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Abstract

Many economic problems can be formulated as dynamic games in which strategically interacting agents
choose actions that determine the current and future levels of a single capital stock. We study necessary
conditions that allow us to characterize Markov perfect Nash equilibria (MPNE) for these games. These
conditions result in an auxiliary system of ordinary differential equations that helps us to explore stability,
continuity and differentiability of MPNE. The techniques are used to derive detailed properties of MPNE
for several games including the exploitation of a finite resource, the voluntary investment in a public
capital stock, and the inter-temporal consumption of a reproductive asset.
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1 Introduction

Many economic problems can be formulated as dynamic games in which strategically interacting agents
choose actions that determine the current and future levels of a single capital stock. Consider, for example,
a single stock of an exhaustible or reproductive resource that is simultaneously exploited by several agents
that do not cooperate. Each agent chooses an extraction strategy to maximize the discounted stream of
future utility. The actions taken by agents not only determine their levels of utility but also the level of the
capital stock. Alternatively, look at the problem that agents voluntarily contribute to a single public stock of
capital, like a park or a church. They choose their contributions (investments in the public stock of capital) to
maximize the discounted stream of utility from consuming the public stock net of investment costs. Private
investment builds up the public stock of capital that eventually can be consumed by all agents.

Both examples have several things in common. First, the actions taken by agents determine the size of a
single capital stock that fully describes the current state of the economic system. Second, in case there
is no mechanism that forces players to coordinate their actions, they will act strategically and play a non-
cooperative game. Third, the equilibrium outcome will critically depend on the strategy spaces available to
the agents.

We make use of these features and formulate a differential game in which agents act hon-cooperatively and
use Markov strategies. We provide a detailed analysis of Markov perfect Nash equilibria (MNPE) for this
class of differential games with a single capital stock and discuss several economic examples that belong to
this class.

In a differential game, strategically interacting agents try to maximize an inter-temporal objective function,
by choosing a strategy that results in an action at every point inlti@ellectively, these actions influence

the state of the economic system and how it evolves over time. The evolution of the system as a result of the
agents’ strategies is captured in the system dynamics.

There is a wide choice of possible strategies taken by the agents. They may choose a simple time profile
of actions and precommit themselves to these fixed actions over the entire planning horizon. In that case
players are using open-loop strategies. Alternatively players might choose Markov strategies. In this case
they condition their actions on the current state of the system and react immediately every time the state
variable changes. When agents use feedback or Markov strategies they are not required to precommit.
Instead they play credible strategies if they are derive through backward induction.

To better understand the difference between open-loop and Markov strategies let us look at the following
example of several agents strategically exploiting the same renewable resource. In case the fisheries use
open-loop strategies they specify a time path of fishing effort at the beginning of the game and commit
themselves to stick to these preannounced actions over the entire planning horizon. If alternatively they use
Markov or feedback strategies they choose decision rules that determine current actions as a function of the
current stock of the resource. Markov decision rules capture the strategic interactions present in a dynamic
game. |If the rival fishery makes a catch today that necessarily results in a lower level of the fish stock,
the opponent reacts with an action that takes this change in the stock into account. In that sense Markov
strategies capture all the features of strategic interactions.

Assuming that agents use Markov strategy spaces we restrict our attention to the derivation of subgame
perfect Nash equilibria. These strategies have the property that a player knowing the strategies of the other

For a general introduction to the theory of differential games we refer the reader to [9].



players cannot gain by unilaterally deviating from his equilibrium strategy. Finding Markov Nash equi-
librium strategies of differential games, even if the game is of the linear-quadratic type, is a formidable
analytical problem. For instance, to find a MPNE in the general casepbdiyers andn state variables

leads to the problem of determining solutions of a system obupled nonlinear implicitn-dimensional

partial differential equations (PDE). Only in the case that the economic system can be described by a single
state variable (a single capital stock) will the system of PDE’s collapse to a system of ordinary differen-
tial equations that is much easier to deal with. Because of this, the article focusses on the least complex
casem = 1. As it turns out there are many economic problems that result in a dynamic game with a single
capital stock.

Consider the case of agents non-cooperatively exploiting a single exhaustible or renewable resource. The
resource stock is the single state variable and agents choose extraction strategies to maximize the present
value of utility over a given planning horizon. Markov perfect equilibria for these classes of games have been
studied, for example, by Levhari and Mirman [16], Sundaram [20], Benhabib and Radner [2], Clemhout and
Wan [5], Dutta and Sundaram [12], Dockner and Sorger [8], Rincon-Zapatero et al. [19] and more recently
Benchekroun [1].

As a second class of models consider the private investment in a public capital stock. The capital stock is
the single state variable and agents choose investment strategies to maximize the present value of future net
utility. Utility is derived from the available stock of public capital. This problem of private investment in a
single public capital stock has been formulated by Fershtman and Nitzan [14] and MPNE been studied by
Wirl [22], and in a discrete time framework by Marx and Matthews [18] and Dockner and Nishimura [11].

Dynamic games with a single capital stock can also be applied to study transboundary pollution control.
The emissions of two or more countries accumulate a single stock of pollution. Countries derive utility from
consumption but production results in emissions that accumulate and generate costs. Markov equilibria
for these types of games have been studied by Dockner and Long [10] and Dockner et al. [7]. Finally,
environmental economists have recently started to explore equilibria in the shallow lake problem. This
problem is structurally similar to the exploitation of a single renewable resource stock but with a non-
concave production function. Recent papers dealing with the shallow lake problem include Brock and
Starrett [4], Maler et al. [15], and Wagener [21].

