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Abstract

Many economic problems can be formulated as dynamic games in which strategically interacting agents
choose actions that determine the current and future levels of a single capital stock. We study necessary
conditions that allow us to characterize Markov perfect Nash equilibria (MPNE) for these games. These
conditions result in an auxiliary system of ordinary differential equations that helps us to explore stability,
continuity and differentiability of MPNE. The techniques are used to derive detailed properties of MPNE
for several games including the exploitation of a finite resource, the voluntary investment in a public
capital stock, and the inter-temporal consumption of a reproductive asset.
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1 Introduction

Many economic problems can be formulated as dynamic games in which strategically interacting agents
choose actions that determine the current and future levels of a single capital stock. Consider, for example,
a single stock of an exhaustible or reproductive resource that is simultaneously exploited by several agents
that do not cooperate. Each agent chooses an extraction strategy to maximize the discounted stream of
future utility. The actions taken by agents not only determine their levels of utility but also the level of the
capital stock. Alternatively, look at the problem that agents voluntarily contribute to a single public stock of
capital, like a park or a church. They choose their contributions (investments in the public stock of capital) to
maximize the discounted stream of utility from consuming the public stock net of investment costs. Private
investment builds up the public stock of capital that eventually can be consumed by all agents.

Both examples have several things in common. First, the actions taken by agents determine the size of a
single capital stock that fully describes the current state of the economic system. Second, in case there
is no mechanism that forces players to coordinate their actions, they will act strategically and play a non-
cooperative game. Third, the equilibrium outcome will critically depend on the strategy spaces available to
the agents.

We make use of these features and formulate a differential game in which agents act non-cooperatively and
use Markov strategies. We provide a detailed analysis of Markov perfect Nash equilibria (MNPE) for this
class of differential games with a single capital stock and discuss several economic examples that belong to
this class.

In a differential game, strategically interacting agents try to maximize an inter-temporal objective function,
by choosing a strategy that results in an action at every point in time.1 Collectively, these actions influence
the state of the economic system and how it evolves over time. The evolution of the system as a result of the
agents’ strategies is captured in the system dynamics.

There is a wide choice of possible strategies taken by the agents. They may choose a simple time profile
of actions and precommit themselves to these fixed actions over the entire planning horizon. In that case
players are using open-loop strategies. Alternatively players might choose Markov strategies. In this case
they condition their actions on the current state of the system and react immediately every time the state
variable changes. When agents use feedback or Markov strategies they are not required to precommit.
Instead they play credible strategies if they are derive through backward induction.

To better understand the difference between open-loop and Markov strategies let us look at the following
example of several agents strategically exploiting the same renewable resource. In case the fisheries use
open-loop strategies they specify a time path of fishing effort at the beginning of the game and commit
themselves to stick to these preannounced actions over the entire planning horizon. If alternatively they use
Markov or feedback strategies they choose decision rules that determine current actions as a function of the
current stock of the resource. Markov decision rules capture the strategic interactions present in a dynamic
game. If the rival fishery makes a catch today that necessarily results in a lower level of the fish stock,
the opponent reacts with an action that takes this change in the stock into account. In that sense Markov
strategies capture all the features of strategic interactions.

Assuming that agents use Markov strategy spaces we restrict our attention to the derivation of subgame
perfect Nash equilibria. These strategies have the property that a player knowing the strategies of the other

1For a general introduction to the theory of differential games we refer the reader to [9].
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players cannot gain by unilaterally deviating from his equilibrium strategy. Finding Markov Nash equi-
librium strategies of differential games, even if the game is of the linear-quadratic type, is a formidable
analytical problem. For instance, to find a MPNE in the general case ofn players andm state variables
leads to the problem of determining solutions of a system ofn coupled nonlinear implicitm-dimensional
partial differential equations (PDE). Only in the case that the economic system can be described by a single
state variable (a single capital stock) will the system of PDE’s collapse to a system of ordinary differen-
tial equations that is much easier to deal with. Because of this, the article focusses on the least complex
casem = 1. As it turns out there are many economic problems that result in a dynamic game with a single
capital stock.

Consider the case ofn agents non-cooperatively exploiting a single exhaustible or renewable resource. The
resource stock is the single state variable and agents choose extraction strategies to maximize the present
value of utility over a given planning horizon. Markov perfect equilibria for these classes of games have been
studied, for example, by Levhari and Mirman [16], Sundaram [20], Benhabib and Radner [2], Clemhout and
Wan [5], Dutta and Sundaram [12], Dockner and Sorger [8], Rincon-Zapatero et al. [19] and more recently
Benchekroun [1].

As a second class of models consider the private investment in a public capital stock. The capital stock is
the single state variable and agents choose investment strategies to maximize the present value of future net
utility. Utility is derived from the available stock of public capital. This problem of private investment in a
single public capital stock has been formulated by Fershtman and Nitzan [14] and MPNE been studied by
Wirl [22], and in a discrete time framework by Marx and Matthews [18] and Dockner and Nishimura [11].

Dynamic games with a single capital stock can also be applied to study transboundary pollution control.
The emissions of two or more countries accumulate a single stock of pollution. Countries derive utility from
consumption but production results in emissions that accumulate and generate costs. Markov equilibria
for these types of games have been studied by Dockner and Long [10] and Dockner et al. [7]. Finally,
environmental economists have recently started to explore equilibria in the shallow lake problem. This
problem is structurally similar to the exploitation of a single renewable resource stock but with a non-
concave production function. Recent papers dealing with the shallow lake problem include Brock and
Starrett [4], M̈aler et al. [15], and Wagener [21].

