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Abstract: The Moulin-Shenker rule (Sprumont (1998)) is a nonlinear solution
concept for solving heterogeneous cost sharing problems. The first part of the paper
shows an axiomatic characterization of this solution using bounds on cost shares
and consistency. The second part is devoted to differential games for heterogeneous
production problems. It is shown for 2-player games that by an appropriate choice
of the game dynamics there is essentially a unique Markov perfect Nash equilibrium.
An axiomatic analysis follows for the appropriate game dynamics, which leads in
turn to a strategic characterization of the Moulin-Shenker rule.
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1. Introduction

This paper focuses on the problem of allocating the cost of usage of a production facility
for several outputs that is jointly owned by a fixed group of agents. Each output of the
technology is personal in the sense that each of the agents is interested in a different good.
A cost function c summarizes the relation between the level of the outputs and the min-
imal (monetary) input that is needed to generate this level. Given a profile of individual
demands (q1, q2, . . . , qn), qi being a real number indicating the demand of agent i for good
i, we seek to distribute total costs c(q1, q2, . . . , qn). The more eligible devices will be sen-
sible to the level of individual demands and the cost structure. The vast majority of the
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literature on heterogeneous cost sharing problems encompasses the study of so-called addi-
tive mechanisms, i.e., mechanisms that behave as linear operators with respect to the cost
structure. Examples include the Aumann-Shapley mechanism (Aumann-Shapley (1974),
Billera and Heath (1982)), Shapley-Shubik mechanism (Shubik (1962)), and the more re-
cent Friedman-Moulin mechanism (Friedman and Moulin (1999), Yanovskaya (2004))).2

Examples of non-additive solutions for heterogeneous cost sharing problems are the are
the ordinal proportional rule (Sprumont (1998)) the ordinally proportional rule (Sprumont
(1998)), the radial serial rule (Koster et al. (1998)), and the Moulin-Shenker mechanism
(Sprumont (1998)). The above cost sharing mechanisms are generalizations of mechanisms
on the class of single-good or homogeneous cost sharing problems, where full comparison
of the different units of the goods is legitimate, if not compelling. In this sense, the
Aumann-Shapley mechanism and the ordinal proportional mechanism extend the average
cost sharing mechanism (Moulin and Shenker (1994)), whereas the radial serial rule and
the Moulin-Shenker mechanism generalize the serial cost sharing mechanism (Moulin and
Shenker (1992), Moulin (1996)). In this paper these serial extensions are of particular
interest.

The first part of the paper is devoted to an axiomatic characterization of the Moulin-
Shenker mechanism. This mechanism seems a special candidate in the class of solutions
that satisfy ordinality. This property, introduced by Sprumont (1998), requires from a
solution that it does not depend on conventions used to measure an agent’s demand. It
therefore requires from a solution that it is invariant against essentially any transformation
of measuring scales. Ordinality therefore represents a strengthening of the common prop-
erty of scale invariance, that requires invariance with respect to linear transformations of
scale. Examples of ordinal solutions are the Shapley-Shubik-, radial serial-, and Moulin-
Shenker mechanism. In this respect the strength of the axiom should be stressed: the
Aumann-Shapley mechanism is only scale invariant, and the Friedman-Moulin mechanism
not even that. Sprumont (1998) provides very compact characterization of the Moulin-
Shenker rule that does not include any notion of ordinality, but a property called serial
principle and the rather technical partial differentiability. The serial principle extends the
property independence of larger demands of the serial mechanism and seems to be the
most essential feature for serial cost sharing, by which the smaller agents are protected
against possibly excessive behavior of the larger demanders. However, partial differen-
tiability lacks any intuitive interpretation. This paper presents a characterization that
interchanges the serial principle with the similar self-consistency and avoids the differen-
tiability axiom by inclusion of the following axioms: (a) scale invariance, (b) continuity,
and (c) upperbound on cost shares. Continuity requires stability with respect to small
changes in demands, and the upperbound property declares a maximal solidarity level for
each agent in the sense that it determines a maximal price that an agent is willing to pay
based on the marginal costs that are actually faced.

The second part of the paper is devoted to a simple model of integral production and

2For further references see Moulin (2002) for an overview
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cost sharing through differential games. It is assumed that a benevolent planner designs
a game in which the agents are continuously required to state their interest in having
extra production or not. Then these demands are used as inputs for an underlying system
dynamics that describes how the production levels for the different goods change over
time: each agent gets his extra demanded units and pays for the corresponding additional
marginal cost. During the game the planner sees to it that each player is fully informed
about the state of the game. Then if no agent requests more units, the game ends. The
utility of an agent is non-decreasing in the level of good obtained and quasi-linear and
non-increasing in the corresponding cost share. Basically the planner may infuence the
outcome in the game by setting up a suitable combination of system dynamics and con-
trol spaces. This procedure mimicks the ’push the button’ idea underlying the serial cost
sharing rule for homogeneous technologies.3 It is assumed that the players use Markov
strategies, that is, each is endowed with a fullfledged action plan that consists of an ac-
tion in every contingency of the state of the game. A first result for two-player games
is that for certain rules of the game, i.e. for certain combinations of dynamics and con-
trol spaces, there exists always a unique Markov perfect Nash equilibrium. It is shown
that games can be defined such that the equilibrium trajectories are those underlying the
Friedman-Moulin- and Moulin-Shenker cost sharing mechanism. The second result shows
that the unique game dynamics that guarantees uniqueness of Markov perfect Nash equi-
librium, scale invariance in equilibrium and lowerbounds on equilibrium utilities, lead to
the Moulin-Shenker path as equilibrium trajectory. In particular, this shows the imple-
mentation of the Moulin-Shenker mechanism and a first strategic characterization of this
solution. Moreover, for homogeneous problems this result corresponds to the strategic
results of Moulin and Shenker (1992) as the equilibrium end-state in the dynamic pro-
duction game corresponds to the homogeneous equilibrium quantities of the serial cost
sharing mechanism.

Overview of the paper: Section 2 discusses the basic cost sharing model and formal
notation. Section 3 discusses the most important solutions and key properties in this
paper. Section 4 provides an axiomatic characterization of the Moulin-Shenker rule using
the properties in Section 3. Section 5 introduces the basic framework for dynamic pro-
duction games and discusses equilibrium properties for the special class of autonomous
games. Section 6 continues by characterizing the appropriate game dynamics which leads
to a characterization of the Moulin-Shenker equilibrium.

2. The cost sharing model

Throughout the paper we will concentrate on a fixed and finite group of agents N =
{1, 2, . . . , n}. The collective N jointly owns some production facility for some set of goods.
The output goods are personalized in the sense that there is at most one interested agent
for each output. So we can speak of the set of goods N , where good i ∈ N is identified

3See Moulin and Shenker (1992).
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with agent i ∈ N . A particular level of demanded output is then be described by a vector
q ∈ RN

+ , where the i-th coordinate qi is the demand of agent i for good i. The zero element
in RN

+ is denoted 0. Then the demand space is partially ordered by the natural ordering ≤.
For all q, q′ ∈ RN , q < q′ holds if and only if qj ≤ q′j for all j ∈ N with strict inequality for at
least one coordinate. Whenever qj < q′j for all j ∈ N then we write q � q′. For q1, q2 ∈ RN

let q1∨ q2, q1∧ q2 ∈ RN be defined by (q1∨ q2)i = max{q1i , q2i }, (q1∧ q2)i = min{q1i , q2i } for
i ∈ N . The power set of N is denoted by P(N). For q ∈ RN , S ∈ P(N), qS is the demand
profile obtained from q, where the demands of the players in N\S are set to 0. The
demand profile out of q ∈ RN

+ where the demand of a player i is interchanged with t ∈ R+

is denoted by (q−i, t). The unit simplex in RN is denoted ∆N :=
{
q ∈ RN

+ |
∑

i∈N qi = 1
}
,

and the Euclidean norm of a vector q ∈ RN
+ by ‖q‖.

