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Abstract

We investigate the finite-sample performance of model selection criteria for local
linear regression by simulation. Similarly to linear regression, the penalization term
depends on the number of parameters of the model. In the context of nonparametric
regression we use a suitable quantity to account for the Equivalent Number of Parame-
ters as previously suggested in the literature. We consider the following criteria: Rice
T, FPE, AIC, Corrected AIC and GCV. To make results comparable with other data-
driven selection criteria we consider also Leave-Out CV. We show that the properties
of the penalization schemes are very different for some linear and nonlinear models.
Finally, we set up a goodness-of-fit test for linearity based on bootstrap methods. The
test has correct size and very high power against the alternatives investigated. Ap-
plication of the methods proposed to macroeconomic and financial time series shows

that for some of them there is evidence of nonlinearity.
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1 Introduction

Recently, the application of nonlinear methods to economic and financial data has gathered
increasing interest. The seminal work of Hamilton (1989) on markov switching models and
the successful application to US GNP pointed out the relevance of considering nonlinear
effects. The range of nonlinear models used has widened rapidly and an account of the
various approaches and results can be found in Granger (2001). An alternative way to
model the nonlinearities in the data is to use nonparametric regression techniques. Their
main advantage is the flexibility in capturing the dependence structure in the data without
relying on a specific parametric family. However, a major disadvantage is that they require
long time series to deliver reliable results and this availability is not always the case for
macroeconomic time series. The flexibility of nonparametric methods allows to use it
as a first tool of analysis for the presence of dependence, either linear or nonlinear. If
the nonparametric methods find significant nonlinear structure, then the analysis can
proceed by specifing which parametric model fits the data best. In this perspective,
nonparametric techniques should be interpreted as complementary to parametric methods
and not competing. The curse of dimensionality affects the reliability of these methods in
small and moderate sample sizes that are typically available in economics. Balancing of
these contrasting issues has lead to few applications of nonparametric regression methods
to economic time series. Some selected references are Diebold and Nason (1990) to weekly
exchange rates, Mizrach (1992) to daily exchange rates and Pagan and Schwert (1990) to
estimate the conditional variance of stock prices.

In a linear regression framework, the model selection step involves the choice of the
number of lags to include in the regression. In addition to the lag, in nonparametrics
another element that characterizes the models is the bandwidth, that is the amount of
smoothing that is used. In this article we compare the finite sample performances of
the criteria in selecting the nonparametric model. The paper is organized as follows:
in section (2) we describe the local linear smoother and the selection criteria we use to

choose order and bandwidth. Section (3) shows simulation results concerning various linear



and nonlinear autoregressive models. In section (4) a goodness-of-fit test for linearity is
proposed and the appropriateness of the selection criteria will be emphasized. Finally, in

section (5) we investigate the presence of nonlinearity in some macroeconomic time series.

2 Method

Assume {xt}?j_lp is a univariate stationary time series generated by the following nonlinear

autoregressive model of order p
T = m(Xy) + €41

where m(z) is a function of unknown form, X; = (x4, ..., ¢_p4+1)" denotes the p-dimensional
vector of lagged values of the time series and ¢; is an i.i.d. disturbance term with mean 0

and variance o2

. This general form encompasses the AR model as well as many nonlin-
ear time series models like thresold autoregressive (TAR) and exponential autoregressive
(EXPAR). We estimate m(x) using nonparametric regression techniques. In particular,
we adopt the local linear approach proposed by Cleveland and Devlin (1988) and Fan and

Gijbels (1996). The local linear estimator using nearest-neighbors bandwidth is known in

the literature as LOESS and it minimizes
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where m(x) = &, K(+) is the tricube kernel defined as

(1—u3)? for0<u<1
K(u) =

0 otherwise,

|| - || indicates the euclidean distance and

||Xac(l~c)_x|| for0<h<1
dk(x) = L
| Xomy—2 || h? for h>1
where X, (x) denotes the k-th nearest neighbor of x and k is the integer part of hn. The

bandwidth A can be interpreted as the parameter that regulates the smoothness of the



local linear fit. The smoothing scheme can be described as follows: if X; is among the k
nearest neighbors of the design point = it receives a positive weight given by the tricube
kernel K (-) otherwise it receives a null weight. A practical advantage of nearest neighbors
bandwidths with respect to fixed bandwidths is that they deliver more reliable and stable
variances of the fit in regions where the data are sparse. If we let the bandwidth h — oo
we are including all the points in the regression and the local linear model approaches the
linear AR model.

