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Abstract

The dynamics in a financial market with heterogeneous agents is analyzed under dif-

ferent market architectures. We start with a tractable behavioral model under Walrasian

market clearing and simulate it under more realistic trading protocols. The key behav-

ioral feature of the model is the switching of agents between simple forecasting rules on

the basis of fitness measure. Analyzing the dynamics under order-driven protocols we

show that behavioral and structural assumptions of the model are closely intertwined.

High responsiveness of agents to a fitness measure causes excess volatility, however the

frictions of the order-driven markets may stabilize the dynamics. We also analyze and

compare allocative efficiency and time series properties under different protocols.
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1 Introduction

Models of financial markets often assume the simplistic mechanism for a market clearing: the

Walrasian scenario. This observation applies also to an innovative research area of heteroge-

neous agent models, in which the heterogeneity in expectations of traders is a key to explain

the properties of markets. In reality, however, markets are functioning in a different way.

Agents are allowed to transmit only finite amount of information in form of the orders to buy

or sell. Furthermore, many markets employ continuous trade in the form of sequential orders.

In this paper we study the impact of the market organization on dynamical properties of

the asset pricing model populated by adaptive, boundedly rational agents with heterogeneous

forecasting rules. We demonstrate that the adaptive abilities of the agents can be impaired

by frictions inherent in the order-driven mechanisms. Surprisingly, the price dynamics can be

stabilized via this channel. We also analyze how the market efficiency and statistical properties

of prices are affected by this interplay of behavioral and institutional assumptions.

Statistical properties of real financial data have been thoroughly investigated in the past,

see e.g. Fama (1970), Pagan (1996), Brock (1997) and Cont (2002). This line of research

established a number of regularities in financial data, so-called “stylized facts”, many of which

are observed universally in all time periods and on different stock exchanges. Some of these

regularities, e.g. absence of significant autocorrelations in price returns, are well in agreement

with the prevailing theory called the Efficient Market Hypothesis which suggests that the

markets are informationally efficient with asset prices immediately reflected a new information.

At the same time, such regularities as large and persistent trading volume, significant positive

autocorrelations in variance of returns (volatility clustering), heavier than normal tails of the

return distribution are left unexplained within the classical paradigm. A seminal paper of

Shiller (1981) detected that asset prices are more volatile than underlying fundamentals. The

discovered excess volatility undermined a completeness of the Efficient Market Hypothesis.

Explaining these empirical properties by means of a simple theoretical model is an im-

portant but not a simple task and there are different directions to deviate from the classical

paradigm with rational, representative agent (see e.g. Lucas, 1978) in a hope to accomplish
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this goal. One way is to acknowledge that rationality assumption is too demanding in a com-

plex environment of financial markets. Models with heterogeneous agents using some bounded

rational procedure as proposed in Sargent (1993) and Evans and Honkapohja (2001) can be

more appropriate. A number of agent-based simulations of markets and more rigorous analyt-

ical “Heterogeneous Agent Models” (HAMs) have been developed, where agents with different

expectations may coexist in one market.1 If one group of agents, fundamentalists, believe that

price typically reflects a fundamental value, while another group, chartists, extrapolate price

trends, then the prices in a market can deviate from the fundamental value when chartists are

in a majority. In Brock and Hommes (1998) this simple story is augmented by the evolutionary

dynamics of relative fractions of fundamentalists and chartists. In such “Adaptive Belief Sys-

tem” agents not only update their forecasts as new data become available, but also switch from

one forecasting technique to another depending on their past performances. Gaunersdorfer et

al. (2008) show that even a simple version of such adaptive model can generate dynamics with

some realistic properties. Since extrapolative expectations of chartists can be self-confirming,

prices can deviate from the fundamental level even in the absence of considerable fundamen-

tal news. Thus, dynamics exhibit an excess volatility. Furthermore, for certain parameter

values the underlying deterministic system possesses two attractors, the fundamental steady

state and a cycle around it, with small volatility on the former and high volatility on the

latter. When dynamic noise is added to the system, price trajectory can interchangeably visit

basins of these two attractors generating volatility clustering. Gaunersdorfer and Hommes

(2007) show that with sufficiently large level of noise this model indeed generates a dynamics

qualitatively similar with real markets.

Alternatively, one can focus on the market design as a possible origin of stylized facts.

1Santa Fe artificial market introduced in Arthur et al. (1997) and the model of microscopic simulations

in Levy et al. (2000) are two known examples of computational approach focused on bounded rationality in

expectation formation. They are accompanied by parsimonious models in Day and Huang (1990), Lux (1995),

Brock and Hommes (1998), Farmer and Joshi (2002), Diks and van der Weide (2005), Anufriev et al. (2006) and

Anufriev and Dindo (2007). See LeBaron (2006) and Hommes (2006) for recent reviews focused, respectively,

on computational and analytical models with heterogeneous agents.
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Most of the classical models (with notable exceptions in Kyle, 1985 and Glosten and Milgrom,

1985) and all the HAMs quoted above use the Walrasian market clearing. It may be the case,

however, that specific design features of the real markets bring some structure into the data.

LiCalzi and Pellizzari (2003) show that an artificial market with realistic architecture, namely

an order-driven market under electronic book protocol, is capable of generating satisfactory

statistical properties of price series (e.g. leptokurtosis of the returns distribution) even with

minimal behavioral assumptions. Furthermore, simulations in Bak et al. (1997) and Maslov

(2000) suggest that desirable distributional properties can arise in the order-driven market

even in the absence of any behavioral assumptions on the side of the agents.

These two approaches disentangle behavioral and structural assumptions and, therefore,

may provide only partial explanation of statistical regularities of financial markets. As op-

posed to those studies, recent agent-based models in Chiarella and Iori (2002), LeBaron and

Yamamoto (2006) and Chiarella et al. (2007) incorporate the agents’ heterogeneity in the

order-driven markets. But an interplay between behavioral and structural assumptions is far

from trivial in these models, so that they suffer from the “curse of complexity”, when it be-

comes virtually impossible to understand how the two sets of assumptions contribute to the

models’ results. Consequently, our approach in this paper will be to start with a parsimonious

model, which is analytically tractable under the Walrasian market clearing, and then increase

the complexity by adding more realistic, order-driven trading protocols. The latter versions

of the model is investigated through computer simulations.

Our research strategy is largely inspired by the work of Bottazzi et al. (2005). Motivated by

an empirical evidence from the world’s stock exchanges that market micro-structure does influ-

ence statistical properties of returns, they compare dynamics under different trading protocols

when two types of traders, chartists and noise traders, act in a market in fixed proportions.

Bottazzi et al. (2005) conclude that market architecture plays larger role in shaping the time

series properties than behavioral aspects of the model. The authors also analyze the allocative

efficiency of the market and show that, as opposed to the time series properties, it depends

mainly on the traders’ behavior.
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This paper is focused on the similar questions. We start, however, with a model built in the

Adaptive Belief System of Brock and Hommes (1998). Thus, populational ecology consists of

fundamentalists and trend-followers whose proportions are evolving on the basis of difference

in past profits. A key behavioral parameter of the model is the intensity of choice, measuring

the sensitivity of agents to this difference. If the market clears in the Walrasian way and the

number of agents approach infinity, the model is approximated by the deterministic model

similar to the one analyzed in Gaunersdorfer et al. (2008). With our choice of forecasting

rules, there exist two regimes in the market, tranquil and volatile. When the intensity of

choice is low, i.e. smaller than a certain critical value, there is no excess volatility and prices

tranquilly stay on the fundamental level in the absence of the dividend payments. When the

intensity of choice is high, i.e. larger than this critical value, the volatile regime occurs with

persistent deviations of prices from the fundamental level and excess volatility is observed.