We assume that all information about the costs involved with bringing production up
to a certain level is given by a cost function c : RN

+ → R+. In this paper we will only be
concerned with cost functions c that are continuously differentiable and increasing, i.e. if
x < y then c(x) < c(y). Moreover the partial derivatives of c, Dic, are supposed to be
Lipschitz continuous and bounded away from 0 and ∞, i.e. there are a(c), b(c) > 0 such
that for all x ∈ RN

+

(1) a(c) ≤ Dic(x) ≤ b(c) for all i ∈ N.
In addition there are no fixed costs, which amounts to the condition c(0) = 0. The class
of all such cost functions is denoted by C; C+ is the set of convex cost functions in C
and C++ ⊆ C+ consists of all strictly convex elements. A cost function c ∈ C is called
normalized if Dic(0) = 1 for all i ∈ N .

A cost sharing problem is an ordered pair (q, c) ∈ RN
+ × C. The class of all cost sharing

problems is denoted by G. A cost sharing rule or cost sharing mechanism is a mapping
µ : G → RN

+ associating to each cost sharing problem (q, c) an efficient vector of cost shares
µ(q, c) ∈ RN

+ , i.e.
∑

i∈N µi(q, c) = c(q).

3. Cost sharing mechanisms and properties

The basic distinction between the heterogeneous and homogeneous models is that in the
first one asymmetries in the cost function may arise. Most eligible cost sharing mechanisms
in the literature treat these asymmetries by relating an agents cost share to some measure-
ment of related marginal costs. For example, the Aumann-Shapley mechanism calculates
average marginal costs along the diagonal path towards the final production level. The
Friedman-Moulin serial extension determines cost shares for (q, c) through measuring the
marginal cost along the path γq defined by γq(t) = teN ∧ q for all t ∈ R+, such that agent
i ∈ N is charged

µfm
i (q, c) =

∫ ∞

0
Dic(γq(t))(γq)′i(t) dt.
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When the argument of γq is seen as a time parameter, it can be considered to describe a
real-time production process.

Now consider (q, c) ∈ G and the the system of partial differential equations

(2) Diγ(t) =


1

Dic(γ(t))
if t ≥ 0 and γi(t) < qi,

0 else.

It can be shown that there is a unique solution γq,c to these equalities such that γq,c(0) = 0.
Essentially, this is due to Lipschitz continuity of each 1/Dic together with condition (1), see
Coddington and Levinson (1955)).4 Needless to say that this curve γq,c heavily depends on
the demand profile q and the cost function c ∈ C. The solution γq,c can be interpreted as a
production device. Suppose that the intensity at which an agent i is served by means of the
plan γq,c at moment t is measured by the corresponding marginal costDic(γq,c(t))Diγ

q,c(t).
Then γq,c can be intuitively interpreted as a device by which goods are distributed with
equal intensity for those agents that are not fully served at t, since for those agents i,
it holds Dic(γq,c(t))Diγ

q,c(t) = 1. The Moulin-Shenker rule now charges agent i for the
marginal costs Dic along the production device γq,c in the cost sharing problem (q, c).

Definition 3.1 Let (q, c) ∈ G. The Moulin-Shenker rule µms determines the individual
cost shares by taking the integral of all marginal cost along the curve γq,c, which solves
the above system of differential equations (2). Then for all i ∈ N ,

(3) µms
i (q, c) =

∫ ∞

0
Dic(γq,c(s))Diγ

q,c(s)ds.

Example 3.2 Consider the cost sharing problem (q, c) with N = {1, 2}, q = (10, 10),
and c is the cost function on the block B = [0, (15, 15)] defined by c(t1, t2) = e2t1+t2 − 1.
In order to determine the cost shares µms

1 (q, c) en µms
2 (q, c) we first solve the differential

equation (2). We calculate the partial derivatives on B,

D1c(t1, t2) = 2e2t1+t2 = 2D2c(t1, t2) for all (t1, t2) ∈ B.
So according to γq,c, until one of the demands is reached, twice as much of good 2 is
produced relative to the production of good 1. So γq,c can be taken such that

γq,c(t) =
{

(t, 2t) if t ≤ 5,
(t, 10) for 5 < t ≤ 10.

Then this amounts to the cost shares
µms

2 (q, c) = 1
2c(γ

q,c(5)) = 1
2c(5, 10) = 1

2(e20 − 1),

µms
1 (q, c) = µms

2 (q, c) + c(γq,c(10))− c(γq,c(5)) = e30 − 1
2(e20 + 1).

4Just take K such that |Dic(x)−Dic(y) ≤ K‖x−y‖. Then |(Dic(x))−1−(Dic(y))−1| ≤ Ka(c)−2‖x−y‖.
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Sprumont (1998) argues that cost sharing mechanisms should not depend on conventions
used to measure the individual demands. This is expressed by the notion of ordinality,
that requires that a cost sharing mechanism is invariant under all ordinal transformations
of the cost sharing problem. For our purposes, we need only the more familiar and weaker
notion of scale invariance, which imposes independence of rescaling units of the measuring
scales. For instance, if the output of some good is measured by weight, scale invariance
tells us that the cost shares should not depend on the fact that we expressed the amounts
in kilos instead of tons. We like to stress the gap between ordinality and scale invariance:
ordinality requires also invariance with respect to all non-linear increasing transformations
of the measuring scales.

Definition 3.3 A function f : RN
+ → RN

+ is a positive linear transformation of scales
if there is α ∈ RN

++ such that f(y) = (α1y1, . . . , αnyn) for all y ∈ RN
+ . A cost sharing

mechanism µ is scale invariant (SI) if for all such mappings f and all cost sharing problems
(q, c) ∈ G it holds that µ(q, c) = µ(f(q), c ◦ f−1).

In the subsequent analysis a minimum stability from mechanisms is required, which is
formalized by continuity, that requires robustness of a rule with respect to small changes in
the data that is used to model the cost sharing problem. To be precise, small perturbations
of the demand profile should not result in large changes in the cost shares:

Definition 3.4 A cost sharing mechanism µ is continuous (CONT) if for all c ∈ C, the
mapping q 7→ µ(q, c) is continuous on RN

+ .

Unequal cost shares point at the fact that agents are not considered to be symmetric in
the cost sharing problem at hand. The size of a demand and the cost structure play an
essential role here. Intuitively it makes sense to judge a good more expensive than another
if the marginal costs of the first are higher than the other, always. The more eligible cost
sharing mechanisms are fully consistent with this idea in the sense that the cost share of
an agent increases with the corresponding marginal costs. In this way the marginal cost
functions are taken as benchmarks in judging asymmetries in cost sharing problems. If
this is taken as a starting point, one could ask to what extent cost shares should relate to
the marginal costs. This leads us to focus on the following property, that requires that an
agent never pays more than the related marginal cost function could support.

Definition 3.5 A cost sharing mechanism µ satisfies upperbound (UPP) if for all cost
sharing problems (q, c) ∈ G it holds that for all i ∈ N
(4) µi(q, c) ≤ qi max

y∈[0,q]
Dic(y).
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Note that the maximum over [0, q] exists by continuity of the partial derivatives. Bounds
on cost shares are also discussed in the literature on homogeneous literature, see e.g. Koster
(2002) and Hougaard and Petersen (2001).

Though UPP can be considered weak as a characterizing property, it is strong enough
to imply other more frequently used properties:

(1) UPP implies no exploitation, i.e. zero demanders pay nothing, since qi = 0 implies
that µi(q, c) ≤ maxy∈[0,q]Dic(y) = 0 and µi(q, c) ≥ 0.

(2) UPP implies linearity, i.e. for linear cost functions the cost shares of the agents are
linear in demand. To be more precise, if c ∈ C on [0, q] is given by c(y) =

∑
i∈N αiyi for

some α ∈ RN
++, then UPP implies µi(q, c) = αiqi for all i ∈ N . The next lemma essentially

shows that if a problem is almost linear, and even homogeneously so, then under UPP
the cost sharing mechanism behaves almost linearly. A proof is found in the appendix.

