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Abstract

Empirical time series of financial market data, like day-to-day stock returns, exhibit the phenomenon that
although usually tomorrow’s price is unpredictable, the absolute value of the price change is correlated with
the magnitude of past price changes; though the corresponding correlation coefficients are not very large,
they are significantly different from zero. This phenomenon is known as ‘volatility clustering’ in the financial
liturature. In this note a micro-economic model of volatility clustering, introduced by Gaunersdorfer and
Hommes[7], will be analysed. The deterministic skeleton of the model has a Chenciner bifurcation, and hence
periodic points and invariant quasi-periodic circles coexisting with the ‘fundamental’ equilibrium. Adding
noise in form of stochastic supply shocks, volatility clustering is generated by the system jumping between the
bases of attraction of the fundamental equilibrium (low volatility), and that of the non-fundamental attractor
(high volatility).

1 The model
We build a variant of the heterogeneous adaptive beliefs model of Brock and Hommes [2], see also [4, 5],
investigated by Gaunersdorfer and Hommes [7] and Gaunersdorfer et al. [8]. There are economic agents
which trade one kind of risky asset (a stock) and one risk-less asset (a bond) on a financial market. Assets are
assumed to be infinitely lived and perfectly divisible; moreover, short-selling is allowed (i.e. it is possible to
buy negative quantities of them).

Information. The risk-less assets live one period; they are bought at a fixed price 1 per unit, and pay an
amount R = 1+r > 0 in the next period. Risky asset are traded at the market price pt, and pay each period a
dividend yt: one risky asset bought at time t at price pt yields dividend yt+1 and can be sold at price pt+1 next
period. In this model, the dividends {yt} are assumed to be independently and identically distributed (iid).
The information set Ft is the σ-algebra generated by the random variables {pt, pt−1, · · · , yt, yt−1, · · · }; a
function f is measurable with respect to Ft, if it can be written as a Borel function of (a finite number of) the
variables (pt, pt−1, · · · , yt, yt−1, · · · ).

Beliefs. Different agents are assumed to form beliefs about the realisations of the random quantities in the
next period. Here, only a finite number of beliefs are considered; see [1, 3, 6] for more general setups. Belief
type h is characterised by an operator Bht = Bh(. | Ft), which associates to every random variable X ∈ R

another random variable BhtX = Bh(X | Ft) that is measurable with respect to Ft. The quantity BhtX is
interpreted as the ‘belief of h at time t about X’. This operator is assumed to have the property that if X is
measurable with respect to Ft, then BhtX = X; that is, everything that is known is believed as well. Note
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that the beliefs are conditioned on the current price pt, even if though this price is unknown when agents send
their demand functions to the market.

Belief operators are typical for boundedly rational agents; a fully rational agent is characterised that his
belief is equal to the expectation operator. However, in practice agents have seldomly sufficient information
and time to work out mathematical expectations of random variables.

Demand function. Buying one share of the risky asset yields in the next period an excess return ξt+1 of

ξt+1 = pt+1 + yt+1 − Rpt.

An agent tries to maximise his expected utility from trading, which is set equal to his risk-adjusted expected
profit from buying z shares

ut = Bhtzhtξt+1 −
a

2
Varhtzhtξt+1. (1)

Here VarhtX = Bht(X − BhtX)2. As his trading decision has to be based on the information available at
time t, it will be assumed that z is measurable with respect to Ft. Moreover, to bring down the heterogeneity
between the trader types down to a minimum, it is assumed that

Bhtyt+1 = ȳ, Varhtξt+1 = σ2, for all h.

In other words, agents’ beliefs disagree only on next periods’ prices. Utility is then maximised by

zht =
1

aσ2
Bhtξt+1.

Market equilibrium. Normalised total demand of risky assets equals the weighted sum
P

h nhtzht,
where nht is the fraction of agents of type h in the market at time t. Total (outside) supply being equal to zs,
market equilibrium is expressed by zs =

P

h
nhtzht, which yields

Rpt =
X

h

nhtBhtpt+1 + ȳ − aσ2zs
t . (2)

Supply will be assumed to be a random iid variable with mean 0; the ‘deterministic skeleton’ of the model is
obtained by setting zs

t equal to 0 throughout. Equation (2) determines the market price pt.

Type dynamics. In order to obtain an evolution law, the dependence of nht on past prices has to be
specified. For this, the realised utility Uht is computed, which is a measure of the ‘fitness’ of type h (cf.
equation (1) for ut):

Uht = zht−2ξt−1 −
aσ2

2
z2

ht−2 = −
1

2aσ2
(pt−1 − Bht−2pt−1)

2 + Ct,

where Ct contains all terms that are the same for all h. The fraction nht of agents choosing strategy type h is
proportional to eβUhtwh/Z, where wh is a fixed weight factor[3], and where the constant of proportionality Z
equals

P

h eβUhtwh. The parameter β ≥ 0 is called ‘intensity of choice’: it expresses the competitiveness
of the market. If β is high, traders are very keen on picking a strategy that performs well; in contrast, if β is
zero, differences in fitness are not taken into account, and traders pick a strategy at random.