Our simulations reveal that similar two regimes are displayed also under two order-driven

trading protocols, i.e. the batch auction and the order book. Interestingly, the critical value of

the intensity of choice is higher in the order-driven markets, implying larger region of market

tranquility. Given a noisy nature of the order-driven trade, it is surprising, but it can be well

explained by the interplay of our behavioral assumptions and the market design. We also

compare the properties of market dynamics over different market mechanisms, and show, in

particular, that an order-driven trade brings volatility clustering to the model.

The paper is organized as follows. In the next Section we briefly describe different market

mechanisms and introduce behavioral part of our model. In Section 3 we analyze the model for

a simple case of Walrasian market with large number of agents and explain how two different

market regimes arise. We then proceed by introducing the details of our implementation of

different market mechanisms in Section 4. Results of simulations are discussed in Section 5.

Section 6 provides some final remarks.
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2 The Model

We consider a standard asset-pricing model with two assets. The numéraire of the economy

is the elastically supplied riskless asset which yields constant gross return R = 1 + r per

period. The risky asset pays a random dividend yt in the beginning of period t. Realizations

of dividend are independently drawn from some distribution with positive support and mean

ȳ. The fundamental price of the risky asset is defined as a discounted value of the expected

dividends and equal to pf = ȳ/r. The risky asset is traded in the market, and its actual price

dynamics is influenced both by evolution in the demand/supply of traders and by the precise

mechanism for price determination. The following three trading protocols will be compared.

Under Walrasian market-clearing (WA), agents submit complete demand and supply sched-

ules, and the price of the risky asset pt in period t is defined as an intersection of a sum of the

individual demand curves with a sum of the individual supply curves. In a market organized

as a batch auction (BA) agents simultaneously post the buy or sell orders 2. Cumulative de-

mand and supply curves are then derived, and the price of the risky asset pt is an intersection

of these curves. In the third market type the agents submit orders sequentially during the

trading session, and the matching is accommodated by an electronic order book (OB) which

stores unsatisfied orders. If submitted order finds a matching order of the opposite type in

the book, it is satisfied (completely or partially). An unsatisfied part of the order is stored in

the book. In such a market there is no unique price during period t, and notation pt is used

to denote the closing price in this market, i.e. the price of the last transaction.

These three mechanisms are interesting because they range from the settings preferred in

theoretical literature to the protocols used in real markets. Moreover, they differ in a number

of dimensions, such as information required from the traders to be submitted and timing of

order submission. Indeed, the WA is a standard theoretical tool to model the market clearing

process. However, it requires an infinite information from the agents, and therefore is not

implementable in practice 3. Architecture of the BA overcomes this problem, as agents have

2This mechanism is sometimes referred to as a call auction or a sealed-bid auction in the literature.
3The English clock auction with inter-period bids can provide a close approximation to the WA.
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to submit only finite number of orders. It is used in a number of exchanges, typically to define

a starting price of a trading session. Nowadays, however, most of the exchanges are using the

OB mechanism as more efficient for continuous trading.

For comparison, the agents’ behavior will be modeled in a similar way under these three

institutional market settings. We populate the market by N myopic expected utility maxi-

mizers whose demand functions depend on expectations of next period price. The demands

of agents are not homogeneous because there are two rules to form the expectations. Fun-

damentalists compute the fundamental value and expect that the price will move towards it.

Trend-followers are less sophisticated, they simply extrapolate the past price changes. Rela-

tive fractions of fundamentalists and trend-followers affect, of course, the price determination

in a given trading session. These fractions, in turn, are changing between trading sessions

and depend on the relative past performances of the two groups using different rules. As a

performance measure we take an average return earned by fundamentalists (trend-followers)

during the last trading session.

In the remaining of this Section we explain how the demand of agents is defined and then

introduce the evolutionary dynamics in the model.

2.1 Agents demand

Agents are risk-averse expected utility maximizers with common risk aversion coefficient a.

Let Ai,t and Bi,t denote, respectively, the number of the risky and the riskless asset possessed

by agent i at time t. In order to obtain the optimal portfolio composition, agent i maximizes

at time t the conditional expectation of negative exponential utility of next period wealth

Wi,t+1. The wealth is uncertain both because the market price of the risky asset may change

and also because the random dividend is paid. Agent i solves the following problem

maxAi,t,Bi,t

{
Ei,t[− exp(−aiWi,t+1)]

}
(1)
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subject to

Wi,t+1 = Ai,t

(
pt+1 + yt+1

)
+ Bi,t(1 + r) ,

Wi,t = Ai,t p + Bi,t .

(2)

The notation Ei,t in (1) stresses the fact that the expectation is conditional on the information

available at the beginning of time t and that the expectation is agent-specific. From the

constraints (2) the wealth evolution is derived

Wi,t+1 = Wi,t(1 + r) + Ai,t

(
pt+1 + yt+1 − (1 + r)p

)
.

Assuming conditional normality of the wealth at time t + 1, the above optimization problem

is equivalent to the mean-variance optimization

maxAi,t

{
Ai,tEi,t

[(
pt+1 + yt+1 − (1 + r)p

)]
− a

2
A2

i,t Vi,t[pt+1 + yt+1]
}

,

where Vi,t[pt+1 + yt+1] stands for the conditional expectations of trader i about the variance

of price cum dividend at time t + 1. The first-order condition gives the standard demand

function for the risky asset

Ai,t(p) =
Ei,t[pt+1 + yt+1]− (1 + r) p

a Vi,t[pt+1 + yt+1]
. (3)

As in Brock and Hommes (1998) we assume that traders have homogeneous and time-invariant

expectations about conditional variance Vi,t[pt+1 + yt+1] = σ2 and share correct expectations

about dividend Ei,t[yt] = ȳ. It simplifies the model and allows us to concentrate on the

heterogeneity in expectations of traders.

At any trading session every trader chooses one of two possible forecasting rules, reflecting

two trading attitudes commonly observed in the real markets. Fundamental forecasting rule

E1
t [pt+1] = pf + v (pt−1 − pf ) , v ∈ [0, 1] , (4)

predicts that any price deviation from the fundamental level will be corrected. In one limiting

case, v = 0, immediate correction is expected, while in another limiting case, v = 1, agents

rely on the market, expecting that current price gives the best prediction. Trend-following

forecasting rule

E2
t [pt+1] = pt−1 + g (pt−1 − pt−2) , g > 0 , (5)
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predicts that past trend in price will be kept, so it is extrapolated with coefficient g from past

price level.

Notice that the former rule (as opposed to the latter) requires a knowledge of fundamental

value. Consequently, we assume that to use the fundamental rule the agent has to pay cost

C > 0 per period, while the second rule is available for free.

2.2 Evolutionary updating of expectations

At the end of every trading round agents update their forecasting strategy, i.e. choose which

of the two rules, (4) or (5), will be used during the next session. The choice of the active

forecasting rule is based upon the commonly available deterministic part reflecting the past

performances of two rules. In addition, this measure is disturbed by the stochastic error

component reflecting the measurement error or imperfect computations of agents. The choice

process is modeled as follows.

In the end of trading round t, first, an individual realized excess profit is computed as a

product of the holdings of the risky asset between trading rounds t − 1 and t and its excess

return

Ai,t−1

(
pt + yt − (1 + r) pt−1

)
. (6)

Notice that in the case of continuous trading the excess return is evaluated on the basis of

closing prices. We stress also that under order-driven protocols, realized position of agent

Ai,t−1 can differ from agents’ demand Ai,t−1(pt−1) due to possible rationing and/or difference

between quoted and transacted prices. More details will be provided later, when we discuss

the market protocols.

