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Abstract

We propose a new framework for studying the evolution of heterogeneous beliefs in a dynamic
feedback setting. Beliefs distributions are defined on a beliefs space representing a continuum
of possible strategies agents can choose from. Agents base their choices on past performances,
re-evaluating strategies as new information becomes available. The distribution of beliefs among
agents is updated using a continuous choice model. This leads to price dynamics in which the
beliefs distribution evolves together with realized prices. By considering individual choices as
random variables, which is natural in a random utility framework, heterogeneity can be seen
to act as a ‘natural source of randomness’. Allowing for modeling the dynamics explicitly, our
framework gives rise to a random dynamical system (RDS), the stochastic properties of which are
directly related to the time varying beliefs distribution. We consider some asset pricing examples
and discuss several conditions (dependence among agents, unequal market impact) under which
the randomness persists even as the number of agents tends to infinity.

Keywords: Expectation formation; Heterogeneity; Continuous beliefs; Expectations feedback;
Endogenous noise; Random dynamical systems;
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1 Introduction

Though it takes little to realize that expectations about future prices are essential for investment
decisions made by market participants, it is difficult to study the evolution of expectations ex-
plicitly. Expectations, let alone the beliefs on which they are based, are hardly ever directly
observable in practice. For stock markets, for example, one typically observes realized prices,
which, at best, reflect market aggregated expectations rather than individual expectations.

Recent results indicate that, to a large extent, the dispersion of beliefs among market partic-
ipants bears important consequences to the behavior of the aggregates over time. In the recent
literature on heterogeneity several theoretical models have been proposed and a number of re-
lations between heterogeneity and stylized facts were derived and validated empirically. Shalen
(1993) and Michaely and Vila (1996), for example, concluded that dispersion of beliefs enhances
both trading volume and volatility. This supports the empirical evidence reported by Gallantet
al. (1992) of a positive correlation between volume and volatility. Recent work also indicates
that heterogeneity of expectations might be responsible for several other empirical observations.
For example, Dietheret al. (2002) presented evidence that the dispersion of opinions on fu-
ture returns affects future earnings negatively, while Ziegler (2002) found that heterogeneity of
beliefs can lead to the well-known “smile effect” in implied volatility derived from option prices.

Apparently, economic observables depend not only on the average belief, but, more generally,
on the distribution of beliefs among market participants. Being both omnipresent and hidden, the
dynamics of dispersed beliefs is of our key interest in this paper. The objective is to model the
evolution of beliefs explicitly. While doing so, we wish to keep track of the unpredictable nature
of individual preferences and relate it to the unpredictable nature of observables. The latter is
important for investigating the extent to which economic observables are affected by uncertainty
of choice at the agent level. Together, these objectives motivate the introduction of the concept of
acontinuous beliefs system(CBS). By formulating economic dynamic models in terms of a CBS
it is possible to address questions directly related to the beliefs distribution and the endogenous
randomness in the dynamics, such as: (i) To what extent does the degree of heterogeneity interact
with observables such as prices? (ii) Which aspects of the beliefs distribution matter most for
the random dynamics? (iii) Do prices and beliefs evolve similarly in small and large markets?
(iv) How do differences in market impact and dependence among agents’ choices affect the joint
dynamics of prices and beliefs?

Among the first to provide an analytical framework in which agents adapt their beliefs over
time are Brock and LeBaron (1996) and Brock and Hommes (1997). The agents’ incentives
to switch beliefs are provided by the observed differences in past performance such as realized
profits. Although, in this setup agents can choose from various beliefs, or expectation functions,
the number of strategies available to the agents is finite. Typical applications are concerned
with the simple case in which there are only two different belief types (see e.g. Brock and
Hommes, 1998). Evidently a small number of belief types is insufficient to obtain a realistic
beliefs distribution. Since each fraction of the population associated with a belief type becomes
a state variable, using the Brock and Hommes (1997) framework to build a model with a large
number of beliefs will typically lead to analytically intractable dynamics.

Recently, Brocket al. (2003) considered the price dynamics of a market with a continuum of
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traders in a so-called large type limit (LTL) where the number of strategies available to the agents
tends to infinity. The belief types are drawn at random from a given distribution of possible types.
Under fairly general conditions this (random) sequence of deterministic dynamical systems gives
rise to unique deterministic limiting dynamics in the LTL. In this way, an LTL provides insights
into the dynamics of a large market in the presence of a large number of strategies.

Simply because the limiting deterministic price dynamics was of their main interest, Brock
et al. (2003) assigned a merely supporting role to the beliefs distribution. The evolution of the
beliefs distribution remains more or less hidden because the state variables describing the beliefs
distribution are eliminated in the derivation of the price dynamics. Also, by considering a con-
tinuum of agents from the start, their approach implicitly assumes that preferences of individual
agents are negligible. As a result the concept of an LTL is not very convenient for our purpose:
modeling the evolution of beliefs, while taking into account effects of the unpredictable nature
of individual preferences. With this in mind, a CBS follows a different route. In contrast with
an LTL, which is based on a continuum of agents who can choose from a finite (but increasing)
number of strategies, a CBS is based on a continuum of strategies available to any number of
agents. The CBS dynamics of the beliefs distribution and the economic observables can be ex-
plicitly formulated for any number of agents with arbitrary market weights. This permits several
scenarios which are hard to study using an LTL. For example, since the CBS approach does not
assume individual preferences to be negligible, it can be used to examine large market (many
agent) limits in which the market is dominated by a small number of agents, or where the agents’
expectations are strongly correlated.

A CBS contains the following ingredients. The basic concept underlying a CBS is abeliefs
space, Ω, in which a class of possible point predictors is represented by a continuous (either
scalar or vector valued) parameterθ. At each timet agents form beliefs regarding future eco-
nomic variables by deciding on a single belief parameterθ in the beliefs space. They do so by
evaluating the possible strategies, given the information available prior to timet, using aper-
formance measure. This performance measure might be based, for example, on the history of
past prediction errors, or on profits a strategy would have realized in the past. In each period
individual agents choose the strategy which optimizes their expected subjective utility. Due to
differences in tastes, they may differ in the strategies used. The central object in a CBS is a time
dependent probability density functionφt(θ) onΩ, called thebeliefs distribution. The belief, (or
predictor, or strategy)θi,t actually employed by agenti at time t, from the modeler’s point of
view, is considered to be a random variable distributed according to the beliefs distribution. This
can be thought of as representing the empirical fact that even when agents have identical infor-
mation, they may still have differences of opinion regarding future revenues (see e.g. Frankel and
Froot, 1990; Kandel and Pearson, 1995). The specific form of the beliefs distribution given the
history of realized past observables, can be expressed in terms of past performances using a con-
tinuous choice model. Given the individual beliefs of agents just prior to timet, the individual
net demand functions collectively determine the next observable (price) to be quoted publically.
This involves someaggregation mechanism, such as a market maker setting the price at a zero
aggregated net demand value. After the observable becomes public, the performances of strate-
gies can be re-evaluated, a new beliefs distribution arises, etc. From a dynamical point of view,
the ongoing evaluation of strategies by agents as new information becomes available results in
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the co-evolution of the distribution of beliefs and observable aggregates.
In a CBS, the beliefs distribution is a deterministic function of past observables. The strate-

gies used by the agents are modeled as random variables, distributed according to the beliefs
distribution, which provides a natural mechanism for endogenous randomness. We refer to this
as a ‘natural source of randomness’, as it can be associated naturally with the uncertainty of
choice. In fact this natural source of randomness can help explain part of the market fluctuations
we observe in daily life. For example, the excess volatility as observed in financial markets (see
Shiller, 1981) might to some extent be ‘natural’. In some of the applications presented later it will
become clear that most of the nontrivial structure arising from heterogeneous beliefs feedback
loops resides in the noise rather than in the deterministic part of the dynamics.