Lemma 3.6 Consider a cost sharing problem (q, c) ∈ G with Dic(0) = 1 for all i ∈ N .
Then for a cost sharing mechanism µ with the property UPP it holds that

(5) lim
t↓0

µi(teN , c)
c(teN )

=
1
|N |

where eN ∈ RN
+ is the vector with all coordinates 1.

In the next section, the Moulin-Shenker cost sharing mechanism will be singled out from
a class of cost sharing mechanisms that have the serial principle in common. The serial
principle prevents the smaller agent to get overexposed to the consequences of contingent
excessive behavior of other agents. This principle was formulated for the homogeneous
case by Moulin and Shenker (1992a) as independence of size of larger demands. The corre-
sponding formulation makes use of intercomparison of individual demands. But, typically,
the heterogeneous model case lacks a natural way of ordering demands such that they
can be compared in a direct way. Still, if a mechanism is singled out for some fairness
properties, then there is just one consistent way of comparing the demands, and that is
by comparing the size of the corresponding cost shares for the problem at hand. The
serial principle then urges that once the mechanism values the demand of an agent i lower
than that of agent j, any further increase of agent j’s demand should have no effect at
all on agent i’s cost share. This idea is due to Sprumont (1998). Formally, A cost shar-
ing mechanism satisfies the serial principle if for all cost sharing problems (q, c) ∈ G it
holds that for all i ∈ N and j ∈ N\{i} with µj(q, c) ≥ µi(q, c) it holds that for t ≥ qj ,
µi((q−j , t), c) = µi(q, c).

In general, though the names are quite suggestive, being a serial extension is not suf-
ficient for a method to satisfy the serial principle. The Friedman-Moulin rule illustrates
this distinction; it is a serial extension only.
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Note that in our setting the serial principle implies positivity, i.e. qi > 0 implies
µi(q, c) > 0 for all i ∈ N and all problems (q, c) ∈ G. For every non-positive mecha-
nism possibly free-riders enter the picture. Any increase of any agent’s demand causes a
rise of total cost, so the impact on total cost of any non-zero demander is considered to
be positive. Consequently, positivity can be considered as compelling for our purposes.

It is easily seen that for every positive cost sharing mechanism the content of (5) is
exactly rendered, for all normalized cost functions c ∈ C, by

(6) lim
t↓0

µi(teN , c)
µj(teN , c)

= 1 for all i, j ∈ N.

Moulin and Shenker (1992) discuss the property free lunch which combines a mild form
of justice with a weak form of consistency (see also Kolpin (1994) and Thomson (1990,
1995)). To generalize this idea we develop the notion of self-consistency. This notion
makes it possible to link outcomes for problems of different size.

Essentially, a cost sharing mechanism is used as an instrument of evaluation; the agent
with the larger cost share can be considered to have a larger demand. In this way, for a
problem (q, c), all the demands are equally valued by a cost sharing mechanism µ if and
only if µi(q, c) = µj(q, c) for all i, j ∈ N .

Fix a cost sharing problem (q, c) and a cost sharing mechanism µ. Suppose that we
provide all agents with equally valued parts of their demands; agent i gets di ≤ qi such
that µi(d, c) = µj(d, c) for all i, j ∈ N . Then the reduced cost sharing problem is defined
by the profile of unfulfilled demands q − d, and the cost data for any level of production
beyond d as is summarized by cd. Now self-consistency allows for determining the final
cost shares by independently solving the problems (d, c) and (q − d, cd) and taking the
sum over the corresponding outcomes.

In the same spirit we deal with those situations where there are some zero demanders.
It is reasonable to require that just their presence should have no effect on the allocation
of costs for the other agents. Suppose again that d is a demand profile smaller than q,
such that the non-zero demanders are equally evaluated by the mechanism µ. Then self-
consistency proposes µ(q, c)S = µ(d, c)S +µ(q− d, cd)S , where S is the set of the non-zero
demanders for q. So, if cost shares differ, then this is not due to the part of the problem
that the agents are equally charged for, but due to asymmetries in the related reduced
problem.

Definition 3.7 A cost sharing mechanism µ satisfies self-consistency (SCONS) if for all
cost sharing problems (q, c) ∈ G such that qN\S = 0N\S for some S ∈ P(N) and d ≤ q
such that µi(d, c) = µj(d, c) for all i, j ∈ S,

µ(q, c)S = µ(d, c)S + µ(q − d, cd)S .
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4. Characterization of the Moulin-Shenker rule

Next we will define the class of path generated cost sharing methods. The idea is in fact
adopted from Sprumont (1998), but notations are different.
For S ⊆ N a path in RS

+ is a continuous mapping π : R+ → RS
+ with π(0) = 0. The path π

is increasing if πi(t) < πi(t′) for all i ∈ S if only t < t′. In our setting, with the argument
of π thought of as being time, an increasing path may be considered as a program for
production. At time t an amount of good i equal to πi(t) units is produced for agent i.
Suppose that for each pair (d, c) ∈ G we have an increasing path πd,c,S for S such that for
each q ∈ RS

+ there is t ∈ R+ with πd,c,S(t) > q. Such a path will be considered to describe
a fictitious production plan for coalition S from level d ∈ RN

+ . Possibly such a plan will
depend on the exogenous information of costs that is summarized by c ∈ C.
Π is defined as the collection of all those paths, one for each triple (d, c, S) ∈ RN

+×C×P(N).
We will refer to Π as a path collection. A path collection Π defines for each cost sharing
problem (q, c) ∈ G a production plan, casu quo a path π for N in the following way.
We start at production level 0. Initially, we take the path for N , π0,c,N as a production
device, telling us for each moment in time what is produced for the individual agents. So
follow π0,c,N up to the earliest moment t1 that some agents M1 ⊆ N are satisfied, i.e.

π0,c,N
i (t1) = qi for all i ∈M1.

Define π on [0, t1] by π(t) = π0,c,N (t). Let d1 denote the total demand that is processed
so far, d1 = π(t1). Still, an agent i ∈ N\M1 needs qi − d1

i units of good i in order to be
satisfied. Next, we take πd1,c,N\M1 as the additional production plan for N\M1 until the
first moment t2 that some agents M2 ⊆ N\M1 are satisfied, i.e.

πd1,c,N\M1(t2) = qi − d1
i for all i ∈M2.

The definition of π is now completed up to moment t1 + t2 by

π(t+ t1) := d1 + (0M1 , π
d1,c,N\M1(t)) for all t ∈ (0, t2].

Let d2 = π(t1 + t2). Follow the production device πd2,c,N\(M1∪M2) until moment t3 where
the first agents M3 ⊆ N\(M1 ∪M2) are fulfilled with their remaining needs qM3 − d2

M3
.

Then define, for all t ∈ (0, t3],

π(t+ t1 + t2) = d2 + (0M1∪M2 , π
d2,c,N\(M1∪M2)(t)).

In this way we can go on and complete the definition of π. We just proceed by determining
time levels t4, t5, . . . and corresponding groups of agents M4,M5, . . . until the first moment
t1 + . . . + tk such that there are no remaining demanders, i.e. N\(M1 ∪ . . . ∪Mk) = ∅.
Note that π(t) = q when t > t1 + t2 + . . . + tk. We will say that π is the path for (q, c)
generated by Π.

Definition 4.1 The solution for the cost sharing problem (q, c) ∈ G generated by a path
collection Π is the vector µΠ(q, c) ∈ RN

+ defined as follows. Let π be the path for (q, c)
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generated by Π. Suppose that according to π agent i is satisfied at moment ti. Without
loss of generality, assume that ti ≤ tj whenever i ≤ j for all i, j ∈ N . We split the
successive cost increments c(π(ti+1))− c(π(ti)) equally among the agents requiring service
on the interval (ti, ti+1]. By assumption this is the set of agents {i+1, i+2, . . . , n}. Then
this boils down to µΠ

1 (q, c) = c(π(t1))
N as the cost share for agent 1, while the cost shares

for the other agents i ∈ N are inductively defined through

µΠ
i (q, c) = µΠ

i−1(q, c) +
c(π(ti))− c(π(ti−1))

n− i+ 1
.