Having computed individual profits, the performances of fundamental and trend-following

forecasting rules, U1
t and U2

t , are defined as average profit earned by all the fundamentalists

and all the trend-followers, respectively. From (6) it is clear that performance of the rule is

an average position of the followers of this rule times the excess return. Thus, if the risky

asset has earned positive (negative) return, then performance of the group with larger average

possession of the asset is bigger (smaller).
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Finally, agent i chooses the predictor for which the following maximum is realized

max
(
U1

t − C + ξi,t; U
2
t + ζi,t

)
, (7)

where C is the cost of fundamental predictor, and ξi,t and ζi,t are independent over time and

among the agents random variables. The choice can be rewritten in terms of probabilities for

the special case of a Gumbel distribution of error terms. In this case individual i chooses the

predictors with discrete choice probabilities4

n1
t+1 =

exp
(
β(U1

t − C)
)

exp
(
β(U1

t − C)
)

+ exp
(
βU2

t

) , n2
t+1 = 1− n1

t+1 , (8)

with subscript indicating that these probabilities shape the population trading at period t+1.

Parameter β ≥ 0 is the intensity of choice measuring how sensitive agents are with respect to

the difference in past performances of two strategies. If the intensity of choice is infinite, the

traders always switch to the historically most successful strategy. On the opposite extreme,

β = 0, agents are equally distributed between different types independent of the past perfor-

mance. The intensity of choice β is inversely related to the variance of the noise terms ξi,t and

ζi,t.

The timing of our model is as follows. At the end of period t the average profit earned by

fundamentalists from their holdings between periods t−1 and t is computed and learned by all

the traders. Analogously, the average profit of trend-followers is learned. On the basis of these

two performances, at the beginning of period t agents independently choose their new types ac-

cording to the probabilities defined in (8). To make this procedure feasible, in our simulations,

we always assure that every forecasting type has at least one representative at any trading

round. If an independent random draw did not produce any fundamentalist/trend-follower, we

simply repeat the procedure until the population contain at least one fundamentalist/trend-

follower.

4Our specification of the error terms are common in the literature on the random utility models, see

Anderson et al. (1992). Implied probabilities are used to model a choice in a number of theoretical models

with different range of application, see e.g. Brock (1993), Brock and Hommes (1997), Camerer and Ho (1999)

and Weisbuch et al. (2000).
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At the same time the demand functions for every type is computed on the basis of past

prices by plugging the expectation rules (4) and (5) into the demand equation (3). Now, when

the types are determined and demands are computed, the excess demand for every agent can

be found and trading session t + 1 starts. Then, under the BA and the OB, which are the

order-driven protocols, every agent is allowed to submit only one order per period, which is

a point from the excess demand curve.5 Furthermore, in the OB market, where intra-session

trade is sequential, the sequence in which agents enter the market is relevant for the outcome

of trade. To control for this effect, we assume that in each period agents enter the market in

a random order, independently distributed over the time. To the end of the trading session

agents have fixed their profits for the holdings between periods t and t + 1, and have their

portfolio updated. The price pt+1 is defined according to the trading mechanism.

3 Walrasian Market Clearing and Large Market Limit

Let us first discuss the implications on the price dynamics of our behavioral assumptions of

the heterogeneity in expectations and agents’ adaptivity. For this purpose we consider the

simplest way of clearing market, assuming that at every period it is in temporary Walrasian

equilibrium with demand equal to supply.

Thus out first mechanism, Walrasian protocol (WA), assumes that at time t every agent

submits the excess demand function ∆Ai,t(p), which is the difference between demand Ai,t

defined in (3) and the current position of the investor in the risky asset, Ai,t−1. The price of

the risky asset is determined from the market clearing condition
∑

i ∆Ai,t(p) = 0. Since the

demand function in (3) is strictly decreasing, there exists a unique equilibrium price, which

we denote as pt.

In this paper we concentrate on a special case of zero outside supply of the shares of the

risky asset.6 The pricing equation becomes
∑

i Ai,t(pt) = 0, which we now rewrite in deviations

5It implies that the WA can be viewed as a limit version of the BA when the number of orders per agent

is infinite.
6Model in Brock and Hommes (1998) is solved under the same assumption. As they show, this assumption
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from fundamental price, xt = pt − pf . Furthermore, we normalize the risk aversion coefficient

so that aσ2 = 1. Using (3), (4) and (5), the price deviation from pf at time t is given by

xt =
1

R N

N∑
i=1

(
v xt−1 I1

i,t +
(
xt−1 + g(xt−1 − xt−2)

)
I2
i,t

)
, (9)

where for h ∈ {1, 2} index function Ih
i,t is equal to 1 if agent i forms at time t expectation

Eh
t [pt+1], and it is equal to 0, otherwise.

Pricing equation (9) shows that the market price is a discounted sum of individual ex-

pectations. For instance, if price was on the fundamental level during the last two periods,

both fundamentalists and trend-followers expect no deviation, so that the realized price will

be indeed equal to pf . If, instead, the asset was equally overestimated during the last two pe-

riods (xt−1 = xt−2 > 0), trend-followers will expect no change in price, while fundamentalists

with v < 1 will expect a price correction. As a result, price will move in the direction of the

fundamental level. Its exact value will depend on the relative number of fundamentalists.7

Let us turn now to the question of how the relative number of fundamentalists and trend-

followers is determined. The setting with the WA clearing is also the simplest in this respect.

Indeed, the agents’ demands are always satisfied in such a market. Therefore, at any given

period the positions of all the agents with a given forecast are the same, as well as the realized

excess profits (6). The performance measures of fundamentalists and trend-followers are then

given by

U1
t =

(
v xt−2 −R xt−1

) (
xt −R xt−1 + δt

)
(10)

and

U2
t =

(
xt−2 + g (xt−2 − xt−3)−R xt−1

) (
xt −R xt−1 + δt

)
, (11)

respectively. Random term δt = yt − ȳ represents the shock due to the dividend realization.

can be made without lose of generality, since positive supply case is equivalent to a re-definition of the dividends.

Hommes et al. (2005) consider the model with positive supply.
7Notice that the zero total supply of shares implies that the populations of fundamentalists and trend-

followers always take opposite positions. In the first example, both groups have zero amount of shares. In the

second example, fundamentalists are short and trend-followers are long in the risky asset.
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3.1 Large Market Limit

An important feature of our setting is that the dynamics under the WA can be studied by

means of the dynamical system theory in a special case, when the number of agents becomes

large. Indeed, for N →∞ the Law of Large Numbers guarantees a convergence of the actual

fractions of fundamentalists and trend-followers, which can be used in (9) to compute the

price, to the probabilities defined in (8). The model is described then by one equation of the

fourth order (or, equivalently by the 4-dimensional system) consisting of the market clearing

equation coupled with an update of the fractions of fundamentalists (which we will denote

simply as nt omitting the superscript)

xt+1 =
1

R

(
vxt nt+1 +

(
xt + g(xt − xt−1)

)
(1− nt+1)

)
+ εt+1

nt+1 = exp
(
β
[(

v xt−2 −R xt−1

) (
xt −R xt−1 + δt

)
− C

])/
Zt+1 ,

(12)

where normalization factor Zt+1 = exp
(
β(U1

t − C)
)

+ exp
(
βU2

t

)
with performance measure

of fundamentalists (10) and performance measure of trend-followers (11). Dynamics in (12)

is stochastic and there are two sources of noise. First source is the dividend realizations δt

entering the performance measure. Second term, εt+1, was added to the pricing equation to

represent the dynamic noise. When both of these terms are zeros, the corresponding system

is deterministic and the following result takes place.