In this paper we formulate a class of differential games in which the actions of the agents influence a single
capital stock, the state variable, and develop a solution methodology, whose core is formed by necessary
conditions that have to be satisfied by Markov strategies. For then-player case, ann-dimensional system
of explicit ordinary non-autonomous differential equations is found, which has to be satisfied by Markov
strategies at all points for which they are continuously differentiable. Moreover, necessary conditions are
given for possible failures of differentiability and continuity of the Markov equilibrium strategies. Points
where the Markov strategies are continuous but not differentiable can very conveniently be described by
singularities of an autonomousauxiliary (n + 1)-dimensional vector field, whose solution trajectories are
the graphs of the equilibrium strategies. In the important special case that all players have the same utility
functionals, it is useful to focus on asymmetricequilibrium in which all agents play the same strategy. The
symmetric equilibrium is the solution of an ordinary non-autonomous differential equation. In this case, it
is possible to draw the associated two-dimensional auxiliary vector field, which yields detailed information
about the qualitative properties of the symmetric Markov equilibrium.

The approach of using an auxiliary system of differential equations to characterize Markov equilibria has
also been used by Rincon-Zapatero et al. [19] and Xepapadeas and co-workers [17, 23]. Contrary to
our approach, however, these authors derive sufficient conditions and do not deal with the problems of
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differentiability and continuity of equilibrium strategies. Being able to deal with non-differentiable and
discontinuous equilibrium strategies in a systematic manner is very important and fills a gap in the literature
of economic applications of differential games.

The article is organized as follows. In section 2, necessary conditions are derived which have to hold at
points where a Markov strategy is differentiable, or continuous, or discontinuous, respectively. Section 3
illustrates these conditions by determining Markov equilibria for different applications of differential games
with a single capital stock: (i) extraction of exhaustible resources; (ii) voluntary provision of public goods;
(iii) management of an economical-ecological system, known as theshallow lake system; and (iv) exploita-
tion of renewable resources. Section 4 concludes.

2 Markov strategies

In this section we formulate a differential game in whichn-players choose Markov strategies,ui(x), to
maximize an inter-temporal objective function. The strategies determine the level of a single capital stock,
x, that is governed by the state dynamics. For this game we derive necessary conditions for a Markov perfect
equilibrium.

Recall that such an equilibrium is by definition a vector–valued functionu : X → Rn, such that if the
strategies of all players except playeri are given by the component functionsuj(x), j 6= i, thenui(x)
would be the optimal feedback control for playeri of the resulting optimal control problem.

2.1 Basic idea. The basic idea for obtaining the necessary conditions for a MPNE can be described as
follows. Consider ann player game, where each player has a payoff functional

Ji[ui] =
∫ ∞

0
Li(x, u) e−ρt dt.

Herex ∈ X, whereX is an open subinterval of the real lineR, andu denotes the vectoru = (u1, · · · , un) ∈
Rn of the strategies of the players. For knownu, the state equation

ẋ = f(x, u)

determines the evolution of the system.

Given the strategies of the other players in feedback form, the Pontryagin necessary conditions yield an
autonomous system of differential equations for the best response strategy of playeri; let this system be
solved by functions(x(t), ui(t)). Since the state space is one-dimensional, the mapt 7→ x(t) can be seen
as a variable transformation locally at some valuet = t0 if ẋ(t0) 6= 0. Using the inverset = t(x) of this
transformation, we obtain from the pair(x(t), u(t)) a strategy in feedback (Markov) form:ui(x) = ui(t(x)).

Using this basic idea, an explicit system of ordinary differential equations will be derived for theui(x),
which is necessarily satisfied by Markov strategies at points where they are simultaneously continuously
differentiable.

This condition leads naturally to the question of what can be said about points where the continuous dif-
ferentiability fails to hold: such points are investigated in subsections 2.4 and 2.6, where the respective
possibilities of discontinuities in the first derivative of the control function, and in the control itself are
investigated.
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2.2 The associated control problem. For ease of notation, it is assumed that the strategies of players1
to n−1 are fixed, leaving playern to solve for his optimal response. Letû = û(x) = (u1(x), · · · , un−1(x))
denote this vector of fixed strategies. Playern optimizes

Jn[un] =
∫ ∞

0
Ln(x, û(x), un) e−ρnt dt, (1)

under the constraint that
ẋ = f(x, û(x), un), x(0) = x0. (2)

The functionsLj , j = 1, · · · , n andf are assumed to be sufficiently many times continuously differentiable.

Introduce the Pontryagin function2 Pn of playern’s optimal control problem

Pn(x, pn, û, un) = −Ln(x, û, un) + pnf(x, û, un),

with pn as the costate variable. Pontryagin’s minimal principle requires thatPn(x, pn, U) takes a minimum
for U = un. If it is assumed that for givenx the functionû(x) is continuously differentiable, and that the
minimum is interior, then necessarily

∂Pn

∂un
= 0. (3)

Note that from this equation, the co–statepn can be solved as a functionpn = qn(x, û, un). Inversely, if the
condition is imposed thatPn is (locally) strictly convex inun for all x, û andpn, then the controlun can be
solved smoothly from equation (3) as a functionun = vn(x, û, pn).

More generally, we may consider the case that the control variableun is constrained to some setS. As this
case is not our main concern, we shall comment on it briefly and we will not try to achieve utmost generality
of our results in this direction. In particular, we shall assume that the setS is given as

S = Sx,û = {un |hn(x, û, u) ≤ 0},
and that on the boundary ofS (i.e. for hn = 0) the derivative∂hn/∂un does not vanish. The necessary
conditions read in this case as

∂Pn

∂un
= µn

∂hn

∂un
, µnhn = 0, µn ≥ 0, hn ≤ 0.

Imposing strict convexity ofPn and quasi-convexity ofhn with respect toun, we can again solve uniquely
the controlun from the necessary conditions, together with the multiplierµn, but now only as a continuous
functionvn(x, û, pn). However, the discontinuities in the derivatives ofvn occurr only for those values ofpn

for which bothhn = 0 andµn = 0.

Introduce the (minimized) Hamiltonian

Hn(x, pn) = Pn

(
x, pn, û(x), vn(x, û(x), pn)

)
;

then an optimal response of playern has to satisfy the following equations forx(t) andpn(t):

ẋ =
∂Hn

∂pn
, ṗn = ρnpn − ∂Hn

∂x
. (4)

2This function is usually called the Hamilton function in the optimal control literature; however, we like to reserve that name
for the functionHn introduced below, also called the ‘minimized Hamilton function’, which depends only on states and co-states.

