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1 Introduction

There are two opposing views concerning the expectations hypothesis in economics and finance.

According to the traditional, neoclassical view, propagated by Muth (1961) and Lucas (1972)

agents form rational expectations (RE) without any systematic forecasting mistakes. In the rational

framework it is often assumed that agents have full knowledge of their economic environment,

and use all available information from economic theory to compute rational forecast. Moreover,

typically it is assumed that all agents are fully rational, leading to the representative rational agent

benchmark. Friedman (1953) provided an early argument in support of the representative rational

agent framework, namely that irrational agents would be driven out of the market, since rational

agents earn higher profits or utility. Stated differently, evolutionary selection prevents irrational

behaviour and the economy may be described as if all agents are perfectly rational.

Simon (1957) already criticized this view, arguing that deliberation and information gathering costs

should be taken into account. More recently, work on bounded rationality in the 1990s, surveyed

e.g. in Sargent (1993) and Conlisk (1996)), has challenged the traditional view, emphasizing that

the extreme assumptions concerning perfect knowledge of the economy and infinite computing

capacities are highly unrealistic and in sharp contrast with observed behavior in laboratory ex-

periments with human subjects (e.g. Tversky and Kahnemann (1974)). In macroeconomics, much

work has been done on adaptive learning, as surveyed e.g. in Evans and Honkapohja (2001). A key

underlying assumption is that agents do not know the underlying “law of motion” of the economy,

but instead use time series observations to form expectations based upon their own “perceived law

of motion”, trying to learn the model parameters as more observations become available. Much of

this literature has focussed on the stability of rational expectations equilibria (REE) and equilib-

rium selection, in an attempt to justify rationality by adaptive learning.

Stimulated by work at the Santa Fe Institute, the view that markets are complex evolving systems

has gained popularity, see e.g. the Santa Fe conference proceedings Anderson et al. (1988) and

Arthur et al. (1997a), the collection of papers in Rosser (2004) and the recent survey in Arthur

(2006). When the economy is viewed as a complex system with many interacting agents, it seems
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hard to justify perfect structural knowledge about the economy and fully rational expectations,

since knowledge about the beliefs of all other agents would be required. A large population of

boundedly rational heterogeneous agents, using different forecasting rules ranging from simple to

sophisticated, seems much more natural and in line with human behavior. A problem of bounded

rationality however is that there are many degrees of freedom, and which model of bounded ratio-

nality is an accurate description of learning behaviour at the individual level?

In this chapter we review some work on bounded rationality, expectation formation and learning

in complex markets. We will use the familiar demand-supply cobweb model, exactly the same

framework employed by Muth (1961), in his seminal paper introducing rational expectations. We

emphasize two stories of bounded rationality, one story of adaptive learning and another story

of evolutionary selection; at the end of the chapter we combine both stories. An important point

of departure for both stories is that agents do not understand the world in its full complexity, but

have some simple perception of this complex world and use relatively simple decision heuristics

or forecasting rules. According to the first adaptive learning story agents are identical, and can

be represented by an “average agent”, who adapts his behavior trying to learn an optimal rule

within a class of simple rules. An example is the consistent expectations equilibrium proposed by

Hommes and Sorger (1998), where agents try to learn the best linear rule, minimizing forecasting

errors, in an unknown nonlinear economy. The optimal linear rule fits the observable sample mean

and sample autocorrelation structure of the nonlinear economy. The second story is concerned

with heterogeneous, interacting agents and evolutionary selection of different forecasting rules.

Heterogeneous agent models are becoming increasingly popular in finance, where a distinction

between fundamentalists and chartist trading strategies can be made; see e.g. Hommes (2006) and

LeBaron (2006) for extensive surveys. Here, we consider the adaptive belief systems proposed

by Brock and Hommes (1997, 1998), where agents can choose between a costly sophisticated

forecasting strategy, such as rational expectations, and a freely available simple strategy, such

as naive expectations. At the end of the chapter, we will integrate both stories and consider an

economy with evolutionary selection between a costly sophisticated adaptive learning rule and a

cheap simple forecasting rule such as naive expectations.
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There is a lot of theoretical work on expectations formation and learning when agents are bound-

edly rational, but surprisingly little experimental work on expectations and learning of human

subjects has been done. A controlled laboratory environment is well suited to investigate how in-

dividuals form expectations and learn from experience, and how the market aggregates individual

forecasting strategies. Recently, Hommes et al. (2007) conducted experiments on expectation for-

mation within a cobweb framework. We confront theoretical work on expectation formation and

learning with the observed “stylized facts” in these laboratory experiments.

The chapter is organized as follows. Section 2 discusses cobweb dynamics under various expec-

tations rules, such as naive, rational and adaptive expectations. Section 3 focuses on laboratory

experiments with human subjects on expectation formation. In Section 4 we discuss adaptive

learning, in particular the notion of consistent expectations equilibrium (CEE) and sample au-

tocorrelation (SAC-)learning. Section 5 focuses on heterogeneity and evolutionary competition

between different forecasting rules and ends with an example where adaptive learning and evolu-

tionary selection are combined. Finally, Section 6 briefly discusses a future perspective.

2 The Cobweb Model

The classical cobweb model is a partial equilibrium model describing commodity price fluctuations

of a non-storable good, such as corn or hogs, that takes one time period to produce. It is one of the

simplest benchmark models in economic dynamics and can be found in many standard textbooks

(e.g. Nicholson (1995, pp.590-594)). Producers must form price expectations one period ahead

and derive their optimal production decision from expected profit maximization. Given producers’

price forecast pe
t , optimal supply is given by

S(pe
t) = argmaxqt

{pe
t qt − c(qt)} = (c′)−1(pe

t). (1)

The cost function c(·) is assumed to be strictly convex so that the second order condition for

profit maximization is satisfied. The marginal cost function is then invertible and supply is strictly

increasing in expected price. The simplest case arises when the cost function is quadratic, c(q) =
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q2/(2s), yielding a linear supply curve

S(pe) = spe, s > 0. (2)

In general a strictly convex cost curve leads to a nonlinear, increasing, supply curve. As an exam-

ple, we will consider an increasing, S-shaped supply curve

S(pe) = b + arctan(λpe), λ > 0, b > π/2, (3)

where the parameter λ tunes the nonlinearity of the supply curve and b > π/2 is a parameter tuning

the production level ensuring that production is always non-negative1.