Proposition 3.1. Consider system (12) with δt = 0, i.e. when yt = ȳ and with εt = 0. This

system has a unique steady-state with x∗ = 0 and n∗ = e−βC/(1 + e−βC).

(i) For g ≤ R, this steady-state is locally stable.

(ii) For g > R, this steady-state is locally stable for β < β∗ = ln
(
(g − R)/R

)
/C. When

β = β∗ the steady-state exhibits the Neimark-Sacker bifurcation, and for β > β∗ it is

locally unstable.

Proof. From the first equation of (12), one gets that in an equilibrium, it is R x∗ = vx∗ n∗ +

x∗ (1 − n∗). Since v < 1 and the fraction of fundamentalists n∗ should belong to the inter-

val [0, 1], this equation has a unique solution x∗ = 0. Substituting zero deviation into the

performance measure, we derive n∗ = e−βC/(1 + e−βC).
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To derive the stability conditions, the Jacobian matrix of the system should be computed.

Substituting the second equation of (12) into the first and introducing the lagged variables,

the Jacobian matrix in the fundamental equilibrium reads:

J =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

(
(v − 1− g)n∗ + 1 + g

)
/R g(n∗ − 1)/R 0 0

1 0 0 0

0 1 0 0

0 0 1 0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.

This matrix has two zero eigenvalues, while two others are derived from 2 × 2 matrix with

trace T =
(
(v−1−g)n∗+1+g

)
/R and determinant D = g(1−n∗)/R. Standard conditions for

eigenvalues of this matrix to be insider the unit circle are D < 1, T < D +1 and T > −D− 1.

The last two conditions are always satisfied, while the first is simplified to n∗ > 1 − R/g.

When g ≤ R, this is also satisfied and the fundamental steady-state is locally stable. If

g > R, the bifurcation value is a solution of e−βC/(1 + e−βC) = 1−R/g, which gives result of

Proposition 3.1(ii).

The only steady-state of system (12) is “fundamental”, with price staying on the level pf ,

implying deviation x∗ = 0. In this situation both forecasting rules give correct predictions, but

fundamentalists have to pay positive cost C. Consequently, they have smaller relative share

than the trend-followers: n∗ < 0.5. With growing β, the equilibrium fraction of trend-followers

increases. When the trend-followers extrapolate weakly (0 < g < 1 + r), the fundamental

steady state is stable. When they extrapolate strongly (g > 1 + r), the fundamental steady-

state is stable for small β and unstable for high β. When β crosses its critical value, the

stable quasi-cyclic attractor is created through the Neimark-Sacker bifurcation. Notice that

the bifurcation value of β does not depend on the value of parameter v in the fundamentalists’

forecasting rule.

Qualitatively, Proposition 3.1 implies that depending on the intensity of choice market

dynamics can be in one of two regimes: tranquil, with price staying on the fundamental level,

and volatile, with systematic large deviations from it. In the first regime there is no excess
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Figure 1: Bifurcation diagrams for the Walrasian model in the limit N → ∞. For each

β ∈ (0, 12), 300 points after 10000 transitory periods are shown. Left panel: Neimark-Sacker

bifurcation of fundamental steady-state. Parameters are: r = 0.1, ȳ = 10, v = 0.1, g = 1.2 and

C = 1. Right panel: Phase portrait of the system in coordinates (pt, pt−1). Quasi-periodic

cycle coexists with fundamental steady-state. The same parameters as in the left panel with

β = 2.3.

volatility in price and the trading volume is zero. In the second regime periods of overvaluation

of the asset are followed by the periods of its undervaluation, and price exhibits bubbles and

crashes with positive trading volume and excess volatility. Coexistence of two regimes and

its dependence from simple behavioral parameter, makes the case of strong extrapolation

especially interesting.8 Benchmark parameters r = 0.1 and g = 1.2 of our simulation are

chosen to guarantee the coexistence of two regimes, since we are interested in the dependence

of “bifurcation scenario” on the market architecture. Other parameters are set to ȳ = 10,

implying fundamental price pf = 100, and C = 1. The precise values of both of them are not

important for qualitative behavior. Finally, we choose v = 0.1, implying that fundamentalists

expect very small deviation from fundamental value. Again, the precise value of v is not

important. However, as our simulations show, parameter v must be small enough in order the

price dynamics to be bounded.

8Similar regimes were identified in simulations of Santa Fe artificial market model of Arthur et al. (1997),

and analytical treatment in Brock and Hommes (1998).
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The results of Proposition 3.1 are illustrated for these benchmark parameters in Fig. 1.

The left panel shows a bifurcation diagram, where for each β ∈ (0, 12) we simulate the long-run

behavior of price. In accordance with our result for any β < β∗ ≈ 2.398 the price converges

to the fundamental price p∗. When the intensity of choice increases to β∗ the fundamental

equilibrium loses stability, and a stable quasi-periodic cycle around p∗ is created. In the

volatile regime, the price dynamics is fluctuating around p∗. The bifurcation diagram shows

that the amplitude of these fluctuations slightly increases with the intensity of choice.

An interesting feature of the model is not captured by the bifurcation diagram and Propo-

sition 3.1. The right panel of Fig. 1 illustrates that a stable quasi-periodic cycle exists in the

model even for β = 2.3 which is less than β∗. Numerical analysis of the system shows that the

fundamental steady state is globally stable for β < β∗∗ = 2.23. Then, when the intensity of

choice belongs to the interval [β∗∗, β∗], locally stable fundamental steady-state coexists with

a quasi-periodic attractor.9

Typical patterns of price and return dynamics for the volatile regime of the model (β = 5

in this example) are shown in Fig. 2. The deterministic simulation in the left panel shows that

in such regime, characterized by persistent deviations from the fundamental level, dynamics

repeatedly go through qualitatively similar phases. At the beginning of each phase price fluc-

tuates only slightly around fundamental value. With time, however, fluctuations are getting

wilder, but at a certain point the price stabilizes and exhibits only small oscillations. The

right panel shows the dynamics of the same model when both noise terms, random dividend

and dynamic noise, are added.

To get insight into economic explanation of the endogenous fluctuations, in Fig. 3 we

show a snapshot of the previous deterministic simulation for 23 periods. Dynamics of the

prices (top panel), of the fraction of fundamentalists (middle, in the log scale) and of the

excess return xt − R xt−1 (bottom) are shown. When price is close to the fundamental level

both fundamentalists and trend followers have similar return, but the former group pays a

9Such coexistence of attractors seems to be a consequence of a so-called Chenciner bifurcation, thoroughly

discussed in Gaunersdorfer et al. (2008) in a similar model.
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Figure 2: Price (left axis) and return (right axis) dynamics in the limit of Walrasian model.

The same parameters as in the left panel of Fig. 1 and β = 5. Left panel: Deterministic

dynamics. Right panel: Dynamics with random dividend and small dynamic noise. Both

noise terms are i.i.d. normal with standard deviation equal to 0.005.
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Figure 3: Dynamics in the limit of Walrasian model for the benchmarking values of parameters

and β = 5.

positive cost. The trend-followers then dominate the market and an upward price trend is

developed. Trend-followers hold the asset and fundamentalists sell short waiting for the price

correction. However, the short-term return of the asset is positive (due to the capital gain)

and the wealth of trend-followers increases. Between periods 76 and 79 their share grows.

