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Abstract

The purpose of this paper is to develop a general equilibrium model with

money and trade taking place at disequilibrium prices. There are multiple markets

being visited sequentially and transactions occur along the adjustment path. This

implies quantity rationing to clear the market and we assume that there are

cash-in-advance constraints on the transactions. The updating of the prices and

cash balances along the way makes it necessary for agents to reconsider their

trading plans subject to new information due to substitution and spill-over effects.

The dynamics of this disequilibrium re-optimization process are shown to depend

crucially on the exchange mechanisms that are imposed. One of the results is that

the introduction of a cash-in-advance constraint does not help in stabilizing the

fluctuations of cash balances, even though it does prevent debts from occurring

outside of equilibrium.

Keywords: Monetary dynamics, Sequential markets, Moving-horizon

optimization, Financial constraints.

JEL: C61, D51, D60, E31.



1 Introduction

An important but still largely unresolved problem in economic theory is the question of

stability and the convergence towards equilibrium. It is often assumed that equilibrium

prices are generated by a market mechanism that is driven by the law of supply and

demand, a model described by the Walrasian tâtonnement process, in which a central

price setting mechanism, or market maker, adjusts prices on all markets simultaneously

based on the demand and supply of all the market participants. It is essentially a nonlin-

ear dynamical system that is driven by a central processing unit, which coordinates the

decentralized decisions of self-interested, autonomously acting agents.

It is well-known in the literature on (price) adjustment processes that the Walrasian

tâtonnement process need not converge to a Walrasian equilibrium. Some examples in

which cycles or chaotic behavior are shown to occur are in Scarf (1960), Saari (1985), Go-

eree, Hommes and Weddepohl (1997) and Tuinstra (2000). In dynamic price adjustment

processes it is not uncommon to use as the dynamic process a sequence of temporary

equilibria. An equilibrium is simply obtained in every period of the process by solving

a market-clearing equation. But the question of how these temporary equilibria can be

reached as the result of some dynamic disequilibrium process is then usually left un-

specified. The simplest model in which such a process can be studied is in an exchange

economy without a production sector or a financial sector. This model should be seen as

a pedagogical device: it is a first step towards a more comprehensive theory that explains

how equilibria can be reached. The question is also strongly related to the stability of

Keynesian or underemployment equilibria under dynamic adjustment processes that take

place outside of equilibrium. This refers back to the Austrian tradition of disequilibrium

modelling (e.g. Hayek (1928), Lindahl (1939b) and Hicks (1939)); for a general survey

see Zappia (1999).

In this paper we develop a dynamic model with trade outside of equilibrium in a

monetary exchange economy with cash-in-advance constraints. The markets are visited

sequentially and the transactions are taking place at disequilibrium prices. A direct

motivation for such a sequential model is that not all markets may be open simultaneously,

and that the information flow between the markets is sequential.

The model with sequential market visits is related to the Dual-Decisions Hypothesis
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of Clower (1965), which states that the decisions for multiple markets have to be taken

sequentially by taking into account the trades that have already occurred during previous

market visits. This forces the agents to reconsider their trading plans subject to new

information due to spill-overs. An interpretation of the Dual Decisions Hypothesis (due to

Benassy, 1975) is that the markets can be seen as ‘trading posts’, with a single commodity

being traded at each post. The trading posts are visited sequentially according to a

predetermined market order.1

The trading period is divided into subperiods, or ‘market days’. On each market day

only one trading post (market) is visited so only one good can be traded. The markets

are visited in sequence and prices adjust sequentially. There is trade at disequilibrium

prices, markets clear by quantity rationing and monetary and spill-over effects play a

role outside of equilibrium. During the market visits the quantities are traded against

prevailing market prices, which have been predetermined during the previous round of

trading. In this sense the model belongs to the class of fix-price models (Hicks, 1939).

After every round of trades a new trading round begins and the sequence of market visits

is indefinitely repeated, see Figure 4.

Prices are temporarily fixed and taken as given, but can adjust after a market has

been visited. Only the price for the commodity that is traded on the current market is

updated, since the other markets are temporarily closed for trading. After every round of

market visits other economic variables than the prices can be updated such as the budget

constraints and the expectations of the agents.

According to Magill and Quinzii (1996, Ch.7) a satisfactory modelling of money re-

quires an open-ended future. Trade should take place in a sequence economy in which the

imperfections in the trading opportunities of the agents play a role (Ibid. p. 488). The

trading possibilities of the agents can be restricted due to multiple transaction constraints,

including income, financial or quantity constraints. Such restrictions have consequences

in monetary and in real terms. Not only are there spill-over and substitution effects due

to trade at disequilibrium prices, but there are also wealth effects due to the monetary

restrictions, i.e. there are cash-in-advance or liquidity effects.

The current model with sequential trade is a generalization of the model in Weddepohl

1The market order is the same for all agents. A preferred model would be one in which the market

order is heterogeneous and subject to choice by the agents themselves.
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(1996). For disequilibrium trade to be possible an endogenous quantity rationing mech-

anism is needed to clear the market, otherwise no transactions can occur. To determine

transactions we use a proportional rationing rule: agents on the long side of the market

are rationed in proportion to their own demand or supply orders. If the agents know

that the rationing is proportional then the rule can be manipulated by over-asking or

over-supplying the market. For simplicity we will assume that agents ignore this type of

strategic behavior.

The rest of the paper is organized as follows. In section 2 the formal structure of the

model is introduced. Section 3 contains a numerical example and provides simulation

results and section 4 concludes.

[INSERT FIGURE 1 ABOUT HERE]

2 The structure of the model

This section describes the physical characteristics of the economy, the monetary insti-

tutions, the timing of the model, the cash-in-advance equilibrium, the agents’ decision-

making problem, the budget accounting mechanism, the proportional rationing mech-

anism and the price dynamics. All these model ingredients provide the model with a

modular structure in which the outputs of one module are the inputs for the next. This

facilitates operationalizing the formal model into a computational model.

2.1 The exchange economy

We consider an exchange economy that remains the same over time, i.e. it is a stationary

economy without growth. We further assume that agents are infinitely lived and that

endowments are the same in every period. There is no storage facility and the commodities

are perishable, that is they have to be traded or consumed during the current period. It

is further assumed that there are N households and L markets. Households are indexed

by h ∈ N = {1, ..., N} and commodities are indexed by k ∈ M = {1, ...,m}. A household

h ∈ N has a consumption set Xh = R
L
+, a utility function Uh defined on Xh, and a vector

of initial endowments wh = (wh
1 , ..., w

h
m) ∈ R

L
++. Finally, there is a positive money stock
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M̄ ≥ 0, which is distributed across the households according to the cash distribution

{M1, ...,MN}, with ∑
h M

h = M̄ .

2.2 Monetary institutions

The trade deficits and trade surpluses that accumulate during a trading round have to

be corrected on the balance of account of the agents. This will affect the agents’ budget

constraints. Agents must not only repay the old debts that have already accumulated but

must also prevent new debts from occurring. If these effects were ignored then it would

be optimal for agents to run into debt indefinitely. For this we require the following

assumptions:

Assumption 1 All agents have a bank account and a credit card (or debit card) to per-

form transactions. Bank accounts are a temporary store of purchasing power between the

sale and purchase of commodities.