Consumer demand D depends upon the current market price pt. The demand curve D can be

derived from consumer utility maximization, but for our purposes it is not necessary to specify

these preferences explicitly. Throughout the chapter we will simply work with a linearly decreasing

demand curve

D(pt) = a− dpt + εt, a, d > 0, (4)

where −d is the slope of the demand curve, a determines the demand level and εt is an indepen-

dently and identically distributed (IID) stochastic series representing exogenous random demand

shocks. If beliefs are homogeneous, i.e., all producers have identical price expectations pe
t , market

clearing implies

D(pt) = S(pe
t) (5)

yielding the realized market price

pt = D−1(S(pe
t )) =

a + εt − S(pe
t )

d
. (6)

With an increasing supply curve and a decreasing demand curve, there can only be one price,

denoted by p = p∗, where demand and supply intersect. The price dynamics in (6) thus depends

upon the demand and supply curves, as well as on the assumed expectations hypothesis. How

do producers form price expectations? We first consider the benchmarks of naive, rational and

adaptive expectations.
1An S-shaped supply curve can e.g. be derived from a fourth or higher order polynomial convex cost curve c(q) =

1
d+1 (q− 1)d+1 + q, where d is an odd integer, e.g. d = 3. Optimal supply then becomes q = S(pe) = (pe − 1)

1
d + 1.
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2.1 Naive expectations Before the rational expectations revolution it was common practice to

use simple forecasting rules. The simplest case studied in the thirties, e.g. by Ezekiel (1938),

assumes that producers have naive expectations, that is, their prediction equals the last observed

price pe
t = pt−1. Under naive expectations, the price dynamics (6) becomes

pt = D−1(S(pt−1)). (7)

According to the well known cobweb theorem (see e.g. Ezekiel (1938)), there are essentially

two possibilities for the price dynamics under naive expectations, depending upon the ratio of

marginal supply and marginal demand at the steady state p∗. When −1 < S ′(p∗)/D′(p∗) < 0

the steady state p∗ is (locally) stable, and prices converge to the steady state. If on the other hand

S ′(p∗)/D′(p∗) < −1 the steady state p∗ is (locally) unstable, and prices diverge from the steady

state. In the case of a nonlinear, bounded supply curve as in (3), if the steady state is unstable,

prices will converge to a stable 2−cycle, with regular up and down oscillations, as illustrated in

Figure 2 in the next Section.

2.2 Rational expectations It has been argued that simple forecasting rules such as naive ex-

pectations, lead to systematic forecasting errors. This argument seems particularly strong when

the model generates a 2-cycle, even in the presence of (small) exogenous shocks. When producers

expect a high (low) price, they will supply a high (low) quantity and consequently the realized

market price will be low (high). Along a ‘hog cycle’ of up and down price oscialltions, expecta-

tions are thus systematically wrong, and forecasting errors are strongly correlated. Rational agents

would learn from their systematic errors and revise expectations accordingly, so the argument goes.

These considerations led Muth (1961) to introduce rational expectations, where producers’ sub-

jective price expectations equal the objective conditional mathematical expectation of the market

price, i.e. pe
t = Et[pt]. Using market equilibrium (5) with the linear demand curve (4), taking

conditional mathematical expectation on both sides, we can solve for the rational expectations

forecast

pe
t = Et[pt] = p∗, (8)
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where p∗ is the unique price corresponding to the intersection point of demand and supply. Given

producers’ rational price forecast pe
t = p∗, the actual law of motion (6) becomes

pt = p∗ +
εt

d
. (9)

The cobweb model therefore has a unique REE, given by an IID process with mean p∗. Along

a REE expectations are self fulfilling and producers make no systematic forecasting errors, since

forecasting errors are uncorrelated. It is important to note that, in order to form rational expecta-

tions, perfect knowledge of underlying market equilibrium equations is required and, in particular,

agents must be able to compute the intersection point p∗.

2.3 Adaptive expectations It is worthwhile to reconsider the issue of ‘systematic forecasting

errors’ in the light of the recent discovery of chaotic dynamics in simple nonlinear deterministic

systems and under the more plausible assumption of bounded rationality, where agents do not

know underlying market equilibrium equations, but only use time series observations to forecast2.

As an example, consider the cobweb model with adaptive expectations, i.e.,

pe
t = (1− w)pe

t−1 + wpt−1, 0 ≤ w ≤ 1, (10)

where w is the expectations weight factor. The expected price is a weighted average of yesterday’s

expected and realized prices, or equivalently, the expected price is adapted by a factor w in the

direction of the most recent realization. Adaptive expectations may thus be seen as ‘error learning’

with a constant factor. Notice that for w = 1, adaptive expectations reduces to naive expectations.

Under adaptive expectations and, given the linear demand curve (4), the dynamics of expected

prices in the cobweb model becomes

pe
t = (1− w)pe

t−1 + w(
a + εt − S(pe

t−1)

d
). (11)

Chiarella (1988) and Hommes (1991,1994) have shown that, without any random shocks εt, for

nonlinear, but monotonic, demand and/or supply curves, this nonlinear deterministic difference
2At the time of the introduction of rational expectations by Muth (1961) and its introduction into macroeconomics

by Lucas (1972) and others, the phenomenon of deterministic chaos was still largely unknown to economists.
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equation can easily generate chaotic fluctuations in expected prices, and therefore also in prices,

quantities and forecasting errors. Figure 1 shows a bifurcation diagram with respect to the ex-

pectations weight factor w, with the nonlinear, S-shaped supply curve (3). For high values of w,

sufficiently close to w = 1 (i.e. close to naive expectations) prices converge to a stable 2-cycle,

whereas for small values of w, sufficiently close to w = 0, prices converge to the RE steady state.

For intermediate w−values however, chaotic price oscillations arise.

-2

-1

 0

 1

 2

 3

 4

 5

 6

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

x

beta

Figure 1: Bifurcation diagram with respect to the expectations weight factor w, 0.1 ≤ w ≤ 0.7, with

the other parameters fixed at a = 0.7, d = 0.25 and λ = 4.8 (x is the deviation from the inflection point

of the nonlinear, S-shaped supply curve (3)). For large values of w prices converge to a regular 2-cycle

with large amplitude. As w decreases the amplitude of price fluctuations decreases and a bifurcation

route to chaos occurs. When w becomes very small, chaotic fluctuations are stabilized and prices

converge to REE.

When prices fluctuate chaotically, the corresponding forecasting errors will be highly unpredictable

and the question arises whether boundedly rational agents would be able to detect any structure

in these chaotic forecasting errors and improve upon their simple adaptive forecasts. If patterns

are indeed hard to discover, then adaptive expectations with chaotic price fluctuations might be a

satisfactory (long run) boundedly rational equilibrium.

7



3 Laboratory Experiments

There is a lot of theoretical work on expectations formation and learning when agents are bound-

edly rational, but surprisingly few laboratory experiments with human subjects have been per-

formed to study how individuals form expectations and learn from experience, and how the market

aggregates individual forecasts.

Early experiments on expectations have been done in Schmalensee (1976), who uses historical data

on wheat prices and asks subjects to predict the mean wheat price for the next 5 periods. In Dwyer

et al. (1993) and Hey (1994) subjects have to predict a time series generated by a stochastic process

such as a random walk or a simple linear first order autoregressive process. More recently, Kelley

and Friedman (2002) consider learning in an Orange Juice Futures price forecasting experiment,

where prices are driven by a linear stochastic process with two exogenous variables (weather and

competing supply). A drawback of these papers is that subjects are forecasting an exogenous

process, and there is no feedback from individual expectations to realizations.

Williams (1987) considers expectation formation in an experimental double auction market which

varies from period to period by small shifts in the market clearing price. Participants predict the

mean contract price for 4 or 5 consecutive periods. The participant with the lowest forecast error

earns $1.00. Peterson (1993) studies price predictions in repeated double auction experimental

asset markets, as in the famous bubble experiments of Smith et al. (1988), and shows that forecasts

tend to be biased and inconsistent with RE, but there is a tendency of forecasts to evolve in the

direction of RE.

Marimon, Spear and Sunder (1993) and Marimon and Sunder (1993, 1994, 1995) have studied ex-

pectation formation in laboratory experiments in inflationary overlapping generations economies.

