all the methods. The lag in the MFD, LIN and the tests is set equal to 1. Significance

level for all tests is 5%.
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Table 6: Simulated Model: SETAR(2) - homoskedastic regimes

T P Test IND LIN MFD fixed MFD adaptive

c = 0.5 c = 0.75 c = 1 c = 0.5 c = 0.75 c = 1

300 300 KS 12 6.7 54 10 5.5 46 8.4 5.3

SC 96 11 5.9 6.0 5.2 5.8 5.7 4.5

HET 6.2 7.1 60 31 14 36 17 8.7

V23 85 78 6.4 5.7 7.5 6.7 5.3 8.0

600 300 KS 12 6.1 27 6.9 5.2 21 5.9 5.4

SC 96 9.6 6.3 5.0 4.8 5.8 5.1 4.3

HET 5.8 6.7 50 24 12 28 13 7.9

V23 85 80 7.6 6.6 8.3 6.0 5.9 8.5

900 300 KS 12 6.3 16 5.5 5.3 13 5.1 5.1

SC 96 8.9 5.8 5.5 4.4 5.6 5.2 4.4

HET 6.3 7.0 44 20 12 24 12 7.2

V23 86 80 7.1 7.1 7.0 6.4 6.8 6.6

Percentage of rejections of the null hypothesis of the tests based on 2000 simulations. The number of bootstrap

is equal to 1000 for all the methods. The lag in the MFD, LIN and the tests is set equal to 2. Significance

level for all tests is 5%.

Table 7: Simulated Model: SETAR(1-2) - homoskedastic regimes

T P Test IND LIN MFD fixed MFD adaptive

c = 0.5 c = 0.75 c = 1 c = 0.5 c = 0.75 c = 1

300 300 KS 3.3 5.9 34 5.2 3.9 29 5.3 4.6

SC 100 11 6.5 8.2 12 7.0 8.7 14

HET 23 28 47 21 11 29 12 7.1

V23 99 93 6.3 6.9 12 6.4 7.4 14

600 300 KS 3.7 5.4 15 5.0 4.4 14 4.5 5.3

SC 100 13 6.9 7.6 9.8 6.3 8.5 11

HET 23 28 41 16 9.2 22 9.4 6.1

V23 97 92 7.9 8.3 9.2 6.9 8.5 11

900 300 KS 3.4 5.7 11 3.9 3.3 8.5 4.0 3.6

SC 100 13 6.6 7.0 10 7.3 7.7 11

HET 23 27 32 13 8.7 17 7.2 6.4

V23 98 93 7.3 7.9 9.8 7.4 7.3 11

Percentage of rejections of the null hypothesis of the tests based on 2000 simulations. The number of bootstrap

is equal to 1000 for all the methods. The lag in the MFD, LIN and the tests is set equal to 2. Significance

level for all tests is 5%.
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Table 8: Comparison of Density Forecasting Models

Series T P Order Method KS SC HET V23

US real GDP 1955(1)/1979(4) 1980(1)/2004(4) 3 LIN 0.03 0.06 0.01 0.01

(quarterly) T = 100 P=100 SETAR 0.26 0.07 0.14 0.27

MFD (fixed) 0.35 0.58 0.15 0.16

MFD (adapt) 0.18 0.41 0.30 0.58

US Coincident Indicator 1960(1)/1985(12) 1986(1)/2004(4) 3 LIN 0.01 0.30 0.18 0.09

(monthly) T = 312 P=220 SETAR 0.01 0.12 0.10 0.28

MFD (fixed) 0.14 0.30 0.67 0.12

MFD (adapt) 0.14 0.44 0.58 0.35

US Industrial Production 1960(1)/1985(12) 1986(1)/2004(4) 3 LIN 0.02 0.61 0.34 0.04

(monthly) T = 312 P=220 SETAR 0.18 0.53 0.32 0.03

MFD (fixed) 0.91 0.10 0.24 0.06

MFD (adapt) 0.98 0.17 0.18 0.21

p-values of the density forecasts tests described in Section (3). For all tests we used a lag order of 5. The bandwidth for the MFD is fixed for all series to

0.75 the values of the rule-of-thumb and adaptive given in Section (2.3). The markov order selected is indicated in the column order. The lag orders of the

LIN and SETAR forecasting methods are chosen performing a search up to lag 5 and by the AIC selection criterion.
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