One might expect the randomness to disappear from the dynamics as the number of agents
tends to infinity. However, it is not hard to find mild conditions under which the choices of
individual agents do not average out to give a deterministic law for the aggregate observables in
the limit as the number of agents tends to infinity. For example, if the dependence among the
agent’s choices is sufficiently large, aggregates may remain random variables even for an infinity
of agents. Also, for some combinations of the class of predictors and the performance measure,
the conditions for the law of large numbers may not be satisfied, providing another source of
randomness which does not vanish if the number of agents tends to infinity.

In general, a CBS gives rise to a Random Dynamical System (RDS) where the randomness
carries a natural interpretation. For convenient, but often typical, choices of the performance
measure and the class of predictors, the CBS reduces to a low dimensional RDS. The state
variables of this RDS are directly related to prices and characteristics of the beliefs distribution,
such as the degree of heterogeneity. Since the CBS approach allows stochastic price dynamics
to be derived explicitly, it can be used as an analytic alternative to numerical studies based on
computationally intensive agent models (for an overview, see LeBaron, 2000).

The remaining sections are organized as follows. In section 2 the concepts of a beliefs distri-
bution and the continuous choice model are introduced. Section 3 describes a continuous beliefs
system (CBS) in which the co-evolution of beliefs and public information such as market prices
is taken into account. As an illustration the implied dynamics in a standard asset pricing context
is examined by means of some stylized examples in section 4. In section 5 the mechanism by
which endogenous noise arises from the continuous choice dynamics is described, and the role
of the number of agents and their dependence considered. Section 6 summarizes and discusses
the results.

2 Continuous beliefs distributions

In this section we describe how continuous beliefs distributions are obtained with the continuous
choice model, which can be seen as a natural generalization of the well-known discrete choice
model. The discrete version has among others been employed in an economic dynamic context
by Brock and Hommes (1997). For clarity of exposition we will discuss both choice models in
an agent based economic dynamic setting, starting with the more familiar discrete choice model.

Agent based models represent market participants as (a typically large number of) agents,
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who can select among a number of alternative strategies. If the strategies among which the
agents can choose consists of a finite set of strategies,s1, . . . , sm say, then agents employing
strategysi, i = 1, . . . ,m are said to be of typei. McFadden (1973) derived an expression for the
probabilityPi that an individual will select strategyi, starting from the concept of random utility
functions. It is assumed that the utility function of agentj can be written as

Vj(s) = U(s) + εj(s)

whereU(s) is a non-stochastic “common” utility function representing the tastes of the popula-
tion, andεj(s) is stochastic and reflects the idiosyncrasies of individuals in tastes. The individuals
choose the alternative which optimizes their subjective expected utility. Under the assumption
that the disturbances of the utility function follow an extreme value distribution, it can be shown
that this leads to themultinomial logit model:

Pi =
eβU(si)∑m
l=1 eβU(sl)

,

whereU(sl) is the utility associated with alternativel. The parameterβ is referred to as the
intensity of choice, and is related to the scale of the noise termεj(s). The larger the value of
β, the smaller the noise, and the larger the probability that an agent chooses the option which
actually optimizesU(s). This is why1/β is sometimes interpreted as the propensity of agents to
err, presuming they actually all wish to optimizeU(s).

In the presence of a continuum of belief types it is convenient to introduce a finite dimensional
measurable spaceΩ, containing all possible strategies that can be selected by the agents. We will
refer to Ω as thebeliefs space. Each possible choice, that is, each elementθ in Ω uniquely
represents a possible strategy agents can choose from. Note that the choice of the beliefs space is
not unique, since any one-to-one transformation of the beliefs spaceΩ into another space,Ω′, say,
will again yield a suitable beliefs representation. To ensure that integrals over the beliefs space
can be defined independently of the chosen representation, we explicitly denote the integration
measure onΩ by ν.

In analogy with the discrete choice model, we wish to represent the diversity of belief types by
a probability measure over the beliefs space. The distribution of strategies can be obtained from
the generalization of the discrete choice model referred to as mixed discrete/continuous choice
models. As in the discrete choice setting, it is convenient to adopt a random utility approach
(Hanemann, 1984; Dagsvik, 1994; Resnick and Roy, 1994). The random part of the utility
function of an agent affects the strategy a particular agent considers optimal. Therefore, the
strategies employed by individual agents in a random utility framework are random variables.1

The continuous choice analogue of the multinomial logit model is thecontinuous logit model
(see e.g. Ben-Akiva and Watanatada 1981; Dagsvik, 1994). The probability that an agent selects
a strategy in a subsetA of Ω is given by

P (A) = Z−1
∫

A
eβU(ϑ) ν(dϑ)(1)

1Note that random utility does not imply that individual agents perceive their own utility functions to be random,
only that they are random to the econometrician.
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with Z =
∫
Ω eβU(ϑ) ν(dϑ). As in the discrete choice setting,β represents the intensity of choice.

Wheneverν is continuous, a corresponding densityv(θ) exists such thatν(dθ) = v(θ) dθ. In
that case, assuming thatU(θ) is also continuous, the beliefs distributionP has an associated pdf,
denoted byφ(θ), given by

φ(θ) = Z−1eβU(θ)v(θ),(2)

with Z =
∫
Ω eβU(ϑ)v(ϑ)dϑ. For ease of presentation, in the subsequent sections we only consider

cases whereν is continuous, and hencev(θ) exists.
The functionv(θ) is nonnegative, and can be used to put different weights on different parts

of the beliefs space. We refer tov(θ) as theopportunity function. In the case where a particular
representation of the beliefs space has been fixed, the opportunity function can be thought of as
reflecting thea priori faith of individuals in parameters within certain regions of the parameter
space. Small values ofv(θ) in a certain region then reflect the agents’ tendency of avoiding
parameter values in that region. For example, if in a particular representation it is reasonable to
assume aversion against using extreme strategies, this can be represented by small values ofv(θ)
for these strategies. In that case, such “extreme” strategies need to outperform more common
strategies to a large extent before agents are likely to use them.

Although derived differently, in the LTL framework (Brocket al., 2003) extensive use is be-
ing made of a probability measure with the functional form given by equation (1), all market
averages in the large type limit being defined with respect to this measure. For an LTL, the
measureν represents the probability measure onΩ from which an increasing set of strategies is
chosen at random. However, as it turns out, in the CBS framework it is not necessary forν to be
normalizable. For example, ifΩ = Rm, v(θ) = 1 on Ω andU(θ) is quadratic inθ with a single
maximum, thenφ(θ) is a multivariate normal probability density function. In general, the prob-
ability measureP given in equation (1) is a well-defined pdf if and only ifZ =

∫
Ω eβU(ϑ) ν(dϑ)

is positive and finite, i.e. ifeβU(ϑ) is ν-integrable. Clearly, whenν is non-normalizable it can
no longer be interpreted as a probability measure. An alternative interpretation is the following.
For two disjoint subsetsA andB in Ω, with finite integration measuresν(A) andν(B), the ratio
ν(A)/(ν(A) + ν(B)) can be interpreted as the conditional probability that an agent chooses a
parameter value inA, in the absence of any information (U constant), conditional on this choice
being either inA or in B.