This process ends because, on the one hand, the extrapolative expectations are not strong
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enough to sustain a trend, and, on the other hand, the asset is overvalued and the dividend

yield is low. As the fraction of fundamentalists grows, the price trend slows down, the excess

return becomes negative, and at period 81 trend is reverting. Self-fulfilling downward trend is

now developed and the fraction of the trend-followers increases again. However, as before, the

price extrapolation is not enough, and at period 91 the excess return becomes positive with

prices still below the fundamentals. It brings a high return to the fundamentalists who holds

the asset. This return overcomes positive costs, and the fraction of fundamentalists grows

almost to 1. It brings price to the fundamental level and story repeats itself.

To summarize, the special case of the Walrasian market with a large number of agents shows

that the model has a unique, fundamental steady-state. If the trend-followers extrapolate

strongly enough, this steady-state loses its stability when the intensity of choice increases.

Consequently, two different regimes are observed, tranquil and volatile. The second regime,

when the intensity of choice is high, is consistent with excess volatility. Will these two regimes

present in a market with alternative trading mechanism? How the critical value of intensity

of choice depend on the market trading rules? And how the properties of price dynamics are

affected by the mechanisms? These are the questions which we analyze below.

4 Market Mechanisms

A market mechanism is a well-defined procedure which transforms input from agents to the

output as price and quantity traded. There are numerous market mechanisms in a litera-

ture and reality, among which we take three stylized procedures. The model was simulated

separately for every mechanism and the results were compared.

4.1 Walrasian Auction

The implementation of Walrasian auction (WA) was described in the beginning of the previous

Section. Dynamics is given by the pricing equation (9), while the forecasting type of any trader

is determined by probabilities (8). Recall that the demand of agents are always satisfied
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under the WA implying that the performance measures are given by (10) and (11). The only

difference between the Large Market Limit analyzed in Section 3.1 and the WA simulations

reported below is the number of agents, which is infinite in the former case and finite in the

latter.

Simple but informative illustration of the WA is given in the left panel of Fig. 4. In this

example there are five fundamentalists and five trend-followers arriving to the market at time

t with initial endowments of zero shares of the risky asset (i.e. demand and excess demand

coincide for these agents). Let us assume that pt−2 < pt−1 = pf . Since fundamentalists forecast

price pf for the next period, they have net demand for pt < pf and net supply, otherwise. The

thin curves show individual demand (supply) schedules of fundamentalists. Trend-followers

expect that prices will be raising, so that they have net demand for pt < p∗ and net supply

for pt > p∗ with some p∗ > pf . The dashed lines show individual demand (supply) schedules

for trend-followers. All individual demand and supply have the same slope, R, in absolute

value. To obtain the aggregate curves one has to sum up individual schedules for every given

price, i.e. horizontally. When price is inside the interval [pf , p∗] all the demand is generated

by the trend-followers and all the supply is generated by the fundamentalists. Summation of

five corresponding curves gives the aggregate demand and aggregate supply both shown as

thick curves. When price is below pf , all ten agents want to buy. Thus, the aggregate supply

is zero, while the aggregate demand curve has a kink at price pf . Analogously, the aggregate

demand is zero above p∗ and the aggregate supply curve has a kink at price p∗.

The aggregate demand and the aggregate supply curves intersect in the point labeled

“WA”, whose ordinate is the equilibrium price and abscissa is the equilibrium quantity under

Walrasian market-clearing. All the agents trade their respective quantity on the equilibrium

price. Notice that in this example, the equilibrium price is on the half way between pf and p∗,

which are “no-trade” prices for the two forecasting types. Other distribution of agents among

types would lead to different outcome. It is geometrically clear from Fig. 4 that when agents

with one forecasting type are outnumbered by the agents of another type, then equilibrium

price is closer to the no-trade price of this dominating type, while the equilibrium volume is
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Figure 4: Comparison of different market-clearing mechanisms. Left panel: Walrasian price

and quantity are found as intersections of the aggregate demand and supply schedules (thick)

built starting from the individual curves. Right panel: Batch auction compared with Wal-

rasian auction.

smaller than under equal type distribution.

4.2 Batch Auction

Under the batch auction (BA) agent i submits at time t one limit order, which is a price/quantity

combination (pi,t, qi,t). When the ordered quantity is positive (negative), the order is of a buy

(sell) type. The price in the limit order defines the largest (smallest) price accepted to the

submitter for execution of the buy (sell) order.

To make a comparison between the BA and the WA meaningful, we will require that agents

submit those price/quantity combinations, which belong to their demand or supply schedules.

We use simple strategic considerations to determine the price in the order generation process.

Namely, we assume that the price of the limit order pi,t of agent i is determined as a random

draw from a normal distribution with mean pt−1, the price of the previous trading session,

and standard deviation σo. The realizations are independent over time and agents. Under

this price selection rule an agent reasonably believes that there is a high chance that her order

will be executed at a price which is close to the last closing price pt−1. The larger is the

deviation from this price, the higher may be potential gains from the trade, but the lower
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is the likelihood of such an order execution. Therefore, only in rare occasions an agent will

experiment with an order priced considerably far from the previous closing price pt−1
10.

Given price pi,t, the desired quantity is computed as

qi,t(pi,t) = Ai,t(pi,t)− Ai,t−1 , (13)

where the first term in the right hand-side is a point from the demand curve (3), while Ai,t−1

is a current holding of the risky asset.

All N orders are submitted simultaneously. Then, all the limit buy orders are sorted

such that their price sequence is decreasing. It gives us a step-level market demand curve.

Analogously, the limit sell orders are sorted so that their price is increasing to define a step-

level market supply curve. The price pt is determined as an intersection of constructed demand

and supply curves (or the midpoint of the interval between the lowest and the highest clearing

price, if there are multiple intersections). In those cases when demand and supply curves do

not intersect, price pt is set to the price of previous period, pt−1. The corresponding quantities

are traded on this price between those agents who submitted bids (asks) no lower (no higher)

than pt. Traders who submitted orders exactly at pt may be rationed accordingly, while all

the other traders do not trade at all and keep their previous portfolios.

In the right panel of Fig. 4 we use the previous example to construct the schedules for the

BA. For every agent one price was generated randomly around price pt−1 = pf and then the

corresponding individual demanded or supplied quantity was found. Sum of the quantities gave

two step curves whose intersection, labeled “BA”, determines equilibrium price and quantity.

Of course, the precise schedules depend on the particular random draw, but certain general

tendency can be seen from this example. Obviously, the quantity traded under BA is always

smaller than the quantity traded under WA, while the equilibrium price under the BA can be

both higher or smaller than under the WA.

In computation of time-t performance measures, notice that a number of traders did not

trade during time t − 1, so that their positions were left unchanged. Thus, their perfor-

10In the context of the OB, Farmer and Mike (2008) find that the shape of the actual distribution of prices

of submitted orders can be well approximated by Student t distribution around the best price
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mances are evaluated as Ai,t−2

(
pt + yt − (1 + r)pt−1

)
, which is an earned excess profit on

the old holdings. Instead, those traders who did trade (and were not rationed) changed

their positions on the basis of their submitted quantities. Their performance is then equal to

Ai,t−1(pi,t−1)
(
pt−1 + yt−1− (1+ r)pt−2

)
, and it is different from the performance under WA be-

cause the transactions happened not on the submitted price of bid, pi,t−1. The BA mechanism,

by its nature, introduces distortions in the individual agents performances.

4.3 Order Book

In the order-book market, there are many transactions during one trading session at time t.