5



See [3] for more details on Pontryagin necessary conditions.

For an optimal solution(x(t), un(t)) beginning at a statex0, thevalue (or valuation) functionof playern is
given by

Vn(x0) =
∫ ∞

0
Ln(x(t), û(x(t)), un(t)) e−ρnt dt.

It satisfies the equation of Hamilton–Jacobi–Bellman:

ρnVn(x) = −Hn

(
x,

dVn

dx
(x)

)
.

As dVn
dx (x(t)) = pn(t), this could also be written asρnVn = −Hn(x, pn).

2.3 Derivation of necessary conditions. From the preceding subsection it is clear that each individual
player has to solve an optimal control problem given the Markov strategies of the rivals. Hence, we can
make use of the system (4) to derive necessary conditions for a stationary Markov equilibrium.

THEOREM 1. Let u(x) = (u1(x), · · · , un(x)) be Markov Nash equilibrium strategies of the differential
game with payoffs (1) and state equation (2). Moreover, letvi satisfy equation (3) withn replaced byi.

If u(x) is continuously differentiable in a neighborhood of a pointx0 = x(t0) such thatf(x0, u(x0)) 6= 0,
then necessarily the differential equations

dui

dx
f +

∑

j 6=i

(
∂vi

∂pi

∂Pi

∂uj
− ∂vi

∂uj
f

)
duj

dx
=

∂vi

∂x
f +

∂vi

∂pi

(
ρipi − ∂Pi

∂x

)
. (5)

evaluated atpi = qi(x, u1, · · · , un) for all i, are satisfied att0, for everyi ∈ {1, ..., n}.
Proof
Writing the equation foṙpn in full (see equation (4)) and using equation (3) to simplify yields

ṗn = ρnpn +
∂Ln

∂x
+

∂Ln

∂û

dû

dx
− pn

∂f

∂x
− pn

∂f

∂û

dû

dx
.

Note that expressions like∂Ln/∂û · dû/dx are shorthand for
∑n−1

j=1 ∂Ln/∂ûj · dûj/dx.

As mentioned in the introduction to this section, ifx′(t) 6= 0, thenx(t) can be seen as a local coordinate
transformation. In order not to burden notation too much, bothû(x) andû(x(t)) shall be denoted bŷu; the
meaning should always be clear from the context. The chain rule yields

dû

dx
(x(t)) =

1
ẋ(t)

d
dt

û(x(t)) =
1
f

d
dt

û(x(t)).

This implies for theṗn–equation that

ṗn = ρnpn +
∂Ln

∂x
− pn

∂f

∂x
+

1
f

(
∂Ln

∂û
− pn

∂f

∂û

)
dû

dt
. (6)

Introducingun(t) by settingun(t) = vn(x(t), û(x(t)), pn(t)), it follows that

u̇n =
(

∂vn

∂x
+

∂vn

∂û

dû

dx

)
ẋ +

∂vn

∂pn
ṗn.
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Substitutingf for ẋ and the right hand side of (6) forṗn yields

u̇n =
(

∂vn

∂x
+

∂vn

∂û

dû

dx

)
f +

∂vn

∂pn

(
ρnpn − ∂Hn

∂x

)

=
∂vn

∂x
f +

∂vn

∂pn

(
ρnpn − ∂Pn

∂x

)
−

(
∂vn

∂pn

∂Pn

∂û
− ∂vn

∂û
f

)
dû

dx
.

Using thatuj(t) = ûj(x(t)) satisfiesu̇j = f dûj/dx, and bringing all derivativeṡuj to one side yields

u̇n +
n−1∑

j=1

(
1
f

∂vn

∂pn

∂Pn

∂uj
− ∂vn

∂uj

)
u̇j =

∂vn

∂x
f +

∂vn

∂pn

(
ρnpn − ∂Pn

∂x

)
. (7)

Of course, the labeln is by no means special; hence for everyuj an equation of the form (7) can be obtained.
Put together, a system of equations linear in theu̇j is obtained, which can be solved (under appropriate
determinant conditions) to yield a system of (nonlinear) ordinary differential equations for theuj . Changing
to dun/dx using the chain rule yields the result.

2.4 Corner points. Equation (5) also answers the question of when a continuous equilibrium Markov
strategyu(x) may fail to be differentiable at certain (isolated) points.

Introduce the square matrixA(x) = (aij(x, u))n
ij=1 with elementsaii = f(x, u) andaij(x, u) = ∂vi/∂pi ·

∂Pi/∂uj if i 6= j as well as the vectorb(x) = ∂vi
∂x f + ∂vi

∂pi
(ρipi − ∂Pi

∂x ). Based on these we are able to show
our next result.

THEOREM 2. Assume thatu = u(x) is a Markov Nash equilibrium strategy of the differential game
with payoffs (1) and state equation (2), thatu is continuous in a neighborhoodU of x0 and continuously
differentiable inU\{x0}, and thatA(x0, u(x0)) is invertible. Thenu is differentiable atx0.

Proof
Rewrite equation (5) in the following schematic form (recall thatu = u(x) ∈ Rn):

A(x, u(x))
du

dx
(x) = b(x, u(x)). (8)

If A(x, u(x)) is invertible, this can be rewritten as

du

dx
(x) = A(x, u(x))−1b(x, u(x)) = F (x).

Read differently, if the vector fieldF (x) exists it gives for everyx the only possible value fordu/dx.

Hence, letx0 be a point such that the left and right limits ofdu/dx exist asx tends tox0, then there are the
following two possibilities. EitherF (x0) exists, it is the limit ofdu/dx, andu is continuously differentiable
atx0. Or F (x0) fails to exist; but this can happen only ifA(x) fails to be invertible atx0.

2.5 Auxiliary system. Another way to understand the occurrence of corner points is to consider what
will be called theauxiliary systemto the system given by equation (8).