By varying over all cost sharing problems in G this yields a cost sharing mechanism µΠ,
generated by the path collection Π.

We will also say that in the above definition the cost shares for the problem (q, c) are
generated by Π. Note that for a path generated method only the images of the paths
count, irrespective of the parametrization. Keeping this in mind, one should have no
problem with the following.

Lemma 4.2 Let f : RN
+ → RN be a linear transformation of measuring scales. Suppose

µ is a scale invariant cost sharing mechanism that is generated by a path collection
Π = {πd,c,S | (d, c, S) ∈ R × C × P(N)}. If the cost shares for (q, c) ∈ G are generated
by π, then the cost shares for (f−1(q), c ◦ f) are generated by f−1 ◦ π.

A simple but important observation is that each path generated method indeed satisfies
the serial principle. Sprumont (1998) proves the converse of this statement for all contin-
uous mechanisms. The next lemma is similar, its proof is rather lengthy postponed till
the appendix.

Lemma 4.3 A continuous cost sharing mechanism satisfies no exploitation and self con-
sistency only if it is generated by a collection of paths.

Especially, Lemma 4.3 shows that a continuous cost sharing mechanism with the properties
self consistency and no exploitation satisfies the serial principle. However, self consistency
is fundamentally different from the serial principle. For instance, it is easy to define path
generated cost sharing rules, that satisfy no exploitation and continuity and fail to obey
self consistency. Furthermore, splitting cost equally for all cost sharing problems defines
a self consistent rule that neither satisfies no exploitation nor the serial principle.

Fix a cost function c ∈ C. For each d ∈ RN
+ , let cd ∈ C be the cost function that relates

each increase of demand q after d to the corresponding incremental cost, i.e. cd(q) =
c(d+ q)− c(q) for all q ∈ RN . An ordered pair (d, S) ∈ RN

+ ×P(N) gives rise to a system
of differential equations like equation (2). Let γ : R+ → RN

+ be such that for all t ∈ R+

10



and all i ∈ S

(7) Diγ(t) =
1

Dicd(γ(t))
.

By the regularity assumptions on c this system has a unique solution, which we will
denote by γd,c,S . Then by varying over all triples (d, c, S) ∈ RN

+ × C × P(N) this gives
rise to a path collection Γ, which in turn generates the Moulin-Shenker rule. Note that
γd,c,S = γ0,cd,S for all (d, c, S) ∈ RN

+ × C × P(N).
Sprumont (1998) shows that among the class of all path generated methods there is only
one for which all partial derivatives with respect to the demand input exist, and that is
µms. Actually, it can be shown that µms is continuously differentiable.

We are now ready for the main result in this section.

Theorem 4.4 There is only one continuous, self consistent and scale invariant cost shar-
ing mechanism that satisfies no exploitation and equation (5), and that is the Moulin-
Shenker rule.

Corollary 4.5 There is only one continuous, self consistent and scale invariant cost
sharing mechanism that satisfies upperbounds, and that is the Moulin-Shenker rule.

Proof. This implied by Lemma 3.6.

At this point it is important to realize that the above proofs suffice for a full charac-
terization of µms on the classes G+ or G++. The basic operations that are used are linear
transforms which keep the nature of the problem intact.

5. Dynamic cost sharing games

For homogeneous good models there are results concerning cost sharing games – see
Moulin and Shenker (1992), Moulin (1996), Kolpin (1996). These games are all one-shot
games. For heterogeneous good models we present a cost sharing game using a differential
game, i.e., a dynamic game in continuous time. The agents are players in the dynamic
game whose actions influence a dynamical system that in turn determines a production
path. The game ends when no player has a request for additional production. Then each
obtains the corresponding end-state production level of his good and he has to pay for the
total of marginal costs along the production path.
We will make the following assumptions:

• The cost functions are chosen from C++.
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• Each agent is endowed with quasi-linear preferences over combinations of amounts
of good Yi and costs. Then these preferences are summarized by utility functions
{Hi}i∈N such that

Hi(qi, ci) = Fi(qi)− ci,

for some non-decreasing function Fi. Moreover, we will assume that Fi is dif-
ferentiable and concave, so that the function fi = F ′

i is continuous and non-
increasing. In particular, it is assumed that the preferences of the players are
time-independent.

The state of the game is described by a vector x(t) ∈ RN
+ which describes the total

production for each agent at time t; xi(t) is the amount of good Yi that has been produced
for agent i by time t. Suppose that x(t0) = x0 for some t0 ∈ R+. The non-decreasing path
t 7→ x(t) is finite if it locks in, i.e. there exists x ∈ RN

+ such that limt→∞ x(t) = x∗. Then
the utility of player i along such x is defined as

Ji(x) =
∫ ∞

t0
(fi(xi(t))−Dic(x(t))) ẋi(t) dt.

Define the profitable region for player i as the set Ri = {x ∈ R2
+

∣∣ fi(xi) ≥ Dic(x)}.
A strategy of a player i ∈ N in Γg,c(x0, t0) is a mapping ui that assigns to each pair
(x, t) ≥ (x0, t0) a real number ui(x, t) ∈ R from his set of feasible controls Ui(x, t, c) ⊆ R+.
Denote the set of all strategies of player i by Si, and let S = ×i∈NSi. Depending on the
state variable and the players’ control variables the system evolves via a set of differential
equations

(8) ẋ(t) = g(x(t), u(x(t), t), t), x(t0) = x0,

where the system dynamics g is defined as a mapping Ω → RN
+ with

Ω =
{
(x, u, t)

∣∣x ∈ X, t ∈ [t0,∞), u ∈ U(x, t, c)
}
.

Given the strategy profile u the corresponding utility for player i is defined as Ji(u) =
Ji(x), where x is the (unique) solution to (8). The tuple

(9) Γg,c(x0, t0) = 〈N, {Si}i∈N , {Ji}i∈N 〉

is referred to as a dynamic production game at (x0, t0). Then Γg,c(x0, t0) is seen as subgame
of Γg,c(0, 0). A game Γg,c(x0, t0) is called autonomous if gi(x, u, t) = ui for all i ∈ N and
where the strategy spaces are determined for c ∈ C via a Lipschitz-continuous function
hc : RN

+ → RN
+ such that the control spaces are given by Ui(x, t, c) = [0, hc

i (x)] for all
i ∈ N . Denote the family {hc}c∈C by h. We will subsequently be concerned with a fixed
h, and use Γh,c(x0, t0) to denote the autonomous game at (x0, t0) with cost function c and
control spaces that are determined by hc.
A strategy profile (ψ1, . . . , ψn) is called a Markovian Nash equilibrium for Γg,c(x0, t0) if for
all i ∈ N the corresponding objective function ui 7→ Ji((ψ−i, ui)) is maximized at ui = ψi.

12



In addition, the strategy profile (ψ1, . . . , ψn) is called a Markov perfect Nash equilibrium
for Γg,c(0, 0) if it induces a Markov Nash equilibrium for each subgame Γg,c(x0, t0).

Theorem 5.1 Take an autonomous game Γh,c(0, 0) = 〈{1, 2}, {S1, S2}, {J1,J2}〉 and
suppose that the system of differential equations specified by ẋ(t) = hc(x(t)) has a unique
solution for each initial value x(t0) = x0. Then Markov perfect equilibria in Γh,c(0, 0)
exist, and each is represented by the tuple (ψ1, ψ2)

(10) ψi(x, t) =
{
hc

i (x) if x ∈ Ri,
0 else.