Each agent can place only one buy or one sell order during the session. To make a reasonable

comparison with the BA, the order generation process is identical to the one described in

Section 4.2, while the sequence in which agents place their orders is determined randomly and

independent for different sessions.

During the session the market operates according to the following mechanism. There is

an electronic book containing unsatisfied agents’ buy and sell orders placed during current

trading session. When a new buy or sell order arrives to the market, it is checked against the

counter-side of the book. The order is partially or completely executed if it finds a match,

i.e. a counter-side order at requested or better price, starting from the best available price.

An unsatisfied order or its part is placed in the book. At the end of the session all unsatisfied

orders are removed from the book. The mechanisms for determining type of the order, its

price and quantity are equivalent to those described for the batch auction. Price pt is the

closing price of the session, i.e. the price of the last transaction.

In Fig. 5 we show a possible order book realization for the same limit orders as were

generated for the BA illustration in Fig. 4. The integer labels show the sequence in which the

buy/sell orders arrive, while different types of horizontal lines show which part of the order is

satisfied. Order 2 partially matches order 1 and after the corresponding transaction one sell

order (part of order 2) remains in the book. Then buy order 3 arrives, but its price is worse

than the best price in the book, thus it goes to the buy side of the book. Analogously, order
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4 is added to the sell part of the book, and order 5 is added to the buy side of the book.

Moreover, this order has the best price to buy at this moment. When order 6 arrives, first

it partially matches with order 5, and then its remaining part matches with order 3. Point

OB shows the outcome of the trade with the OB mechanism. The price pt is the price of

order 3, while the volume for the session is the total traded number of shares. Notice that

the flexibility of this trading mechanism allows larger traded volume than under the BA. At

the same time, the OB price pt is typically different from the BA price and may significantly

depend on the order in which transactions happen.

Agents’ performance measure is computed as in (6), but similarly to the BA mechanism

the agents’ position Ai,t−2 may be different from the agents’ demand Ai,t−2(pt−2). Contrary

to the BA case, however, the order in which agents arrive to the market is now important for

the outcome of trade, that is whether an agent is rationed or not.

5 Simulations and Results

We simulate the system with finite number of agents under different market mechanisms,

namely the WA, the BA and the OB mechanism 11. In all cases we keep the dividend constant

11The software for the simulation is written in C++ and is a modification of the YAFiMM package created

for Bottazzi et al. (2005). The YAFiMM package is publicly available at http://www.sssup.it/∼bottazzi
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Parameter Symbol Value (Range)

Intensity of choice β [0, 12]

Interest rate r 0.1

Mean dividend ȳ 10

Normalized risk-aversion aσ2 1.0

Trend-followers’ extrapolation g 1.2

Fundamentalists’ reversion v 0.1

Fundamentalists’ costs C 1.0

Stand. deviation of limit order price σo 3.0

Number of agents N 1000

Transient period Tr 2000

Table 1: Parameter values used in simulations.

and do not add any dynamic noise. While under these two assumptions in the LML with

Walrasian market clearing the system is deterministic, in the simulations with a finite number

of agents the amount of randomness will increase from one mechanism to another. With

the WA the system becomes stochastic since the realized fractions of fundamentalist and

trend-followers are no longer equal to their analytic probabilities. In the BA the amount of

stochasticity is higher due to the fact that agents choose a random points on their individual

demand schedules. In the OB mechanism the level of stochasticity is further increased by

random sequencing of order submissions.

The parameters that we use for the simulations are summarized in Table 1. The model

parameters are the same as we used in the analysis of the LML, when non-trivial and non-

divergent dynamics was generated. The behavioral parameter we mainly focus on is the

intensity of choice β. In all our simulations we set the number of agents N = 1000. This

number is high enough to obtain a dynamics close to the deterministic LML with WA. The

transient period is set to 2000 to avoid any transitory effects.

Before starting a detailed analysis of the stochastic system let us have a look on time series
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Figure 6: Dynamics of prices (left axis) and share of fundamentalists (right axis in the log-

scale) for β = 5 in WA, BA, OB and LML with model approximation error. In the latter

case the error is independently drawn from normal distribution with zero mean and standard

deviation σε = 0.3.

simulated from the model under different market mechanisms. In Fig. 6 we show the dynamics

of the price (upper part, left axis) and the share of fundamentalists (lower part, right axis)

for β = 5. Recall from Figs. 2 and 3 that for this level of the intensity of choice, the system

in the LML does not converge to the fundamental steady-state, but oscillates around it. The

top panel shows that under the WA the system behaves similarly to the deterministic LML

buffeted with small dynamic noise (cf. the right panel of Fig. 2). Under the BA (the second

panel from the top) and the OB (the third panel from the top) the dynamics is similar but

certain differences can be observed even by the naked eye.

First, the price deviations from the fundamental level have larger amplitude than under

the WA. Second, looking at the dynamics of the fraction of the fundamentalists in all three

markets, one can distinguish the two alternating phases in the dynamics, but these phases are

much more visible under the order-driven protocols than under the Walrasian market. These

phases are (1) stable ecology, when the fractions of fundamentalists/trend-followers in the
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market exhibit only moderate changes and (2) turbulent ecology, when every period a large

fraction of agents switch from one type to another. Third, under the OB this populational

dynamics translates into price dynamics and the observed phases of stable and turbulent

ecology correspond to the phases of small and large price oscillations, respectively. These

phases can be linked to the phenomenon of volatility clustering observed in the real financial

data. Under the BA the changes between small and large price fluctuations are not so abrupt.

Finally, we want to verify whether similar price behavior can be obtained by adding a

dynamic noise to the LML.12 In the bottom panel we add the Gaussian noise to the LML

dynamics given by the system (12). The standard deviation 0.3 is chosen to match the am-

plitude of the price fluctuations under the order-driven mechanisms. Contrary to the last two

mechanisms, we no longer observe clear-cut phases in the time series. Therefore, the random-

ness inherent to the order-driven market mechanisms distorts the price evolution differently

from simple dynamic noise.

5.1 Change of Market Regimes

Next, we investigate the interplay of agents behavior and market mechanism on price dynamics

in details.

Fig. 7 depicts the dependence of the stable distribution of prices on the intensity of choice

parameter β. The parameter β ranges from 0 to 12 with a linear step of 0.05 which gives

240 points in total. The distribution for each level of beta is represented by a gray-shade

coded histogram. Darker shades correspond to the areas of higher density. The histogram is

computed using price levels from 10000 periods after 2000 transient periods. A bifurcation in

the stochastic system corresponds to the qualitative changes in the stable distribution which

we attempt to identify graphically. In the case of the WA around the point β = 2.23, we

observe a dramatic increase in the variance of the distribution and an emergence of bimodal

distribution. Around this point of bifurcation the system transits from the tranquil regime to

12For instance, Gaunersdorfer and Hommes (2007) try to reproduce the “stylized facts” by adding the

dynamic noise to a similar deterministic model.
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Figure 7: Distribution of prices for different market mechanisms as a function of the intensity

of choice. A critical value of β (or range of the values) for which the change of market regime

happens is smaller for WA and larger for BA.

the volatile regime discussed in details in Section 3.1. The bifurcation is delayed for the BA

and occurs around β = 4. For the OB mechanism the bifurcation occurs for the value of β

higher then for the WA and lower then for the BA, around the point β = 3. For additional

evidence about the point of bifurcation under three different mechanisms see Fig. 8 (left panel)

which shows standard deviation of the price.