Recall the definition of theadjoint matrix A∗ of a given matrixA: it is the matrix whose elements are the
cofactors ofA, which are obtained by deleting thei’th row andj’th column ofA and taking the determinant
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of the remaining matrix. We have thatAA∗ = (detA)I, whereI is the identity matrix; henceA−1 =
(detA)−1A∗. Note that equation (8) implies

du

dx
= A−1b =

1
detA

A∗b. (9)

Now consider the system of differential equations
{

ũ′ = A∗(x̃, ũ)b(x̃, ũ),
x̃′ = detA(x̃, ũ);

(10)

hereũ′ is differentiation with respect to some real parameters.3 By the chain rule, it follows that whenever
x̃′ 6= 0, then du

dx(x̃(s)) = ũ′(s)/x̃′(s). Hence if(x̃(s), ũ(s)) are solution curves of the auxiliary system,
and if for s = s0 we have that̃x′(s0) 6= 0, then the equatioñx(s) = x can be solved fors = s(x), and in a
neighborhood ofx(s0) the functionũ(s(x)) yields a solution of (8). The system given by equation (10) is
an auxiliary system to equation (9).

More generally, a systemu′ = k(x, u), x′ = h(x, u), with k(x, u) ∈ Rn andh(x, u) ∈ R, is an auxiliary
system to (9), if

1
h

k = A−1b.

2.6 Jump points Note that theorem 1 yields a necessary condition at points where the equilibrium strate-
gies are continuously differentiable. Here, we look for necessary conditions that have to hold if the equilib-
rium strategy has an isolated jump discontinuity.

Let p(x) = (p1(x), · · · , pn(x)) = (q1(x, u(x)), · · · , qn(x, u(x))), with qj(x, u) as introduced in subsec-
tion 2.2. The result can then be stated as follows.

THEOREM 3. Assume that the value functionVi of playeri is continuous. It is necessary that

lim
x↑x∗

Hj(x, p(x)) = lim
x↓x∗

Hj(x, p(x)),

for everyx∗ ∈ X and all j = 1, · · · , n.

Proof
In the appendix we state the conditions that imply the continuity of the value functionsVi. Recall that the
value function of playeri satisfiesρVi(x) = −Hi(x, pi(x)). Givenc = −ρVi(x), the only values possible
for pi are those for which

Hi(x, pi) = c.

The theorem follows from this.
3The relationship between the time derivativeẋ = dx

dt
and the derivative with respct tos, x′ = dx

ds
follows from

x′ =
dx

ds
=

dx

dt

dt

ds
= f

dt

ds
.
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REMARKS.

1. The necessary condition stated in the Theorem cannot be used to identify the location of jump discon-
tinuities but imposes a restriction on the jump size.

2. If Hn is convex inpn, then there are at most two solutions to the equationHn(x, pn) = c.

3. Let u(x) be defined for allx < x∗, and assume that there is only one possibility for a nonzero jump
atx∗, to a continuous strategỹu(x) defined for allx ≥ x∗. Let

lim
x↑x∗

f(x, u(x)) = A, and lim
x↓x∗

f(x, ũ(x)) = f(x∗, ũ(x∗)) = B.

If the time evolutionx(t) is continuous and piecewise differentiable, then it is not possible that simul-
taneouslyA > 0 andB < 0. For, suppose it were the case. Then ifx(t0) = x∗, necessarilyx(t) = x∗
for all t > t0. HenceB should be equal to0, contradicting the assumption.

3 Applications

The class of differential games introduced in the preceding section is fairly general and allows us to study
Markov equilibria for a variety of different examples. Here we apply the techniques of the auxiliary system
to four alternative models that have been dealt with in the literature: (i) the exploitation of an exhaustible
resource (see [13], [19], and [5]), (ii) the voluntary provision of a public capital good (see [14] and [22]),
(iii) the shallow lake problem (see [15], [21], and [4]) and (iv) the exploitation of a reproductive asset (see
[2], [8], and [1]).

3.1 Exploitation of exhaustible assets. Let x be the stock of some exhaustible resource, and letui be
playeri’s rate of exploitation of this resource. Assume that the objective function of this player is given by

Ji =
∫ ∞

0
Li(ui) e−ρt dt,

whereLi(ui) is the instantaneous utility that exhibits positive and decreasing marginal utility. The stock
dynamics of the resource is described by

ẋ = −
n∑

i=1

ui.

The functionPi is given by

Pi = −Li(ui)− pi

n∑

i=1

ui,

yielding pi = −L′i(ui) ≡ − dLi(ui)
dui

if ui > 0, andpi = 0 if ui = 0. Restricting the analysis on symmetric
equilibriaui = u, equation (5) becomes

(n + (1− n)E(u))u
du

dx
= ρE(u)u, (11)
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whereE(u) measures the inverse of relative risk aversion, i.e.,

E(u) = − L′i(u)
L′′i (u)u

.

Based on equation (11) we can now characterize symmetric Markov equilibria for different types of utility
functions (see [19]). In particular we distinguish two different cases. One in which preferences exhibit
constant relative risk aversion (CRRA) and one in which consumers have preferences with constant absolute
risk aversion (CARA).

Let us consider the case of constant relative risk aversion first. Here the utility functions of the agents are
given by

Li(ui) =
u1−η

i

1− η

and the inverse of relative risk aversion is given by

E(u) =
1
η
.

Equation (11) becomes (
n− 1

η
− n

)
u

du

dx
= −ρ

η
u,

which is solved by eitheru(x) = 0, or, if n > 1/(1− η), by the linear function

u(x) = Gx, whereG =
ρ

(1− η)n− 1
.

This is the symmetric Nash equilibrium strategy for all players; note that in equilibrium, the rate of extrac-
tion G is proportional to the discount rate, and it decreases with the number of players. In the limiting case
when agents have logarithmic utility,Li(ui) = lnui and the elasticity becomesE(u) = 1, extraction rates
are independent of the number of firms exploiting the resource. They are given byu(x) = ρx.