In this paper we formulate a class of differential games in which the actions of the agents influence a single
capital stock, the state variable, and develop a solution methodology, whose core is formed by necessary
conditions that have to be satisfied by Markov strategies. Fon{player case, an-dimensional system

of explicit ordinary non-autonomous differential equations is found, which has to be satisfied by Markov
strategies at all points for which they are continuously differentiable. Moreover, necessary conditions are
given for possible failures of differentiability and continuity of the Markov equilibrium strategies. Points
where the Markov strategies are continuous but not differentiable can very conveniently be described by
singularities of an autonomowsuxiliary (n + 1)-dimensional vector field, whose solution trajectories are

the graphs of the equilibrium strategies. In the important special case that all players have the same utility
functionals, it is useful to focus onsymmetricequilibrium in which all agents play the same strategy. The
symmetric equilibrium is the solution of an ordinary non-autonomous differential equation. In this case, it
is possible to draw the associated two-dimensional auxiliary vector field, which yields detailed information
about the qualitative properties of the symmetric Markov equilibrium.

The approach of using an auxiliary system of differential equations to characterize Markov equilibria has
also been used by Rincon-Zapatero et al. [19] and Xepapadeas and co-workers [17, 23]. Contrary to
our approach, however, these authors derive sufficient conditions and do not deal with the problems of
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differentiability and continuity of equilibrium strategies. Being able to deal with non-differentiable and
discontinuous equilibrium strategies in a systematic manner is very important and fills a gap in the literature
of economic applications of differential games.

The article is organized as follows. In section 2, necessary conditions are derived which have to hold at
points where a Markov strategy is differentiable, or continuous, or discontinuous, respectively. Section 3
illustrates these conditions by determining Markov equilibria for different applications of differential games
with a single capital stock: (i) extraction of exhaustible resources; (ii) voluntary provision of public goods;
(iif) management of an economical-ecological system, known asthkow lake systepand (iv) exploita-

tion of renewable resources. Section 4 concludes.

2 Markov strategies

In this section we formulate a differential game in whietplayers choose Markov strategies(z), to
maximize an inter-temporal objective function. The strategies determine the level of a single capital stock,
z, that is governed by the state dynamics. For this game we derive nhecessary conditions for a Markov perfect
equilibrium.

Recall that such an equilibrium is by definition a vector-valued functianX — R", such that if the
strategies of all players except playieare given by the component functiong(z), j # 4, thenw;(z)
would be the optimal feedback control for playesf the resulting optimal control problem.

2.1 Basicidea. The basic idea for obtaining the necessary conditions for a MPNE can be described as
follows. Consider am player game, where each player has a payoff functional

Jilu;] = /00 Li(z,u) e P dt.
0

Herex € X, whereX is an open subinterval of the real liffe andu denotes the vectar = (uy,- -+ ,uy) €
R™ of the strategies of the players. For knowjithe state equation

determines the evolution of the system.

Given the strategies of the other players in feedback form, the Pontryagin necessary conditions yield an
autonomous system of differential equations for the best response strategy ofiplayehis system be
solved by functiongz(t), u;(t)). Since the state space is one-dimensional, the imapz(t) can be seen

as a variable transformation locally at some value ¢ if (tp) # 0. Using the inverse = t(x) of this
transformation, we obtain from the p&ir(¢), u(t)) a strategy in feedback (Markov) form;(z) = u;(t(x)).

Using this basic idea, an explicit system of ordinary differential equations will be derived far; thg
which is necessarily satisfied by Markov strategies at points where they are simultaneously continuously
differentiable.

This condition leads naturally to the question of what can be said about points where the continuous dif-
ferentiability fails to hold: such points are investigated in subsections 2.4 and 2.6, where the respective
possibilities of discontinuities in the first derivative of the control function, and in the control itself are
investigated.



2.2 The associated control problem. For ease of notation, it is assumed that the strategies of players
ton—1 are fixed, leaving player to solve for his optimal response. Lt 4(z) = (u1(z), -+, up—1(z))
denote this vector of fixed strategies. Playaptimizes

Inlun] = / Lo, (), un) e Pt dt, (1)
0
under the constraint that
The functionsl;, j = 1,--- ,n andf are assumed to be sufficiently many times continuously differentiable.

Introduce the Pontryagin functidrP,, of playern’s optimal control problem
{Pn(x>pna a? un) = _Ln(wa ’[L, un) + pnf(xv a? un)a

with p,, as the costate variable. Pontryagin’s minimal principle requireshh@t, p,,, U) takes a minimum
for U = u,. Ifitis assumed that for givem the functiona(z) is continuously differentiable, and that the
minimum is interior, then necessarily

0Pn

ou,
Note that from this equation, the co—statecan be solved as a functign = ¢, (x, 4, u,,). Inversely, if the
condition is imposed thak,, is (locally) strictly convex inu,, for all z, & andp,,, then the control.,, can be
solved smoothly from equation (3) as a functian= v, (z, @, py,).