3 Continuous beliefs systems

In this section we discuss the co-evolution of economic observables and the beliefs distribution in
a CBS. Next to the beliefs space and the beliefs distribution, two additional ingredients are added.
Firstly, we assume that agents evaluate strategies according to someperformance measure, which
might for example be based on past prediction errors, or profits a strategy would have realized in
the past, given the information available now (ex post profits). Secondly, a market mechanism, or
more generally, anaggregation mechanismis required which translates the individual beliefs of
agents into publically available information such as prices. For example, in a cobweb framework
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the price equation might have the form

pt = D−1

(
1

n

n∑
i=1

S(pe
t(θi,t−1))

)
,

whereS(pe
t(θi,t−1)) is firm i’s supply and1

n

∑n
i=1 S(pe

t(θi,t−1)) denotes the average supply, and
D(p) demand at a given pricep.

For clarity of exposition this section is presented against the background of a standard dy-
namic asset pricing framework. Today’s price will be assumed to equal the market’s expected
present value of tomorrows pay-off. Rather than averaging over functions of beliefs, as in the
cobweb framework, prices are conveniently obtained by averaging directly over the different be-
liefs. The modifications required for applications in more general dynamic settings are fairly
straightforward. Throughout, time will be considered to be discrete. For a recently proposed
generalization of discrete choice models to continuous time, we refer the interested reader to
Dagsvik (2002).

The price of the risky asset at timet will be denoted bypt. For simplicity we discuss the case
where the agents are myopic. Prior to timet, they form expectations about the price of the asset
at time t + 1 (the next time they can sell the asset) including possible dividends payed in the
period between timet andt+1. The information available to agents just before timet is denoted
byFt. In simple cases the information set could consists of a historic record of past prices up to
and includingpt−1, but in general it might include exogenous variables, such as the interest rate.
The possible strategies from which the agent can choose to predict future prices are represented
by a functionfθ of the observables in the information set, parameterized byθ. For a given set of
information, we can then consider this predictor as a function ofθ. In our examples, the available
information on which predictions are conditioned is strictly the observed past price history:

pe
t+1(θ) = fθ(pt−1, pt−2, . . .).

Thus, the prediction ofpt+1 made by agenti, based on price information up to and including
pt−1, using strategyθi,t−1, is denoted bype

t+1(θi,t−1).
To give an example of a beliefs space, the class ofd-th order linear predictors consists of all

predictors of the form
pe

t+1(θ) = θ0 + θ1pt−1 + ... + θdpt−d.

In this case the beliefs are represented inRd+1 and the beliefs distribution is a probability distri-
bution on this space.

The pdf of the time dependent beliefs distribution conditional onFt is denoted byφt−1(θ).
Schematically, the expectations feedback can then be represented as

. . . → pt−1 → φt−1(θ) → pt → φt(θ) → . . . .

Notice that, regardless of the details of the price formation mechanism, it is possible to in-
vestigate how a newly established pricept affects the beliefs distribution. Afterpt becomes
part of the information set, agents can re-evaluate the available strategies, and at this point the
continuous choice model can be invoked to obtain an expression for the new beliefs distribution:

φt(θ) = Z−1
t v(θ)eβUt(θ)(3)
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the time dependent analogue of equation (2).
Typically, we consider cases where the utility functionUt(θ) is based on performance or

fitness measure of the strategiesθ, such as last period’s net ex post profits or squared prediction
errors. We take into account dependence on further past performances by introducing memory
in the model. The evolution of the fitness measure for strategyθ can for example be modeled as:

Ut(θ) = αUt−1(θ) + (1− α)πt(θ),(4)

whereπt(θ) is the performance in periodt, andα ∈ [0, 1) is a memory parameter.2 The utility
function then becomes a geometrically weighted sum of ex post performances of strategyθ. An
interpretation of the memory parameterα is the following; when analysts or traders consider new
strategies it is common to perform back-testing, that is, to test the candidate strategies using his-
toric data. Strategies that would have performed best in the past are more likely to be selected for
future trading. The traders are likely to put more weight on more recent observations, depending
on the time scale on which they perceive their world to be approximately stationary.

By substituting equation (4) into equation (3) the effect of memory can be written as

φt(θ) ∝ v(θ)eαβUt−1(θ)+(1−α)βπt(θ)

∝ [v(θ)]1−α[φt−1(θ)]
αe(1−α)βπt(θ),

(5)

which gives an update of the beliefs distribution in terms of the previous beliefs distribution
and the last performance measure. Note that in general, sinceφt(θ) is an infinite dimensional
state variable, this may lead to a very complicated dynamical system. In general the models
thus obtained need not be analytically tractable, and to solve the dynamic equations numerical
methods may be required. However, in some cases the evolution ofφt(θ) can be completely
described by a finite number of variables such as its firstk moments, in which case it becomes
finite dimensional. This class of models can be used to obtain insights into the interaction of
observables and the beliefs distribution analytically. Therefore, in this paper we will focus on
models that are analytically tractable.

Next we consider the formation of the observablespt, for a finite number,n, of agents, each of
which is assigned a strategy according to the previous beliefs distributionφt−1(θ). As mentioned
before, some aggregation mechanism is required for determining the next observable from the
individual beliefs of the agents. We assume that each predictor implies a unique associated
excess demand function, and that given the beliefs of all agents, a unique equilibrium price
pt can be set, such that the market clears. Under the standard assumptions of mean-variance
optimization today’s market clearing price can be seen to equal the present value of aggregate
beliefs concerning future prices and dividends:

(1 + r)pt =
1

n

n∑
i=1

pe
t+1(θi,t−1) + ȳ(6)

wheren is the number of agents,pe(θi,t−1) denotes the expected price of individuali based on
past observables available up to and includingt − 1, and ȳ expected future dividends. Since

2Alternatively one might defineUt(θ) = αUt(θ) + πt(θ), but this is in fact equivalent, since forα ∈ [0, 1) this
gives a utility differing by a factor(1− α) which can be absorbed byβ in the beliefs distribution in equation (3).
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our interest in the asset pricing model is strictly concerned with its illustrative use, we refer the
reader to e.g. Brock and Hommes (1998) for details on the dynamic asset pricing framework.

In interpreting the price equation it is essential to realize that theθi,t−1 are random variables,
representing the individual strategies chosen by the agents. The dynamical system for a finite
number of agents is thus stochastic. In the limit where the number of agents tends to infinity, the
dynamics can, under certain conditions, become deterministic.

Consider the following assumption:

Assumption 1 (Cross-sectional Independence) The strategiesθi,t−1 employed by agenti at time
t, for each fixed timet are independent random variables, distributed according to the population
distribution of beliefs prior to time t,φt−1(θ).

Assuming independence over agents might seem reasonable, since it is always possible to con-
sider expectations of groups of correlated agents as expectations of a single agent representative
of this group. The effect of dependence then is merely a reduction in the effective number of
agents. A stronger assumption is made if one additionally assumes temporal independence of
the idiosyncratic noise terms of each agent over time. This stronger assumption is reasonable if
the time interval corresponding to one time step in the model is large compared to the time scale
on which idiosyncratic preferences of single agents change over time.

The following theorem is concerned with the almost sure behavior of the model in the limit
where the number of agents tends to infinity.

Theorem 1 (Law of Large Numbers) GivenFt, under Assumption 1, ifn tends to infinity, the
aggregate

p̄e
t =

1

n

n∑
i=1

pe
t+1(θi,t−1)

converges a.s. to
Et

[
pe

t+1(θi,t−1)
]
,

if and only ifEt

[∣∣∣pe
t+1(θi,t−1)

∣∣∣] < ∞.