In case of constant absolute risk aversion, consumer preferences are given by

Li(ui) = −e−αu

whereα > 0 is the constant absolute risk aversion. In this case we get

E(u) =
1

αu
,

and equation (11) becomes (
n + (1− n)

1
αu

)
u

du

dx
=

ρ

α
.

Under the assumptions thatu(0) = 0 this equation can be integrated to yield equilibrium extraction rates
equal to

u(x) =
(n− 1) +

√
(1− n)2 + 2ρnαx

nα
.

These equilibrium strategies are decreasing both in the number of firms exploiting the resource and in the
level of absolute risk aversion.
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3.2 Voluntary provision of a public good. Next we turn to the analysis of private investment in a public
capital stock. This game was first looked at by Fershtman and Nitzan [14]. They assume that each agent
derives quadratic utility form the consumption of the public capital stock and in case he invests in the stock
faces quadratic costs. Fershtman and Nitzan solve both the open-loop game and the game with Markov
strategies and find that the dynamic free rider problem is more severe when agents use linear Markov strate-
gies. Wirl [22] challenges this results and studies the identical linear quadratic game but solves for non-linear
Markov equilibria. He finds that if the discount rate is small enough non-linear Markov strategies can sup-
port equilibrium outcomes that are close to the efficient provision of the public capital. Here we use this
example and demonstrate how our methodology can be used to replicate this results and extend them to
include discontinuous and non-differentiable strategies.

The game. Each playeri voluntarily invests in the public capital stock at the rateui. The single public
capital stock evolves according to

ẋ =
n∑

j=1

uj − σx;

hereσ > 0 is the constant depreciation rate. Following Fershtman and Nitzan we assume that playeri’s
utility functional is given by

Ji =
∫ ∞

0

(
ax− b

2
x2 − 1

2
u2

i

)
e−ρt dt,

wherea, b > 0 are positive parameters. Note that compared to the formulation of [22], one parameter has
been scaled away. The corresponding present value Hamiltonian becomes

Pi =
1
2
u2

i − ax +
b

2
x2 + pi




n∑

j=1

uj − σx


 .

The functionvi is found by minimizingPi with respect toui under the conditionui ≥ 0. This yields that

vi(pi) =
{ −pi pi ≤ 0,

0 pi > 0.

In the symmetric caseui = u, the system (5) reads as

du

dx
=





(ρ + σ)u− a + bx

(2n− 1)u− σx
u(x) > 0

0 u(x) = 0

The corresponding auxiliary system is (in the regionu > 0)

x′ = (2n− 1)u− σx,

u′ = (ρ + σ)u− a + bx.

Some phase curves of the auxiliary system are shown in figure 1. In this figure solutions of the auxiliary
system are represented by drawn curves. They can, at least locally, be interpreted as the graphs of possible
symmetric feedback strategiesu(x). Three curves are highlighted: the strategyu(x) = 0 at the lower bound-
ary of the control region, which is a special solution. The other two are examples of a non–differentiable
and a non–continuous Markov strategy, respectively. The figure will be discussed in geometric terms.

11



0 0.5 1 1.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

x

u

Figure 1: Solutions of the auxiliary system (drawn) and level curves of the value function (dotted) in the
symmetric two player case of the voluntary provision of public goods game.

Stability of equilibria. First consider the linè1 : nu − σx = 0 of equilibria of the state equation (the
broken line in the figure): the quantitẏx is positive abovè1, and negative below. Letu(x) be a feedback
strategy, and let(x∗, u∗) ∈ `1 be an equilibrium such thatu∗ = u(x∗). This equilibrium is stable if

d
dx

f(x∗, u(x∗)) < 0.

This stability condition holds when
du(x∗)

dx
<

σ

n
is satisfied. From the figure, it is readily apparent that points on`1 close to the origin (lower left hand corner)
are stable, while points oǹ1 in the upper right hand corner are unstable. Hence there is a point on`1 where
equilibria change from stable to unstable; it is the unique point where a solution curve of the auxilary system
touches the linè1.

Forbidden region. Note the region in the lower right hand corner. Any solution of the auxiliary system ends
(under the dynamics of the state equation) on the line`2 : (2n− 1)u− σx = 0 (not drawn in the picture: it
is the line through the origin and the only steady state equilibriumP = (xP , uP ) of the auxiliary system).
As this is coincidentally also the curve of maxima of the value function for givenx, the strategies cannot
‘jump away’ from `2. Neither can they stay there, for none of the points on`, excepting the origin, is an
equilibrium of the state equation. Finally, continuation along solutions of the auxiliary system is impossible
as well, for as the trajectories bend back, they cannot be represented by functions of the state variable any
more.

Character of the strategies.This reasoning has to be modified slightly for the region in the lower left hand
corner: here points that start at the line`2 move away from it under state dynamics. Here solutions of the
auxiliary system represent feedback strategies; these strategies are however not defined for all states.

12



The feedback strategy which is formed by the upper two invariant manifolds ofP (two thickly drawn half–
lines in the figure) is of the type mentioned in subsection 2.4. Note that the corner point is on the line`2, as
predicted. The corners of the strategies ending (or beginning) on the lineu = 0 are of a different kind, since
on that line the functionv(p) is non–differentiable.

The upper non–differentiable feedback strategy, as well as all continuous strategies above it are globally
defined. The same holds for those in the region bounded by the lower two invariant manifolds ofP , if we
continue them by settingu(x) = 0 after they hit thex–axis.

Jump points. Note the discontinuous strategy that ‘jumps’ overP (also thickly drawn in the figure). At
the jumping discontinuity, the players are indifferent between increasing or decreasing dynamics. This is
similar to aSkiba pointin open loop dynamics (see [4, 6, 15, 21]).

3.3 Shallow lake. Consider the following environmental problem. There aren farmers each applying
fertilizer to his land. The amount of fertilizer used has two opposing effects. The more fertilizer a farmer
uses, the higher is his harvest and hence revenue from farming. On the other hand the amount of fertilizer
used eventually accumulates a stock of phosphorus in a shallow lake. The higher the phosphor level the
higher are costs (for fresh water, less tourists come to his camping) to the farmer. Since the level of the
phosphor stock is the result of activities of all farmers around the lake, the resulting problem can best be
described by a differential game. The shallow lake system has been investigated in detail by [6, 15, 21]; we
refer to these papers for background information.