0. 3)

More generally, we may consider the case that the control varigbie constrained to some sét As this
case is not our main concern, we shall comment on it briefly and we will not try to achieve utmost generality
of our results in this direction. In particular, we shall assume that th& segiven as

S = Sp.a = {un | hn(x,0,u) <0},

and that on the boundary ¢f (i.e. for h,, = 0) the derivativedh,, /Ou,, does not vanish. The necessary
conditions read in this case as

0 o
ouy,, Him ouy,’

Imposing strict convexity of,, and quasi-convexity af,, with respect tas,, we can again solve uniquely
the controlu,, from the necessary conditions, together with the multipligrbut now only as a continuous
functionv,,(z, 4, p, ). However, the discontinuities in the derivativesgfoccurr only for those values of,
for which bothh,, = 0 andy,, = 0.

Introduce the (minimized) Hamiltonian
Ho(@,pn) = Pa (2, oy (), va(a, @(2), pn) ):

then an optimal response of playehas to satisfy the following equations feft) andp,,(t):

. OH, : O0H,
€Tr = ; = - T~ .

(4)

2This function is usually called the Hamilton function in the optimal control literature; however, we like to reserve that name
for the functionH,, introduced below, also called the ‘minimized Hamilton function’, which depends only on states and co-states.



See [3] for more details on Pontryagin necessary conditions.

For an optimal solutioriz(t), u,,(¢)) beginning at a statey, thevalue (or valuation) functionf playern is
given by

Vi () = / " Lo(a(t), ax(t)), un(t)) e dt.

It satisfies the equation of Hamilton—Jacobi—Bellman:

puVi(z) = —H, (m ‘Zﬁ@)) .

As dC};n (z(t)) = pn(t), this could also be written as,V,, = —H,,(z, p,).

2.3 Derivation of necessary conditions. From the preceding subsection it is clear that each individual
player has to solve an optimal control problem given the Markov strategies of the rivals. Hence, we can
make use of the system (4) to derive necessary conditions for a stationary Markov equilibrium.

THEOREM 1. Letu(x) = (ui(x),---,un(z)) be Markov Nash equilibrium strategies of the differential
game with payoffs (1) and state equation (2). Moreovew;leatisfy equation (3) with replaced by.

If u(z) is continuously differentiable in a neighborhood of a paigt= x(ty) such thatf (zo, u(xg)) # 0,
then necessarily the differential equations

dui 87}2' 8?1 c%i de 81)1' 8’[)1' (9?2
— —_— = —_— iDi — —— . 5
dz U ; <3p¢ Ouj  Ouj f) dz Oz U opi <p P s > ®)
evaluated ap; = q;(z,u1,--- ,u,) for all i, are satisfied at,, for every: € {1,...,n}.

Proof
Writing the equation fop,, in full (see equation (4)) and using equation (3) to simplify yields

. +%+8L da 8f 8fdu
P = Pnbn 7 75 o0 dz Por  Prodax

Note that expressions likeL,/du - di/dx are shorthand fop "~ 0L, /00, - da,/dz.

As mentioned in the introduction to this sectiongift) # 0, thenz(t) can be seen as a local coordinate
transformation. In order not to burden notation too much, kigth and«(z(t)) shall be denoted by; the
meaning should always be clear from the context. The chain rule yields

da 1 d 1d

- %aa(m(t)) = ?aa(m(t»

This implies for thep,,—equation that

. oL, f 1 L, B of\ du
Pn = PnDn + e 87 ? < pnf)ﬂ) TR (6)

Introducingu,, (t) by settingu,, (t) = v, (z(t), w(z(t)), pn(t)), it follows that

. 8vn+8vndu _+%,
Y=\ oz T oa dz )" T ap, P




Substitutingf for & and the right hand side of (6) fgr, yields

. <8vn Ovy, dﬂ) Ovy, < 6Hn)
Unp = + 4 f+7 PnPn — (73—

9z | 04 dz Opn, ox
v v (OB (G0, 0Py Ov, ) di
- Oz Opn nPn T ay Op, Ol ot dz’

Using thatu;(t) = u;(x(t)) satisfiesi; = f du;/dz, and bringing all derivatives; to one side yields

i S (L0 0Py v O v (0P -
" fOpn Ouj Ou;) 7 Ox O\ o )

Of course, the label is by no means special; hence for evefyan equation of the form (7) can be obtained.
Put together, a system of equations linear in ¢hes obtained, which can be solved (under appropriate
determinant conditions) to yield a system of (nonlinear) ordinary differential equations fey.tidanging

to du,/dz using the chain rule yields the result. i

2.4 Corner points. Equation (5) also answers the question of when a continuous equilibrium Markov
strategyu(x) may fail to be differentiable at certain (isolated) points.

Introduce the square matrik(x) = (Gij(.’I},U))%ZI with elementsi; = f(z, u) anda;;(x, w) = dv; /Op; -
OP;/0uy if i # j as well as the vectdi(z) = 9% f + % (pip; — 1) Based on these we are able to show
our next result.

THEOREM 2.  Assume that. = u(z) is a Markov Nash equilibrium strategy of the differential game
with payoffs (1) and state equation (2), thats continuous in a neighborhodd of xy and continuously
differentiable inU'\{z(}, and thatA(z, u(z¢)) is invertible. Then is differentiable atz.

Proof
Rewrite equation (5) in the following schematic form (recall that u(z) € R"™):
du
Alw,u(@)) (@) = bla,u(a)). ®)

If A(z,u(x)) is invertible, this can be rewritten as
du
dx
Read differently, if the vector field'(x) exists it gives for every: the only possible value fodu/dz.