Proof: By Assumption 1, the strategiesθi,t−1 conditionally onFt are IID random variables in
Ω, which implies that the corresponding predictionspe

t+1(θi,t−1) of agents are also IID. The re-
sult is immediate from Kolmogorov’s strong law of large numbers for the IID random variables
pe

t+1(θi,t−1), givenFt (see e.g. Resnick, 1998, p. 220). 2

Note that the mean expected price, whenever it is finite, can be expressed as

Et

[
pe

t+1(θi,t−1)
]

=
∫
Ω

pe
t+1(ϑ)φt−1(ϑ)dϑ.(7)

Theorem 1 states that, given the information public at timet, a necessary and sufficient condition
for the aggregate expectation aboutpt+1 to converge a.s. to the mean expectation over the beliefs
distribution, is the existence of this mean. This result has the following corollary concerning the
dynamics.
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Corollary 1 (Deterministic Dynamics) Under Assumption 1 the observablept in the limit n →
∞ almost surely tends to a deterministic function of the informationFt available at timet if and
only if Et[p

e
t+1(θi,t−1)] < ∞.

This deterministic limiting dynamics can be interpreted as a first order approximation to the
price dynamics for a system with a large but finite number of agents. Later it will become clear
that the random deviations around the deterministic limit in general can not be represented by a
random variable with constant (state-independent) distributional properties.

Notice that discrete choice models can be considered as special cases of a CBS (when al-
lowing for discrete opportunity distributions) in which agents can only choose among a finite
number of alternative strategiesθl, l = 1, . . . ,m. Provided that the expected future prices of
each of those strategies are finite, the average expected price is well-defined, so that the strong
law of large numbers applies, and the dynamics converges to a deterministic dynamical system
with probability one as the number of traders tends to infinity. A discrete choice setting with a
continuum of agents, as considered by Brock and Hommes (1997), should thus always lead to
functional determinism in the absence of exogenous noise provided thatpe

t+1(θl) is finite for each
l = 1, . . . ,m.

At this point let us briefly compare equation (7) with it’s LTL analogue. The population mean
of the predictor functionpe

t+1(θ) can be written as

Et[p
e
t+1(θ)] =

∫
Ω

pe
t+1(ϑ)φt−1(ϑ)dϑ =

∫
Ω eβUt−1(θ)pe

t+1(ϑ)v(ϑ)dϑ∫
Ω eβUt−1(θ)v(ϑ)dϑ

.(8)

This expression can be seen to be of the same analytic form as the population average given by
Brocket al. (2003). An important difference, however, is that we do not requirev(θ) to integrate
to one. That is,v(θ) itself is not required to be normalizable, and instead we only requireφt−1(θ)
to be be a well-defined pdf (i.e.eβUt−1(θ)v(θ) should be integrable). In this sense, equation (8)
provides a generalization of the analogous expression obtained with the LTL approach. This
indicates that an LTL has an associated CBS, but that the converse does not always hold. In
fact some of the example CBSes that will be discussed later use a non-normalizable function
v(θ), and hence do not have an LTL representation. Furthermore, even if the beliefs distribution
is well-defined, the mean expected price given in equation (7) need not exist. In that case the
dynamics does not allow for a deterministic LTL, but as will be shown later, the associated CBS
might still be meaningful, with the price being a random variable. While an LTL always gives
rise to a deterministic dynamical system, a CBS gives rise to an RDS, containing deterministic
dynamics as a special case.

Before moving to a concrete example, note that we only consider point predictors in this
paper. However, some price formation mechanisms can not be formulated in terms of point
predictors only. For example, Guesnerie (2002) considers agents who have subset predictors
(e.g. an interval) in mind rather than point predictors. Under certain conditions, the agents, by
a rationality assumption and a common knowledge argument, can find agreement on a unique
trading price. Such a mechanism could be incorporated in a CBS framework, provided that the
more general predictors can be represented by a finite number of parameters, and the price agents
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eventually agree to trade on can be expressed explicitly in terms of the agents’ individual beliefs
parameters.

4 Example: Asset pricing with first order linear beliefs

We consider an example of a CBS in which agents believe that first order linear rules provide
adequate predictions. The role of the performance measure is investigated by focusing on two
cases: squared prediction errors and squared logarithmic prediction errors, leading to normal and
log-normal beliefs distributions respectively.

For illustrational purposes we focus on a simple class of linear predictors. Agents choose a
strategyθ that represents their perceived future growth rate. The expected price at timet + 1
associated with predictorθ is then

pe
t+1(θ) = θpt−1.(9)

The utility function associated with belief typeθ is given by equation (4). The price equation,
(6), in this particular case becomes, in the limit of infinitely many agents:

(1 + r)pt =
∫

ϑpt−1φt−1(ϑ) dϑ + ȳ
= µt−1pt−1 + ȳ,

(10)

whereµt−1 represents the average belief parameter at timet− 1. In the next subsections we con-
sider the updating of the beliefs distribution for two different performance measures. Through-
out we assume that the parameters satisfy the following conditions:α ∈ [0, 1), r ∈ [0,∞) and
β ∈ [0,∞).

4.1 Updating according to squared prediction errors

First we examine the case whereΩ = R, and the performance measure is minus the squared
prediction error:

πt(θ) = − (pe
t(θ)− pt)

2 = − (θpt−2 − pt)
2 .(11)

After the pricept has been realized and observed, the distribution of beliefs is updated according
to the continuous choice model. The new distribution describing the dispersion of belief types is
then given by equation (5). Upon substitution of the expression forπt(θ) into equation (5), we
obtain:

φt (θ) ∝ [φt−1(θ)]
α exp

[
−β(1− α) (θpt−2 − pt)

2
]
.(12)

Note that we have chosen a constant opportunity function, i.e.v(θ) = 1, representing the simplest
case where agents hold no aversion against extreme parameter values.3

Since the exponent contains only up to second order forms inθ with a negative coefficient for
the quadratic term inθ, the distribution of beliefs in each period can be described by a normal

3In fact, sincev(θ) = 1 is not normalizable, this is an example of a CBS which can not be obtained directly
using the LTL approach. However, using the LTL approach, one might arrive at the CBS dynamics by takingv(θ)
to be the pdf of aN(0, s2) distributed random variable, and taking the limit wheres2 tends to infinity.
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distribution. Here we have implicitly assumed thatφt−1(θ) is also normal, which can be justified
by assuming that the dynamics has been running since the infinite past.

If we denote the mean and variance ofφt(θ) by µt andσ2
t respectively, we can write

φt (θ) =
1√
2πσt

exp

[
− 1

2σ2
t

(θ − µt)
2

]
.(13)

Together with equation (12) this gives

φt(θ) ∝ exp

[
− α

2σ2
t−1

(θ − µt−1)
2 − β(1− α)(θpt−2 − pt)

2

]
.(14)

By comparing the coefficients ofθ2 andθ in the exponents in equations (13) and (14), the mean
belief parameterµt, and the variance of the belief parameter,σ2

t , can be seen to evolve according
to

µt

σ2
t

= α
µt−1

σ2
t−1

+ 2β(1− α)ptpt−2

1

σ2
t

=
α

σ2
t

+ 2β(1− α)p2
t−2.

The remaining factor, which is independent ofθ, is absorbed into the normalization factorZt.
Notice that the average belief parameterµt and belief varianceσ2

t completely describe the evo-
lution of beliefs and are fully determined by past prices.

The full deterministic CBS, which also includes the price equation given in equation (10),
becomes:

(1 + r)pt = µt−1pt−1 + ȳ
µt

σ2
t

= α
µt−1

σ2
t−1

+ 2β(1− α)ptpt−2

1

σ2
t

= α
1

σ2
t−1

+ 2β(1− α)p2
t−2.