Assumption 2 There is a positive money stock and all transactions are paid by cash

transfers between one agents’ bank account (the debtor) to another agents’ bank account

(the creditor). The bank accounts thus serve as the medium of exchange.

In addition to the budget constraint there is a cash-in-advance constraint which only

becomes binding on the market when the agent tries to spent more then the bank account

allows. Trade deficits are therefore excluded, all bank saldi are non-negative. If an agent

has a trade surplus at the end of a period, then this surplus can be carried over to the next

period and can be spent on consumption. The cash-in-advance constraint causes agents

to become rationed in their demand, implying that convergence towards equilibrium (if

it occurs) takes place without the occurrence of any debts.

2.3 Timing

Time is discrete and every period is divided into subperiods. The time-index for a sub-

period is (t, k), where t is the current period and k is the current subperiod in period

t. Commodity k can be traded in subperiod (t, k) and will also be traded in all sub-

periods (t + n, k), for all n ≥ 0. The number of subperiods in every trading round

is equal to the number of markets m. In every subperiod only one commodity can be
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traded in exchange for money. To be sure, the sequence of time periods is as follows:

(..., (t, 1), ..., (t,m), (t + 1, 1), ..., (t + 1,m), ...). The subperiods should be seen as the

unit-period, which is the smallest unit of time on which decisions are made, and can be

interpreted as ‘market days’ (as in Lindahl 1939) since only one market is visited in every

subperiod. A trading round consists of a sequence of such ‘market days’ and can be called

a ‘trading week’ (as in Hicks 1939). But this interpretation should not be taken literally,

since the period can have any arbitrary calendar length.

2.4 The state variables

The state vector s ∈ S is a multidimensional vector that represents the state of the

economy. It pertains to the state of the markets and to the internal states of the individual

agents. For each agent we record a history of past revenues and past money balances,

with a time lag of one period given the transactions of the previous round. All the state

variables are given in Table 1. A state s ∈ S is a tuple given by({pk, Dk, Sk}k∈M, {zh
k , ẑ

h
k , z̄

h
k , R

h
k ,M

h
k , µ

h}h∈N,k∈M

) ∈ S, where

S = (RL
++ × R

L
+ × R

L
+)× (RN×L × R

N×L × R
N×L × R

N×L × R
N×L
+ × R

N
+ ).

It should be understood that the planned trade vectors (zh
k ) and the realized transactions

(z̄h
k ) of each individual agent are unobservable to any of the other agents; these are private

information. The total demand and supply on the market cannot be publicly observed,

but there is a centralized mechanism per market which is assumed to aggregate all the

buy and sell orders. The price vector is known to all agents; this is public information.

We assume that new prices are announced at the moment that they are updated, which

is after the transactions on a market have occurred, but before the next market is opened

for trade. So the updated price for market k is known prior to visiting market k + 1. At

every moment, the full price-vector is known one full round ahead (there is a public price

list with fixed prevailing market prices). The only uncertainty in the model is therefore

the quantities that will be traded, since agents cannot observe the planned transactions

(the notional demands) of the other market participants.

Now that we have fixed the notation for all the state variables, and described the

physical characteristics of the exchange economy, we will formulate the decision making

process in the next section.
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Table 1: State variables.

Variable

p = (p1, ..., pm) prices

wh = (wh
1 , ..., w

h
m) initial endowments of agent h

zh = (zh
1 , ..., z

h
m) planned trades of agent h (notional excess demand)

ẑh
k buy or sell signal after applying a cash-in-advance constraint

z̄h
k realized trade of agent h (rationed demands, or transactions)

sh
k = min{0, zh

k} ≤ 0 planned supply of agent h (sell order)

dh
k = max{0, zh

k} ≥ 0 planned demand of agent h (buy order)

Sk = −∑
h s

h
k ≥ 0 market supply on market k

Dk =
∑

h d
h
k ≥ 0 market demand on market k

s̄h
k = min{0, z̄h

k} ≤ 0 realized supply of agent h

d̄h
k = max{0, z̄h

k} ≥ 0 realized demand of agent h

Rh
k = −pkz

h
k net revenues of agent h on market k

Mh
k ≥ 0 realized cash balance of agent h

µh
k ≥ 0 minimum cash position of agent h over previous trading round

pwh + µh
k corrected budget constraint of agent h

Notional demand

The notional demand xh ∈ R
L
+ is the best choice from the budget set B

h, which depends

on prices and the real wealth pwh + M̃h, consisting of the value of possessions and real

balances:2

B
h(p,pwh + M̃h) = {x ∈ R

L|pxh ≤ pwh + M̃h, xh
k ≥ 0,∀k ∈ M}. (1)

The notional demand function Dh : R
L
++ × R → R

L
+ is defined by:

Dh(p,pwh + M̃h) = argmax
x

{Uh(xh)|xh ∈ B
h(p,pwh + M̃h)}. (2)

The notional excess demand function zh : R
L
++ × R → R

L is:

zh(p, M̃h) = Dh(p,pwh + M̃h)− wh. (3)

2We include unanticipated debts and claims M̃h in addition to the income from resources: pwh+M̃h,

such that
∑

h M̃h = 0. For now we assume that M̃h = 0 for all h = 1, ..., N , but in later sections the

value of M̃h will fluctuate and can take on positive values.
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The aggregate excess demand is a function of the price system p and the income distri-

bution (pw1 + M̃1, ...,pwN + M̃N), where
∑

h M̃
h = 0:

Z(p, M̃1, ..., M̃N ) =
∑
h∈N

Dh(p,pwh + M̃h)−
∑
h∈N

wh. (4)

In an equilibrium there are no unanticipated debts or claims: M̃h = 0, Dh(p,pwh+M̃h) =

Dh(p,pwh), zh(p, M̃h) = zh(p, 0), and Z(p, M̃1, ..., M̃N ) = Z(p, 0, ..., 0).

Definition 1 (Walrasian equilibrium) A Walrasian equilibrium (WE) consists of a price

system p� ∈ R
L
++, a feasible allocation xh� ∈ Xh for all h ∈ N and an income distribution

(pw1, ...,pwN ) such that:

1. xh� = Dh(p,pwh) (optimality)

2. Z(p�, 0, ..., 0) = 0 (market clearing)

2.5 The cash-in-advance constraint

Suppose that agents are not permitted (or do not want) to have a debt during the trade

sequence and do not want to hold more money than is strictly necessary to perform

transactions. An equilibrium must then satisfy the additional condition that agents’

money holdings do not become negative along the sequence. In other words, their trade

balance should always remain positive (or non-negative). This requires a positive money

stock, which can now be called ‘cash’, and it defines a ‘cash-in-advance equilibrium’ (cf.

Clower, 1967). The minimum amount of cash an agent needs in order to prevent a trade

deficit is exactly equal to the largest trade deficit that would occur along the sequence of

trades if all transactions would take place in terms of credit transfers between buyers and

sellers.

In addition to the budget constraint we now introduce a cash-in-advance constraint,

which becomes binding only if the planned consumption at subperiod (t, k) violates the

cash position:

pk(t, k)z
h
k (t, k) ≤ Mh(t, k). (5)

This constraint is equivalent to setting the planned trade equal to the minimum

ẑh
k (t, k) = min{zh

k (t, k),M
h(t, k)/pk(t, k)}. (6)
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The cash-in-advance constraint implies that if the money holdings available to agent h

at the beginning of subperiod (t, k) suffices only to buy the quantity Mh(t, k)/pk(t, k),

instead of the optimal amount zh
k (t, k), then the minimum amount will be ordered. If

however the cash balance is sufficient to buy the optimal quantity – the planned trade

is not too expensive – then that amount will be ordered. Note that a cash-in-advance

constraint strictly prohibits the occurrence of debts because the cash balance cannot

become negative.