(z) = Az, u(2))"'b(z, u(z)) = F(z).

Hence, letzy be a point such that the left and right limits @f./dx exist ase tends tar, then there are the
following two possibilities. EitheF'(z() exists, itis the limit ofdu/dx, andu is continuously differentiable
atxzg. Or F(xo) fails to exist; but this can happen onlyAf(z) fails to be invertible at. i

2.5 Auxiliary system. Another way to understand the occurrence of corner points is to consider what
will be called theauxiliary systento the system given by equation (8).

Recall the definition of thadjoint matrix A* of a given matrixA: it is the matrix whose elements are the
cofactors ofA, which are obtained by deleting tkéh row and;’th column of A and taking the determinant
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of the remaining matrix. We have thatA* = (det A)I, wherel is the identity matrix; hencel~! =
(det A)~ A*. Note that equation (8) implies

du 1
— =A% =
dx det A

Now consider the system of differential equations

A*b. ()]

{ i = A (z,u)b(Z,0), (10)

7 = det A(Z, 0);

hered’ is differentiation with respect to some real parametéBy the chain rule, it follows that whenever
i’ # 0, thend¥(i(s)) = @(s)/#'(s). Hence if(i(s),(s)) are solution curves of the auxiliary system,
and if for s = so we have that’(sg) # 0, then the equatiof(s) = x can be solved fos = s(z), and in a
neighborhood of:(sy) the functiona(s(z)) yields a solution of (8). The system given by equation (10) is
an auxiliary system to equation (9).

More generally, a systemd = k(z,u), ' = h(x,u), with k(z,u) € R™ andh(z,u) € R, is an auxiliary
system to (9), if

1
“k=A"1p.
h

2.6 Jump points Note that theorem 1 yields a necessary condition at points where the equilibrium strate-
gies are continuously differentiable. Here, we look for necessary conditions that have to hold if the equilib-
rium strategy has an isolated jump discontinuity.

Letp(z) = (p1(x), - ,on(2)) = (q1(z,u(x)), -, gu(x,u(x))), with ¢;(x, «) as introduced in subsec-
tion 2.2. The result can then be stated as follows.

THEOREM 3. Assume that the value functidf of playeri is continuous. It is necessary that

lim Hj(z,p(z)) = lim H;(z, p(x)),

T T | Xy
foreveryz, € X andallj=1,--- n.
Proof
In the appendix we state the conditions that imply the continuity of the value fundtjori®ecall that the
value function of playet satisfiespV;(z) = —H;(z, p;(z)). Givenc = —pV;(x), the only values possible
for p; are those for which

Hi(xz,p;) =c.

The theorem follows from this. ||

3The relationship between the time derivative= ‘;—f and the derivative with respcttg 2’ = ‘;—2 follows from

e _dedi _
T Us  dtds ds



REMARKS.

1. The necessary condition stated in the Theorem cannot be used to identify the location of jump discon-
tinuities but imposes a restriction on the jump size.

2. If H, is convex inp,,, then there are at most two solutions to the equati(, p,,) = c.

3. Letu(x) be defined for alk < z,, and assume that there is only one possibility for a nonzero jump
atz,, to a continuous strategy(z) defined for alle > z... Let

lim f(z,u(x)) = A, and lim f(z,u(x)) = f(z., u(z,)) = B.

Xy T| Ty
If the time evolutionz(¢) is continuous and piecewise differentiable, then it is not possible that simul-
taneouslyd > 0 andB < 0. For, suppose it were the case. Then(ify) = x., necessarily(t) = z.
forall ¢t > t3. HenceB should be equal t0, contradicting the assumption.

3 Applications

The class of differential games introduced in the preceding section is fairly general and allows us to study
Markov equilibria for a variety of different examples. Here we apply the techniques of the auxiliary system
to four alternative models that have been dealt with in the literature: (i) the exploitation of an exhaustible
resource (see [13], [19], and [5]), (ii) the voluntary provision of a public capital good (see [14] and [22]),
(iii) the shallow lake problem (see [15], [21], and [4]) and (iv) the exploitation of a reproductive asset (see
[2], [8], and [1]).

3.1 Exploitation of exhaustible assets. Let = be the stock of some exhaustible resource, and;lée
playeri’'s rate of exploitation of this resource. Assume that the objective function of this player is given by

Hi = / Li(ui)efpt dt,
0

where L;(u;) is the instantaneous utility that exhibits positive and decreasing marginal utility. The stock
dynamics of the resource is described by

The function®; is given by

yieldingp; = —L(u;) = —d%"if:i) if u; > 0, andp; = 0if u; = 0. Restricting the analysis on symmetric
equilibriau; = u, equation (5) becomes
du
(n+ (1= n)E(w)ug = pE(u), (11)



whereE(u) measures the inverse of relative risk aversion, i.e.,

E(u) = —L{J,;((;L))u

Based on equation (11) we can now characterize symmetric Markov equilibria for different types of utility
functions (see [19]). In particular we distinguish two different cases. One in which preferences exhibit
constant relative risk aversion (CRRA) and one in which consumers have preferences with constant absolute
risk aversion (CARA).