Here we will consider data-drive (or automatic) methods to select h, that is choosing the
bandwidth that is optimal with respect to some error criteria. If we would choose h such

that it minimizes the RSS (Residual Sum of Squares)

n—1
U3 e — (X0 Pu(Xo) )
t=1

where w(-) is a weight function, we would trivially achieve a minimum for 4 — 0 because
it implies m(X¢) — xt4+1. One way to solve this problem is the Leave-One-Out Cross-
Validation method, that minimizes the following function

1

CV(h) =~ {zep - M, —o(Xe) Y w(Xe) 3)
t=1

where my, () indicates the fitted value obtained by excluding the ¢-th observation. In a
time series context, Hardle and Vieu (1992) proved that this method gives asymptotically
optimal h. An alternative way to solve the problem is to multiply the RSS by a penalization
factor that corrects for h too small. These methods are inspired by selection criteria used

for linear models that choose the order p that minimizes
SC(p) =log RSS + ¢(m) (4)

where the first term indicates the goodness-of-fit of the model and the second term pe-
nalizes the inclusion of more parameters given by @ = p 4+ 1. The extension of this
approach to a nonparametric regression framework is straightforward because they are

linear smoothers. We can express the fitted regression function as

y=Hy



where y = (22, ...,2n41)" and H is the nxn hat matrix that depends only on lagged
values. Similarly to the linear case, we can define the number of parameters involved in

the regression by

if the bandwidth tends to co then ¢r(H) will be approximately equal to p+1 but for h — 0
it will approach n, the case in which we fit as many parameters as data points.

The extension to the nonparametric case of the criterion in (4) is

SC(h,p) =log RSS + ¢(m) (5)

where the dependence of the criterion on the bandwidth, in addition to the lag order,
is taken into account. In this way we quantify the complexity of the model implied by
both the choice of the bandwidth and the number of lags. Considering more lags and
smaller bandwidths increases 7 and ¢(7) will increase the penalization on the goodness of
fit measure. 7 is also called in the literature the Equivalent Number of Parameters (ENP)
by Cleveland and Devlin (1988) to stress the analogy with linear regression.

There are many proposals concerning the form of the penalization function ¢(-). We

will consider here the most frequently used:

1. Akaike Information Criteria (AIC): ¢(m) = 27

5. Rice T (T): ¢(m) = —log (1 — 27)

A discussion of these criteria can be found in Héardle (1990). A bias corrected version
of AIC, indicated as AICC, has been recently proposed by Hurvich et al. (1998). Selection
criteria are used in nonparametric regression to select order or bandwidth and in theoretical

work these two problems are kept separate. Some previous work on lag selection using



nonparametric regression are Tschernig and Yang (2000), Tjostheim and Auestad (1994)
and Cheng and Tong (1991); for bandwidth selection see Hurvich et al. (1998), Yao and
Tong (1998) and Hérdle and Vieu (1992).

In this article we adopt the practical point of view of the time series analyst that has
to select both bandwidth and lag order. Instead of considering the problems of choosing
the optimal bandwidth and order separately, we jointly select these 2 parameters by min-
imization of Equation (5). In the following paragraph we will compare via simulation the

finite-sample performance of the different selection criteria.

3 Simulation

We simulate 1000 samples of length 100 for each of the models. We consider a maximum
lag of 4 and the bandwidth A is varied from 0.20 to 1 at steps of 0.02. The choice of
the lower bound to search for the optimal bandwidth is somewhat arbitrary and taking it
small can be unfair with respect to criteria that are affected by undersmoothing. However,
the purpose of this section is to investigate the performance of the criteria for reasonable
enough h. Increasing the order p we consider more lags in the regression function instead
of the procedure adopted by Tjgstheim and Auestad (1994) that performs a specification
search for the lags to be included in the estimation.
For all the models the noise term u; is distributed standard normally. The optimal

bandwidth, h°P!, is selected by minimizing the Average Squared Error (ASE) defined as

L~ 2

— 2 (X)) = m(X)]F w(Xy)

t=1

over h, whereas the order is assumed to be known. We will also report the average of
the ratio of the ASE calculated for the different selection criteria and for the optimal

bandwidth.

AR(1) The AR(1) process is defined as

g1 = 0.6z + ugyr.



The top panel of Figure 1 presents the smoothed density of the log-ratio of the ENP (7)
selected by the criterion to the optimal number of parameters. This plot gives information
about the behaviour of the criteria in selecting the model with respect to the optimal
choice: for positive values of the log-ratio the selection criteria is using more parameters
than optimal, so it is affected by overfitting; instead, if negative values of the log-ratio
occurs, the criteria is affected by underfitting, that is, it selects a too parsimonious model
than optimal. Overfitting is caused by undersmoothing, that is a bandwidth too small
than optimal, and/or by an order too large. The middle plot in Figure (1) shows the
log-ratio of the bandwidth selected by the criteria with respect to the optimal one and the
table gives the frequencies of order selections.

It emerges clearly that AIC and FPE have the tendency to overfit, in the sense of
using too many parameters in the regression with respect to the optimal amount. The
overfit of AIC and FPE is caused both by undersmoothing, too frequent selection of small
bandwidth, and by frequent selection of high orders (than optimal). For this model, AIC
is more likely to select lag 4 (49% of the times) than the true order 1 (only 36%). The
other criteria deliver very similar results even though AICC and T are closer to the optimal
choice both in terms of bandwidth and order selected. They also have a lower average ASE
than GCV and CV. However, there seems to be some overfitting also for these criteria as
can be seen in the skew of the distribution in the top panel. This is caused by the order
selection, where also for AICC and T near 23% of the times an order higher than the
true one is selected. This is probably a finite-sample result that might disappear if larger

sample sizes are considered.