Proof. Note that the proof is obvious in case fi(0) ≤ Dic(0) for some i. So assume that
the interior of R1 ∩ R2 is nonempty. The pair of strategies ψ = (ψ1, ψ2) ∈ S1 × S2

uniquely defines a path p∗ with some end-state x∗ in the boundary of R1 ∩ R2. By
assumption on h the end-state production quantities x∗i are reached by p∗ at times t∗1 and
t∗2 and p∗(t∗1 ∨ t∗2) = x∗ Since gi(x(t), u(x(t), t), t) = hc

i (x(t)) > 0 for each i the coordinate
mapping p∗i is strictly increasing on [0, t∗i ]. Suppose that player i adopts a strategy ϕi

instead of ψi and assume without loss of generality that the pair of strategies (ψ−i, ϕi)
leads to the solution path p̄. From (10) we conclude that p̄ has an end-state x̄ ∈ R. By
convexity of c and concavity of Fi, the equations Dic(x) = fi(xi) define xi as a decreasing
function wi of x−i, xi = wi(x−i). Then this yields in combination with (10) x̄i ≤ x∗i . A
graphical representation is given by Figure 1. Let t̄ be the unique solution to p∗i (t) = x̄i

and α : R+ → R+ such that p̄i(α(t)) = p∗i (t) for all t ∈ [0, t̄]. Then first of all

Ji(ψ1, ψ2) = Ji(p∗) = Fi(x∗i )−
∫ t∗i

0
Dic(p∗(t)) · (p∗)′i(t) dt

≥ Fi(x̄i)−
∫ t̄

0
Dic(p∗(t)) · (p∗)′i(t) dt

= Fi(x̄i)−
∫ t̄

0
Dic(p∗(t)) · (p̄ ◦ α)′i(t) dt

But then continue by using the stict convexity of c in order to obtain

Ji(ψ1, ψ2) > Fi(x̄i)−
∫ t̄

0
Dic(p̄ ◦ α(t)) · (p̄ ◦ α)′i(t) dt

= Ji(p̄ ◦ α) = Ji(p̄) = Ji(ψ−i, ϕi).

This shows basically that the optimal strategy of a player i is to choose his control
as high as possible on his profitable region Ri. A similar reasoning shows that in each
subgame the players perform optimally only when they play with maximal control levels.
By assumption on h a unique solution path for the system of differential equations with
arbitrary starting point is assured and the earlier reasoning applies here as well to show

13
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that the formula (10) specifies a Markov Nash equilibrium in the subgame. Finally, assume
that there is some equilibrium other than is specified by (10). Then there is a subgame
where some player i did not choose his controls maximal almost everywhere along the
equilibrium trajectory. The reasoning in the first part of the proof applies here as well in
order to show that i will increase his payoff in this particular subgame by increasing his
controls. Obviously, this contradicts the equilibrium property.

Example 5.2 Consider h = {hc}c∈C with hc
i (x) = 1/Dic(x). Then Theorem 5.1 shows

that in the corresponding Markov perfect Nash Equilibrium each player i chooses his
control equal to 1/Dic(x) as long as marginal costs for his good Yi are lower than marginal
profits. If the end-state is q∗, then in equilibrium each player pays µms(q∗, c). /

Example 5.3 Consider h = {hc}c∈C with hc(x) = eN . The corresponding equilibrium
specifies an equilibrium trajectory that equals the Friedman-Moulin path and if the end-
state is q∗ then the profile of cost shares for the players equals the Friedman-Moulin cost
shares. /

Remark The above theorem can significantly be generalized. For the game dynamics g we
only need to assume that for any c ∈ C++ it holds that the mapping ui 7→ g(x, (u−i, ui), t)
is monotonically increasing and Lipschitz continuous. Since in that case we can define
h̃c(x, t) = g(x, h(x, t), t) and start Theorem 5.1 with hc = h̃c.
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6. Designing the appropriate game dynamics

A benevolent planner may use a dynamic production game as a tool to solve the inte-
grated production and cost sharing problem. Theorem 5.1 points out that one way is to
restrict the control spaces of the agents, as they directly influence the equilibrium proper-
ties. In addition it should be the planners concern that the game rules are fair in the sense
that these constitute an idea of equity by which the players are granted equal ex ante op-
portunities. Basically, we aim at classifying dynamics that satisfy the following properties:

Equilibrium Utility Lowerbound (EUL)
Consider a Markovian Nash equilibrium ψ in the game Γh,c(x0, t0) with end-state x∗. Such
ψ is supposed to be cost-based, that is, the corresponding equilibrium utility should meet
the following lowerbound

Ji(ψ) ≥ Fi(x∗i )− Fi(x0
i )− (x∗i − x0

i ) · max
x∈[x0,x∗]

Dic(x).

Free disposal (FD)
Each agent may obtain any desired amount of his good by an appropriate choice of his
controls, independent from the other players’ strategies.

Scale invariance
Change of unit does not change utility in equilibrium in the following sense. Let s :
RN

+ → RN
+ be a positive transformation of scales. Denote by Γs

h,c(x
0, t0) the game

Γh,c◦s−1(s(x0), t0) out of Γh,c(x0, t0) such that the utility for player i along a finite and
increasing path x with x(t0) = s(x0) is given by

Js
i (x) =

∫ ∞

t0

(
(Fi ◦ s−1

i )′(xi(t))−Di(c ◦ s−1)(x(t))
)
ẋi(t) dt.

Note that indeed c ◦ s−1 is a strictly convex function. Compare the Markov Nash equilib-
ria and corresponding utility profiles of the two-player games Γg,c(x0, t0) and Γs

g,c(x
0, t0),

that are related via the positive transform of scales s. Suppose that in each Markov-
ian Nash equilibrium of Γg,c(x0, t0) the utilities are uniquely determined by the profile
(J ∗

1 ,J ∗
2 ). Then the profile of utilities in each Markovian Nash equilibrium in the scaled

game Γs
g,c(x

0, t0) equals (J ∗
1 ,J ∗

2 ) as well.

Theorem 6.1 Consider the class of autonomous production games with the properties
SI, EUL, and FD. Each such game has a unique Markov perfect Nash equilibrium iff
this equilibrium is equivalent to that in the game with h such that hc

i (x) = (Dic(x))−1.
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Proof. Let c be a given cost function in C, and x∗ the solution to the system of differential
equations {

ẋ(t) = hc
i (x(t)),

x(0) = 0.
Assume for the moment that limt→∞ x∗i = ∞ for both i = 1 as well as i = 2. (It is here
where we need something like free disposal to close the proof.) Take any output vector
q∗ ∈ R2

+ and consider the path p∗ : t 7→ x∗(t) ∧ q∗. Given p∗ define t∗i := min {t
∣∣ p∗i (t) ≥ q∗i },

fi(qi) := max {Dic(p∗(t∗i )) + q∗i − qi, 0} for all qi ∈ R+.

Then q∗ is the end-state in equilibrium for the equilibrium profile ψ∗ with equilibrium
path p∗. Hence players have equilibrium utilities

Ji(ψ∗) = Fi(q∗i )−
∫ t∗i

0
Dic(p∗(t))(p∗i )

′(t) dt.

Note that in any game with end-state q∗ the equilibrium trajectory is the same in any
game Γh,c(0, 0), and in particular that induced by p∗. We conclude that each q∗ ∈ R∗

+ can
be reached as end-state in equilibrium and that associated are unique cost shares µ(q∗, c)
defined by

(11) µi(q∗, c) =
∫ t∗i

0
Dic(p∗(t))(p∗i )

′(t) dt.

Note that by varying over all profiles (q∗, c) the above equation (11) defines a cost sharing
mechanism. Below we show that given the assumptions (b)-(d) that this cost sharing
mechanism equals the Moulin-Shenker rule µms.
As the utilities of the players are unaffected by changes of unit scale, this mechanism must
be scale invariant. Moreover, the lower bound on utility implies that µ satisfies UPP.
Then by UPP and continuity of hc it holds that D1c(x) = D2c(x) implies hc

1(x) = hc
2(x).

Otherwise we can construct a subgame according to which the lowerbound on utility is
not satisfied in equilibrium, as the induced cost shares are not consistent with UPP.

Define the change of scale s(x) = (D1c(x0)x1, D2c(x0)x2) and denote by x̄ the equilib-
rium path in the scaled game Γs

h,c(x
0, t0). Note that by this particular choice of s we get

Di(c ◦ s−1)(s(x0)) = 1 for i = 1, 2. Hence, the lower bound on equilibrium utility in the
game Γs

h,c(x
0, t0) together with continuity of the functions in the family h imply

(12) hc◦s−1

1 (s(x0)) = hc◦s−1

2 (s(x0)).