(15)

The fixed point, which is the solution of(pt, µt, σ
2
t ) = (p∗, µ∗, σ2∗), is given by

(p∗, µ∗, σ2∗) =

(
ȳ

r
, 1,

1

2β

)
.

In section 4.3 the local stability properties of the dynamics near the fixed point are examined.

4.2 Updating according to squared logarithmic prediction errors

Next we consider the case withΩ = R+, with a performance measure which taken to be minus
the squared logarithmic prediction error:

πt(θ) = − (ln pe
t (θ)− ln pt)

2 = − (ln θ − ln pt + ln pt−2)
2 .(16)

An argument for using logarithmic prediction errors rather than just mean squared prediction
errors is that this error measure is independent of the price level. This leads to dynamics which
scales with the price level and is equivalent before and after possible stock splits.

11



Using a uniform opportunity function again, i.e.v(θ) = 1, substitution of the expression for
πt(θ) as in equation (16) into equation (5) gives:

φt (θ) = Z ′
t
−1

[φt−1(θ)]
α exp

[
−β(1− α) (ln θ − ln pt + ln pt−2)

2
]
,(17)

where againZ ′
t is a normalization factor independent ofθ, but not necessarily equal toZt in

equation (3).
In this case the exponent contains up to second order forms inln θ with a negative coefficient

for the quadratic term inln θ, which indicates that the distribution of beliefs in each period can
be described by a log-normal distribution of the form

φt(θ) =
1√

2πσtθ
e
− (ln θ−µt)

2

2σ2
t =

1√
2πσt

e
− (ln θ−µt)

2

2σ2
t

−ln θ
.(18)

The evolution of the beliefs distribution follows from combining equations (17) and (18), which
results in

φt(θ) ∝ exp

[
−α ln θ − α

2σ2
t−1

(ln θ − µt−1)
2 − β(1− α)(ln θ − ln pt + ln pt−2)

2

]
.(19)

A comparison of the coefficients ofln θ and(ln θ)2 in the exponents in equations (18) and (19),
gives the evolution rules forµt andσ2

t , and the following deterministic CBS is obtained:

(1 + r)pt = exp
[
µt−1 +

1

2
σ2

t−1

]
pt−1 + ȳ

µt

σ2
t

= α
µt−1

σ2
t−1

+ (1− α) (2β(ln pt − ln pt−2) + 1)

1

σ2
t

=
α

σ2
t−1

+ 2β(1− α).

(20)

Note thatσ2
t does not interact with the other variables, and simply tends to its steady state value

1/(2β) at an exponential rate. Also note that the state-variables{µt, σ
2
t } no longer denote the

mean and variance of the beliefs distribution. In the limit of an infinite number of agents, the
average belief becomes ∫

ϑφt−1(ϑ) dϑ = exp
[
µt−1 +

1

2
σ2

t−1

]
,

while the degree of heterogeneity as measured by the variance, is given by:

Vart [θ] = exp
[
2µt−1 + σ2

t−1

] (
exp

[
σ2

t−1

]
− 1

)
.(21)

It can be verified that the fixed point solution of the system is given by:

(p∗, µ∗, σ2∗) =

 ȳ

1 + r − exp ( 3
4β

)
,

1

2β
,

1

2β

 .
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Note that for all finite positive values ofβ the fixed point pricep∗ is larger than the fundamental
valueȳ/r. Only whenβ tends to infinity (i.e. the propensity to err tends to zero) the fixed point
price tends to the fundamental price.

Remark: The examples discussed here and in the previous subsection are analytically tractable
due to the quadratic terms in the exponents. A closed form analytic derivation of the dynamics
might become cumbersome or even impossible if: (i) the beliefs distributions can not be rep-
resented within a finite parameter class, closed under updating according to equation (5) (it is
closed under updating e.g. ifπt(θ) is a finite order polynomial inθ), or (ii) agent’s decisions are
based on more complicated optimization procedures such as those typical in a dynamic program-
ming contexts. In those cases one might proceed using appropriate generalization of methods
known in discrete choice simulation and estimation (see e.g. Keane and Wolpin, 1994). These
generalizations are beyond the scope of this paper and left for future research.

As noted above, we consider models that allow for an analytic derivation of the dynamics,
although perhaps exceptional, important from a theoretical point of view, since they may help
providing insights into the interaction between prices and the beliefs distribution. In the models
derived above one can explicitly see how prices are formed given the beliefs distribution, and
how realized prices in turn affect both the census and the dispersion of beliefs.

4.3 Local stability

The deterministic dynamical systems derived in the previous subsections, provide analytical de-
scriptions of the co-evolution of both prices and the distribution of beliefs. Although our main
motivation for considering these stylized examples is to illustrate how a CBS can be used to ob-
tain insights into the interaction of prices and the beliefs distribution, these simple models also
enable one to investigate how the dynamics is affected by the model parameters. For example,
how does the steady state and its stability depend on behavioral parameters such as the intensity
of choiceβ and the degree of memoryα?

We present a brief bifurcation analysis of the deterministic skeletons just derived. However,
it should be realized that the value of such an analysis strictly speaking is limited to the determin-
istic case only. Since we wish to illustrate the CBS methodology conceptually without putting
too much stress on particular cases we choose to limit ourselves to a discussion on the local sta-
bility around the fixed points. The price equation, (10), suggests that increasing the interest rate
has a stabilizing effect on the dynamics. Intuitively, also the memory parameter is important for
stability, since it has a smoothing effect. The local bifurcation analysis is carried out mainly to
check whether this intuition is justified.

The next proposition, which is proved in the Appendix, gives the local stability conditions:

Proposition 1 For α ∈ [0, 1) andβ ∈ [0,∞) andr ∈ [0,∞) the CBSes given in equations (15)
and (20) are locally stable around the fixed point ifg(α, a) > 0, where

g(α, a) = 1− 3a2 − 2aα + 5a2α + aα2 − 2a2α2,

witha = (1+r)−1 for the squared prediction error case (equation 15) anda = (1+r)−1 exp ( 3
4β

)
for the squared logarithmic prediction error case (equation 20).
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Figure 1: Bifurcation curve in the (α, a)-plane. The dynamics of the CBSes described by equations (15)
and (20) are locally stable for parameter values below (right) of this curve, and unstable for parameter
values above (left) of it. The parameter a is related to the model parameters through a = (1 + r)−1 for
the squared prediction error case (equation 15) and a = (1 + r)−1 exp ( 3

4β ) for the squared logarithmic
prediction error case (equation 20).

Figure 1 shows the lineg(α, a) = 0 where the bifurcation occurs. The dynamics is locally
stable around the fixed point for parameter values below (right) of this bifurcation curve, and
unstable for parameter values above (left) of the bifurcation curve. The memory parameter can
be seen to have a stabilizing effect, provided thata is not too large. For any value ofα in [0, 1) the
dynamics can be made locally stable by increasing the interest rate (decreasinga) sufficiently.
In contrast with the squared prediction error case, with squared logarithmic prediction errors
the intensity of choice,β, also affects stability, since stability is determined, apart fromα, by
a = (1+ r)−1 exp ( 3

4β
) rather thanr only. In the limit where the memory parameter tends to one,

the equilibrium will lose its stability once the interest rate falls belowr = exp ( 3
4β

)− 1. Thus in
the squared logarithmic prediction error case, the interest rate can be very low while sustaining
stability, as long as the intensity of choice is correspondingly large.