Let the stock variablex represent the amount of phosphorus in a shallow lake and letui be the amount of
fertilizer used by farmeri. Assuming a concave technology to produce farming output and quadratic costs
coming from the stockx, playeri maximizes intertemporal utility

Ji =
∫ ∞

0
(log ui − cix

2) e−ρt dt.

The level of phosphorus is assumed to evolve according to the following state equation:

ẋ = f(x, u) =
n∑

i=1

ui − bx +
x2

x2 + 1
;

where we have a constant rate of self-purification (sedimentation, outflow) and the nonlinear termx2/(x2 +
1) is the result of biological effects in the lake.

For this differential game the functionPi is given by

Pi = − (
log ui − cix

2
)

+ pi




n∑

j=1

uj − bx +
x2

x2 + 1


 .

Hence, system (5) becomes

f
dui

dx
− ui

∑

j 6=i

duj

dx
= −(ρ + b)ui + 2ciu

2
i x +

2uix

(x2 + 1)2
.

13
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Figure 2:Solutions of the auxiliary system (solid) and level curves of the value function (dotted) in the sym-
metric two player case of the shallow lake game. The highlighted curve is an example of a non-differentiable
feedback strategy.

If we restrict our attention to symmetric objective functionalsci = c it is possible to derive symmetric
equilibrium strategiesui = u. In this case system (5) reduces to

du

dx
=

1
f − (n− 1)u

(
−(ρ + b)u + 2cu2x +

2ux

(x2 + 1)2

)
.

Based on this the auxiliary system is given by

(
x′

u′

)
=

(
u− bx + x2

x2+1

−(ρ + b)u + 2cu2x + 2ux
(x2+1)2

)
.

Solutions to the auxiliary system are given in figure 2. It is shown that the symmetric equilibrium includes
non-smooth strategies as well as multiple steady states.

Finally notice that the auxiliary system does not depend on the number of agents, and therefore coincides
with the state–control system of the shallow lake optimal control problem. The optimal control problem is
analyzed in detail in [21].

3.4 Exploitation of reproductive assets. As the final example consider the problem wheren agents
strategically exploit a single reproductive asset, like fish or other species (see [8]). The reproduction of the
stockx occurs at rateh(x), whereas playeri extracts the stock at rateui. Hence, the state dynamics is given
by

ẋ = h(x)−
n∑

i=1

ui. (12)
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Let us assume that the instantaneous utility that agenti derives from the consumption of the stock is given
by

Li(u1, · · · , un)

so that his utility functional becomes

Ji =
∫ ∞

0
Li(u1, · · · , un) e−ρt dt.

This functional covers several cases. The fish catch can be sold in an imperfect output market. In that case
the price of the fish depends on the total quantity produced by all fisheries and therefore the functionLi(u)
depends on the extraction rates of all players. In case of a duopoly market with linear demand this problem
was studied in [1].

Alternatively, the functionLi(u) can only depend on the exploitation rate of playeri. In this case each
agents maximizes the present value of future utility derived from consuming the fish. This formulation was
dealt with in [8].

3.4.1 Duopoly. Let us start with the duopoly model studied by [1]. The number of players is assumed to
be two,n = 2, and the utility (revenue) functions are given by

Li(ui, uj) = (a− b(ui + uj))ui.

Moreover, the production function is specified as

h(x) =
{

δx for x ≤ xmax
2

δ(xmax − x) for x > xmax
2 .

It is assumed that marginal product is large enough to satisfyδ > max{5ρ
2 , 10a

9b }. Hence, the production
function is piecewise linear and the utility function is quadratic. The functionPi is given by

Pi(x, pi, ui) = −aui + b(u2
i + uiuj) + pi (h(x)− ui − uj) .

This yields thatpi = qi(x, ui, uj) = −a + 2bui + buj(x), ui = vi(x, uj , pi) = (pi + a)/(2b) − (1/2)uj

Applying equation (5) and assuming symmetry we obtain

du

dx
=

(
a
3b − u

)
(h′(x)− ρ)

h(x)− 8
3u + a

3b

. (13)

The corresponding auxiliary systems becomes
{

x′ = h(x)− 8
3u + a

3b ,

u′ =
(

a
3b − u

)
(h′(x)− ρ) .

(14)

Given the assumption on the production function, marginal product is piecewise constant, i.e.h′(x) = δ
or h′(x) = −δ. From the auxiliary system we immediately find that(u0 = a

3b , x0 = 5
9

a
bδ ) and (u0 =

a
3b , x0 = 9bδ−5a

9bδ ) are steady states.

Since the duopoly game is of the linear quadratic type, it makes sense to look for a linear Markov equilib-
rium. The linear equilibrium, however, cannot be applied for the entire state space. Whenever the stock
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Figure 3: Solutions of the auxiliary system (solid) and level curves of the value function (dotted) in the
symmetric two player duopoly with production functionh(x) = δ min{x, 1− x}. Parameters area = b =,
δ = 2, ρ = 1/2. The highlighted curve is the piecewise linear solution described in the text.

level is large enough it is optimal for the firms to chose the steady state levelu0 = a
3b and stay at this level.

Prior to reaching this upper steady state firms can choose linear Markov strategies. They can be derived
making use of (13). Let us assume that in the appropriate state space range strategies are linear, and that
thereh(x) = δx. This implies thatdu

dx = α whereα is a constant. Using the relationship

du

dx
=

(
a
3b − u(x)

)
(δ − ρ)

δx− 8
3u(x) + a

3b

= α,

we find thatα = 3
4

(
δ − ρ

2

)
and that the linear strategies are given by

u(x) =
3
4

(
δ − ρ

2

)
x− a

12bδ

(
δ − 5ρ

2

)
. (15)

It is now easily seen that the equilibrium strategy consists of three parts. For stock levels belowx1 =
a

9bδ
δ−5ρ/2
δ−ρ/2 , equilibrium production is zero. For levels abovex2 = 5

9
a
bδ , the optimal policy of the firms is to

chooseu0 = a
3b . For intermediate levels it is optimal to choose the linear Markov strategy given by (15).