Marimon, Spear and Sunder (1993) find experimental evidence for expectationally driven cycles

and coordination of beliefs on a sunspot 2-cycle equilibrium, but only after agents have been ex-

posed to exogenous shocks of a similar kind. Marimon and Sunder (1995) present experimental

evidence that a “simple” rule, such as a constant growth of the money supply, can help coordinate

agents’ beliefs and help stabilize the economy. More recently, Adam (2007) conducted laboratory
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experiments on inflationary expectations.

Here we discuss some recent laboratory experiments of Hommes et al. (2007) on individual ex-

pectations and learning in the cobweb framework. See also Hommes et al. (2005) for similar

experiments in an asset pricing framework. The participants in the experiments were asked to pre-

dict next periods price of a certain, unspecified, good. The realized price pt in the experiment was

determined by the (unknown) cobweb market equilibrium equation

D(pt) =
1

K

K∑
i=1

S(pe
i,t), (12)

where D(pt) is the demand for the good at price pt, K is the size of the group, pe
i,t is the price

forecast by participant i and S(pe
i,t) is the supply of producer i depending upon the forecast by

participant i. Demand and supply curves D and S were fixed during all experiments (except for

small random shocks to the demand curve) and unknown to the participants. We focus on the

group experiments with K = 6, as in Hommes et al. (2007). Hommes et al. (2000) ran one-person

experiments (i.e. K = 1); Colucci and Valori (2006) use these one-person experiments to estimate

various learning models. Solving (12) for the market equilibrium price, with a linear demand curve

as in (4), yields

pt =
a− 1

K

∑K
i=1 S(pe

i,t)

d
+ εt, (13)

where εt are IID demand shocks, which are drawn from a normal distribution N(0, 0.5). In the

experiments the parameters were fixed at a = 2.3, d = 0.25 and K = 6, and we used the nonlinear,

S-shaped supply curve (geometrically similar to the S-shaped supply curve (3)):

S(pe
i,t) = Tanh(λ(pe

i,t − 6)) + 1. (14)

Expectation formation of the producers is the only part of the model that is affected by the par-

ticipants in the experiments. Participants did not know underlying market equilibrium equations,

nor were they informed about the distribution of any exogenous shocks to demand and/or supply.

The participants were told that they were advisors to producers of an unspecified good and that the
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price was determined by market clearing. Based upon this information the participants were asked

to predict next period’s price. The predicted price had to be between 0 and 10 and the realized price

was also always between 0 and 10. Participants’ earnings in each period were a quadratic function

of their squared forecasting error. The better their forecast, the higher their earnings. After every

period the participants were informed about the realized price in the experiment. Also a time series

of the participant’s own prediction and a time series of the realized price in the experiment was

shown on their computer screen.

Participants in the experiments therefore had little information about the price generating process

and had to rely mainly upon time series observations of past prices and predictions. The infor-

mation in the experiment was thus similar to the information assumption underlying much of the

bounded rationality literature, where agents form expectations based upon time series observations.

Our setup enables us to test the expectations hypothesis in a controlled dynamic environment. The

main question was whether agents can learn and coordinate on the unique REE, in a world where

consumers and producers act as if they were maximizing utility and profits, but where they do

not know underlying market equilibrium equations and only observe time series of prices and ex-

pected prices. Our choice for a nonlinear, S-shaped supply curve enables us to investigate whether

agents can avoid systematic forecasting errors, as would e.g. occur along a 2-cycle under naive

expectations, or can even learn a REE steady state.

In their experiment, Hommes et al. (2007) considered a stable and an unstable treatment, which

only differ in the parameter λ tuning the nonlinearity of the supply curve (14). In the stable

treatment, if all subjects use naive expectations, prices converge to the RE steady state. In contrast,

in the unstable treatment, if all subjects use naive expectations, prices diverge from the RE steady

state and converge to the stable 2-cycle, with systematic forecasting errors, as illustrated in Figure 2

(top left panel). Figure 2 also illustrates what would happen in the unstable treatment of the

experiment if all subjects would use one of the other well known benchmark expectations rules,

namely adaptive expectations (w = 0.2), rational expectations (i.e. use the RE price p∗ as forecast),
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Figure 2: Price fluctuations in the cobweb model under naive expectations (top left), adaptive ex-

pectations (top right), rational expectations (middle left), average price forecast (middle right) and

SAC-learning (bottom).
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Figure 3: Realized market prices in two different cobweb group experiments. In the stable treatment

(left panel; λ = 0.22) the price quickly converges to the RE price, whereas in the unstable treatment

(right panel; λ = 2)) prices do not converge but exhibit excess volatility, characterized by strongly

fluctuating prices around the RE price.

learning by average, that is, use the sample average

p̄e
t = (

t−1∑
j=0

pj)/t, (15)

as forecast as in Carlson (1969)), and sample autocorrelation (SAC) learning (i.e. updating sample

average and first order sample autocorrelation coefficient, as discussed in detail in Section 4).

Figure 3 shows time series of the realized prices in two typical group experiments, one stable and

one unstable treatment, and Table 1 summarizes the sample mean and sample variances, over the

subsamples 1–25, 26–50 and the full sample 1–50, for both treatments and for the corresponding

RE benchmarks. For both treatments, the sample mean of realized prices is very close to the

(unknown) RE price. Moreover, in the stable treatment, the sample variance (0.44, 0.29 and 0.36

respectively, over the first half, the second half and the full sample) is close to the variance (0.25)

of the RE benchmark. In contrast, in the unstable treatment the sample variance (4.75, 3.32 and

4.04 respectively, over the first half, the second half and the full sample) is significantly higher than

the variance (0.25) of the RE benchmark, so that the unstable treatment exhibits excess volatility.

Hommes et al. (2007) also look at autocorrelations in realized market prices, and find that there

is no statistically significant autocorrelations in realized market prices, for both the stable and the
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1-25 26-50 1-50

sample sample sample sample sample sample

average variance average variance average variance

Stable treatment (λ = 0.22)

RE 5.57 0.25 5.57 0.25 5.57 0.25

experiment 5.59 0.44 5.66 0.29 5.63 0.36

unstable treatment (λ = 2)

RE 5.91 0.25 5.91 0.25 5.91 0.25

experiment 6.07 4.75 5.50 3.32 5.79 4.04

Table 1: Sample mean and sample variance of realized market prices in the laboratory ex-

periments for the stable and the unstable treatment, over the full sample of 50 periods and

over the subsamples of the first 25 and the last 25 periods, together with rational expectations

benchmarks.

unstable treatments. Apparently, the heterogeneous interaction of individual forecasting rules has

washed out all linear predictable structure in realized market prices. The stylized facts of realized

market prices in the cobweb experiments may thus be summarized as follows:

1. the sample mean of realized market prices is very close to the RE price;

2. the sample variance of realized market prices depends on the treatment

(a) in the stable treatment the sample variance is very close to the RE benchmark;

(b) in the unstable treatment the sample variance is significantly higher than the RE bench-

mark;

3. there is no linear autocorrelation left in realized market prices.

One may say that the stable treatment converges to RE3, whereas the unstable treatment exhibits

excess volatility, with prices fluctuating irregularly (no autocorrelations) and with high amplitude
3For different market settings, these results may off course change. The cobweb model has negative expectations

feedback. Heemeijer et al. (2007) show in fact that the results are quite different in markets with positive feedback,
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around the RE benchmark.

It is useful to compare these experimental results to the theoretical benchmarks illustrated in Fig-

ure 24. These are representative agent benchmarks, where all agents use the same forecasting

rule, and demand and supply are exactly the same as in the unstable treatment in the experiment.