Let us consider the case of constant relative risk aversion first. Here the utility functions of the agents are
given by

ul ™"
Li(w) = 1+ ;
and the inverse of relative risk aversion is given by
1
E(u) = —.
n

Equation (11) becomes

<n— 1 ) du P
-nlu— = —"u,
1 dz U

which is solved by eithet(z) = 0, or, if n > 1/(1 — n), by the linear function

p

This is the symmetric Nash equilibrium strategy for all players; note that in equilibrium, the rate of extrac-
tion GG is proportional to the discount rate, and it decreases with the number of players. In the limiting case
when agents have logarithmic utilitf,; (v;) = Inw; and the elasticity becomés(u) = 1, extraction rates

are independent of the number of firms exploiting the resource. They are given py- pz.

In case of constant absolute risk aversion, consumer preferences are given by
Ll(ul) = —e_o‘“

wherea > 0 is the constant absolute risk aversion. In this case we get

and equation (11) becomes

1 du p

Under the assumptions thaf0) = 0 this equation can be integrated to yield equilibrium extraction rates
equal to

(n—1)++/( —n)2+2pnom.

u(x) =

These equilibrium strategies are decreasing both in the number of firms exploiting the resource and in the
level of absolute risk aversion.

10



3.2 Voluntary provision of a public good. Next we turn to the analysis of private investment in a public
capital stock. This game was first looked at by Fershtman and Nitzan [14]. They assume that each agent
derives quadratic utility form the consumption of the public capital stock and in case he invests in the stock
faces quadratic costs. Fershtman and Nitzan solve both the open-loop game and the game with Markov
strategies and find that the dynamic free rider problem is more severe when agents use linear Markov strate-
gies. Wirl [22] challenges this results and studies the identical linear quadratic game but solves for non-linear
Markov equilibria. He finds that if the discount rate is small enough non-linear Markov strategies can sup-
port equilibrium outcomes that are close to the efficient provision of the public capital. Here we use this
example and demonstrate how our methodology can be used to replicate this results and extend them to
include discontinuous and non-differentiable strategies.

The game. Each playeri voluntarily invests in the public capital stock at the rate The single public
capital stock evolves according to
n
T = Z Uj — OT;
j=1

heres > 0 is the constant depreciation rate. Following Fershtman and Nitzan we assume that’player

utility functional is given by
Ji = /0 (ax — 53:2 — 2u?> e Pt dt,

wherea, b > 0 are positive parameters. Note that compared to the formulation of [22], one parameter has
been scaled away. The corresponding present value Hamiltonian becomes

1 b .
Ti:§u?—aa:+§x2+pi z;uj—aa:
J:

The functionu; is found by minimizingP; with respect ta:; under the conditiom; > 0. This yields that

—n. <0,
aw)={ h o BED

In the symmetric case; = u, the system (5) reads as

(p+0o)u—a+bx
du
= (2n —1)u — ox
dx 0 u(z) =0

The corresponding auxiliary system is (in the regiox 0)

"= (2n—-1)u- oz,

v = (p+o)u—a+bz.

Some phase curves of the auxiliary system are shown in figure 1. In this figure solutions of the auxiliary
system are represented by drawn curves. They can, at least locally, be interpreted as the graphs of possible
symmetric feedback strategiegr). Three curves are highlighted: the strategy) = 0 at the lower bound-

ary of the control region, which is a special solution. The other two are examples of a non—differentiable
and a non—continuous Markov strategy, respectively. The figure will be discussed in geometric terms.

11
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Figure 1: Solutions of the auxiliary system (drawn) and level curves of the value function (dotted) in the
symmetric two player case of the voluntary provision of public goods game.

Stability of equilibria. First consider the liné; : nu — ox = 0 of equilibria of the state equation (the
broken line in the figure): the quantityis positive above;, and negative below. Let(x) be a feedback
strategy, and letr., u.) € ¢; be an equilibrium such that, = u(x.). This equilibrium is stable if

d
1 (@ ulz:)) <0

This stability condition holds when
du(zy) o
dx < n
is satisfied. From the figure, it is readily apparent that point§ @ose to the origin (lower left hand corner)
are stable, while points ofy in the upper right hand corner are unstable. Hence there is a pofptvamere
equilibria change from stable to unstable; it is the unique point where a solution curve of the auxilary system

touches the liné;.

Forbidden region. Note the region in the lower right hand corner. Any solution of the auxiliary system ends
(under the dynamics of the state equation) on thedine (2n — 1)u — ox = 0 (not drawn in the picture: it

is the line through the origin and the only steady state equilibue (zp,up) of the auxiliary system).

As this is coincidentally also the curve of maxima of the value function for givethe strategies cannot

‘jump away’ from¢,. Neither can they stay there, for none of the pointd oexcepting the origin, is an
equilibrium of the state equation. Finally, continuation along solutions of the auxiliary system is impossible
as well, for as the trajectories bend back, they cannot be represented by functions of the state variable any
more.

Character of the strategies.This reasoning has to be modified slightly for the region in the lower left hand
corner: here points that start at the lifkemove away from it under state dynamics. Here solutions of the
auxiliary system represent feedback strategies; these strategies are however not defined for all states.

12



The feedback strategy which is formed by the upper two invariant manifolés(tfo thickly drawn half—
lines in the figure) is of the type mentioned in subsection 2.4. Note that the corner point is on thedise
predicted. The corners of the strategies ending (or beginning) on the #n@ are of a different kind, since
on that line the functiom(p) is non—differentiable.