This equilibrium is illustrated in figure 3. Note that the conditionδ > 10a
9b ensures thatx2 < 1/2.
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3.4.2 Constant relative risk aversion.We now proceed with the case in which each agent has a constant
relative risk aversion utility function. Let0 < σ < 1 and specify the utility functional of playeri as

Ji =
∫ ∞

0

u1−σ
i

1− σ
e−ρt dt.

The functionPi becomes

Pi = − u1−σ
i

1− σ
+ pi


h(x)−

n∑

j=1

uj


 .

From∂Pi/∂ui we obtainpi = −u−σ
i andui = (−pi)−1/σ, and equation (5) yields

dui

dx


h(x)−

n∑

j=1

uj


 +

ui

σ

∑

j 6=i

duj

dx
=

ui

σ

(
h′(x)− ρ

)
. (16)

Symmetric strategies.If all players play the same strategyui = u, then equation (16) reduces to

du

dx
=

u

σ

h′(x)− ρ

h(x) + (n−1
σ − n)u

. (17)

The corresponding auxiliary system reads as
{

x′ = σh(x) + ((n− 1)− nσ)u,
u′ = u(h′(x)− ρ).

(18)

The caseσ = (1− 1/n) is special, since then the system can be integrated analytically, yielding

u(x) = Ch(x)
n

n−1 exp
(
− nρ

n− 1

∫ x

x0

h(t)−1 dt

)
.

Compare equation (4) of [8].

Stability of steady states.For a symmetric Nash equilibrium strategyu(x), it follows from equation (12)
that the pointx = x0 is a steady state if

u(x0) =
1
n

h(x0). (19)

Introducingξ = x− x0 yields for the local dynamics at the steady state

d
dt

ξ =
(
h′(x0)− nu′(x0)

)
ξ + O(ξ2).

From equations (19) and (17), we find that

u′(x0) = h′(x0)− ρ;

substitution yields
d
dt

ξ =
1

n− 1
(
nρ− h′(x0)

)
ξ + O(ξ2).
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Figure 4: Solutions of the auxiliary system (solid) and level curves of the value function (dotted) in the
symmetric two player case of the fishery model with production functionh(x) = x(1− x).

We find the condition that the steady statex = x0 satisfying (19) is locally asymptotically stable if

ρ <
1
n

h′(x0),

and unstable if the inequality sign is reversed. In particular, ifh′(x0) < 0, then(x0, u(x0)) is always an
unstable equilibrium for the state dynamics. Moreover, the derivativeh′(x) is bounded from above, and
if ρ > 1/n · maxh′(x), then the state dynamics do not have stable equilibria in the interior of the state
space.

Case study.In the following, we shall restrict our attention to the analysis of the special case withh(x) =
x(1− x) whenever illustrations are called for.

Local analysis of the auxiliary system.In the following, the auxiliary system is used to characterize the
functionsu(x) for the caseh(x) = x(1− x).

The setE of the equilibria of the auxiliary system is

E =
{

(0, 0), (1, 0),
(

xρ,
σ

n(1− σ)− 1
h(xρ)

)}
,

wherexρ = (1−ρ)/2 is the solution ofh′(x)−ρ = 0. Note that the third equilibrium is in the quadrantx >
0, u > 0 only if ρ < 1 andn > 1/(1− σ).

LEMMA 1. If (x, u(x)) is a solution of (17) that satisfies0 < u(x) < (1/n)h(x), then the solu-
tion (x(t), u(x(t)) of the control problem of each player violates the transversality condition.

Proof
For an equilibrium(x0, u0) ∈ E, introduceζ = (ξ, η) = (x−x0, u−u0). The linearized system at(x0, u0)
then becomes

ζ ′ = Aζ =
(

σh′(x0) n(1− σ)− 1
u0h

′′(x0) h′(x0)− ρ

)
ζ + O(|ζ|2).
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Note that ifx0 = 1, the matrixA takes the form

A =
( −σ n(1− σ)− 1

0 −1− ρ

)

We have the following lemma:

LEMMA 2. The integral curves of the systemζ ′ =
(

α β
0 γ

)
ζ, with ζ = (ξ, η), satisfy the relation

ξ = C|η|αγ − β

γ − α
η, (20)

whereC is an integration constant.This lemma yields thatξ = C|η| σ
1+ρ + . . ., and hence that the integral

curve through(ξ0, η0) is to lowest order given as

η = η0

(
ξ

ξ0

) 1+ρ
σ

+ . . . .

The state dynamics at the equilibrium read as

d
dt

ξ = −ξ − nη0

(
ξ

ξ0

) 1+ρ
σ

+ . . . ;

as(1 + ρ)/σ > 1, we have thatξ(t) = e−tξ0 + . . ., and consequentlyu(t) = η(t) = η0 e−
1+ρ

σ
t. Recalling

thatp = −u−σ, we finally obtain
p(t) = p0 e(1+ρ)t.

Hence for all solutions of the auxiliary system that tend to the equilibrium(x0, u0) = (1, 0), the transver-
sality conditionlimt→∞ p(t) e−ρt = 0 is violated.

Asymmetric strategies.Here the assumption is dropped that the players play symmetric strategies; for sim-
plicity, we restrict to the two–player casen = 2 and assume that1 − σ = 1/2 holds. Equation (16) gives
rise to the system

(h− u1 − u2)
du1

dx
+ 2u1

du2

dx
= 2(h′ − ρ)u1,

2u2
du1

dx
+ (h− u1 − u2)

du2

dx
= 2(h′ − ρ)u2.