In fact the cash-in-advance constraint in combination with the budget constraint en-

sures that the agents are not running a deficit nor are accumulating a surplus. This gives

the monetary dynamics the tendency to converge towards an equilibrium. If prices are

too low (high) with respect to the equilibrium levels, then there is an excess demand

(supply) for all commodities, because the purchasing power of the money balances is too

high (low). The general price level will increase (decrease) as all prices adjust to the total

money stock M̄ in the economy.

Cash-in-advance equilibrium

In general, the sequence of equilibrium transactions produces a sequence of net revenues

for each agent h = 1, ..., N :

Rh�
k = −p�

k(t, k)z
h�
k (t, k), k = 1, ...,m (7)

where Rh�
k > 0 means the proceeds from sales on market k and Rh�

k < 0 is an expenditure

on market k. A trade deficit or surplus at subperiod (t, k) is then the sum of net revenues∑k
j=1 R

h�
j . The largest trade deficit that would occur if a negative trade balance would be

allowed is: min1≤k≤m{
∑k

j=1 R
h�
j }. The amount of cash an agent needs in order to prevent

this trade deficit from occurring is therefore

Mh� = − min
1≤k≤m

{
k∑

j=1

Rh�
j }. (8)

The term Mh� can be interpreted as the equilibrium demand for real balances, which

is simply the demand for money. This gives us the necessary condition for defining a

cash-in-advance equilibrium.
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Definition 2 (Cash-in-advance equilibrium) A cash-in-advance equilibrium consists of

a positive money stock M̄ > 0, a distribution of money holdings {M1�, ...,MN�}, an

allocation x� and a price system p�, such that:

1. (x�,p�) is a Walrasian equilibrium;

2. Mh� = −min1≤k≤m{
∑k

j=1 R
h�
j };

3.
∑

h M
h� = M̄ .

The cash-in-advance equilibrium (henceforth CIA equilibrium) has two properties that are

important to mention. The first property is that the sequence of equilibrium transactions

can be carried out without any agent having a debt along the way, since the equilibrium

money holdings Mh� are precisely sufficient to prevent any debts from occurring. A second

property of the CIA equilibrium is that the cash-in-advance constraint is never strictly

binding. It can be ‘just binding’, which means that relaxing it would not lead to a change

in the optimum. In a Walrasian equilibrium, which is a special case of a CIA eqm., the

CIA constraint is non-binding.

2.6 Decision-making

We assume that agents are myopic moving-horizon decision-makers. By a moving-horizon

optimization we will understand the following. Although the agents in our model are

infinitely lived they do not plan further ahead than one ‘trading week’, i.e. one period.

This means that the agents have to re-optimize and revise their trading plans during the

trading period. A similar procedure was introduced in Weddepohl (1996), where a ‘gliding’

optimization procedure allows the agents to optimize along a ‘gliding time horizon’.3

3The concept of moving-horizon optimization that will be used here is in order to describe the behavior

of the agents. In control theory this optimization technique is known as ‘closed-loop feedback control’. It

has a long history in the literature on dynamic programming, dating back at least to the late 1950s and

early 1960s, when it was explicitly used to solve infinite horizon optimal control problems. For example

in the state-space optimal control methods used by Bellman and others, Bellman’s principle of optimality

involves the sequential updating of the optimal control as a new state is realized. Furthermore, the

method of closed-loop feedback control often uses a ‘moving window’ or ‘moving horizon’ of fixed length

instead of an infinite horizon to solve the infinite horizon problem. But note that the concept of moving
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At the beginning of a market day an L-dimensional problem is solved based on the

current state and the forecasted data for the next market days. Only the transactions for

the current market are made. On the next market day, the state is again observed and the

forecasts for the future market days are updated. A new L-dimensional problem is solved

at the beginning of every market day, and the transactions for the current market are

made. This procedure is repeated on every market day, hence the term moving horizon.

The state of the economy is updated after every market visit and the agents’ planning

horizon is one ‘trading week’. The essential aspect of the moving-horizon approach is that

the planning horizon has a fixed length and is ‘rolled over’ after every subperiod. Such

a procedure can also be described as ‘solving an online optimization at every step’, since

the problem state in the optimization problem changes over time and the problem has to

be re-solved ‘online’ during the process.

2.6.1 Moving horizon optimization

We assume that consumers maximize utility over a single period (one round of mar-

ket visits) and have no intertemporal preferences. At every subperiod (t, k) the agents’

utility ranges over a single commodity bundle and money is not included in the utility

function. The extension to multiple periods with intertemporal preferences over mul-

tiple commodity bundles (multiple rounds of trade) is straightforward, but only pos-

sible when the intertemporal utility function is time-additive: Uh(uh
1 , ..., u

h
T ) =

∑
t u

h
t .

This strong requirement is necessary in order to ensure that the marginal rate of sub-

stitution between any two commodities in two consecutive periods is time-invariant:

MRS(xi,t, xj,t+1) = MRS(xi,t+1, xj,t+2), where MRS(x, y) = (∂U/∂x)/(∂U/∂y). This

rules out utility functions that are based on time-discounting, which would introduce a

horizon optimization is being used here in a different context. Here we use it as a behavioral postulate

which states that, although agents are infinitely lived in relation to their planning horizon, they are

myopic moving-horizon optimizers who only look one period ahead. Therefore they have to re-optimize

after every sequential step of the process. This is somewhat similar to the closed-loop feedback control

method, but different in the sense that in our model the agents do not try to solve an infinite horizon

problem by means of optimal control theory. Furthermore there are multiple agents, which makes the

problem an N -agent optimal control problem. Whether or not the aggregate behavior of all the agents

together leads to the solution of some infinite horizon problem is a different matter altogether which does

not concern us here.
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time-inconsistency in the moving-horizon decision-making procedure.

The optimization problem for subperiod (t, k) is:

max
z

{Uh(zh + wh)|p(t, k) · zh(t, k) ≤ M̃h(t, k), zh
k (t, k) + wh

k ≥ 0}. (9)

The consumption plan zh(t, k) made at subperiod (t, k) ranges over the future sequence of

subperiods: T+
k = {(t, k), ..., (t,m)}∪{(t+1, 1), ..., (t+1, k−1)}. The new plan zh(t, k+1),

which is made at the start of market k + 1, ranges over the shifted horizon T+
k+1. Table 2

depicts the structure of the re-optimization process with the moving planning horizon.

Table 2: 1-period moving-horizon planning.
Planning date (t, 1) (t, 2) (t, 3) (t + 1, 1) (t + 1, 2) (t + 1, 3) (t + 2, 1) (t + 2, 2) (t + 2, 3)

Market 1 2 3 1 2 3 1 2 3

(t, 1) X O O

(t, 2) X O O

(t, 3) X O O

(t + 1, 1) X O O

(t + 1, 2) X O O

(t + 1, 3) X O O

X=realized trades, O=planned trades. Moving-horizon planning scheme with a re-optimization

after every subperiod. The planning horizon is one period, so there are no intertemporal transfers

of purchasing power.