The delay in bifurcation observed for order-driven mechanisms can be explained by the

interplay between agents behavior and the characteristics of the mechanism. As we pointed

out in Section 2.2, the intensity of choice parameter β is inversely proportional to the level of

noise in the average performance of the forecasting rule (see Eq. 7). Thus, the higher level of

noise in the performance measure would correspond to the lower level of β. Recall also that

the performance measure is the average of individual performances taken over all the agents

using the same forecasting rule, and that the individual performances are computed on the
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basis of the agents’ holdings of the risky asset and the excess return of this asset as in 6. When

describing trading mechanisms in Section 4 we emphasized that the agents’ (excess) demands

are fully satisfied only under the WA. Under the BA and the OB mechanisms the agents’

demands are translated into orders, some of which may be rationed. Risky asset holdings of

the agents whose orders were rationed may be inconsistent with the chosen predictor resulting

in an inconsistent performance measure. This in turn will result in a higher level of noise in the

average performance measure of the strategy lowering the “effective” value of the intensity of

choice parameter β. The larger is the amount of rationed orders, the higher is the level of noise.

Note that the amount of rationed orders is larger under the BA than under the OB (see Fig. 5).

It suggests that the actual “bifurcation” level of β is higher under the BA mechanism than

under the OB mechanism, which is exactly what we observe in Fig. 7. Additional evidence of

the amount of rationed orders under the order-driven mechanisms is provided in Fig. 8 (right

panel) where we report an average traded volume of the risky asset.

Thus, in the Adaptive Belief Scheme, where heterogeneous agents choose their active fore-

casting rules on the basis of past performances, the order rationing inefficiencies introduced

by the order-driven mechanisms, lead to market stabilization in a sense of wider interval of the

intensity of choice parameter β for which the market is in the tranquil regime. It is, however,

important to keep in mind that in the volatile regime, when the intensity of choice is high

enough, the market fluctuations are larger in amplitude under the order-driven markets (see

Figs. 6 and 7).

5.2 Informational Efficiency

The Efficient Market Hypothesis postulates that in the efficient market the price should reflect

all available information about the asset value. In our setting with random i.i.d. dividend,

the fundamental value of the asset is simply discounted sum of all future expected dividends,

i.e. fundamental price pf . The informational efficiency is often measured by comparing the

volatility of the observed price with the volatility of the fundamental dividend process (see

Shiller, 1981). To abstract from an effect of time-varying dividend in our model we keep
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Figure 8: Two measures of market information in-efficiency for different market mechanisms

as a function of the intensity of choice β. Left panel: Standard deviation of price. Right

panel: Traded volume.

the dividend process constant. Under this assumption the Efficient Market Hypothesis would

predict constant price over time and zero trading volume. Therefore, price volatility and

trading volume can be used as measures of information efficiency.

In Fig. 8 we compare the standard deviation of the price (left panel) and the average traded

volume (right panel) under different values of β for three market mechanisms and the LML

with the Gaussian noise (σε = 0.3). As before, the intensity of choice parameter β varies from

0 to 12 with a linear step of 0.05 which gives 240 points of evaluation in total. As usually, we

ignore the first 2000 transitory steps and compute the standard deviation of the price and the

average traded volume over the next 1000 periods. To eliminate the dependence of our results

on a particular realization of random seed, we repeat this process for 100 random seeds and

report an average of the statistics of interest. Averaging over different random seeds accounts

for possible dependence of our results on initial conditions. We also compute 95% confidence

bounds for the reported averages. Given the length of the series and the large number of

random seeds the confidence bounds are very tights. For clarity, we do not plot them on the

figures, but they can be easily inferred from statistics variations for neighboring values of β.

The standard deviation of the price (Fig. 8, left panel) depends on both the intensity of

choice parameter β and the market mechanism. For β < 2 all of the mechanisms without added

30



dynamic noise have standard deviation close to zero. It rises rapidly at the point of bifurcation

and quickly converges to the level around 1.0 for WA, while for the BA and OR is continues to

grow with β and shows some signs of stabilization to the level of 4.0 and 4.5 respectively when

β > 11. The standard deviation for the OB is always higher then for the BA because of earlier

bifurcation and extra layer of stochasticity (order sequencing) specific for the OB mechanism.

The dynamic noise added to the LML is magnified from the initial level of σε = 0.3 to the

level increasing from 0.5 to 2.0 and stabilizing at the level of 2.0 when β > 4. The observed

volatility pattern for the LML with the dynamic noise is different from the pattern produced by

the order-driven mechanisms, which confirms that the time-series produced under the latter

could not be produced by adding dynamic noise to the analytic LML. Based on volatility

measure we conclude that information efficiency depends on both behavioral and institutional

assumptions. For β > 5 the WA provided the most informationally efficient outcome, followed

by the BA while the OB give the least informationally efficient outcome. However, when

2 < β < 5 the order-driven mechanism are superior to the WA.

The average traded volume (Fig. 8, right panel) also depends on the value of β. For

β < 2, when the price is very close to the fundamental, the average traded volume is 0 for

all mechanisms besides LML with the dynamic noise. The dynamic noise added to the LML

creates very high level of volume which slowly levels off with β increasing, which as before is

in sharp contrast with the patterns produced by the order-driven mechanisms. For β > 2.3

the traded volume is always higher for the WA, which is followed by the OB and the BA.

The reason for lower volume is the order rationing which is higher for the BA than for the

OB (see Fig. 5). Interestingly, the average traded volume decreases in β, for β > 5. For large

values of β the fraction one type of agents is much larger than the fraction of the other type,

which leads to the lower volume as explained in details in Section 4.1.

In this Section we showed that in the volatile regime, i.e. when the intensity of choice is

large enough, the order-driven markets are less informationally efficient from the point of view

of price volatility, but more efficient in the sense that they lead to smaller trading volume.

Of course, these measures of information efficiency should be interpreted with some care. For
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Figure 9: Allocative efficiency loss for different market mechanisms as a function of the inten-

sity of choice β.

example, smaller traded volume in a market with rich endogenous dynamics can be a sign of

lesser efficiency. Finally, notice that in their model of heterogeneous agents with fixed fractions

Bottazzi et al. (2005) find similar results.

5.3 Allocative Efficiency

The main purpose of any trading mechanism is an efficient allocation of resources, that is an

allocation which fully satisfies agents’ demands at a realized price. By construction the WA

always achieves an efficient allocation. For more realistic trading mechanism such as the BA

and the OB, an efficient allocation is not necessarily guaranteed. Following Bottazzi et al.

(2005) we define a measure of allocative efficiency loss, Li,t:

Li,t = 1− 1

1 + |Ai,t(pt)− Ai,t| pt

, (14)

where Ai,t(pt) is a desired amount of risky asset, i.e. a point on the demand schedule of agent

i at closing price pt of the period, and Ai,t is the realized holding of the risky asset of agent

i at the end of period t. By construction the measure is always between 0 and 1. Obviously

under the WA the (excess) demands of the agents are fully satisfied and Li,t = 0.

Fig. 9 shows the measure of allocative efficiency loss averaged across 1000 agents as a

function of the intensity of choice β for the BA and the OB mechanisms. As before we take
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an average over 1000 time periods after the 2000 transitory periods which is averaged again

over 100 random seeds. Consistently with our previous result we observe that the allocative

efficiency loss depends on β. Before the bifurcation point the inefficiency is lower since we are

close the the fundamental price and agents’ demands are relatively small. After the bifurcation

the price amplitude increases which translates into larger demands and the allocative efficiency

loss increases. For β > 5 the allocative efficiency loss stabilizes at the level close to 0.85 for

both order-driven mechanism and then slowly levels off. This small increase in efficiency

is again explained by the higher concentration of price distribution in the neighborhood of

fundamental price for larger values of the intensity of choice.