It is convenient to consider instead ofu1 andu2 the dependent quantitiesv = u1 − u2 andw = u1 + u2;
for them, the equations take the simpler form

dw

dx
= 2

h′ − ρ

∆
(
hw − 2w2 + v2

)
,

dv

dx
= 2

h′ − ρ

∆
(h− w)v,

with ∆(x) = h2 − 2hw + v2. The auxiliary version of this system of equations is

x′ = ∆ = h2 − 2hw + v2,

w′ = 2(h′ − ρ)
(
hw − 2w2 + v2

)
,

v′ = 2(h′ − ρ)(h− w)v.
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Note that the planev = 0, corresponding to the symmetric caseu1 = u2, is invariant under the flow of the
auxiliary system; in other words, that case is nested in the present one.

We will not give a full analysis of this system, leaving that to future work. However, we would like to point
out one consequence of the equationv′ = 2(h′ − ρ)(h− w)v. Recall thatx′ = h− w; hence, if the system
is on a time path for which the stock decreases, the factorh − w < 0, and the sign ofv′/v is the opposite
of h′ − ρ.

In the example above, the factorh′−ρ is positive for smallρ and smallx, and it follows that then the differ-
ences between strategies decay exponentially if the stock decreases towards an equilibrium close tox = 0.
Conversely, ifρ sufficiently large, differences between strategies increase exponentially, which can be seen
as a mad scramble to exploit the last remnants of the stock.

4 Conclusions

In this article, a framework has been elaborated to find necessary conditions for Markov Nash equilibrium
strategies in differential games with a single state variable. The Nash equilibria have been characterized as
solutions of a system of explicit first order ordinary differential equations, usually nonlinear.

By analyzing a series of classical examples, we have shown that this characterization can be used to find
both direct analytic information, by integration of the equations, and indirect qualitative information, by a
geometric analysis of the solution curves of an auxiliary system in the phase space.

Additionally, we have addressed the issues of continuity and differentiability of Markov strategies in this
class of differential games. Our simple approach is capable enough to deliver interesting insights into a large
class of capital accumulation games.
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Appendix

Theorem 3 uses the assumption that the value function for each player is continuous. Here we discuss
regularity conditions for the value function to be continuous within the framework of an optimal control
problem. The agent’s control problem consists of maximizing

J[x, u] =
∫ ∞

0
g(x, u) e−ρt dt

under the constraint that

ẋ = f(x, u). (21)

Herex : [0,∞) → X andu : [0,∞) → U, with X an open subset ofRm andU the closure of an open
subset ofRk. We shall denote byDξ the set of all such functionsx andu that satisfy equation (21) almost
everywhere such thatu is integrable,x absolutely continuous andx(0) = ξ.

Recall that the value function can be defined as

V (ξ) = sup
Dξ

J[x, u].

Loosely speaking, a system is locally controllable if any point in the neighborhood of a given point can
be reached by choosing the control functionu appropriately. The following definition makes this notion
precise.

DEFINITION. (Bounded controllability at a point) We shall call the systeṁx = f(x, u) boundedly
controllable atx0, if for everyη > 0 there is aσ0 = σ0(η) > 0 such that for every0 < σ ≤ σ0, there an
open neighborhoodU ⊂ X of x0, depending onη andσ, such that the following holds.

If t1, t2 andx1, x2 ∈ U are such that|t1 − t2| < σ, there is an integrable functionu : (t1, t2) → U such
that |u(t)| < η, and an absolutely continuous functionx : (t1, t2) → U , that satisfyx(t1) = x1, x(t2) = x2

and
ẋ = f(x, u),

almost everywhere on(t1, t2).

With this definition in place, the criterion that ensures continuity of the value function takes now a rather
simple form.

THEOREM 4. If the systemẋ = f(x, u) is boundedly controllable atξ, then the value functionV is
continuous atξ.

Proof
Takeε > 0 arbitrarily. We show that there is a neighborhoodU of ξ such that ifξ̃ ∈ U , thenV (ξ) − ε <
V (ξ̃) < V (ξ) + ε.

By the definition of value function, we can find(x1, u1) ∈ Dξ, such that

J[x1, u1] > V (ξ)− ε

3
.
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Takeη > 0, δ > 0 and letBδ(ξ) = {x : |x− ξ| < δ}. Introduce

M = sup
|x−ξ|<δ,|u|<η

|g(x, u)|,

and

σ1 =
ε

3
min

{
1
M

,
1

ρV (ξ)

}
.

Chooseσ > 0 such thatσ ≤ min{σ0(η), σ1}.
Find an open neighborhoodU ⊂ Bδ of ξ such that for everỹξ ∈ U , there is an integrable functioñu,
bounded byη, and an absolutely continuous functionx̃, both defined on(0, σ) such thaṫ̃x = f(x̃, ũ) almost
everywhere and̃x(0) = ξ̃, x̃(σ) = ξ.

We construct(x2, u2) ∈ Dξ̃ as follows:

x2(t) =

{
x̃(t) 0 ≤ t < σ,

x1(t− σ), t ≥ σ.
u2(t) =

{
ũ(t), 0 ≤ t < σ,

u1(t− σ), t ≥ σ.

It then follows that

V (ξ̃) ≥ J[x2, u2] =
∫ σ

0
g(x̃, ũ) e−ρt dt +

∫ ∞

σ
g
(
x1(t− σ), u1(t− σ)

)
e−ρt dt.

The summands can be estimated as
∫ σ

0
g(x̃, ũ) e−ρt dt ≥ −Mσ ≥ −ε

3

and

∫ ∞

σ
g
(
x1(t− σ), u1(t− σ)

)
e−ρt dt

= e−ρσJ[x1, u1] > e−ρσ
(
V (ξ)− ε

3

)

= V (ξ)− ε

3
− (1− e−ρσ)V (ξ) ≥ V (ξ)− ε

3
− ρσV (ξ)

≥ V (ξ)− 2ε

3
.

Adding these, we arrive at
V (ξ̃) > V (ξ)− ε.

Completely analogously, we show thatV (ξ) > V (ξ̃)− ε. Combining these inequalities yields that

−ε < V (ξ̃)− V (ξ) < ε.

This shows thatV is continuous atξ.
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