2.6.2 Utility specification

We assume that all agents have a CES utility function of the following form:

Uh(x) =
(∑m

k=1 α
h
k(x

h
k)

ν
)1/ν

, ν ∈ (−∞, 1]

=
(∑m

k=1 α
h
k(x

h
k)

(ε−1)/ε
)ε/(ε−1)

, ε ∈ [0,+∞).
(10)

The parameter ν is the substitution parameter, which is considered to be the same for all

agents. The (constant) elasticity of substitution is derived from the substitution parameter

by ε = 1/(1−ν). The notional demand function resulting from utility maximization is such

that agent h plans to spent a fraction of the real wealth (p ·wh + M̃h)/pk on commodity

k. This fraction is a function of the prices, the preference parameters αh = (αh
1 , ..., α

h
m),

αh
k ≥ 0 and the elasticity parameter ε:

xh
k = Dh

k(p; M̃
h, αh, ε) =

(
pk(α

h
k/pk)

ε∑m
k=1 pk(αh

k/pk)ε

)
·
(

p · wh + M̃h

pk

)
. (11)

The parameter ν is used as a bifurcation parameter in the stability analysis. It lies in

the interval ν ∈ (−∞, 1], where ν → −∞ corresponds to Leontief utility (no substitutes,
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ε = 0), ν = 0 corresponds to Cobb-Douglas utility (unitary substitutes, ε = 1), and ν = 1

corresponds to a linear utility function (perfect substitutes, ε = +∞). The default values

for the parameters (α,wh, ν) will be specified when they become relevant for simulations.

2.7 Budget updating in the cash model

In this section we describe how the budget constraint is updated by the term M̃h. In

a disequilibrium model with infinitely lived agents wealth effects play an important role

since trade takes place outside equilibrium and therefore debt and claims accumulate

over time. The repayment of debts then becomes relevant, so an updating procedure for

the budget constraints is needed. The frequency at which the re-enforcement of debt

repayment is performed can have a large impact on the dynamics, since there are nominal

and real wealth effects for the individual traders. In this section we will show how agents

sequentially update their budget constraints to take into account the debts and claims.

The balance of account of agent h at the beginning of subperiod (t, 1) is denoted by

Mh(t, 1). It can be positive or negative, depending on whether the agent has a debt or

a claim on other agents. The balance of account is the sum of net revenues up to and

including the last transaction during the previous market visit. After every transaction

the realized balance of account is updated:

Mh(t+ n, k) = Mh(t+ n, k − 1) +Rh(t+ n, k − 1) ∀k �= 1 (12)

Mh(t+ n+ 1, 1) = Mh(t+ n,m) +Rh(t+ n,m) k = 1. (13)

Here Rh(t, k) = −pk(t, k)z̄
h
k (t, k) is the money value of the transaction z̄h

k . Subperiod

(t+ n,m) is the last subperiod of round n, just before subperiod (t+ n+1, 1). Note that

the balance of account Mh(t, k), for k �= 1, is determined at the beginning of subperiod

(t, k) and can therefore only include the receipts and expenditures up to and including

the last transaction of subperiod (t, k − 1).

The sequential market structure makes it necessary to distinguish between the realized

balance of account Mh and the unanticipated debts and claims M̃h. This last term is

used by the agents as a ’rule of thumb’ in the decision-making process, in correction

on the budget constraint. The actual balance of account Mh will fluctuate due to the

time-lag between income and consumption (this is due to the sequential structure of the

economy). Because of these fluctuations we have to find a more sophisticated way to
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update the planned balance of account, by taking into account that the transactions are

occurring sequentially and outside of equilibrium. This procedure has to be consistent

with a steady state, since in a CIA equilibrium the sequence of equilibrium transactions

causes fluctuations in the actual balance of account Mh. Therefore we can not simply put

the money balance on the right-hand side of the budget constraint because then it would

not remain constant in a CIA equilibrium. What does remain constant is the change

in the cash positions along the trading sequence. At every point along the equilibrium

sequence the same cash positions are repeated. Also the minimum (and maximum) cash

position computed over the entire sequence is the same in every trading round. Therefore

the actual cash balance Mh can be replaced by the minimum cash position computed

over a full trading round. The model now contains the following additional concepts.

The minimum cash position over the previous round, computed at the start of a new

trading round (t, 1), is given by:

µh(t, 1) = min{Mh(t− 1, 1), ...,Mh(t− 1,m)}. (14)

The minimum cash position over the previous round, computed at the start of every

subperiod (t, k), is given by:

µh(t, k) = min{Mh(t− 1, k), ...,Mh(t− 1,m),Mh(t, 1), ...,Mh(t, k − 1)} (15)

In general, we write pwh + µh for the corrected budget constraint and for the individual

excess demands we write

zh(p, µh) = Dh(p,pwh + µh)− wh. (16)

The planned trade vectors are zh(p(t, k), µh(t, k)) and at subperiod (t, k) they automati-

cally satisfy the budget constraint, since all commodities are included in the optimization

problem. By including µh on the RHS the budget constraint is corrected for any positive

cash balance that arises due to a trade surplus. Such a positive cash balance arises if an

agent first sells some of its endowments and then turns out to be demand-rationed later

on. The resulting trade surplus can then be spend immediately on consumption during

the next market visit.

In a CIA equilibrium µh� = 0 and zh(p, 0) = zh(p). This trading plan is consistent

in the sense that agents do not plan to violate their budget constraint, so agents are

not planning to make a surplus but the positive cash balances are unanticipated (and

unintentional).
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2.8 Proportional quantity rationing mechanism

This section describes the market rationing mechanism. Rationing of demand or supply

is required if the trading plans zh are incompatible, in the sense that for some markets

demand is not equal to supply, i.e.
∑

h z
h
k �= 0. Consequently, a system of quantity

rationing assignments is needed in order for transactions to occur outside of equilibrium.

The mechanism by which agents are rationed depends on the market structure, and can

be heterogeneous for different markets. For the setup of the disequilibrium framework we

follow Bénassy (1974). An agent is rationed if and only if the individual excess demand

is on the ‘long side’ of the market, that is if it has the same sign as the aggregate excess

market demand: zh
k ·

∑
h z

h
k > 0. For proportional rationing this mechanism is described by

a map Fh
k that maps individual excess demands (zh

k ) to assignments of rationed demands

(z̄h
k ) as follows:

z̄h
k = Fh

k(z
1
k, ..., z

N
k ), such that

∑
h

z̄h
k = 0. (17)

We assume that Fh
k = F for all h, k, where:

1. if Dk ≥ Sk then (Dk/Sk) ≥ 1 and

z̄h
k =


 (Sk/Dk)z

h
k for zh

k ≥ 0

zh
k for zh

k ≤ 0
(18)

2. if Dk ≤ Sk then (Dk/Sk) ≤ 1 and

z̄h
k =


 zh

k for zh
k ≥ 0

(Dk/Sk)z
h
k for zh

k ≤ 0.
(19)

The transactions that are realized on market k are by definition equal to the rationed

demand and supplies z̄h
k on market k. Note that the rationing function is only a function

of the excess demands on market k. The function Fh
k can be market specific, and it can

also discriminate among the agents if it is made heterogeneous across the agents and/or

the markets.
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2.9 Price dynamics