Moreover, the utility along the equilibrium path x̄ in Γs
h,c(x

0, t0) equals Js(x̄) = J(s−1◦x̄).
Note that from (12) we may conclude that

(13)
(s−1 ◦ x̄)′1(t0)
(s−1 ◦ x̄)′2(t0)

=
hc◦s−1

1 (s(x0))/D1c(x0)
hc◦s−1

2 (s(x0))/D1c(x0)
=
D2c(x0)
D1c(x0)

.

16



Now suppose that the direction of the paths s−1 ◦ x̄ and p∗ in t = t0 are not equal, or,
equivalently, by (13),

(14)
hc

1(x
0)

hc
2(x0)

6= D2c(x0)
D1c(x0)

.

Assume without loss of generality that hc
1(x

0)D1c(x0) < hc
2(x

0)D2c(x0) and assume more-
over that the equilibrium end-state x̄(t̄) is close enough to s(x0) to ensure that

hc
1(x)
hc

2(x)
<
D2c(x0)
D1c(x0)

for all x ∈ [x0, s−1(x̄(t̄))].

Note that we used continuity of hc here. By Theorem 5.1 the equilibrium utility for player
1 is met when both players use maximal controls. Let x∗ be the corresponding equilibrium
path in Γh,c(x0, t0). Define the path x̃ by x̃(t) = s−1(x̄(t̄))∧x∗(t). Then a reasoning similar
to that in the proof of Theorem 5.1 shows that

J1(x∗) ≥ J1(x̃) > J1(s−1 ◦ x̄) = Js
1(x̄).

In particular this shows that equilibrium utility has changed by scaling through s, which
contradicts property (b). So instead of (14) we must have equality and by variation of x0

we obtain
hc

1(x)
hc

2(x)
=
D2c(x)
D1c(x)

for all x ∈ int(R1 ∩R2).

Therefore, in int(R1 ∩ R2) the costs along the equilibrium path are equally shared. But
then the induced cost sharing mechanism µ is self-consistent as each Markov perfect Nash
equilbrium is time-consistent. Hence, we proved that µ has all the properties enlisted
in Theorem 4.4 and must therefore equal µms. In turn this implies that the equilibrium
trajectories are in fact the image of the Moulin-Shenker path. Finally, each such equilib-
rium is represented by the equilibrium in the game where we set hc

i (x) = Dic(x)−1 for all
x ∈ RN

+ , c ∈ C.

7. Concluding remark

The above analysis is merely concerned with autonomous differential games without
any time-dependency. Nevertheless, the above analysis does not change much if we would
include discount factors {ri}i=1,2 such that the utility functions take the form

Ji(x) =
∫ ∞

t0

e−rit (fi(xi(t)−Dic(x(t)))) ẋi dt.

This is due to the fact that the shape of the profitable regions is not influenced by such
adaptation.
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8. Appendix

Proof of Lemma 3.6 Take c ∈ C, normalized. We will show that there for any ε > 0
and t small enough

(15)
∣∣∣∣µ(teN )
c(teN )

− 1
|N |

∣∣∣∣ ≤ ε.

By continuity of the partial derivatives of c there is a t(ε) > 0 such that for all t ≤ t(ε)
and all i ∈ N :

(16) 1− ε

1 + ε
≤ Dic(teN ) ≤ 1 +

ε

1 + ε
.

Then from these inequalities (16) and (15) we deduce for |N | ≥ 2 that

µi(teN , c)
c(teN

≤
t(1 + ε

1+ε)
c(teN )

≤
t(1 + ε

1+ε)
|N |t(1− ε

1+ε)
≤ 1
|N |

(1 + 2ε) ≤ 1
|N |

+ ε.

and
µi(teN , c)
c(teN

≥
t(1− ε

1+ε)
c(teN )

≥
t(1− ε

1+ε)
|N |t(1 + ε

1+ε)
≥ 1
|N |

(1− 2ε) ≥ 1
|N |

− ε.

Then, of course, this proves (15). If |N | = 1 the statement is obviously true by budget
balance.

Proof of Lemma 4.3 Let µ be a continuous cost sharing mechanism that satisfies
no exploitation and self consistency. We will define a collection of paths by which µ is
generated. Let p0,c,N be the set {q ∈ RN

+ |µi(q, c) = c(q)
n for all i ∈ N}. We claim the

following:
(i) For each t ≥ 0 there is exactly one q ∈ p0,c,N with c(q) = t.
(ii) If q, q′ ∈ p0,c,N , q 6= q′ either q � q′ or q′ � q.

First we will prove (i). The first step consists of showing that there is at least one
such q for all t ∈ R+. For t = 0, obviously there is only such q and that is q = 0. Let
t > 0 and define A(t) to be the isocost surface for c at level t. Then h : A(t) → ∆N

with h(q) = q/
∑

i∈N qi for all q ∈ A(t) defines a homeomorphism. Denote its continuous
inverse by h−1. Next define the mapping g : ∆N → ∆N by g(q) = t−1µ(h−1(q), c). Then
by continuity of both q 7→ µ(q, c) and h−1, it follows that g is continuous. Note that for
all q ∈ ∆N it holds that {qi = 0 ⇒ gi(q) = 0} by no exploitation. We are ready if we
prove that there is a z ∈ ∆N such that gi(z) = 1

n for all i ∈ N . Define G : ∆N → ∆N by

Gi(q) =
qi + max{ 1

n − gi(q), 0}
1 +

∑
j∈N max{ 1

n − gj(q), 0}
for all i ∈ N.

We claim that G(z) = z implies gi(z) = 1
n for all i ∈ N . Suppose the opposite, G(z) = z

while not gi(z) = 1
n for all i ∈ N . Then there are k, l ∈ N such that gk(z) < 1

n < gl(z).
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Hence,
∑

j∈N max{ 1
n − gj(z), 0} > 0 and therefore Gi(z) < zi + max{ 1

n − gi(z), 0}. For
i = k this converts to Gk(z) < zk, which leads to contradiction.

Observe that G(∆N ) ⊂ ∆N , since by no exploitation Gi(q) > 0, also for the case qi = 0.
But now we are there, since by invoking Brouwer’s Theorem we guarantee existence of
such a fixed point z for G.

Now, we turn to proving uniqueness. Suppose that for q1, q2 ∈ p0,c,N such that q1 6= q2,
it holds that c(q1) = c(q2). Define q∗ := q1 ∨ q2. Then, in particular it holds that q∗ > q1

and thus c(q∗) > c(q1). By self-consistency we have µ(q∗, c) = µ(q1, c) + µ(q∗ − q1, cq
1
)

and µ(q∗, c) = µ(q2, c) + µ(q∗ − q2, cq
2
). Since µ(q1, c) = µ(q2, c), it holds that

(17) µ(q∗ − q1, cq
1
) = µ(q∗ − q2, cq

2
).

For each i ∈ N it holds either q∗i = q1i or q∗i = q2i , so by no exploitation the cost share of
agent i is either 0 in the cost sharing problem (q∗− q1, cq1

) or in the cost sharing problem
(q∗ − q2, cq

2
). But then by equality (17) we get µ(q∗ − q1, cq

1
) = 0, and consequently

µ(q1, c) = µ(q∗, c). This gives the desired contradiction, since

c(q1) =
∑
i∈N

µi(q1, c) =
∑
i∈N

µi(q∗, c) = c(q∗).