The upper non—differentiable feedback strategy, as well as all continuous strategies above it are globally
defined. The same holds for those in the region bounded by the lower two invariant maniféidg afe
continue them by setting(x) = 0 after they hit ther—axis.

Jump points. Note the discontinuous strategy that ‘jumps’ o¥e(also thickly drawn in the figure). At
the jumping discontinuity, the players are indifferent between increasing or decreasing dynamics. This is
similar to aSkiba pointin open loop dynamics (see [4, 6, 15, 21]).

3.3 Shallow lake. Consider the following environmental problem. There ararmers each applying
fertilizer to his land. The amount of fertilizer used has two opposing effects. The more fertilizer a farmer
uses, the higher is his harvest and hence revenue from farming. On the other hand the amount of fertilizer
used eventually accumulates a stock of phosphorus in a shallow lake. The higher the phosphor level the
higher are costs (for fresh water, less tourists come to his camping) to the farmer. Since the level of the
phosphor stock is the result of activities of all farmers around the lake, the resulting problem can best be
described by a differential game. The shallow lake system has been investigated in detail by [6, 15, 21]; we
refer to these papers for background information.

Let the stock variable: represent the amount of phosphorus in a shallow lake and le¢ the amount of
fertilizer used by farmei. Assuming a concave technology to produce farming output and quadratic costs
coming from the stock;, player: maximizes intertemporal utility

o
g, = / (log u; — cix2) e Ptdt.
0

The level of phosphorus is assumed to evolve according to the following state equation:

(132

n
&= f(x,u) ;uz x+x2+1

where we have a constant rate of self-purification (sedimentation, outflow) and the nonlineat terf-
1) is the result of biological effects in the lake.

For this differential game the functidpy is given by

n 2
x
Pi=- (logui—cixQ) +pi g u; — bx + P
Jj=1
Hence, system (5) becomes
du; du; 9 2u;x
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Figure 2:Solutions of the auxiliary system (solid) and level curves of the value function (dotted) in the sym-
metric two player case of the shallow lake game. The highlighted curve is an example of a non-differentiable
feedback strategy.

If we restrict our attention to symmetric objective functionals= c it is possible to derive symmetric
equilibrium strategies; = u. In this case system (5) reduces to

du 1 2ux
___ - (- b 2culr + ——— ).
e f—(n—l)u( (p+ b)u + 2cu x+(m2+1)2>

Based on this the auxiliary system is given by

)\ [ u—br+ x%’iil

o —(p+ b)u + 2cuz + (mgﬂﬁ)g '
Solutions to the auxiliary system are given in figure 2. It is shown that the symmetric equilibrium includes
non-smooth strategies as well as multiple steady states.

Finally notice that the auxiliary system does not depend on the number of agents, and therefore coincides
with the state—control system of the shallow lake optimal control problem. The optimal control problem is
analyzed in detail in [21].

3.4 Exploitation of reproductive assets. As the final example consider the problem wheragents
strategically exploit a single reproductive asset, like fish or other species (see [8]). The reproduction of the
stockz occurs at raté(z), whereas playerextracts the stock at ratg. Hence, the state dynamics is given

by
= h(x) — Zul (12)



Let us assume that the instantaneous utility that agdatives from the consumption of the stock is given
by

Li(Ul, e aun)

so that his utility functional becomes

Hi:/ Li(u1,~- ,un)e_ptdt.
0

This functional covers several cases. The fish catch can be sold in an imperfect output market. In that case
the price of the fish depends on the total quantity produced by all fisheries and therefore the flyietjon
depends on the extraction rates of all players. In case of a duopoly market with linear demand this problem
was studied in [1].

Alternatively, the functionZ;(u) can only depend on the exploitation rate of playenn this case each
agents maximizes the present value of future utility derived from consuming the fish. This formulation was
dealt with in [8].

3.4.1 Duopoly. Let us start with the duopoly model studied by [1]. The number of players is assumed to
be two,n = 2, and the utility (revenue) functions are given by

Li(ui, u]') = (CL — b(uz + u]))uz

Moreover, the production function is specified as

ox for ¢ < Zmaz
= = 72
h(x) { 5(xma;v - .%') for =z > wmﬁ

It is assumed that marginal product is large enough to saiisﬁ/max{%", lg—g‘}. Hence, the production

function is piecewise linear and the utility function is quadratic. The funchipis given by
Pi(2, piyui) = —au; +b(u? + uiug) + p; (h(z) — u; — uj) .

This yields thaip; = ¢;(x, ui, uj) = —a + 2bu; + buj(x), u; = vi(x,uj,p;) = (pi +a)/(20) — (1/2)u;
Applying equation (5) and assuming symmetry we obtain

du (8 —u) (W(2) - p)

—_— = ) 13

dx h(z) — %u + 35 (13)
The corresponding auxiliary systems becomes

' = h(z)—Su+ &, (14)

uo= (& —u)(W(z)-p).

Given the assumption on the production function, marginal product is piecewise constdtzile= 0
or M'(z) = —4. From the auxiliary system we immediately find thap = 55,20 = 8%) and (up =

a __ 9bd6—5a
35, T0 = —aps ) are steady states.