2.9.1 Sequential price dynamics

In the sequential trading process the price adjustments are taking place sequentially,

instead of simultaneously for all markets at once. Let fk denote some price adjustment

function for the price on market k, which must be necessarily a function of the entire

price vector since the agents’ trading plans are a function of all prices. Recall that the

price-vector p(t, 1) is given at the start of subperiod (t, 1), and the price for market 1 is

updated after market 1 has been visited, but before market 2 opens. Therefore, p1(t, 2) =

f1(p(t, 1)). The price dynamics in the sequential model therefore evolves according to:

p(t, 1) = (p1(t, 1), p2(t, 1), ..., pm(t, 1))

p(t, 2) = (f1(p(t, 1)), p2(t, 1), ..., pm(t, 1))

p(t, 3) = (f1(p(t, 1)), f2(p(t, 2)), p3(t, 1), ..., pm(t, 1))
...

p(t, k + 1) = (f1(p(t, 1)), f2(p(t, 2)), ..., fk(p(t, k)), pk+1(t, 1), ..., pm(t, 1))
...

p(t+ 1, 1) = (f1(p(t, 1)), f2(p(t, 2)), ..., fm(p(t,m− 1))).

(20)

It is clear that this system is not yet written in closed-form, but it can be turned into

a simultaneous system of difference equations by substituting the first equation into the

second, the first and second into the third, etc. This does not alter the dimension of the

system, which remains m-dimensional.

2.9.2 Proportional price adjustments

We will use a proportional price adjustment rule that is based on the ratio of aggregate

market demand and aggregate market supply. We assume that the price mechanism is

the same on all markets: fk = f :4

pk(t+ 1, k) = fk(p(t, k)) ≡ pk(t, k)

(
Dk(p(t, k))

Sk(p(t, k))

)λk

. (21)

This price rule has the property that: pk(t + 1, k) = pk(t, k) if and only if Dk = Sk, for

all λk. Hence in an equilibrium the prices do not change. The parameter λ is the ‘speed

4This proportional price rule can also be derived from the ratio of excess demand over total market

supply: pk,t+1 = pk,t(1 + zk/Sk) = pk(1 + (Dk − Sk)/Sk) = pk(Dk/Sk).
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of adjustment’ parameter, which plays a crucial role for the stability of the price process.

It can be interpreted as the price flexibility. High values of λ indicate that prices are

very flexible; low values of λ indicate that prices are rigid; λ = 0 means that prices are

completely fixed. We assume that the price flexibility is the same on all markets: λk = λ.

The price flexibility can be assumed to be homogeneous across markets without loss of

generality, by a rescaling of the units in which the quantities of commodities are measured.

Since a priori there are no theoretical arguments for the value of the parameter λ, we will

use it as a bifurcation parameter to investigate the stability of the dynamics with respect

to changes in the price flexibility.

Another nice property of the DS-ratio rule is that it can be transformed into a log-

transformation of the classical discrete-time version of the tatonnement process that is

often used in the literature: [pk(t + 1) − pk(t)]/pk(t) = λzk(t). Taking the logarithm on

both sides of the DS-rule, we obtain

log(pk(t+ 1))− log(pk(t)) = λ · (log(Dk)− log(Sk)), (22)

which is linear in both log-demand and log-supply.

2.9.3 Price normalization

Since nominal price levels are indeterminate, we normalize prices using a simplex-normalization

rule. The real-balance effect (the effect that old debts denominated in the old currency

become cheaper in terms of purchasing power when the price level increases) should not

affect the agents’ demand for commodities, since the demand functions are homogeneous.

The purchasing power of the old balance of account should remain constant in real terms

if all prices are normalized by the normalization rule. Therefore we will also have to

re-normalize all the cash balances by the same normalization rule.

The budget constraint after normalization, i.e., the real wealth consisting of (i) the

value of possessions pwh and (ii) the initial real balances Mh, is given by:

p · xh

N(p)/c
≤ p · wh

N(p)/c
+

Mh

N(p)/c
, where N(p) =

m∑
i=1

pi. (23)

The last term is the normalization of the real balance of account. In simulations we

have used the normalization rule
∑

pi = 3, since all the examples we consider have three

markets, hence c ≡ m = 3. The normalization is performed after every change in the

price-vector, i.e. after every sequential market visit.
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2.9.4 Price growth restrictions

We introduce price rigidities in the form of ‘ceilings’ and ‘floors’ on the growth rates of

prices. This is to prevent the nominal prices from imploding or exploding, and in order to

keep the fluctuations of nominal prices bounded within economically meaningful regions.

Let the price growth factor be given by πk(t + 1) ≡ pk(t + 1)/pk(t). We define limits to

growth by π+
k = (1 + r+) and π−

k = (1− r−), where r+ and r− are the maximum rates of

upward and downward growth, respectively. The upward and downward price rigidities

are given by the following restrictions:

π−
k ≤ πk(tk + 1) ≤ π+

k , (1− r−) ≤ pk(tk + 1)

pk(tk)
≤ (1 + r+). (24)

In terms of the growth rates of the log-prices, the price rigidities are linear restrictions

and the following are equivalent:

log π−
k ≤ log πk(t+ 1) ≤ log π+

k

log(1− r−) ≤ (log pk(t+ 1)− log pk(t)) ≤ log(1 + r+)

−r− ≤ log pk(t+ 1)− log pk(t) ≤ r+.

(25)

The last line follows since log(1+x) = x in first approximation. For the proportional price

rule in (21) the price changes are restricted by the growth rates π+
k and π−

k as follows:

πk = min{π+
k ,max{π−

k , (D/S)λ}}. (26)

Redefining the restrictions to take the parameter λ into account we obtain new bounds:

η− = (−r−/λ) and η+ = (r+/λ). The log-price changes are now restricted by the log-

growth rates η− and η+ (note that λ no longer appears in the restrictions due to the

re-parametrization):

log
pk(tk + 1)

pk(tk)
=




λ log(D/S), if η− ≤ log(D/S) ≤ η+

−r−, if log(D/S) ≤ η−

r+, if log(D/S) ≥ η+.

(27)

The terms η− and η+ simultaneously take into account the effect of the price adjustment

speed λ and the restrictions r+ and r− respectively, and can be interpreted as the minimum

and maximum growth rate in log-prices.

Model parameters

All parameters and their simulation specifications are given in Table 3.
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Table 3: Model parameters.

Parameter label range

preferences αh
k {0.1, 0.2, 0.3, 0.4, 0.5}

substitution parameter ν (−∞, 1)

elasticity of substitution ε (0,+∞), ε = 1/(1− ν)

price flexibility λ [0, 2]

maximum price growth rates r−, r+ r− = 0.09, r+ = 0.10

downward price rigidity π− π− = (1− r−) = 0.91

upward price rigidity π+ π+ = (1 + r+) = 1.10
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3 Simulation

Having described the details of all the model elements we can now formulate the dynamical

system. Figure 2 provides a flowchart for the sequence of events that takes place during a

single market visit. Figure 3 gives a pseudo-code or algorithm which encodes these events

into a computational model.

[INSERT FIGURE 2 ABOUT HERE]

[INSERT FIGURE 3 ABOUT HERE]

Given are the initial conditions: p(0) is random, µh
1(0) = 0, Mh

1 (0) = 100. The fol-

lowing steps are performed for every agent h = 1, .., N during market visit k in subperiod

(t, k), for k = 1, ...,m and t = 0, ..., T (see Figure 3):

1. Determine the desired trades zh
k (t, k) for market k given the notional excess demand

function zh(p(t, k), µh(t, k)) (eqn. 3, specified in eqn. 11).