It is possible to show that the points on the interior of the primary bifurcation curve (i.e. for
α ∈ (0, 1)) for both models correspond to Neimark-Sacker bifurcations. On the bifurcation curve
at least one eigenvalue crosses the unit circle. Assuming that one eigenvalue crosses the unit
circle at a real value (i.e.±1) leads toα = 0 or α = 1, i.e. the boundaries of the allowed values
for α, since we requiredα ∈ [0, 1). It follows that on points in the interior of the bifurcation line
the dynamics become unstable due to a complex conjugated pair of eigenvalues crossing the unit
circle.

As a final remark on the bifurcations of the two models discussed above, it should be men-
tioned that numerical evidence indicates that squared prediction errors give rise to a supercritical
bifurcation while squared logarithmic prediction errors lead to a sub-critical bifurcation. Us-
ing squared prediction errors the stable fixed point breaks up into a quasiperiodic motion on a
(topological) circle, which increases in size if the memory parameter is lowered, and eventually
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breaks up giving way to globally unstable dynamics. In the squared logarithmic prediction error
case case, when one crosses from the stable to the unstable region in the parameter space, there
is no stable quasiperiodic solution close to the fixed point. In fact, numerically we have only
seen cross-overs from locally stable to globally unstable dynamics in the squared logarithmic
prediction error case.

5 Natural sources of randomness

Traditionally, randomness in economic models is associated with exogenous shocks, for example
due to news affecting a company’s future earnings, or fluctuations of the interest rate. The CBS
framework provides several possible natural sources of randomness, which enter via the market
aggregate and can be associated with the uncertainty of choice.

In the previous section we have shown how the CBS approach can be used to derive determin-
istic dynamical systems in the presence of an infinity of agents. So far, two conceptual differences
with the LTL approach (Brocket al., 2003) became apparent: i) the CBS dynamics are expressed
not only in terms of prices, but also in terms of variables which fully describe the distribution of
beliefs among agents, and ii) the measureν in the beliefs space need not be normalizable for a
CBS. In fact, both examples in the previous section are based on non-normalizable measuresν,
and hence cannot be obtained directly as an LTL.

In this section we exploit another important difference between the LTL and CBS approaches.
Recall that the LTL approach starts with a continuum of agents, and examines the limiting dy-
namics as the number of possible strategies tends to infinity. In the CBS approach the starting
point is a continuum of strategies. There the behavior of large markets can be studied by exam-
ining limits where the number of agents tends to infinity. Because dependence among agents’
choices and heterogeneous market impact are not excludeda priori, because we avoided the
assumption of a continuum of agents, large market limits under various conditions can be con-
sidered. As it turns out, for those scenarios the randomness associated with individual choices
typically do not average out in the large market limit.

Several possible natural sources of randomness can be identified, which will be considered
in the sequel. Firstly, a finite number of traders gives rise to stochasticity, because traders are
assigned a beliefθi,t−1 at random from the beliefs distributionφt−1(θ). Secondly, so far, we have
implicitly assumed that no agents have a dominant market impact. This need be the case, for
example, if wealth is not evenly distributed among agents. In that case the market impact of the
wealthiest agents might still be important as the number of traders tends to infinity. Thirdly, de-
pendence among agents can prevent the dynamics from becoming deterministic when the number
of agents tends to infinity. If, for example, agents coordinate (at least partly) on a random vari-
able, such as an exogenous variable, or on predictors announced by some ‘leading’ agents who
quote their predictors publically in an early stage, then the stochastic properties of that variable
show up in the price dynamics. In the extreme case where all agents have identical idiosyn-
crasies, they would all use the same (random) strategy. Finally, for certain combinations of the
utility function and the predictor functionpe

t+1(θi,t−1), the law of large numbers may not apply
because the mean of the aggregate need not exist. In those situations, the price dynamics might
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still be defined as a stochastic dynamical system, in the limit where the number of agents tends
to infinity.

5.1 Finite number of agents

In general, for a finite number of agents, the CBS approach leads to a random dynamical sys-
tem, the only exceptions being cases where allpe

t+1(θt,i−1) are identical with probability one. In
general it might not be straightforward to derive the distributional properties of the aggregate.
However, in case the mean and variance of the aggregate are finite, one can appeal to the cen-
tral limit theorem which states that the distribution of the aggregate is asymptotically normally
distributed. The following theorem is a direct application of the central limit theorem.

Theorem 2 (Central Limit Theorem) GivenFt, under Assumption 1, ifn tends to infinity, the
random variable

√
n

(
1

n

n∑
i=1

pe
t+1(θi,t−1)− Et[p

e
t+1(θi,t−1)]

)
converges in distribution to

W ∼ N(0, σ2
t )

with
σ2

t = Vart[p
e
t+k(θi,t−1)]

if and only if Et[|pe
t+1(θi,t−1)|] < ∞ and Vart[p

e
t+1(θi,t−1)] < ∞.

Example: Logarithmic prediction errors

In this example we consider the asset pricing example discussed in section 4.2, with a perfor-
mance measure based on logarithmic squared prediction errors. We assume that agents make
decisions regarding their strategy independently of the other agents (Assumption 1). The predic-
torspe

t+1(θ) are linear in the parameterθ, and the pricept follows from equations (6) and (9):

(1 + r)pt =
1

n

n∑
i=1

pe
t+1(θi,t−1) + ȳ.

The conditional variance ofθi,t−1, givenFt, is equal to (see equation 21):

S2
t = Vart[θi,t−1] = e2µt−1+σ2

t−1(eσ2
t−1 − 1),

so that the conditional variance of(1 + r)pt = 1
n
pe

t+1(θi,t−1) + ȳ equals 1
n
S2

t p
2
t−1. With the

asymptotic normal approximation given by Theorem 2, the price equation for a finite number,n,
of agents becomes

(1 + r)pt '
(

exp
[
µt−1 +

1

2
σ2

t−1

]
+

St√
n

εt

)
pt−1 + ȳ,
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with εt ∼ N(0, 1). If the number of agents,n, tends to infinity, the noise variance tends to
zero and the price equation becomes deterministic. The full dynamics in the large number of
agents tends to the ‘deterministic skeleton’ described by equation (15). Notice that the analo-
gous asymptotic normal approximation is exact for the squared prediction error case, even for
a finite number of agentsn, since there theθi,t are normally distributed (see section 4.1). Also
note the emergence of conditional heteroscedasticity. The time-varying variance1

n
S2

t p
2
t−1 of the

noise term is proportional to the evolving degree of heterogeneity,S2
t .

5.2 Market impact

Differences in market impact, which may be driven by wealth differences, among agents can
lead to the persistence of randomness, even for infinitely many agents. For simplicity we only
consider the effect of an unequal market impact without considering the endogenous evolution
of wealth, since the latter is beyond the scope of this paper. Endogenous wealth effects have for
example been studied by Cabrales and Hoshi (1996) in a discrete choice framework with two
types of agents.

Let us denote the market weight of agenti by wi, normalized such that
∑

i wi = 1. The mean
expected future price becomes

p̄e
t+1 =

n∑
i=1

wip
e
i,t+1

which has a conditional mean equal to

Et

[
n∑

i=1

wip
e
i,t+1

]
= Et[p

e
i,t+1]

and, assuming conditional independence ofθi,t−1 givenFt, conditional variance

Vart

[
n∑

i=1

wip
e
i,t+1

]
=

(
n∑

i=1

w2
i

)
Vart[p

2
i,t+1].

The term between brackets on the right hand side of this equation, is known as the Herfindahl
index of concentration. If all agents have equal weights,wi = 1

n
, the conditional variance is

proportional to one overn. For all other weight distributions the conditional variance is larger.
A large concentration (large Herfindahl index) thus implies a small effective number of market
participants and vice versa. The conditional variance suggests defining an effective number of
agents,neff , say, in terms of the inverse of the Herfindahl index:

neff =

(
n∑

i=1

w2
i

)−1

.