So, this proves our first claim.
Then, a direct consequence of (i) is that each t ≥ 0 defines a unique bundle y(t) ∈ p0,c,N

such that c(y(t)) = t. We will prove that the mapping y : t 7→ y(t) is continuous.
Continuity at t = 0 is obvious. Suppose on the contrary that there is t∗ > 0 and a
sequence t1, t2, . . . in R++ such that limk→∞ tk = t∗, while the sequence y(t1), y(t2), ...
does not converge to y(t∗). Take ε > 0 such that Bε := {z ∈ RN

+ | ‖y(t∗) − z‖ < ε} is
contained in RN

+ , while there is a subsequence t′1, t
′
2, . . . of t1, t2, . . . such that for each

k ∈ N , y(t′k) 6∈ Bε. Define r := maxk∈N t
′
k. Then the sequence y(t′1), y(t

′
2), . . . is contained

in the compact set {z ∈ RN
+ | c(z) ≤ r}\Bε. Hence, there exists a subsequence t′′1, t

′′
2, . . .

of t′1, t
′
2, . . . such that y(t′′1), y(t

′′
2), . . . converges, say to q. Observe that q 6= y(t∗). By

continuity of µ, it holds for all i ∈ N ,

µi(q, c) = lim
k→∞

µi(y(t′′k), c) = lim
k→∞

c(y(t′′k))
n

= lim
k→∞

t′′k
n

=
t∗

n
.

Consequently, also q ∈ p0,c,N and c(q) = t∗, but with y(t∗) as the unique vector satisfying
these conditions, we reached a contradiction. So, y is continuous.

We will now prove (ii). Take q, q′ ∈ p0,c,N such that q 6= q′. Then (i) implies c(q) 6= c(q′).
Without loss of generality we will assume that c(q′) < c(q). Suppose that not q′ � q. By
the continuity of y, there is a maximal t′ < c(q′) such that y(t′) ∈ [0, q]. Hence, by self
consistency,

µ(q, c) = µ(y(t′), c) + µ(q − y(t′), cy(t′)).
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But for all i ∈ N , we have µi(q, c) − µi(y(t′), c) = 1
n(c(q) − c(y(t′))), and therefore corre-

sponding to µ all shares in the problem (q − y(t′), cy(t′)) are equal. However, t′ is taken
such that (q− y(t′))i = 0 for at least one coordinate i ∈ N . Then, by no exploitation, the
corresponding cost share of agent i is 0, hence the corresponding cost shares for the others
are also 0. On the other hand, cost shares sum up to the total cost cy(t′)(q− y(t′)), which
equals c(q)− c(y(t′)) = c(q)− t′. But recall that t′ < c(q′) < c(q), which yields

0 =
∑
i∈N

µi(q − y(t′), cy(t′)) = c(q)− t′ > 0,

a contradiction. Therefore q′ � q, which ascertains the validity of our second claim.

Now (i) together with (ii) show that p0,c,N is the image of a path, which we will de-
note by π0,c,N .

We proceed as follows. Define for all d ∈ p0,c,N and nonempty sets S ⊂ N the set
pd,c,S by {

q ∈ RS
+ |µi((0N\S , q), c

d) =
1
|S|

cd((0N\S , q)) for all i ∈ S
}
.

Then, essentially by the same reasoning as before, it follows that pd,c,S is the image of a
path πd,c,S . Take again d′ as element of one of the previously defined sets pd,c,S , and let
d1 := d+ (0N\S , d

′). Define for all S1 ⊂ S, S1 6= ∅, the set pd1,c,S1
by{

q ∈ RS1

+ |µi((0N\S1 , q), cd
1
) =

1
|S1|

cd
1
((0N\S1 , q)) for all i ∈ S1

}
.

Again, essentially the same techniques as before show that this is the image of a path for
S1. In exactly the same way we proceed inductively by defining paths for coalitions of
decreasing size. At the end of this procedure there still may be combinations (d, c, S) left
for which πd,c,S is not defined; for any of those triples we take πd,c,S to be an arbitrary
path. Then this completes the definition of a path collection Π.

It is now an easy exercise to show that it constitutes µ, or µ = µΠ. Let q ∈ RN
+ .

Suppose q ∈ π0,c,N (R+). Then according to µΠ, costs c(q) are split equally. But recall the
definition of p0,c,N which contains q, in order to see that the same division is made in case
of µ. If q 6∈ π0,c,N (R+), then let t1 be the first moment that π0,c,N meets the demands
of the agents N1. Let d1 := π0,c,N (t1) and suppose that (q − d1)N\N1

∈ πd1,c,N\N1(R+).
First notice that µi(d1, c) = 1

nc(d
1) for all i ∈ N . Suppose that the vector of remaining

demands (q − d1)N\N1
is on the path for N\N1, πd1,c,N\N1 . Then as a consequence

µ(q − d1, cd
1
) =

1
|N\N1|

cd
1
(q − d1).
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Thus, by self consistency for all i ∈ N\N1,

µ(q, c) = µ(d1, c) + µ(q − d1, cd
1
)

=
1
|N |

c(d1) +
1

|N\N1|
cd

1
(q − d1) = µΠ(q, c).

If not (q − d1)N\N1
∈ πd1,c,N\N1(R+), then proceed by following πd1,c,N\N1 up to the first

moment t2 that some agents N2 ⊂ N\N1 are satisfied with the present production level.
Then the previous reasoning can just be replicated until, finally, a point is reached at which
the remaining demand bundle is on the corresponding path for the remaining demanders.

Proof of Theorem 4.4 It is clear that on G the Moulin-Shenker rule obeys all the
enlisted principles.
Now suppose that µ is a cost sharing rule satisfying CONT, SI, NOEXP, SCONS and
(5). We will show that µ = µms in the following way.

By Lemma 4.3 it follows that µ is generated by a path collection Π. Thus µ satisfies
the serial principle according to Lemma ??. There is no unique way to describe Π; all
other path collections resulting from choosing other parametrizations for the paths in Π
generate µ as well. Then it suffices to prove that a path collection by which µ is gener-
ated can be chosen such that it equals Γ, one of the path collections corresponding to the
Moulin-Shenker rule. Therefore the theorem will be proved if we show that, starting with
an arbitrary path collection Π generating µ, for all (d, c, S) ∈ RN × C × P(N) the path
πd,c,S ∈ Π is equal to γd,c,S up to parametrization.

We claim that there is a parametrization π̄ of π0,c,N , which is a solution to the above
system of differential equations (7). Then π̄ must coincide with γ0,c,N by uniqueness of
the solution.
Then by simple variations the same reasoning shows that all paths of type π0,cd,S are equal
to γ0,cd,S up to parametrization, for all d ∈ RN and S ∈ P(N).

First, we will show that πd,c,S(R+) = π0,cd,S(R+). We need only to consider those profiles
d, which can actually be produced using the path collection Π and the above construction.
Suppose we have an inequality instead and that a cost sharing problem (q, c) the path
constructed from Π reaches the profile d after a specific period.
Then the path πd,c,S is used in the above construction from the very moment where all
agents in N\S are satisfied with production. Still, their individual completion times for
production may differ. At least the agents in S will have made equal contributions to the
procedure of equally splitting incremental costs for raising production levels, since they
have not completed yet. So we have µi(d, c) = µj(d, c) for all i, j ∈ S.

Let q ∈ d+ (πd,c,S(R+), 0N\S) and assume that q 6∈ d+ (π0,cd,S(R+), 0N\S). Then also the
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payments for the cost sharing problem (q, c) according to the rule µ are the same for the
individual agents in S, or µi(q, c) = µj(q, c) for all i, j ∈ S. Applying SCONS gives

µi(q, c) = µi(d, c) + µi(q − d, cd) for i ∈ S.

So, actually the cost shares for the reduced cost sharing problem (q− d, cd) must be equal
for the agents in S, µi(q − d, cd) = µj(q − d, cd) for all i, j ∈ S. Recall the construction of
sharing the cost in the cost sharing problem (q − d, cd). First the production plan π0,cd,S

is used in order to define the first production level y at which a set S′ of agents in S are
satisfied with the production so far. By assumption, however, this cannot be the profile
q − d. So y < q − d. Now the incremental cost for bringing production from level 0 up
to y are split equally among the members of S. Then the procedure continues in order to
divide the remaining costs cd(q − d)− cd(y) among the agents S\S′, which is a nonempty
set. Because cd(q− d)− cd(y) > 0 this means that there is at least one agent in S\S′ that
pays more than any of the agents in S′. So there are differences in cost shares of agents
in S which gives the desired contradiction.