Fundamental solution. In the special case that all agents are fully rational, the market equilibrium equa-
tion simplifies to

Rpt = pt+1 + ȳ − aσ2zs.

Assuming that the outside supply of shares zs = 0, this equation has a unique bounded solution pt = p̄ =
ȳ/(R − 1), which is called the rational fundamental price. All prices will from now on be replaced by the
deviations xt = pt − p̄ from the fundamental price.
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Belief specifications. The model is closed by specifying the belief operators Bht. For simplicity, attention
is restricted to a two type case

B 1txt+1 = vxt−1, B 2txt+1 = xt−1 + g(xt−1 − xt−2),

with parameters 0 ≤ v < 1, g > 0. Type 1 traders are ‘adaptive fundamentalists’, that is, they believe that
prices will gradually decline towards the fundamental price; type 2 traders are ‘technical analysts’: they be-
lieve that the price difference between last period’s and next period’s price is a function of the latest observed
price difference.

As it stands, the model will not yield bounded dynamics: if at a certain time n2t is large, and g > 1, the
technical analysts dominate the market, and the price dynamics will diverge to infinity. History shows that
every price bubble bursts; it is therefore reasonable to demand that technical trading rules are not popular if
the price is too far from the fundamental. This is modelled by changing the fraction of technical analysts by
a factor that decreases with the square of the deviation of the latest realised price from the fundamental:

n2t = e−
x
2

t−1

α
eβU2tw2

eβU1tw1 + eβU2tw2
=

e−
x
2

t−1

α

eβ(U1t−U2t) w1

w2

+ 1
, n1t = 1 − n2t.

The full system is now given by the evolution equation

xt = ϕ(xt−1, · · · , xt−4) =
`

n1tvxt−1 + n2t(xt−1 + g(xt−1 − xt−2))
´

/R.

The associated dynamical system Φ is given by

Φ(x) = (ϕ(x1, · · · , x4), x1, x2, x3).

Note that Φ is an endomorphism.

2 Dynamical properties
Stability of origin. The fundamental equilibrium x = 0 is the only fixed point of Φ. Noting that
there dnht = 0, the linearised evolution reads as

R dxt = (n1v + n2(1 + g)) dxt−1 − gn2 dxt−2;

here n1 = w1/(w1 +w2) etc. This is solved by linear combinations of st, where s is a root of Rs2 − (n1v +
n2(1 + g))s + g = 0. Note that if |s| < 1, then the fixed point is hyperbolically attracting. Since 0 < v < 1
and g > 0, the origin loses its stability in a Hopf bifurcation at gH = R/n2. Moreover, if g = 0, then

|xt| = |R−1(n1tv + n2t)||xt−1| <
1

R
|xt−1|,

and the origin is a globally stable hyperbolic attractor.

Nonlocal bifurcations. Numerical simulations show however that for values of g smaller than gH , there
are already attractors, mostly invariant quasi-periodic circles, that are generated by a saddle-node bifurcation,
see figure 1. For g small, the fixed point x = 0 is globally attracting. As g increases, another attractor
is generated by a saddle-node bifurcation of periodic points of invariant circles. The bifurcation points in
figure 1 are determined by a Monte Carlo method: for a given parameter value, ten random initial values of
the system are taken, and their attractor is determined by iteration. If this attractor is not the point x = 0,
the fundamental equilibrium is not globally stable. Note that the region of coexisting attractors grows as β
increases: if agents act on small utility differences, the market is destabilised more easily.
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Figure 1: Nonlocal bifurcations before the fundamental equilibrium loses stability: bifurcation curves for
several β in a (g, v)-diagram (left), and the three dimensional bifurcation surface (right).
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Figure 2: Comparison of autocorrelation coefficients of returns (left) and absolute returns (right) of daily data
of the S&P 500 index 1980–2000 (line with circles), and 95%-confidence intervals obtained from 20 model
simulation runs (v = 0.9999, g = 1.8, β = 10, R = 1.0004, w1 = w2 = 1, ȳ = 0.034).

3 Statistical properties
After adding random supply shocks, the model is pitted against day-to-day return data of the S&P 500 index in
the period 1980–2000. The test-criterion chosen is equality of autocorrelations of returns and absolute returns,
which is, despite its deficiencies, a popular choice by economists, since it represents a well-documented
qualitative property of financial time-series. The distribution of the simulated data is obtained by performing
20 model simulation runs: with these, 95% confidence intervals are obtained. The results are given in figure 2.
On the basis of these results, agreement between the model and the data cannot be rejected.
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Figure 3: Time series of the S&P 500 daily index returns (left) and a simulation (right). Parameters as in
figure 2.
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