Naive expectations is clearly very different from the experiments, since it leads to high amplitude

price fluctuation with regular, predictable up and down (noisy) period 2 oscillations. Adaptive ex-

pectations is also inconsistent with the experiments. Although the amplitude is smaller, the price

fluctuations are too regular, with frequent up and down oscillations. In contrast to the experiments,

the price series under adaptive expectations, for example, exhibits strong negative first order au-

tocorrelation. The time series under rational expectations is very similar to the time series in the

stable treatment (the exogenous shocks in the experiments are the same as for the RE benchmark

simulation), but very different from the unstable treatment, which has a much larger amplitude.

RE is therefore a good description in the stable treatment, but not in the unstable treatment. Fi-

nally, learning by average or by sample autocorrelation always leads to (quick) convergence to

RE, which is inconsistent with the observed excess volatility in the unstable treatment of the ex-

periments. None of these representative agent learning models thus can explain the cobweb ex-

periments, suggesting that heterogeneous expectations play a key role in expectation formation of

boundedly rational agents. Before turning to heterogeneous expectations models in Section 5, we

discuss adaptive learning by an “average agent” in Section 4.

4 Adaptive Learning

Adaptive learning usually refers to the situation where agents use some parameterized rule, and

update the parameters over time as additional observations become available. Agents thus try to

learn the parameters of their rule, for example behaving as a time series econometrician using a

such as demand driven speculative asset markets. Positive feedback may lead to persistent deviations from the funda-

mental benchmark, with the sample mean of realized prices e.g. much higher than the RE fundamental benchmark.
4Arifovic (1994) investigates genetic algorithm learning in the cobweb model and compares the results to the

cobweb experiments of Wellford (1989).
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recursive ordinary least squares (OLS) updating rule. Marcet and Sargent (1989) contains early

examples of such an approach; Evans and Honkapohja (2001) contains an extensive and excel-

lent overview of adaptive learning in macroeconomics. Within the cobweb framework adaptive

learning has been applied by Bray and Savin (1986).

Adaptive learning may provide a learning story how agents may learn a REE, without structural

knowledge of market equilibrium equations but based on time series observations. In fact, we

have seen an example already, since the average price forecast rule (15) can be obtained from

OLS regression of prices on a constant. As we have seen, the average price forecast rule enforces

convergence to the unique REE in the cobweb model. In cases when there are multiple REE,

adaptive learning may be used as an equilibrium selection device, providing a justification of RE

equilibria that are stable under learning.

However, adaptive learning need not always converge to REE. In particular, when the perceived

law of motion (i.e. the law of motion agents believe in) is misspecified (i.e. different from the

true law of motion), the learning process need not converge to a REE steady state, but may lead

to some boundedly rational learning equilibrium, leading to expectations driven periodic or even

chaotic fluctuations. Well known examples are Bullard (1994), Schönhofer (1999)5, and Bullard

and Duffy (1998); Grandmont (1998) contains a discussion of (in-)stability conditions of adaptive

learning rules. Evans and Honkapohja (2001) use the notion of restricted perception equilibria

to describe a situation where agents’ perceived law of motion is misspecified, and agents try to

learn a rule which is optimal within a limited class of misspecified rules. Branch (2006) wrote a

stimulating recent review on restricted perception equilibria, and their importance for macro.

The purpose of this section is to discuss a simple adaptive learning scheme, sample autocorrelation

(SAC-)learning, as introduced by Hommes and Sorger (1998). In this setting agents are trying

to learn the best linear rule (according to forecasting performance) in an unknown, nonlinear
5Recently Tuinstra and Wagener (2007) have argued that cycles and chaos are the result of the estimation procedure

in Bullard (1994) and Schönhofer (1999). If agents regress inflation rates on a constant, instead of regressing (nonsta-

tionary) prices on past prices, adaptive learning does converge to REE. Interestingly, Tuinstra and Wagener (2007) also

show that in the case of heterogeneous agents, with agents switching between the two estimation procedures based

upon past performance, complicated price fluctuations arise again.
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economy. In equilibrium the linear rule has the same autocorrelation structure as the unknown

nonlinear system, and Hommes and Sorger (1998) called this situation a consistent expectations

equilibrium. Within the cobweb model, we will see that SAC-learning may sometimes converge to

a REE steady state, but may also fail to converge and even lead to chaotic fluctuations and excess

volatility.

4.1 Consistent Expectations Equilibrium (CEE) We start from a motivating example in chaos

theory. Consider the dynamics

xt+1 = Tβ(xt), (16)

where −1 < β < +1 and Tβ(x) : [0, 1] → [0, 1] is the 1-D piecewise linear asymmetric tent map

(see the graphs in Figure 4)

Tβ(x) =





2
1+β

x, 0 ≤ x ≤ (β+1)
2

2
1−β

(1− x), β+1
2

< x ≤ 1.

(17)

This piecewise linear map is expanding, that is, |T ′
β(x) > 1, and typical trajectories are chaotic.

In particular, the following properties of the dynamics are well known (Bunow and Weiss (1979),

Sakai and Tokumaru (1980)):

1. almost all time paths {xt}∞t=0 are chaotic and dense in [0, 1].

2. for almost all initial states x0 ∈ [0, 1], the sample average of the (chaotic) time path is

x̄ = limT→∞ 1
T+1

∑T
t=0 xt = 1

2
.

3. for almost all initial states x0 ∈ [0, 1], the sample autocorrelation coefficient at lag j is

ρj = βj .

These properties imply that the nonlinear dynamical system (16) has the same autocorrelation

structure as a stochastic AR(1) process. Boundedly rational agents observing time series gener-

ated by the unknown nonlinear process (16) and using linear statistical techniques, might wrongly
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Figure 4: Graphs of the asymmetric tentmap for different values of the parameter β. In each case, a

typical trajectory is chaotic with sample mean 1/2. The first order sample autorcorrelation coefficient

of a chaotic trajectory equals β.
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believe that the time series is generated by a stochastic AR(1) process. This example motivated the

concept of consistent expectations equilibrium, introduced in Hommes and Sorger (1998), building

on earlier work in Hommes (1998) and Sorger (1998), and the concept of self-fulfilling mistake of

Grandmont (1998).

We discuss the CEE concept within the cobweb model. Assume that agents believe that prices are

generated by a stochastic AR(1) process. Given this perceived law of motion and prices known up

to pt−1, the predictor for pt minimizing the mean squared prediction error is

pe
t = α + β(pt−1 − α), (18)

where the parameters α and β, β ∈ [−1, 1], represent the long run average and the first order

autocorrelation coefficient. Given that agents use the linear predictor (18), the implied actual law

of motion for the cobweb model becomes

pt = Fα,β(pt−1) := D−1S(α + β(pt−1 − α)). (19)

The sample average of a time series (pt)
∞
t=0 is defined as

p̄ = lim
T→∞

1

T + 1

T∑
t=0

pt (20)

and the sample autocorrelation coefficients are given by

ρj = lim
T→∞

cj,T

c0,T

, j ≥ 1, (21)

where

cj,T =
1

T + 1

T−j∑
t=0

(pt − p̄)(pt+j − p̄), j ≥ 0. (22)

A CEE is now defined as

DEFINITION. A triple {(pt)
∞
t=0; α, β}, where (pt)

∞
t=0 is a sequence of prices and α and β are real

numbers, β ∈ [−1, 1], is called a consistent expectations equilibrium (CEE) if

1. the sequence (pt)
∞
t=0 satisfies the implied actual law of motion (19),
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2. the sample average p̄ in (20) exists and is equal to α, and

3. the sample autocorrelation coefficients ρj , j ≥ 1, in (21) exist and the following is true:

a. if (pt)
∞
t=0 is a convergent sequence, then sgn(ρj) = sgn(βj), j ≥ 1;

b. if (pt)
∞
t=0 is not convergent, then ρj = βj , j ≥ 1.