The effective number of agents thus defined represents the number of agents that would give rise
to the derived conditional variance in case their market impacts would be equal.
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5.3 Interaction and dependence among agents

As a next source of randomness that can persist if the number of agents tends to infinity, we
consider dependence among agents. Several types of dependence can be incorporated in the
utility function by adding an interaction term, as in Brock and LeBaron (1996) and Brock and
Durlauf (2001). In this approach individual utility depends not only on the past performance of
strategies, but also on the choices made by other agents. The joint pdf of the beliefs parameters
of n agents is written as

φt(θ1, . . . , θn) ∼ exp

 n∑
i=1

βUt(θi)−
J

2

∑
i,j

h(θi, θj)

 ,

whereut(θ) denotes the performance measure, andJ
2
h(θi, θj) is a function which captures the

additional utility derived from interactions. The degree of dependence is measured byJ > 0.
Although formally theθi depend on time, the subscript is dropped here for simplicity.

Following Brock and LeBaron (1996) we consider a utility function which depends on squared
prediction errors, and an interaction term that specifies that each agent prefers parameter values
close to the consensus. One obtains

φt(θ1, . . . , θn) ∼ exp

(
−

n∑
i=1

(θi − µt)
2

2σ2
t

− J

2

n∑
i=1

(θi − θ̄)2

)
,(22)

whereθ̄ = 1
n

∑n
i=1 θi. Equation (22) contains linear and quadratic terms in the parametersθi and

hence represents a multivariate gaussian pdf. Upon comparing this with that of a multivariate
normal

1

(2π)n/2‖Σ‖1/2
exp

(
−1

2
(θ − θ0)

T Σ−1(θ − θ0)
)

,

whereΣ is the variance covariance matrix of theθi, the statistical properties of the market average
θ̄ = 1

n

∑n
i=1 θi can be derived. As in the case without interaction the expected value of the market

average is given byEt[θ̄] = θ0 = µt. Due to permutation symmetry of the agents all diagonal
elements ofΣ are identical, as well as the off-diagonal elements. The same holds forΣ−1. This
implies that bothΣ andΣ−1 have1 as an eigenvector. We denote the corresponding eigenvalue
of Σ by λ, so that the corresponding eigenvalue ofΣ−1 is 1/λ. For the elements ofΣ−1 we find

(Σ−1)i,i =
1

σ2
t

+ 2
n− 1

n
J,

and

(Σ−1)i,j =
J

n
for i 6= j.

The eigenvalueλ can now be determined from:

Σ−11 =
1

λ
1 =

(
1

σ2
t

+
(n− 1)

n
J

)
1,
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giving λ = 1
σ2

t
+ (n−1)

n
J . For the variance of̄θ one then finds

Var[θ̄] =
1

n2
Var

[
n∑

i=1

θi

]
=

1

n2
1T Σ1 =

λ

n
=

1
n
σ2

t
+ (n− 1)J

,

which indicates that the interaction reduces the variance of the market averageθ̄. Thus, when
agents coordinate on the population mean, meaning that no agent prefers to be far away from
the consensus, the variance of the population meanθ̄ reduces. Notice that the mean market
expectationEt[θ̄] = µt is identical with or without interaction.

The effective number of agents can be obtained by relating the conditional variance of the
aggregate expectation̄θ to the conditional variance in the absence of interaction. Upon defining
neff throughσ2

t /neff = Var[θ̄], one directly obtains

neff = n + (n− 1)Jσ2
t .

In the example just considered the interaction resulted in a reduction of the variance of the
mean expectation̄θ. An increase in the variance of the market averageθ̄ can also occur. A differ-
ent and perhaps more realistic scenario might be one in which agents coordinate partly on some
source of information, being, for example a public exogenous variable. Such a source of infor-
mation might, but need not necessarily, be related to economic fundamentals. In case the ‘signal’
on which agents coordinate is an exogenous noise source, this can increase the correlation of
the agent’s predictors, and hence lead to an increase of the variance of the market average. This
scenario can be represented by the following joint pdf:

φt(θ1, . . . , θn) ∼ exp

(
−

n∑
i=1

(θi − µt)
2

2σ2
t

− J

2

n∑
i=1

(θi −Xt)
2

)
,

whereXt represents any random variable on which the agents coordinate. In caseXt is taken to
be equal to the parameterθi of one of the agents, agent1, say, so thatXt = θ1, this covers the
situation where one agent announces his strategy publically at an early stage, after which others
coordinate on this (noisy) signal. Clearly, the randomness that enters the joint pdf has a similar
effect on all individual choices. IfXt is positive (negative), the expected value ofθ̄ increases
(decreases). Moreover, this effect does not average out when the number of agents is increased.
Coordination on a (possibly endogenous) random variable thus provides an additional source of
randomness in the price dynamics.

5.4 Inherent Randomness

As a final source of randomness we consider an example of the dynamics in a case where
pe

t+1(θi,t−1) does not have a finite conditional mean, as a result of which the law of large numbers
does not apply. The aggregate expectation1

n

∑n
i=1 pe

t+k(θi,t−1) does not tend to a constant, but
tends in distribution to a well defined random variable whenn tends to infinity. We consider an
asset pricing model with agents choosing among constant predictors:pe

t+1(θ) = θ. For simplicity
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we putα = 0 (no memory, only the last observed price is taken into account). A situation in
which the mean does not exist arises if for the performance measure one takes

πt(θ) = − log(1 + (θ − pt)
2),

The beliefs distribution can now become fat-tailed. For the beliefs distribution one obtains

φt(θ) =
Γ(β)

Γ(1
2
)Γ(β − 1

2
)
(1 + (θ − pt)

2)−β,

from which it follows that √
2β − 1 (θi,t−1 − pt−1) ∼ t(2β − 1),

a t-distribution with2β − 1 degrees of freedom. Thus, theθi,t−1 are distributed symmetrically
aroundpt−1, and forβ < 3

2
the mean does not exist.

Forβ = 1, θi,t−pt givenFt is Cauchy(0,1) distributed. Since this distribution is closed under
averaging, this gives̄pe

n,t+1 = 1
n

∑n
i=1 θi,t−1 − pt−1 ∼ Cauchy(0,1). The price equation becomes

(1 + r)pt = pt−1 + ȳ + ηt,

whereηt is a Cauchy(0,1) distributed random variable. The resulting price process is a first order
autoregressive process with a fat-tailed noise term. The price dynamics is stochastic, and the
distribution of the noise term is independent of the number of agents.

We conclude that the remark made by Muth (1961) that “allowing for cross-sectional differ-
ences in expectations is a simple matter because their aggregate effect is negligible as long as the
forecasts are not strongly correlated” only applies if the distribution of predictors is sufficiently
well-behaved.

Notice that the non-vanishing randomness of the type described here can only occur with a
continuum of strategies. If the number of strategies is finite, provided that each of them predicts
a finite price, the mean expectation always exists, in which case, by the law of large numbers,
the dynamics become deterministic when the number of traders tends to infinity.

6 Concluding Remarks

Many will agree that most economic observables, such as realized prices, are to a large extent
determined by the expectations of economic agents. In turn, individual expectations are typically
shaped by the observed past, as agents will try to incorporate the underlying economic laws
at force in their predictions for tomorrow. New observations provide agents with an incentive
to update their beliefs whenever their belief appears inconsistent with these observations. One
would therefore expect individual beliefs to co-evolve over time with realized prices. Being
evidently important but not directly observable, the evolution of the distribution of beliefs among
market participants is at the heart of our concept.