Since the duopoly game is of the linear quadratic type, it makes sense to look for a linear Markov equilib-
rium. The linear equilibrium, however, cannot be applied for the entire state space. Whenever the stock

15



Figure 3: Solutions of the auxiliary system (solid) and level curves of the value function (dotted) in the
symmetric two player duopoly with production functiofx) = d min{x, 1 — z}. Parameters are = b =,
d =2, p = 1/2. The highlighted curve is the piecewise linear solution described in the text.

level is large enough it is optimal for the firms to chose the steady statedgvels; and stay at this level.

Prior to reaching this upper steady state firms can choose linear Markov strategies. They can be derived
making use of (13). Let us assume that in the appropriate state space range strategies are linear, and that
thereh(x) = dz. This implies that% = a wherea is a constant. Using the relationship

du (% — u(a:)) (0 —p)

dz 6z — Su(z) + &

)

we find thatoe = % (6 — g) and that the linear strategies are given by

u(a;):z(a—g)x—lz(;é<5—52p>. (15)

It is now easily seen that the equilibrium strategy consists of three parts. For stock levelszhelew

5 ‘55__55/22, equilibrium production is zero. For levels abowe = g%, the optimal policy of the firms is to

chooseuy = 5;. For intermediate levels it is optimal to choose the linear Markov strategy given by (15).

This equilibrium is illustrated in figure 3. Note that the conditior 19%‘1 ensures that, < 1/2.
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3.4.2 Constant relative risk aversion.We now proceed with the case in which each agent has a constant
relative risk aversion utility function. Leét < o < 1 and specify the utility functional of playéras

oo ,,1—0
i = / S grtqy,
o 1

The function®?; becomes

FromoP;/0u; we obtainp; = —u; ° andu; = (—pi)~1/?, and equation (5) yields

du; & U; duj  w; .,
i (h(x) — jz;uj) + . 2 o = (W' (z) = p) . (16)

Symmetric strategiedf all players play the same strategy = u, then equation (16) reduces to

du w (x)—p
— == ) 17
dz oh(z)+ (=L —n)u (17
The corresponding auxiliary system reads as
¥ = oh(z)+ ((n—1) —no)u,
Ve 2 T S 4o

The caser = (1 — 1/n) is special, since then the system can be integrated analytically, yielding
u(z) = C’h(x)ﬁ exp (_np h(t)™! dt> .
n—1/z
Compare equation (4) of [8].

Stability of steady states.For a symmetric Nash equilibrium strategyz), it follows from equation (12)
that the pointe = z( is a steady state if
1

u(@o) = —h(zo). (19)
Introducingé = x — x yields for the local dynamics at the steady state

= () - o)) €+ O(E)

From equations (19) and (17), we find that
u'(x0) = ' (x0) — p;

substitution yields
1

n—1

De= L (np— W(a)) € + O,

17
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Figure 4: Solutions of the auxiliary system (solid) and level curves of the value function (dotted) in the
symmetric two player case of the fishery model with production funatioh= x(1 — z).

We find the condition that the steady state-  satisfying (19) is locally asymptotically stable if
1
—K
p<—h(zo),

and unstable if the inequality sign is reversed. In particulat; (ify) < 0, then(zg,u(zo)) is always an
unstable equilibrium for the state dynamics. Moreover, the derivatige) is bounded from above, and

if p > 1/n-maxh’(x), then the state dynamics do not have stable equilibria in the interior of the state
space.

Case studylin the following, we shall restrict our attention to the analysis of the special caséwijh=

z(1 — x) whenever illustrations are called for.

Local analysis of the auxiliary systemlIn the following, the auxiliary system is used to characterize the
functionsu(x) for the caséi(z) = z(1 — z).

The set€ of the equilibria of the auxiliary system is

e {(070), (1,0), (xp, n(l_ag)_lh(xp)> } ,

wherez, = (1—p)/2is the solution oft/(x) — p = 0. Note that the third equilibrium is in the quadrant>
0,u>0onlyif p<landn > 1/(1- o).

LEMMA 1. If (x,u(x)) is a solution of (17) that satisfie® < u(x) < (1/n)h(z), then the solu-
tion (x(t), u(z(t)) of the control problem of each player violates the transversality condition.

Proof
For an equilibrium(zg, ug) € €, introducel = (&, 1) = (x — zo, u —up). The linearized system éto, uo)

then becomes W (z0) a )1
; . oh'(xog n(l—o) — 2
¢=ac=( Zie e Y e ol

18



Note that ifxg = 1, the matrixA takes the form

s ( —00 n(l_—1 i)p_ 1 >

We have the following lemma:

LEMMA 2. The integral curves of the syste&n= < g 5 ) ¢, with ¢ = (&, n), satisfy the relation
R Lp—_— 20)
Y-«

whereC' is an integration constant. This lemma yields thag = cmyﬁ + ..., and hence that the integral
curve through&p, 7o) is to lowest order given as

1+p

N S
77—770(50) +....

The state dynamics at the equilibrium read as

d e\ ‘
e ()T
ey

as(1+ p)/o > 1, we have thag(t) = e~ '& + ..., and consequently(t) = n(t) = npe” = '. Recalling
thatp = —u~7, we finally obtain

p(t) = po e(l-i—p)t_
Hence for all solutions of the auxiliary system that tend to the equilibiigmug) = (1,0), the transver-
sality conditionlim;_,, p(t) e ** = 0 is violated. i

Asymmetric strategiesdere the assumption is dropped that the players play symmetric strategies; for sim-
plicity, we restrict to the two—player case= 2 and assume thdt— ¢ = 1/2 holds. Equation (16) gives
rise to the system

du1 dU2

(h —u; — uz)ﬂ + 2u1a =2(h — p)uy,
du du
22@(17; + (h — Uy — UQ)T; = Q(h/ — p)UQ.