Stated differently, a CEE is a price sequence together with an AR(1) belief such that expectations

are self-fulfilling in terms of the observable sample average and sample autocorrelations. Along a

CEE expectations are thus correct in a linear statistical sense.

4.2 Sample Autocorrelation Learning So far, the notion of CEE involves a given AR(1) be-

lief, with fixed parameters α and β. Now consider the more flexible situation of adaptive learning

with agents updating their AR(1) belief parameters αt and βt over time, as additional observations

become available. A natural learning scheme fitting the framework of CEE is based upon sample

average and sample autocorrelation coefficients.

For any finite set of past observations {p0, p1, . . . , pt} the sample average is

αt =
1

t + 1

t∑
i=0

pi , t ≥ 1 (23)

and the first order sample autocorrelation coefficient is

βt =

∑t−1
i=0(pi − αt)(pi+1 − αt)∑t

i=0(pi − αt)2
, t ≥ 1. (24)

When, in each period, the belief parameters are updated according to (23) and (24) the (temporary)

law of motion (19) becomes

pt+1 = Fαt,βt(pt) = D−1S(αt + βt(pt − αt)) , t ≥ 0. (25)

We call the dynamical system (23) - (25) the actual dynamics with sample autocorrelation learning

(SAC-learning)6. The initial state for the system (23– 25) can be any triple (p0, α0, β0) with β0 ∈
[−1, 1].

6SAC-learning is closely related to OLS-learning. For both learning schemes αt is the same, but βt has one extra

term in the denominator under SAC-learning, ensuring that −1 ≤ βt ≤ +1. Simulations for OLS-learning lead to

similar results and would not change our general conclusions below.
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Which type of CEE exist in the cobweb model, and to which of them will the SAC-learning dy-

namics converge? Hommes and Sorger (1998) show that in the most relevant case, when demand

is decreasing and supply is increasing, the only CEE is the RE steady state price p∗. This means

that, even when underlying market equilibrium equations are not known, agents should be able

to learn and coordinate on the REE price simply by looking at sample averages and sample auto-

correlations. Although other simple forecasting rules, such as adaptive expectations, might lead

to chaotic price fluctuations, these forecasting rules are inconsistent in terms of sample autocorre-

lations. Hence, in a nonlinear cobweb economy with monotonic demand and supply, boundedly

rational agents should, at least in theory, be able to learn the unique REE from time series obser-

vations7.

In general however, given an AR(1) belief, there are at least three possible types of CEE:

• a steady state CEE in which the price sequence (pt)
∞
t=0 converges to a steady state p∗, with

α = p∗ and β = 0;

• a 2-cycle CEE in which the price sequence (pt)
∞
t=0 converges to a period two cycle {p∗1, p∗2},

p∗1 6= p∗2, with α = (p∗1 + p∗2)/2 and β = −1;

• a chaotic CEE in which the price sequence (pt)
∞
t=0 is chaotic, with sample average α and

autocorrelations βj .

Which of these cases occurs in the cobweb model depends on the composite mapping D−1S in

(19), determined by demand and supply curves. We will discuss a chaotic example below.

4.3 CEE in a fishery model with backward bending supply As an illustration of chaotic

CEE, we briefly discuss the fishery model in Hommes and Rosser (2001), with a backward bending

supply curve derived from optimal management of the fish resources, by a sole owner maximizing

7Bray and Savin (1986) show that OLS learning also converges to the REE steady state in the cobweb model.

Arifovic (1994) shows that agents using genetic algorithms can learn the REE steady state.
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discounted revenues from harvesting. The backward bending supply curve is given by

Sδ(p) = h = F (x∗δ(p)) = rx∗δ(p)(1− x∗δ(p)

k
). (26)

Supply equals harvest h, which in sustained yield equilibrium has been set equal to the (logistic)

growth of the fish population x. Moreover, x∗δ(p) is the optimal bioeconomic equilibrium fish

population derived from maximization of discounted future net revenues, which depends on the

discount rate δ and the fish price p. In the case of logistic growth of the fish population and a

standard specification of the harvesting cost function c(x) = c/(qx), it is given by

x∗δ(p) =
k

4
{1 +

c

pqk
− δ

r
+

√
(1 +

c

pqk
− δ

r
)2 +

8cδ

pqkr
}. (27)

For details, the interested reader is referred to Hommes and Rosser (2001), and to Clark (1985,1990)

for an extensive treatment of fishery and other renewable resource models8.
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Figure 5: (a) Graphs of the demand and the discounted equilibrium supply curves Sδ in (26) (left

panel) and (b) graphs of the implied law of motion Gδ in (29) under naive expectations (right panel)

for several discount factors δ. As the discount factor δ increases the supply curve becomes strongly

backward bending and two additional steady states are created for δ ≈ 0.085.

We refer to Sδ(p) in (26) as the discounted equilibrium supply curve. For consumer demand for

fish, we will choose the same linear form (4) as before. Figure 5 shows plots of the equilibrium

8Parameters will be fixed as follows: the fish carrying capacity k = 400.000, catchability (per vessel per day)

q = 0.000013, the marginal cost of effort c = 5000 and the growth rate of fish r = 0.05.
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demand and supply system, for different values of the discount rate δ9. Figure 5 (left panel) shows

that, as the discount rate δ increases, the supply curve becomes more backward bending. The

most backwardly bent supply curve corresponds with the totally myopic case of δ = ∞, which

corresponds to the open access bionomic equilibrium case studied by Gordon (1954) and which is

associated with overfishing behavior. We note that the supply curve bends backwards quite quickly

at values of the discount rate that are empirically and socially meaningful. Figure 5 illustrates the

fact that a backward-bending supply curve together with a sufficiently inelastic demand curve may

lead to multiple steady state equilibria even for the static case. In the extreme case δ = 0 there

is a unique steady state equilibrium price, whereas at the other extreme δ = +∞ there are three

different steady state equilibrium prices.