To set up a framework for studying the evolution of beliefs distributions, we defined proba-
bility density functions on a space of possible strategies, which is called the beliefs space. The
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continuous choice model is employed to update the beliefs distribution, while the incentives for
the agents to switch are provided by the past performances of strategies. Co-evolution of a distri-
bution of beliefs with observed prices thus emerges due to the ongoing evaluation of predictors.
This approach to modeling the evolution of the beliefs distribution over time provides several
insights into the nature of its feedback with economic observables. The results and implications
of our concept are at least two-fold.

Firstly, while being applicable in a wide range of theoretical models where expectations
feedback plays a key role, the concept allows one to model the joint dynamics of the beliefs
distribution and observables (prices, say) explicitly in terms of arandom dynamical system. The
beliefs distribution becomes a state variable which is endogenously shaped by the assumptions
about the functional form of predictors, and the type of performance measure (squared prediction
error or profits etc.) employed. For illustrative purposes, we have included some stylized exam-
ples that lead to a normal- and a log-normal distribution for individual beliefs. In these cases, the
distribution of beliefs is fully described by the average belief and the dispersion of beliefs, the
latter of which can be related to the degree of heterogeneity. The CBS then prescribes explicitly
how the dispersion of beliefs affects prices, and in turn how prices affect the dispersion of beliefs.

Secondly, our concept provides what we refer to as ‘natural sources of randomness’. In many
economic models, noise, which is required when matching stylized facts is the objective, is of-
ten included ad-hoc as additive exogenous shocks. Popular justifications include: exogenous
news shocks, model approximation error, and noise induced by trading. Our natural source of
randomness introduces a type of endogenous uncertainty that can not be associated with exoge-
nous shocks but rather with the uncertainty of choice deriving from unpredictable aspects of the
preferences of economic agents. Moreover, the endogenous noise term is shown to inherit its
statistical properties directly from the beliefs distribution. To understand where the stochasticity
derives from, note that in a CBS the beliefs distribution describes the likelihood, through the eyes
of the econometrician, according to which individual agents select their beliefs. When the num-
ber of agents is finite, the aggregate belief by definition is a random variable. From simulation
studies (e.g. Lux and Marchesi, 1999) it is known that the stochastic nature of the dynamics in
simulated markets vanishes when the number of agents becomes large. This is typically what the
CBS framework would predict if agents have comparable market weights and their predictions
are well-behaved (have finite mean and variance) and are not strongly dependent across agents.
However, the CBS approach shows that there are several scenarios for which endogenous noise
remains significant in a large market. This can occur if, for example: (i) wealth is disproportion-
ately distributed (ii) agents’ choices exhibit dependence; and (iii) when the combination of the
performance measure and the functional form of beliefs induces nonexistence of the mean (with
respect to the beliefs distribution) of the predictor function.

A number of extensions and generalizations might prove worthwhile. For example connect-
ing the concepts of a CBS with that of “rational beliefs”, the latter being recently developed
by Kurz (2001). In the work of Kurz, a beliefs distribution describes the individual belief of
an agent, and reflects the uncertainty individuals hold regarding future economic variables. This
concept is designed to generalize rational expectations theory where all agents have exact knowl-
edge about the future. Although Kurz’s approach is different from ours, in particular since the
beliefs distribution represents a different object, Kurz’s definition of ‘Endogenous Uncertainty’
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as ‘that component of the volatility of quantities and prices in the economy which is gener-
ated by the distributions of beliefs’ has similar implications. Both approaches are able to relate
their notion of endogenous uncertainty to common financial market “anomalies” such as excess
volatility, and ARCH-type structure. When comparing our approach with that by Kurz, a logical
extension of the CBS would be to endow agents with notions of uncertainty about future values
rather than having point predictors. Then each agent’s belief is described by a pdf, so that agents
will generally have more dimensions to disagree upon.

One area for future research is the analysis of the random dynamical systems obtained within
the CBS framework, using stochastic bifurcation theory. Stochastic bifurcation theory is closely
connected to the theory of random dynamical systems, a new field which currently is under
rapid development (see e.g. Arnold (1998)). In stochastic bifurcation theory, progress has been
relatively fast on continuous time random dynamical systems when compared to discrete time
random dynamical systems. The bifurcation theory of discrete time random dynamical systems,
which is still in its infancy, would clearly be useful for characterizing the dynamical systems of
the type considered here.
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A Appendix

Below a proof of Proposition 1 is given. The proof uses the fact that the characteristic equations
for the local dynamics of the CBS with squared prediction errors (section 4.1) and squared log-
arithmic prediction errors (section 4.2) are closely connected. In fact it will be shown that the
stability conditions are identical in terms ofa if one defines

a = (1 + r)−1

for the squared prediction error case, and

a = (1 + r)−1e
3
4β

for the squared logarithmic prediction error case.

Proof of Proposition 1

For the squared prediction error case (section 4.1), upon definingwt = 1
σ2

t
, the dynamics can be

casted in the form
pt = (µt−1pt−1 + ȳ) /(1 + r)
qt = pt−1

µt = (αµt−1 + 2β(1− α)ptqt−1)
wt−1

wt

wt = αwt−1 + 2β(1− α)q2
t−1,

wherept andwt on the right hand side of the equation forµt are functions of the state variables
at timet − 1, as specified by the first and last equation. The Jacobian matrix evaluated at the
equilibrium evaluates to

JSPE =


a 0 ap∗ 0
1 0 0 0

(1− α) a
p∗

−1−α
p∗

α + (1− α)a 0

0 4βp∗ 0 α

 ,

with a = (1 + r)−1.
Similarly, the CBS with squared logarithmic prediction errors (section 4.2) can be expressed

as
pt =

(
exp

(
µt−1 + 1

2wt−1

)
pt−1 + ȳ

)
/(1 + r)

qt = pt−1

µt = (αµt−1wt−1 + (1− α) (2β(ln pt − ln qt−1) + 1)) /wt

wt = αwt−1 + 2β(1− α),

the Jacobian at the equilibrium becomes

JSLPE =


a 0 ap∗ − ap∗

8β2

1 0 0 − (1−α)a
8β2

(1− α) a
p∗

−1−α
p∗

α + (1− α)a 0

0 0 0 α

 ,
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wherea = e
3
4β

1+r
.

Although the two Jacobian matrices differ, their characteristic equations coincide due to the
fact that the upper left3×3 sub-matrices are identical, and because of the three off-diagonal zeros
in the last column/row respectively. In both cases the corresponding characteristic equation can
be written as

det [λI − J ] =
[
λ3 − (2a + α(1− a))λ2 + αλa + (1− α)a

]
(λ− α) = 0.

Sinceα is an eigenvalue, a necessary condition for stability is| α |< 1. This condition is
automatically satisfied under our assumption thatα ∈ [0, 1). It can be readily verified that
(0, 0, 0, 1)′ is the corresponding eigenvalue in both cases, so that the stability question reduces to
that of the upper left3× 3 sub-matrix

J̃ =

 a 0 ap∗

1 0 0
(1− α) a

p∗
−1−α

p∗
α + (1− α)a

 .

Application of the conditions for stability derived in Jury (1974) to the characteristic equation

det
[
λI − J̃

]
= λ3 − (2a + α(1− a))λ2 + αλa + (1− α)a = 0

of the remaining eigenvalues, leads to several conditions on the parameters which, forα ∈ [0, 1),
can be summarized as

1− 3a2 − 2aα + 5a2α + aα2 − 2a2α2 > 0.

2
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