The allocative efficiency of the two order-driven mechanisms is exactly the same for a

given β > 5. While the effect of the order rationing is more pronounced under the BA, the

OB produces higher price deviations. Apparently both effects are of the same magnitude in

terms of an influence on the allocative efficiency loss. Similarly to Bottazzi et al. (2005), in

our model the precise implementation of the clearing system on the order-driven market does

not affect the allocative efficiency.

5.4 Time Series Properties

We compare the times series of the price returns generated under different market mechanisms

through the prism of “stylized facts” established in the literature that was shortly discussed

in the Introduction. The returns are defined as rt = (pt − pt−1)/pt−1, i.e. as relative price

changes. All the statistics were computed over 1000 periods after 2000 transient and averaged

over 100 random seeds.

The returns averages over time are close to zero for all three mechanisms and for all

considered values of β. Similarly, the skewness of return, which measures the asymmetry of

the distribution is close to zero for all mechanisms and all β. Both these statistics are in

agreement with real data. In discussing other statistics, notice that in the tranquil regime

under the WA, the price dynamics converge to the fundamental level, so that the higher order

statistics are not defined.
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Figure 10: Time-series properties as a function of the intensity of choice β. Left panel:

Excess kurtosis of the return distribution. Right panel: Autocorrelation of returns.

Comparison of the empirical return distributions with the normal distribution reveals that

in the real markets returns exhibit a higher concentration around the mean and also the fatter

tails. These properties of the distribution can be measured by excess kurtosis with respect to

the kurtosis of the normal distribution, which is equal to 3. We find that the (excess) kurtosis

of returns (see the left panel of Fig. 10) depends both on the value of the intensity of choice

and on the market clearing mechanism. With increase of β, when it reaches the critical value

of the market regime change, the kurtosis drops sharply, then it grows monotonically and then

levels off converging to the relatively stable level. Close to the point of the regime change,

the kurtosis is the highest under the BA and the lowest under the WA. For higher values of

the intensity of choice, under all three mechanisms the kurtosis converges to the value similar

to the one observed for the S&P 500 Index, which is 8.5 according to Gaunersdorfer and

Hommes (2007). The dependence of kurtosis on behavioral parameters is in sharp contrast to

the conclusions of Bottazzi et al. (2005) who find that skewness and kurtosis values depend

only on market mechanism.

Linear unpredictability of the stock returns is another well-established regularity. It is

usually verified by computing the autocorrelations of returns, which die out fast for the real

data being insignificant already on the first lag. In the right panel of Fig. 10, we show

the autocorrelations of returns for the first five lags as a function of the intensity of choice
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Figure 11: Autocorrelations of squared returns. Left panel: Autocorrelations for lags 1− 5

(top to bottom) as a function of the intensity of choice β and Right panel: Autocorrelation

function for lags 1− 20 for fixed β = 8.0.

for all three mechanisms. In all cases we observe relatively large autocorrelations for the

lags 1 − 3 which is in contrast to the stylized facts. Relatively large autocorrelations of the

returns produced by the model are the consequence of our behavioral assumptions, and, in

particular, of the dominating trend-following behavior. Even if the modeling of a more realistic

market architecture cannot “kill” the autocorrelations completely, it contributes to a certain

improvement in the statistics. Indeed, conditional that the market is in the volatile regime, the

autocorrelations are the largest under the WA.13 Bottazzi et al. (2005) do not find conclusive

evidence about the sign and magnitude of the autocorrelations of returns produced by their

model, but indicate that they also significant on the first few lags.

Finally, we turn to the volatility clustering universally observed in the data. Volatility

clustering, which suggests that despite the linear unpredictability of returns, they are not

independent, can be identified as a presence of significant autocorrelations in the squared

returns for a number of lags. In the left panel of Fig. 11 we show the autocorrelations of squared

returns for lags 1−5 (top to bottom) as a function of β. One immediately observes not only an

13The returns autocorrelations can be lowered to the zero level by adding a sufficiently large amount of

dynamic noise, see e.g. Gaunersdorfer and Hommes (2007). Since it comes in a cost of understanding the

dynamics of the model, we do not follow this tempting path.
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expected dependence on the intensity of choice parameter β, but also a significant dependence

on the market architecture. Namely, under both order-driven protocols the autocorrelations

of the squared returns are always positive and relatively large. They decay slowly, which is

consistent with the volatility clustering. In turn for the WA the autocorrelations of squared

returns are generally close to zero or even negative.

To verify whether the squared returns generated by our model exhibit long memory, in

the right panel of Fig. 11 we plot the autocorrelation function for the fixed value of β = 8 for

three different mechanisms. The thin lines indicate 0.95 confidence limits. For the BA and

the OB the squared returns show positive slow decaying correlation, while under the WA the

auto-correlations are small and their pattern is atypical for financial series. We conclude that

in our model the realistic patterns of volatility clustering can be attributed to the realistic

order-driven mechanisms. Similarly Bottazzi et al. (2005) find volatility clustering and long

memory of squared returns under the BA and the OB mechanisms.

6 Conclusion

Simulations presented in this paper contribute to the analysis of the interplay between be-

havioral ecologies of markets with heterogeneous traders and institutional market settings.

We motivated our work by a presence of many regularities observed in financial markets and

different approaches which economists exploit for explanation of them. However, since the

dynamics of financial market is an outcome of a complicated interrelation between behavioral

patterns and underlying market mechanism, we offer a route in between, starting with simple,

analytically tractable model based on flexible behavioral assumptions and simulating it for a

more realistic market setting.

Our gradual approach of introducing different market mechanisms in the market with

heterogeneous agents was inspired by the work of Bottazzi et al. (2005). As opposed to our

set-up, in their model agents did not change their strategies over time. As a result, Bottazzi

et al. (2005) suggest that the time series properties are largely driven by market architecture.
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We, however, clearly see that certain behavioral features are also important. In our model, no

matter which type of market clearing is used, two different regimes with completely different

dynamical properties occur depending on the value of the intensity of choice. On the other

hand, trading protocol strongly affects the critical value of the intensity of choice, playing

the role of the border line between two regimes. Furthermore, provided that the market is in

volatile regime, the trading protocol also dictates the time series property.

We have also investigated an allocative efficiency of the market. The seminal paper of Gode

and Sunder (1993) suggests that the continuous double auction leads to an allocatively efficient

outcome even when agents trade at random. LiCalzi and Pellizzari (2007) explore this line

of research and compare performances of four market protocols in terms of different criteria

such as the time needed to converge to the equilibrium, traded volume and price volatility

generated during this convergence. Agents valuations, or so called environment, is fixed in

both paper. We consider a dynamic model with ever-changing environment, and find in this

setting that there is simply not enough time to converge to an allocative efficiency outcome

under the order- driven mechanisms. We find that the allocative efficiency loss is comparable

for both mechanisms.

For better understanding of causal effects we keep our current model as parsimonious as

possible. There is a number of extentions to the model that we consider in the future research.

First, we plan to investigate the role of market orders in the order-driven protocols. Then

we wish to increase the level of strategic behaviour in selecting the price level for the limit

orders and also in choosing between the market order and the limit order. In terms of the

market setup, we would like to consider the situation when the dividends are paid not every

period, but only after a certain number of periods. It would also be interesting to consider

an exogenous news arrival process. On the behavioural side, we would to extend the number

of trading rules, and allow our trend-followers to learn the coeffcient of extrapolation and

fundametalists to learn the coefficient of reversion.
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