The market equilibrium price at date t is determined by demand and supply, i.e.,

D(pt) = Sδ(p
e
t). (28)

With linear consumer demand D as before in (4), the discounted supply curve Sδ in (26), and price

expectations given by SAC-learning, the implied actual law of motion becomes

pt+1 = Gδ(αt + βt(pt − αt)) = D−1Sδ(αt + βt(pt − αt)) =
a− Sδ(αt + βt(pt − αt))

d
, (29)

with αt given by (23) and βt by (24). Figure 5 (right panel) shows graphs of the implied actual

law of motion Gδ, for different values of the discount rate. In our simulations of the adaptive

SAC-learning process (23), (24) and (29), we have observed three typical outcomes:

• convergence to the “good” steady state equilibrium with a low price and a high fish stock

• convergence to the “bad” steady state equilibrium with a high price and a low fish stock

• convergence to a chaotic CEE, with prices and fish stock irregularly jumping between low

and high values

Simulations of the SAC-learning dynamics suggest that for low values of the discount rate con-

vergence to the “good” equilibrium steady state is the most likely outcome of the SAC learning
9The parameters of the demand curve are fixed at d = 0.25 and a = 5240.5.
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Figure 6: Learning to believe in chaos, that is, belief parameters converge (bottom panels), while

prices and forecasts (top panel) fluctuate chaotically. In this example, belief parameters (αt, βt) →
(α∗, β∗) ≈ (4988,−0.87).
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dynamics of prices and forecasts (top panel) follow a noisy chaotic process. In this example, belief
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process, whereas for high values of the discount rate convergence to the “bad” steady state is most

likely. For intermediate discount rates the outcome of the learning process is uncertain and in

general depends on the initial states, i.e. on the initial belief parameters α0, β0 and the initial fish

stock x0. The system may settle down to either the “good” or the “bad” steady state, possibly after

a long (chaotic) transient. However, it may also happen that belief parameters αt and βt converge

to constants α∗ and β∗, while prices never converge to a steady state (or to a cycle), but keep fluc-

tuating chaotically, as illustrated in Figure 6 for δ = 0.1. This situation is referred to as learning

to believe in chaos and it seems to occur with positive probability, that is, for an open set of initial

states (x0, α0, β0). Learning to believe in chaos means that the SAC-learning dynamics converges

to a chaotic system, when αt and βt have converged to constants α∗ and β∗, while prices keep

fluctuating chaotically10.

Next we investigate the effect of noise upon the learning dynamics. SAC-learning with additive

dynamic noise is given by (23), (24), as before, and adding a noise term to the implied actual law

of motion, i.e.

pt+1 = Gδ,αt,βt(pt) = Gδ(αt + βt(pt − αt)) + εt, t ≥ 0, (30)

where εt is an independently identically distributed (IID) random process and Gδ = D−1Sδ in (29)

as before. Notice that the noise is not merely observational noise, but dynamic noise, e.g. due to

exogenous demand or supply shocks, affecting the dynamic law of motion in each period of time.

Figure 7 illustrates a typical example, with εt drawn from a uniform distribution over the interval

[−1000, +1000]; for this choice of the noise process, the signal to noise ratio, as measured by the

ratio σp/σε of standard deviations of the noise free price series to the noise, is about 5. Surprisingly,

even in the presence of dynamic noise, the SAC-learning dynamics still settles down to a chaotic

CEE as illustrated in Figure 7. The noisy chaotic series has an autocorrelation pattern very similar

to that of an AR(1) process with strongly negative first order autocorrelation. In fact, estimation of

an AR(1) process of the noisy chaotic series yields estimated parameters β̂ and α̂ which are close

10Schönhofer (1999, 2001) presents a related case of learning to believe in chaos in an OLG-model. In Schönhofer’s

examples belief parameters of the OLS-learning scheme do not converge but keep fluctuating chaotically, while at the

same time, due to inflation, prices diverge to infinity.
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to the coefficients of the underlying chaotic CEE β∗ ≈ −0.87 and α∗ ≈ 4988. Standard statistical

tests such as the Q-statistic indicate that the null hypothesis that prices follow a stochastic AR(1)

process can not be rejected, not even at the 10% level. Learning to believe in noisy chaos is thus a

possibility which is not rejected by linear statistical theory. Agents are therefore satisfied with their

linear forecasting rules, and have no reason to abandon their belief and will stick to their AR(1)

belief in an unknown stochastic nonlinear economy.

The key feature of a (noisy) chaotic CEE is that learning parameters converge to constants, whereas

prices do not converge but fluctuate chaotically on a (noisy) strange attractor, with the correct sam-

ple average and sample autocorrelations A chaotic CEE may be seen as an example of what Sargent

(1993) calls an approximate rational expectations equilibrium, with optimal misspecified forecasts.

A chaotic CEE is not a REE, because expectations do not coincide with the conditional mathemat-

ical expectations, which could only be derived if underlying market equilibrium equations would

be known. Agents are using a simple, but misspecified model to forecast an unknown, possibly

complicated actual law of motion. In the presence of (small) dynamic noise, the misspecification

is hard to detect and boundedly rational agents using linear statistical techniques can do no better

than stick to their optimal, simple linear model of an unknown stochastic, nonlinear economy.

5 Heterogeneous Beliefs and Evolutionary Selection

So far we have focused on a representative agent cobweb model, where all producers have identical

expectations. But why would all agents have the same expectations? Laboratory experiments

have shown that, even when individuals face the same information, they may disagree and take

different decisions. In a complex market it seems more appropriate to model agents as boundedly

rational and heterogeneous, using different types of forecasting rules. But this raises an immediate

problem: which rules will boundedly rational agents choose from the infinitely many possibilities?

Models with heterogeneous agents are becoming increasingly popular. In particular, in finance

models with fundamentalists and chartists have received much attention. Examples include Zee-

man (1974), Frankel and Froot (1986), DeLong et al. (1990), Kirman (1991), Lux (1995), Brock
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and Hommes (1998) and DeGrauwe and Grimaldi (2006). Hommes (2006) and LeBaron (2006)

have recently reviewed this rapidly expanding literature.

In this section we discuss a model with heterogeneous expectations, as proposed in Brock and

Hommes (1997) (henceforth BH) based on three underlying assumptions: (i) agents choose from a

class of rules varying from very simple to very sophisticated; (ii) more sophisticated rules require

more effort and are therefore more costly than simple rules, and (iii) agents tend to switch to

rules that have performed better in the recent past. Evolutionary selection thus disciplines the

forecasting rules to be used. In the cobweb framework, producers can choose between different

forecasting rules Hj . The fractions nj,t of producers using predictor Hj at date t, will be updated

over time based upon a publically available evolutionary fitness measure, given by realized net

profits, associated to each predictor.

BH focus on a simple two type case with rational expectations, which can be obtained at costs

C ≥ 0 per time period, versus naive expectations, which is freely available. This case may be

viewed as an extreme case, with rational expectations representing the most sophisticated forecast-

ing rule, and naive expectations representing the simplest forecasting rule. BH show the occur-

rence of a rational route to randomness, i.e. a bifurcation route to strange attractors and chaos as

traders become more rational in the sense that they become more sensitive to differences in past

performance and switch more quickly to a better predictor.

Rational agents have perfect knowledge about market equilibrium equations and are aware of the

fact that the market equilibrium price is affected by the presence of naive traders. Hence, in a

heterogeneous world rational agents have perfect knowledge about prices and quantities, but also

about beliefs of all other traders. Although this case is theoretically appealing, it seems highly un-

realistic in real markets that some agents have (perfect) information about beliefs of other agents.