2. Apply the cash-in-advance constraint to the buy and sell orders (eqn. 6).

3. Determine the transactions z̄h
k (t, k) on market k (the rationed demand and supply),

by the function F (eqn. 17).

4. Determine the net revenues Rh
k(t, k) from trading on market k and update the cash

balance Mh(t, k) (eqn. 13).

5. Update the minimum cash position over the current round µh
k(t, k) (eqn. 15).

6. Update the price pk(t+ 1, k) for market k (eqn. 21).

In step 4 we have to collect a history of previous cash balances for each individual agent:

{Mh
k+1, ...,M

h
m,Mh

1 , ...,M
h
k }. This is necessary in order to calculate the agents’ minimum

cash position over one complete past round of trades. The sequence {Mh
k+1, ...,M

h
m} comes

from the previous round, whereas the sequence {Mh
1 , ...,M

h
k } comes from the current

round.5

5It is possible to simulate a weak form of the cash-in-advance model by leaving out step 2 from the

simulations. This removes the ‘hard’ cash-in-advance constraint, but there is still the correction on the
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3.1 Example: CES utility

We consider an example with N = 3 agents and m = 3 commodities (markets). On every

market there are two sellers and one buyer (a case of monopsony). The agents all have

CES utility functions with preferences and endowments specified as follows:

Ua(xa) = [0.2(xa
1)

ν + 0.4(xa
2)

ν + 0.4(xa
3)

ν ]1/ν , wa = (50, 0, 50),Ma(0) = 100,

U b(xb) = [0.4(xb
1)

ν + 0.2(xb
2)

ν + 0.4(xb
3)

ν ]1/ν , wb = (50, 50, 0),M b(0) = 100,

U c(xc) = [0.4(xc
1)

ν + 0.4(xc
2)

ν + 0.2(xc
3)

ν ]1/ν , wc = (0, 50, 50),M c(0) = 100.

(28)

The preferences and endowments are such that every agent owns two commodities and

strictly prefers one of these two. The agent is indifferent between the commodity that he

does not own and the strictly preferred commodity that he does own. This implies that the

agent is willing to part with some quantity of the least preferred commodity, in exchange

for the strictly preferred commodities. With Cobb-Douglas preferences (ν = 0, ε = 1) the

planned consumption and the notional excess demands are given by (equilibrium income

is p · wh = 100):

x� =




20 40 40

40 20 40

40 40 20


 , z� =




−30 40 −10

−10 −30 40

40 −10 −30


 .

3.2 Fluctuations in the balance of account in equilibrium

For the example given above, the equilibrium price system is p = (θ, θ, θ), θ ∈ R+. To

every arbitrary positive money stock M̄ > 0 there corresponds a price level θ which

can be determined by the quantity equation M̄ = 50θ. The number 50 is coincidental

for this choice of preference parameters. In addition, the presence of money turns the

indeterminate Walrasian equilibrium into a determinate CIA equilibrium (see def. 2).

The money stock acts as a numeraire and the price levels adjust to the CIA equilibrium

that is associated to the money stock M̄ . The initial money holdings of every agent are

budget constraint by the minimum cash position µh. This would imply that we allow for debts to occur

again (a negative balance of account), but the largest trade deficit is still used as a correction mechanism

on the budget constraint. This correction mechanism can be said to act as a “soft” cash-in-advance

constraint, since it is driving the dynamics towards a CIA equilibrium without strictly constraining the

consumption pattern. The difference with the current model in which we do put restrictions on the

consumption pattern is subtle, and we have not investigated this matter any further.
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set to Mh(0) = 100, as an initial condition. This fixes the money stock at M̄ = 300. For a

substitution parameter ν = 0 (the Cobb-Douglas case) the equilibrium cash distribution is

then given by: M1� = 60,M2� = 0,M3� = 240. The equilibrium price system associated

to the CIA equilibrium is p� = (6, 6, 6). This is a result of the fact that if prices were

p� = (1, 1, 1) then agents’ cash requirements are
∑

h M
h = 50. Since we have imposed

M̄ = 300, the price level is now θ = 6. In the CIA equilibrium the sequence of transactions

in monetary terms is shown in Table 4.

Table 4: Equilibrium demand for money balances.

Agent 1 2 3

Mh(t, 1) 60 0 240 Start of market round: initial money holdings.

Mh(t, 2) 240 60 0 Agent 1 receives 180, agent 2 receives 60 (both from agent 3).

Mh(t, 3) 0 240 60 Agent 2 receives 180, agent 3 receives 60 (both from agent 1).

Mh(t, 1) 60 0 240 Agent 3 receives 180, agent 1 receives 60 (both from agent 2).

The total amount of cash that is required for the transactions to occur at any time is the

row sum 300. The money stock that supports a CIA equilibrium is therefore given by M̄ =

300. But given any other value of M̄ , the money stock will be automatically redistributed

among the agent population. The cash distribution {Mh�}h in a CIA equilibrium with

a different money stock M̄ depends on the proportional change in the money stock: if

M̄ → βM̄ then (p1, ..., pm) → (βp1, ..., βpm).

At the start all cash is concentrated with agents 1 and 3. Agent 2 does not need any

cash at the start of market 1 since he is a seller on markets 1 and 2, and a buyer on

market 3. Agent 1 needs some cash to be able to buy on market 2 and agent 3 needs cash

to buy on market 1. Agent 3 requires the most cash, since he will be buying commodity

1 from both agents 1 and 2 before he can sell commodity 2 to agent 1 and commodity 3

to agent 2. This reasoning holds from the perspective of starting on market 1. If we start

the equilibrium sequence on market 2 then the cash requirements are rotated cyclically,

as shown by the sequence of payments in Table 4.
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3.3 Fluctuations in the balance of account out of equilibrium

We start by analyzing the model from the time series perspective. Below we show three

examples of the dynamics:

1. The transition path towards a stable CIA equilibrium (ν = −0.1).

2. Fluctuations around an unstable CIA equilibrium for low elasticity of substitution

(ν = 0).

3. Fluctuations around an unstable CIA equilibrium for high elasticity of substitution

(ν = 0.4).

The transition path towards a stable CIA equilibrium

In Figure 4 we show time series of the individual cash balances for each agent. The plot

shows the entire transition path, starting from an initial cash distribution {M1(0),M2(0),M3(0)} =

{100, 100, 100}. The variables M1(t, 1), M2(t, 1), M3(t, 1) represent the cash balance of

each agent at the start of every round (beginning of market 1), for 50 consecutive trading

rounds (0 < n < 50). For the substitution parameter ν = −0.1 the CIA equilibrium is

asymptotically stable under the specified proportional price dynamics, and each agents’

time series converges to its CIA-equilibrium value as shown in Table 4. The equilibrium

values corresponding to the substitution parameter ν = −0.1 are slightly shifted from

the equilibrium values at ν = 0 in the table. For agent 1 the equilibrium cash balance is

therefore slightly above 60 and for agent 3 it is slightly below 240: M1� = 62, M2� = 0

and M3� = 238.