It is convenient to consider instead @©f andus the dependent quantities= u; — ue andw = wuq + uo;
for them, the equations take the simpler form

dw W —p 2 2
dv N —p

— =9 —

o A (h —w)v,

with A(z) = h% — 2hw + v2. The auxiliary version of this system of equations is
A = h? — 2hw + 02,

2(h = p) (hw — 2w? + 2)2) ,

2(h — p)(h — w)wv.

/

T
/

w
/

v
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Note that the plane = 0, corresponding to the symmetric case= us, is invariant under the flow of the
auxiliary system; in other words, that case is nested in the present one.

We will not give a full analysis of this system, leaving that to future work. However, we would like to point
out one consequence of the equatior= 2(h’' — p)(h — w)v. Recall thatt’ = h — w; hence, if the system

is on a time path for which the stock decreases, the fdcterw < 0, and the sign of/ /v is the opposite

of h' — p.

In the example above, the factor— p is positive for smalp and smallr, and it follows that then the differ-
ences between strategies decay exponentially if the stock decreases towards an equilibriumeclo$e to
Conversely, ifp sufficiently large, differences between strategies increase exponentially, which can be seen
as a mad scramble to exploit the last remnants of the stock.

4 Conclusions

In this article, a framework has been elaborated to find necessary conditions for Markov Nash equilibrium
strategies in differential games with a single state variable. The Nash equilibria have been characterized as
solutions of a system of explicit first order ordinary differential equations, usually nonlinear.

By analyzing a series of classical examples, we have shown that this characterization can be used to find
both direct analytic information, by integration of the equations, and indirect qualitative information, by a
geometric analysis of the solution curves of an auxiliary system in the phase space.

Additionally, we have addressed the issues of continuity and differentiability of Markov strategies in this
class of differential games. Our simple approach is capable enough to deliver interesting insights into a large
class of capital accumulation games.
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Appendix

Theorem 3 uses the assumption that the value function for each player is continuous. Here we discuss
regularity conditions for the value function to be continuous within the framework of an optimal control
problem. The agent’s control problem consists of maximizing

o0
ol = [ glau)e s
0
under the constraint that

T = f(x,u). (21)

Herex : [0,00) — X andu : [0,00) — U, with XX an open subset d&™ andlU the closure of an open
subset ofR*. We shall denote b, the set of all such functions andu that satisfy equation (21) almost
everywhere such thatis integrable; absolutely continuous and0) = &.

Recall that the value function can be defined as

V() = sgpﬂ[a:,u].
3

Loosely speaking, a system is locally controllable if any point in the neighborhood of a given point can

be reached by choosing the control functiomppropriately. The following definition makes this notion
precise.

DEFINITION. (Bounded controllability at a point)  We shall call the system = f(x,u) boundedly
controllable atx, if for everyn > 0 there is asy = o¢(n) > 0 such that for every < o < oy, there an
open neighborhoo@ C X of x(, depending om ando, such that the following holds.

If t1, to andx1, z9 € U are such thatt; — t2| < o, there is an integrable function : (¢1,t2) — U such
that |u(t)| < n, and an absolutely continuous function (t1,t2) — U, that satisfyz(t1) = z1, z(t2) = x2
and

T = f(xv u)a
almost everywhere oft;, t2).
With this definition in place, the criterion that ensures continuity of the value function takes now a rather
simple form.
THEOREM 4. If the systemi = f(z,w) is boundedly controllable af, then the value functioW” is

continuous at.

Proof
Takee > 0 arbitrarily. We show that there is a neighborhddaf ¢ such that if¢ € U, thenV(¢) —e <

V() < V() +e.

By the definition of value function, we can firfd;, u1) € D¢, such that

Jz1,ur] > V(§) - %
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Taken > 0,5 > 0and letBs(§) = {z : |x — &| < ¢}. Introduce

M= sup |g(z,u)l,
[z—&|<d,|ul<n

and
5 1 1

N N e

Chooser > 0 such thatr < min{o(n),o1}.

Find an open neighborhodd C Bs of ¢ such that for evernf € U, there is an inf[egrable functioin,
bounded by, and an absolutely continuous functignboth defined orf0, o) such thatt = f(z, ) almost

everywhere and(0) = ¢, Z(0) = £.

We constructzs, uz) € Dy as follows:

2alt) = {:z(t) 0<t<o,

xi1(t—o), t>o.

It then follows that

o0

V() 2 dlws, us] = / g(Z, @) e dt + / g(z1(t— o), ur(t — o)) e~ dt.
0 g
The summands can be estimated as

/ g(&, @) e Ptdt > —Mo > —%
0

and

/:Og(xl(t — o), ui(t—o))e P dt
= e Pz, u1] > e *? (V(f) - E)

3
=V~ 5~ (1= MV 2 V() — 5~ paV(©)
> V() - %

Adding these, we arrive at

V() > V() —e

Completely analogously, we show tHat¢) > V' (§) — . Combining these inequalities yields that

—e<V(E)-V() <e.

This shows thal is continuous af.
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