In the proof we roughly distinguish between four steps.

Step 1: The properties SP, SI and (5) allow us to specify Dπ0,c,N up to multiplica-
tion with a scalar y under the assumptions of existence of Dπ0,c,N and Dπ0,c,N � 0. We
claim that for all i ∈ N

Diπ
0,c,N (0) =

y

Dic(0)
.

This is proved as follows. Suppose all partial derivatives of π0,c,N are strictly positive.
Define the scale transformation f : RN → RN by

fi(u) =
ui

Dic(0)
for all i ∈ N,u ∈ RN .

Then by scale invariance for any q ∈ RN the problem (q, c) is equivalent with (f−1(q), c◦f).
But the latter one is normalized in the sense that for all i, Di(c◦f)(0) = Dic(0)Dif(0) = 1.
Then by the serial principle and (5) we have for all i, j ∈ N ,

lim
r↓0

µi(reN , c ◦ f)
µj(reN , c ◦ f)

= 1.

But this will only be the case if for all i, j ∈ N

lim
t↓0

π0,c◦f,N
i (t)

π0,c◦f,N
j (t)

= 1.

Then by Lemma 4.2 for all i, j ∈ N

lim
t↓0

fi(π0,c,N (t))
fj(π0,c,N (t))

= 1.

22



Thus as a result

lim
t↓0

(π0,c,N )i(t)
(π0,c,N )j(t)

=
Djc(0)
Dic(0)

.

It is not difficult to prove the following. Let h, g : R+ → R+ be continuous mappings for
which h′(0) and g′(0) exist at 0, with g > 0 on (0,∞), g′(0) > 0, we have for α ∈ R+,

lim
t↓0

h(t)
g(t)

= α =⇒ h′(0) = αg′(0).

Then this makes clear that by our regularity assumptions on Dπ0,c,N (0) for all i, j ∈ N ,

Diπ
0,c,N (0)

Djπ0,c,N (0)
=
Djc(0)
Dic(0)

.

By taking y such that D1π
0,c,N (0) = y

D1c(0) we prove our claim.

For q ∈ RN we define tq := argmin{π0,c,N (t) ≥ q}. Then tq stands for the first mo-
ment that π0,c,N reaches the boundary of the cube {u ∈ RN |u ≤ q}.

Step 2: Take d ∈ π0,c,N (R+), d 6= 0. Note that d is a demand profile for which µ

determines equal cost shares. Assume now that Dπ0,cd,N (0) exists and Dπ0,cd,N (0) � 0.
We claim that there is a y ∈ R+ such that for all i ∈ N

(18) Diπ
0,c,N (td) =

y

Dic(π0,c,N (td))
.

Essentially this is proved with the techniques from Step 1 together with the property
SCONS. Applying Step 1 for cd instead of c immediately provides us with a y ∈ R+ such
that for all i ∈ N
(19) Diπ

0,cd,N (0) =
y

Dicd(0)
=

y

Dic(d)
=

y

Dic(π0,c,N (td))
.

On the other hand we find another expression for Diπ
0,cd,N (0) by the relation between

π0,cd,N and π0,c,N . By SCONS and the fact that µi(d, c) = c(d)
|N | , we have for all d′ ≥

d, d′ ∈ π0,c,N (R+), i ∈ N

µi(d′, c) =
c(d)
|N |

+ µi(d′ − d, cd).

Since d′ is also a demand profile for which µ determines equal cost shares, it holds for all
i ∈ N

µi(d′ − d, cd) =
c(d′)− c(d)

|N |
.

But µi(d′ − d, cd) = µj(d′ − d, cd) for all i, j ∈ N if and only if the first splitting point for
the problem (d′−d, cd) is d′−d, or equivalently d′−d ∈ π0,cd,N (R+). So d′ ∈ π0,c,N (R+) if
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and only if d′ ∈ π0,cd,N (R+) + d. This in turn implies π0,cd,N (R+) = π0,c,N ([td,∞)). Since
only the images of the paths matter we may assume that π0,cd,N (t) = π0,c,N (td + t) − d

for all t ∈ R+. But this gives for i ∈ N , Diπ
0,cd,N (0) = Diπ

0,c,N (td) and together with
equality (18),

(20) Diπ
0,c,N (td) =

y

Dic(π0,c,N (td))
.

Step 3: For almost every t ∈ R+, there is a y ∈ R+ with

(21) Diπ
0,c,N (t) =

y

Dic(π0,c,N (t))
.

The mapping π0,c,N is monotonically increasing and therefore differentiable almost every-
where. If only Dπ0,c,N � 0 almost everywhere, then we are done: the result from Step 2
applies for almost every d ∈ π0,c,N (R+), which in turn implies (21).
Let

(22) π̃ := π0,c,N ◦ (c ◦ π0,c,N )−1.

Then π̃ is a parametrization of π0,c,N by the costs; for each t ∈ R+ it holds that c(π̃(t)) = t.
Take t ∈ R+ and h > 0. Then,∥∥∥∥ π̃(t+ h)− π̃(t))

h

∥∥∥∥ ≥ |N |c(π̃(t+ h))− c(π̃(t))
hb(c)

= |N | h

hb(c)
= |N | b(c)−1 > 0.

This implies that whenever π̃ is differentiable at t, then π̃′(t) � 0. But consequently
π̃′ � 0 almost everywhere, since it is a monotonically increasing function. There is only
one possibility, and that is Dπ0,c,N � 0 almost everywhere. This proves our claim.

Step 4: The last part of the proof is of rather technical nature. We will show now that
the above π̃ can be used to define the proper parametrization of π0,c,N that we are looking
for.
Note, that given the fact that π0,c,N is monotonically increasing we have for almost all
t ∈ R+:

(i): π0,c,N is differentiable at (c ◦ π0,c,N )−1(t) and

Dπ0,c,N ((c ◦ π0,c,N )−1(t)) > 0.

(ii): c ◦ π0,c,N is differentiable at (c ◦ π0,c,N )−1(t) and

(c ◦ π0,c,N )′((c ◦ π0,c,N )−1(t)) > 0.

So for the parametrization π̃ of π0,c,N , defined above by (22), the following equality holds
almost everywhere, for all i ∈ N
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Diπ̃(t) =
Diπ

0,c,N ((c ◦ π0,c,N )−1(t))
(c ◦ π0,c,N )′((c ◦ π0,c,N )−1(t))

=
1
|N |

1
Dic(π̃(t))

.

Consider the curve π̄ := π̃ ◦ϕ, where ϕ(t) = |N | t for all t ∈ R+. Then π̄ is a parametriza-
tion of π0,c,N for which for almost all t ∈ R+ it holds that for all i ∈ N

Diπ̄(t) =
1

Dic(π̄(t))
.

If we can show that this equality holds for all t ∈ R+, then we are done. Since then we
showed that π̄ is actually the parametrization of π0,c,N that we were looking for, because
π̄ = γ0,c,N . The mapping π̄ is Lipschitz continuous: for all t1, t2 ∈ R+,

‖π̄(t1)− π̄(t2)‖ = ‖π̃(|N | t1)− π̃(|N | t2)‖

≤ a(c)−1|c(π̃(|N | t1))− c(π̃(|N | t2))|

= |N |a(c)−1|t1 − t2|.
So π̄ is absolutely continuous and therefore, for all i ∈ N and t ∈ R+,

π̄(t) =
∫ t

0
Diπ̄(s)ds =

∫ t

0
Dic(π̄(s))−1ds.

By the continuity of the mapping s 7→ Dic(π̄(s))−1, it follows that π̄ is differentiable and
for all i ∈ N

Diπ̄(t) =
1

Dic(π̄(t))
for all t ∈ R+.

But then π̄ is a solution of the system of differential equations that determines the Moulin-
Shenker path γ0,c,N . By uniqueness of the solution π̄ must coincide with γ0,c,N . This proves
our claim that π0,c,N has the same image as γ0,c,N .
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