[INSERT FIGURE 4 ABOUT HERE]

Fluctuations around an unstable CIA equilibrium (low elasticity case)

In Figure 5 we show the typical dynamical behavior for the case of a CIA equilibrium

that is unstable. The figure shows time series plots of the cash balances at the start of

every market visit, for 450 consecutive trading rounds (50 < n < 500). For Cobb-Douglas

utility (ν = 0) the CIA equilibrium is locally unstable. The behavior can be characterized

as quasi-periodic, since it never repeats exactly in the same pattern.
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A more detailed description of the dynamics outside of equilibrium is as follows.

- Every agent has two trading posts: there are two markets on which an agent wants

to sell his endowments.

- Agent 1 is sometimes restricted by his cash constraint on market 2, since he is a

buyer on market 2 and a seller on markets 1 and 3. If agent 1 was supply-constrained

on market 1 then he will find himself short of cash and unable to consume on market

2. The cash constraint therefore becomes binding during his visit to market 2, just

before entering market 3 on which he plans to sell again. At the start of market 3

the cash balance of agent 1 thus reaches the zero level in equilibrium (see plot (1,3)

in fig. 5). At the start of market 1, the cash balance fluctuates around 60 (see plot

(1,1)), and at the start of market 2 it fluctuates around 240 (see plot (1,2)). The

equilibrium sequence for agent 1 is: (60, 240, 0).

- Agent 2 wants to sell on markets 1 and 2 and buy on market 3. Therefore a cash

constraint becomes binding during his visit to market 3, just before visiting market 1

on which he plans to sell. The cash balance will reach the zero level (in equilibrium)

just after having visited market 3, and before market 1 opens for trade (see plot

(2,1) in fig. 5). At the start of market 2 the cash balance fluctuates around 60

(plot (2,2)), and at the start of market 3 around 240 (plot (2,3)). The equilibrium

sequence for agent 2 is: (0, 60, 240).

- Agent 3 is a seller on markets 2 and 3, and a buyer on market 1. He is sometimes

rationed by his cash constraint on market 1. Therefore we see that his cash balance

reaches the zero level (in equilibrium) at the beginning of market 2 (see plot (3,2)).

At the start of market 3 the cash balance fluctuates around 60 (see plot (3,3)), and

at the start of market 1 around 240 (see plot (3,1)). The equilibrium sequence for

agent 3 is: (240, 0, 60).

A general observation is that for each agent the cash-in-advance constraint becomes bind-

ing on the market that is entered just before one of the own trading posts is visited. This

means that in equilibrium each agent spents its entire cash holdings just before the agent

earns an income by selling some of his endowments again.

[INSERT FIGURE 5 ABOUT HERE]
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Fluctuations around an unstable CIA equilibrium (high elasticity case)

In Figure 6 we show what happens for higher values of the substitution parameter ν =

0.4 (this corresponds to an elasticity of substitution ε = 1/(1 − 0.4) = 1.66). The

corresponding equilibrium cash distribution has shifted from {Mh�(t, 1)}h = (60, 0, 240)

to {Mh�(t, 1)}h = (40.8, 0, 259.2). The phase plots in Figure 6 show that the cash-in-

advance constraint becomes binding more often in case of a higher elasticity of substitution

(higher parameters ν and ε). This is due to the higher sensitivity of the demand to price

fluctuations.

Note that if the cash constraint becomes binding, then the fluctuations in the cash

balance remain inside a bounding box in the phase space. This bounded movement seems

to be a result of the fact that there is only one buyer per market: the maximum cash

position of a seller on a particular market is restricted by the cash constraint of the single

buyer on that market. The only way that a seller can obtain a higher income (i.e. reach

points that lie outside of the bounding box) is when the buyer is not cash-constrained.

A secondary effect is that the prices bounce back and forth between the price bound-

aries. This is what we observe in the phase plots in terms of prices in Figure 7. There

are upward and downward restrictions on the price growth rates, but not on the absolute

levels. These price rigidities are restricting the price-feasibility region: there is a maxi-

mum positive growth rate of 10% and a maximum negative growth rate of 9%. The effect

of these price rigidities is that the minimum cash position of the agents now fluctuates

between 0 and 20, as shown in the time series of the cash balances in Figure 6, subplot

(1,1).

In conclusion, two rather different types of restrictions play a role if the elasticity of

substitution is increased: there is the cash-in-advance constraint which becomes binding

more often and there are the price rigidities that become more restrictive. These restric-

tions are strongly related: if the price fluctuations become more erratic (by an increased

price-elasticity of the demand for commodities) then also the income of the agents will

fluctuate more violently and so will the cash balances. The fluctuations in the cash bal-

ances in turn affect the agents demand and supply decisions, which causes fluctuations in

the excess demands. These excess demand fluctuations then feed back into the dynamics

of the price fluctuations.
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[INSERT FIGURE 6 ABOUT HERE]

[INSERT FIGURE 7 ABOUT HERE]

3.4 Stability analysis

Figure 8 shows a 2-parameter bifurcation diagram for the elasticity of substitution pa-

rameter 0 < ν < 0.9 and the price flexibility parameter 0 < λ < 2. It illustrates some

high-order periodic cycles that can occur in the model for different parameter combina-

tions. Cycles of periodicity {1, 2, 3, 5, 6, 9, 10, 13, 15, 17, 19} are shown to occur. Figure 9

shows a particular bifurcation scenario for the fixed parameter value λ = 0.5 and varying

ν between ν = 0.67 and ν = 0.69.

As far as it can be determined by numerical methods, the bifurcation scenario that

occurs in Figure 9a-f is a subcritical Hopf bifurcation of a steady state, followed by a

saddle-node bifurcation, followed by a secondary Hopf bifurcation.

First the stable steady state becomes unstable through the subcritical Hopf bifurcation

producing a sudden transition to a large invariant circle (Figure 9a). At the moment

of bifurcation also an unstable invariant circle is created, but because the bifurcation

is subcritical there is a jump from the steady state to the stable branch of the invariant

circle. This invariant circle then undergoes a saddle-node bifurcation producing a periodic

sink and a periodic saddle of period-11 (Figure 9b). The period-11 cycle loses stability

through a secondary Hopf bifurcation which generates an attractor like the one shown

in Figure 9c. This attractor consists of 11 quasi-periodic cycles around each of the 11

saddle-sink pairs. An 11-piece attractor emerges (Figure 9d) in which the 11 pieces are

being visited cyclically. The dynamics along this 11-cyclic attractor undergoes phase-

locking which turns the attractor into a stable period-11 cycle (Figure 9e). The unstable

invariant circle in Figure 9b undergoes a period-doubling bifurcation, transforming it into

a figure-eight shape. Figure 9f shows this figure-eight shape just after the period-doubling

of the (repelling) invariant circle has taken place.

[INSERT FIGURE 8 ABOUT HERE]

[INSERT FIGURE 9 ABOUT HERE]
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4 Conclusions

We have described in relative detail a model with disequilibrium trade and cash-in-advance

constraints. There is quantity-rationing to clear the markets and transactions take place

sequentially. Agents’ cash balances are tracked over time by keeping account of the debts

and claims they make outside of equilibrium.

We have used the cash-in-advance (Clower) constraint which leads to an alternative

equilibrium concept, namely that the sequence of payments along the trading round re-

mains the same and money has to be used for all transactions. The CIA equilibrium

retains all the properties of a general equilibrium (it is a Walrasian equilibrium) except

that it is no longer indeterminate since there is a positive money stock.