Therefore we will focus here on some perhaps more realistic cases, where agents only use infor-

mation extracted from observable quantities, such as prices. As a starting point of the discussion,

we consider the case of two simple linear predictors. Two special cases will be discussed, the case

of fundamentalists versus naive expectations and the case of contrarians versus naive.
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5.1 Linear forecasting rules Consider the two linear AR(1) prediction rules

Hj(pt−1) = αj + βjpt−1, j = 1, 2, (31)

with fixed parameters αj and βj . Throughout this section we focus on the case where the supply

curve is linear as in (2), with corresponding cost function c(q) = q2/(2s). The market clear-

ing price in the cobweb model with linear demand and supply and two trader types, with linear

predictors as in (31), is determined by11

a− dpt = n1ts(α1 + β1pt−1) + n2ts(α2 + β2pt−1), (32)

where n1t and n2t denote the fractions of agents using respectively H1 and H2, at the beginning of

period t. These fractions will be updated according to an evolutionary fitness measure based on

past realized profits. Realized net profit in period t for traders using predictor Hj is given by

πj,t = sptHj(pt−1)− s

2
(Hj(pt−1))

2 − Cj, (33)

where Cj represents the average costs per time period for obtaining predictor Hj . For a simple

habitual rule of thumb predictor, such as naive or adaptive expectations, these costs Cj will be

zero, whereas for more sophisticated predictors such as fundamentalists beliefs based on funda-

mental analysis, information gathering costs Cj may be positive. The fitness measure underlying

evolutionary selection is given by

Ujt = wUj,t−1 + (1− w)πj,t, (34)

where 0 ≤ w ≤ 1 is a memory parameter. A smaller w puts more memory on recent observations

and in the case w − 0 fitness is given by most recent observed realized net profits.

Brock and Hommes (1997) considered this model with synchronous updating of strategies, that

is, in each period all agents update their strategies. Here we consider the more general case of

asynchronous updating. Per time unit only a fraction 1− δ of agents, distributed randomly among

11In our simulations we will work in deviations xt = pt − p∗ from the fundamental RE steady state price p∗. This

is equivalent to setting the parameter a = 0, so that the RE steady state p∗ = a/(d + s) = 0.
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agents of both types and independently across time, is assumed to reconsider their strategy on

the basis of the most recent information available. The remaining fraction δ sticks to their current

strategy. The corresponding dynamics of the fractions is given by a modified version of the discrete

choice, logit probabilities:

njt = (1− δ)eγUj,t−1/Zt−1 + δnj,t−1, (35)

where Zt−1 =
∑

h eγUh,t−1 is a normalization factor so that fractions add up to 1. For δ = 0, we

are back in the case of synchronous updating. In evolutionary games there has been a discussion

whether asynchronous updating may lead to more stability (cf. Nowak and May (1992), Huberman

and Glance (1993) and Nowak et al. (1994)). Financial market models with asynchronous updating

have been considered by Diks and van der Weide (2005) and Hommes, Huang and Wang (2005).

A key feature of this evolutionary predictor selection is that agents are boundedly rational, in the

sense that predictors with higher evolutionary fitness attract more followers. The parameter γ is

called the intensity of choice, measuring how fast producers switch between different prediction

strategies. For γ = 0 the fractions always converge to equal shares 1/H , whereas for the other

extreme γ = ∞, in each period all producers who update in that period (i.e., a fraction 1 − δ)

switch to the optimal predictor. Hence, the higher the intensity of choice, the more rational agents

are in the sense that they switch more quickly to the best strategy in terms of past performance.

The timing of the coupling between the market equilibrium equation (32) and the evolutionary

selection of strategies (35) is important. The market equilibrium price pt in (32) depends upon the

fractions nht. These fractions nht depend upon past fitness Uh,t−1, which in turn depends upon

past prices pt−1 in periods t − 1 and further in the past. After the equilibrium price pt has been

revealed by the market, it is used in evolutionary updating of beliefs and determining the new

fractions nh,t+1. These new fractions nh,t+1 will then determine a new equilibrium price pt+1.

Market equilibrium prices and fractions of different trading strategies thus co-evolve over time.

5.2 Fundamentalists versus naive expectations The linear predictors (39) specialize to the

case with fundamentalists versus naive expectations when α1 = p∗ = a/(d + s) (the steady state
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price), β1 = 0, α2 = 0 and β2 = 1:

H1(pt−1) = p∗ =
a

d + s
(36)

H2(pt−1) = pt−1. (37)

Figure 8 shows attractors for different values of the intensity of choice γ and some corresponding

time series. The Bifurcation diagram and largest LE-plot in Figure 9 illustrate a rational route to

randomness, i.e. a bifurcation route from simple to complicated, chaotic dynamics as the intensity

of choice increases. The market switches between periods of low volatility, with prices close to

the fundamental price, and high volatility, with irregularly switching prices. Prices diverge slowly

from the fundamental steady state price, as long as most agents use the simple, freely available

naive forecast. When forecasting errors increase, it becomes worthwhile to buy the sophisticated

fundamental forecast, and more agents start switching to the fundamental forecast, thus stabiliz-

ing price fluctuations, etc. Due to the asynchronous updating of strategies, agents switch more

gradually between strategies, and the time series of fractions of fundamentalists shows much more

persistence than in the case with synchronous updating. Figure 8 (bottom panel) also illustrates

the sample average and first order sample autocorrelation (SAC) of the price series. Sample aver-

age quickly settles down to a value close to 012, whereas the first order SAC is clearly negative,

converging to approx. −0.85.

It is remarkable that both the attractor and the price time series are similar to the case of rational

versus naive expectations studied in BH, and in particular for γ large, the system is close to a

homoclinic tangency13.

5.3 Contrarians versus naive expectations In the case of fundamentalists versus naive, price

series exhibit strong first order negative autocorrelations, even when the dynamics is chaotic. This

12Recall that the simulations are in deviations xt = pt − p∗ from the fundamental, so that the sample average of

prices converges to fundamental value.
13See the original working paper Brock and Hommes (1995) for more details concerning the case of fundamentalists

versus naive expectations.
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Figure 8: Fundamentalists versus naive. Strange attractors and time series for different γ-

values, with other parameters fixed at a = 0, d = 0.5, s = 1.35, δ = 0.5, α1 = 0, β1 = 0,

C1 = 1, α2 = 0, β2 = 1 and C2 = 0. Although price dynamics is chaotic, there is still

clear linear autocorrelation structure. Sample average of prices converges (close ) to funda-

mental value, while sample autocorrelations converge (close) to−0.85, indicating significantly

negative first order autocorrelation. 31
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Figure 9: Fundamentalists versus naive: a rational route to randomness as the intensity of

choice increases. Parameters: a = 0, d = 0.5, s = 1.35, δ = 0.5, α1 = 0, β1 = 0, C1 = 1,

α2 = 0, β2 = 1 and C2 = 0.

has been illustrated in Figure 8 showing that, for γ = 3, the sample autocorrelations of prices

converges to a negative value around −0.85. An agent who behaves as a time series econometri-

cian would easily detect this strong negative autocorrelation and adapt her forecasts. Even without

the use of any statistical software, a smart agent might detect negative autocorrelation, simply by

observing that positive (negative) deviations from the average price are always followed by neg-

ative (positive) deviations. What would happen if agents recognize this structure from observing

realized market prices?

Consider a group of contrarians, who take the negative first order autocorrelation in prices into

account, and predict that next period’s deviation from the fundamental price will be on the opposite

side, that is, we replace the fundamental forecast by a contrarian rule

H1(pt−1) = p∗ + β1(pt−1 − p∗). (38)

Figure 10 illustrates an example with β1 = −0.85 (with other parameters as in Figure 8), that is,

contrarians recognize the autocorrelation structure present in the previous example. The structure

of the strange attractors in Figure 10 seems more complicated than in the case of fundamentalists

versus naive in Figure 8. In particular, the negative autocorrelation in prices becomes weaker, since
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Figure 10: Contrarians versus naive. Strange attractors (top panel) for different γ-values, with

other parameters fixed at: a = 0, d = 0.5, s = 1.35, δ = 0.5, α1 = 0, β1 = −0.85, C1 = 1,

α2 = 0, β2 = 1 and C2 = 0. Time series of sample average and (first order) sample autocor-

relation converge. Compared to fundamentalists, contrarians weaken the negative first order

autocorrelations in prices, and in the long run sample autocorrelations converge to −0.57.
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the sample autocorrelation ρt → −0.57 (instead of −0.85). Due to the presence of contrarians in

the market, the strongly negative first order autocorrelation has become weaker14. In a sense,

contrarians have “arbitraged away, at least partly, predictable linear structure in the price time

series15.