According to Magill and Quinzii (1996, Ch.7) a satisfactory modelling of money re-

quires an open-ended future. Trade should take place in a sequence economy in which the

imperfections in the trading opportunities of the agents play a role. Although the model

presented here has a finite planning horizon instead of an infinite horizon, nonetheless

the future is open-ended because agents are myopic: they only plan ahead one trading

round which consists of multiple market visits. Due to the trade at disequilibrium prices

and the spill-over effects from quantity rationing agents have to revise their trading plans

subject to new information that arrives during the trading round. Such a moving-horizon

time-structure results in a genuinely dynamic monetary model of an exchange economy

with trade outside equilibrium.

The cash-in-advance constraint acts as a ”hard” correction mechanism on fluctuations

in the balance of account because the agents are not allowed to enter into credit arrange-

ments. In combination with the corrections on the budget constraint the cash-in-advance

constraint drives the economy back towards an equilibrium if the disequilibrium becomes

too large. Due to the fact that agents are not allowed to make any debts along the adjust-

ment path the cash-in-advance constraint causes the agents to become demand-rationed.

The constraint does not help to dampen the amplitude of fluctuations or to prevent cycles

from occurring because the correction mechanism can overshoot. When this occurs there

are large swings in the prices which will directly influence the cash balances as well, since

the transactions have to be paid at the fluctuating price levels. These fluctuations are

then exacerbated by the cash-in-advance constraint rather than dampened.

The fluctuations in the cash balances increase with the elasticity of substitution due to
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the higher sensitivity of the demand to price fluctuations. If the cash-in-advance process

converges to a neighborhood of the cash-in-advance equilibrium then the process shows

small fluctuations around the steady state before it converges and the convergence takes

place without the occurrence of debts and claims along the adjustment path. However,

for large values of the substitution parameter ν, the process may not converge to a steady

state but to periodic or quasi-periodic orbits.

For the dynamics to be stable it seems necessary that the correction mechanism is not

updating too fast, since this may exacerbate the fluctuations in the balance of account.

This hints at a more general conjecture that the market mechanisms and the market

structure are perhaps of greater importance than whether or not the agents in the model

are in fact using optimal trading strategies that take into account all of the relevant market

information. The main message of our simulation exercise is that even if agents take the

relevant market signals into account, and update their budget constraints sequentially,

the occurrence of erratic dynamics cannot be dismissed by introducing more sophisticated

correction mechanisms.

References

[1] Amendola, M. and Gaffard, J.L., 1998. Out of Equilibrium. Oxford: Oxford Univer-

sity Press.

[2] Bénassy, J.-P., 1982. The Economics of Market Disequilibrium. New York: Academic

Press.

[3] Bénassy, J.-P., 1986. Macroeconomics: an introduction to the non-Walrasian ap-

proach.. San Diego: Academic Press.

[4] Citanna, A., Cres, H., Herings, P.J.-J., Drèze, J.H. and Villanacci, A., 2001. Un-
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Figure 1: Sequential market visits. Markets are considered as ‘trading posts’ that are

being visited sequentially. The bank is central to all exchanges, since commodities can

only be exchanged against money (barter is excluded).

Figure 2: Flow diagram of market events. The diagram shows the sequence of events that

occurs during a single market visit. The sequence is repeated for all markets k = 1, ...,m,

after which the next trading round begins.

33



Cash-in-advance process.

Initial conditions: p(0), µh
1(0) = 0,Mh

1 (0) = 100.

For Round t = 0, ..., T do

For Market k = 1, ...,m do

1. zh
k := zh

k(p, µ
h
k)

dh
k := max{0, zh

k}, Dk :=
∑

h d
h
k,

sh
k := min{0, zh

k}, Sk := −∑
h s

h
k

2. ẑh
k := min{zh

k ,M
h/pk}

3. z̄h
k := Fh

k(ẑ
1
k, ..., ẑ

N
k )

4. Rh(t, k) := −pk(t, k)z̄
h
k (t, k)

Mh(t, k + 1) := Mh(t, k) +Rh(t, k),

5. µh(t, k + 1) := min{Mh(t, 1), ...,Mh(t, k + 1),Mh(t− 1, k + 2), ...,Mh(t− 1,m)}

6. pk(t+ 1, k) := max{(1− r−) · pk(t, k),min{pk(t, k)
(

Dk(t,k)
Sk(t,k)

)λ

, (1 + r+) · pk(t, k)}}

end

end.

Figure 3: Algorithm for the sequential cash-in-advance model.
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Money balances at the start of every trading round (ν = −0.1)

Agent 1: M1(t, 1) Agent 2: M2(t, 1) Agent 3: M3(t, 1)
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Figure 4: Timeseries of individual money balances at the start of every trading round,

for 50 consecutive rounds (0 < n < 50). Parameters: ν = −0.1, λ = 1. The equilibrium

corresponding to the substitution parameter ν = −0.1 is slightly shifted from the equilib-

rium values at ν = 0. For agent 1 the equilibrium cash balance is therefore slightly above

60 and for agent 3 it is slightly below 240: M1� = 62, M2� = 0 and M3� = 238.
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Money balances
(a) Agent 1: M1(t, k)
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Figure 5: Parameters: ν = 0, λ = 1. Money balances at the start of every market visit,

for 450 consecutive rounds (50 < n < 500). Timeseries and phase plots of individual

money balances: M1(t, k), M2(t, k) and M3(t, k), for k = 1, 2, 3. Eqm: p = (6, 6, 6),

M1� = (60, 240, 0),M2� = (0, 60, 240),M3� = (240, 0, 60).



Money balances
(a) Agent 1: M1(t, k)
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Figure 6: Parameters: ν = 0.40, λ = 1. Money balances at the start of every mar-

ket visit, for 450 consecutive rounds (50 < n < 500). Timeseries and phase plots

of individual money balances: M1(t, k), M2(t, k) and M3(t, k), for k = 1, 2, 3. Eqm:

p = (6, 6, 6),M1� = (40.8, 259.2, 0),M2� = (0, 40.8, 259.2),M3� = (259.2, 0, 40.8).



Price levels p1(t, k), p2(t, k), p3(t, k)

(a) ν = 0: Low elasticity of substitution.
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(b) ν = 0.4: High elasticity of substitution.
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Figure 7: Parameters: (a) ν = 0, λ = 1 (b) ν = 0.4, λ = 1. Timeseries and phase plots of

price levels: p1(t, 1), p2(t, 2) and p3(t, 3). Prices at the start of every market visit, for 25

consecutive rounds (475 < n < 500).



Bifurcation diagram

Figure 8: A 2-parameter bifurcation diagram in the (λ, ν)-plane, for 0 < λ < 2, 0 < ν < 0.9. λ

is the price flexibility, ν is the substitution parameter.
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Bifurcation scenario

(a) ν = 0.670
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Figure 9: Phase plots in the price phase-space (p1(t), p1(t + 1)) for ν ∈ [0.67, 0.69], λ = 0.5.

T = 10.000, transient= 1.000. Initial condition: Mh(0) = 100. (a) An invariant circle becomes

unstable and (b) undergoes a period-doubling. (c) An invariant torus is created. (d) The torus

breaks up into an 11-piece attractor. (e) A stable 11-cycle is created due to resonance. (f) The

attractor gets a figure eight-shape.
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