5.4 Adaptive learning versus naive expectations In this subsection, we combine evolutionary

strategy selection and adaptive learning. In the previous example we have seen that the presence of

contrarians in the market weakens the first order autocorrelations in realized prices. A time series

econometrician might note however, that contrarian behaviour is still inconsistent with realized

prices since contrarians expect strong negative autocorrelation β2 = −0.85, while realized prices

exhibit weaker SAC, with first order SAC βt → −0.57. It is natural to go one step further and

introduce a type of agent with adaptive learning, trying to optimize the parameters of her linear

forecasting rule:

H1(pt−1) = αt−1 + βt−1(pt−1 − αt−1), (39)

where αt and βt are determined through SAC-learning as in (23) and (24) respectively. This ap-

proach widens the range of forecasting rules to all linear AR(1) rules. The sophisticated agent

type tries to learn the optimal linear rule through adaptive learning, within a heterogeneous agent

environment. Recently, Branch and Evans (2006) have studied a related cobweb model with two

types of agents, both using OLS-learning of a misspecified model, and allowing for endogenous,

evolutionary switching between the two predictors. DeGrauwe and Markiewicz (2006) compare

evolutionary learning and adaptive (or statistical) learning in an asset pricing framework, and inves-

tigate how these different learning schemes replicate the stylized facts (disconnect puzzles, excess

volatility) in exchange rates. Diks and Dindo (2006) consider an asset pricing model with hetero-

geneous information combining adaptive learning of the growth rate of dividends and evolutionary

switching between free riding and costly information gathering.
14The attractors in Figure 10 suggest that there are transversal intersections between the stable and the unstable

manifolds of the steady state. Apparently homoclinic bifurcations are weakening the autocorrelation structure.
15See Dindo (2006) and Dindo and Tuinstra (2006) for similar results in the context of the well known El-Farol bar

problem and related models.
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Figure 11 illustrates the dynamics in the case of SAC-learning versus naive expectations. Agents

learn to be contrarians, as βt → −0.62, consistent with the SAC in realized prices. In this example

there is still fairly strong negative first order autocorrelation in prices, but it is consistent with the

behavior of the sophisticated type, who have learned the first order autocorrelation coefficient

consistent with realized market prices. Figure 12 illustrates an example with memory in the fitness

measure, where the (first order) autocorrelation in prices becomes even weaker (βt → −0.48).

6 Concluding Remarks

We have reviewed bounded rationality and learning in the familiar cobweb, hog-cycle framework.

Two stories of bounded rationality have been emphasized. The story of adaptive learning as-

sumes a representative “average” agent trying to optimize a simple, (linear) misspecified rule in

an unknown complex (nonlinear) economy. The other story assumes heterogeneous forecasting

strategies and endogenous, evolutionary selection based upon past performance. We have also

presented an example where both stories are integrated, with evolutionary selection between an

adaptive learning rule and a simple, fixed rule.

In a cobweb economy with nonlinear, monotonic demand and supply curves, many adaptive learn-

ing processes enforce convergence to the unique REE steady state price. The steady state price

forecast is e.g. the only (linear) forecast, where sample averages and sample autocorrelations of

realized market prices are consistent with beliefs. Simply by looking at sample averages and sam-

ple autocorrelations, in particular trying to learn the negative first order autocorrelation so typical

for the ‘hog cycle’, boundedly rational agents should be able to learn the unique REE.

Laboratory experiments with human subjects show however that this is not as easy as theory sug-

gests. Only in the stable treatment of the experiment (i.e. when the market is stable under naive

expectations) do market prices converge to REE. In the unstable treatment of the experiments, real-

ized market prices are characterized by three stylized facts: (i) the sample mean is close to the RE

price; (ii) there is excess volatility, i.e., the sample variance is much higher than the RE variance,

and (iii) there is no linear predictability (no autocorrelations) in realized prices. The observed ex-
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(c) bifurcation diagram

Figure 11: SAC-learning versus naive. Agents learn to be contrarians, as the first order autocorrelation

coefficient converges, βt → −0.62. The bifurcation diagram shows a rational route to randomness, as

the intensity of choice γ increases. Parameters: a = 0, d = 0.5, s = 1.35, δ = 0.5, w = 0, C1 = 1,

α2 = 0, β2 = 1 and C2 = 0.
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Figure 12: SAC-learning versus naive expectations with memory in the fitness measure. Attractor (a)

and time series of prices pt (deviations from fundamental), fraction n1t of SAC-learners, sample average

αt and sample autocorrelation coefficient βt. With more memory in the fitness meausure, the remaining

autocorrelation in prices is weaker (βt → −0.48). Parameters: γ = 3, a = 0, d = 0.5, b = 1.35,

δ = 0.5, w = 0.9, C1 = 1, α2 = 0, β2 = 1 and C2 = 0.
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cess volatility is inconsistent with convergence of adaptive learning of a representative agent. For

other simple expectations rules, such as adaptive expectations, irregular price fluctuations around

the RE benchmark arise, but these fluctuations, even when chaotic, typically still exhibit negative

first order autocorrelations, inconsistent with stylized fact (iii) in the experiments. Some form of

heterogeneity is therefore needed to explain the laboratory experiments.

We have also reviewed some results on heterogeneous agent models with endogenous, evolution-

ary strategy selection, including several two-type cases with a costly sophisticated forecasting rule

(fundamentalists, contrarians or SAC-learning) versus a free, simple forecasting rule (naive ex-

pectations). These two type models will converge to the RE price in the stable treatment of the

experiment, and at the same time may generate instability and excess volatility in the unstable

treatment, when agents switch fast enough between strategies, similar to the stylized facts in the

experiments. However, it is not clear whether a two type model can simultaneously explain styl-

ized fact (iii), i.e. linear unpredictability. A two type model with fundamentalists versus naive

expectations generates strongly negative first order autocorrelation in prices, even when the sys-

tem is chaotic. The typical up and down ‘hog cycle’ oscillations are still present, and would be

observable to a careful agent. When fundamentalists are replaced by contrarians, who try to ex-

ploit the negative first order autocorrelation in prices, the first order autocorrelation gets weaker,

but does not disappear completely. When contrarians are replaced by SAC-learning the results are

similar, first order autocorrelation becomes weaker but again does not completely vanish. In the

cobweb framework, adaptive agents learn to become contrarians and “arbitrage away” part of the

linear predictability, but do not completely wash out the autocorrelations in market prices. These

results suggest that, in order to match all stylized facts of the experiments, either the simple strategy

(naive expectations) in these 2-type models needs to be replaced by a somewhat more complicated

strategy (perhaps adaptive expectations or a 2-period average forecast), or more heterogeneity, i.e.

more types of forecasting rules, are needed to fully explain the laboratory experiments. Matching

the stylized facts of laboratory experiments on expectations formation remains an important chal-

lenge for theories of bounded rationality and learning, in the simple cobweb framework as well as

for other, more realistic expectations feedback settings.
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