AR(1)-GARCH(1,1) If we allow for heteroskedasticity in the disturbance of the AR(1)
process we get

41 = 0.6z + upqq, U1 ~ N(0, hyy1)
hiv1 =1+ 0.1u? + 0.8k

Considering heteroskedastic innovations in the AR(1) process doesn’t change dramat-



icaly our previous conclusions. Figure (2) shows that AIC and FPE select too small h
and too large p with respect to the optimal amount. This causes the distribution of the
ratio of the ENP to have a second mode in the right tail of the smoothed density. In 75%
of the simulation AICC selected the correct order similarly to T. A little less precise are
GCV that achieves results similar to CV. As pointed out before, AIC and FPE select the

correct order in only 34% and 55% of the times.

TAR(1) The model is
Tty = —0.5.%‘75](.%‘75 < 1) + 06217,5[(:17,5 > 1) + Utgq.-

Figure 3 confirms that also for this model AIC and FPE tend to overfit. In this case
the problem arise mainly in the selection of the bandwidth that is often too small than
optimal. Also in terms of mean ASE it is clear that they have worse performances than the
other criteria. T, AICC and GCV have similar behaviour and the distribution is slightly
skewed. This can be explained by a tendency to undersmooth clear in the middle plot of
Figure 3. T and AICC select in 94% of the cases order 1 whereas GCV 90% of the times.

T, AICC and GCV have results comparable to CV.

EXPAR(1) The model is
21 = {0.5 4 1.3exp(—0.527) by + wpy 1.

Figure 4 shows that most of the remarks previously made hold also for the EXPAR
model with dependence in the first lag. By looking at the mean ASE the best performing
criteria are AICC, T and GCV; worse performances are achieved by FPE and even worse
by AIC. The distribution of the ratio of bandwidths is skewed to the right even though
this is not the case for the distribution of the ratio of ENP. It is probably the case that
when a higher (than optimal) order is chosen it is also associated with a higher h. In
this way the higher ENP due to the order are compensated by the lower ENP due to the

bandwidth.



EXPAR(2) The model is
xey1 = {05+ 1.3 exp(—0.5x%_1)}xt + ugq

this model has the same structure of the previous one but the dependence is now spread
in the first 2 lags. In this way we test to what extent the criteria are able to identify the
second order. The bottom table in Figure (5) shows that all the criteria recognize the
existence of dependence also in the second lag; T and AICC select the second lag 95%
of the times, GCV and CV in around 86% instead of AIC that chooses with almost the
same frequency the second and forth lag. Looking at the distribution of the ratio of ENP
it appears that GCV is slightly biased toward overfitting instead of T and AICC. Again,

AIC and FPE are affected by undersmoothing and higher lag selection also for this model.

4 A test for linearity

We set up a test for linearity based on the comparison of the goodness-of-fit of the para-
metric and nonparametric autoregression. Recently, Cai et al. (2000) and Lee and Ullah
(2002) adopted a similar testing strategy. The model selection is based on the criteria ex-
amined above for both the parametric and nonparametric regressions. The null hypothesis
we want to test is

H() . E($t+1|Xt) = Xée
H1 . E(xt+1|Xt) = m(Xt)

where 6 is the coefficients vector of the AR(p) model and m(-) is an unspecified functional
form. Let RSST and RSS™M? denote the parametric and nonparametric RSS, respectively,

defined as

1 & -
RSSP = — Z{$t+1 - XtH}Q
"o

1 & "
RSSNP = g Z{$t+1 — mh(Xt)}Qw(Xt)
t=1
the test statistic is defined as

5 _ BSS” — RSSNY
~ RSSNP

9



To evaluate the significance of the test statistic we use bootstrap methods. In order to
account for the heteroskedasticity observed in many economic time series, we resample the
residuals of the nonparametric regression using the wild bootstrap approach proposed by

Liu (1988). The procedure is as follows:

1. calculate the test statistic, B, for the original time series.

2. generate bootstrap innovations, uj, |, from the centered fitted residuals of the non-

parametric regression, 441, as

. a(tiyr1 —u)  with probability p = (v/5 +1)/(2v/5)
U1 =
b(ty41 —u)  with probability 1 —p

where a = —(v/5 —1)/2 and b = (v/5 +1)/2.
3. generate iteratively a new bootstrap time series as
wfy = X704 ujy
where X/ is a p-dimensional vector of lagged values.

5. calculate the test statistic B* on the bootstrap time series. We use the same order

(linear and nonlinear) and bandwidth selected for the original time series.
6. Repeat steps (1) and (2) M times.

7. Calculate the one sided p-value as

1+ #{B* > B}
1+ M

p=

and reject if p < a, where « denotes the significance level.

We perform a one-sided test because deviations from the null hypothesis are expected to
occur for positive values of the test statistic. The consistency of the bootstrap procedure
derive from the fact that the residuals of the nonparametric regression are always consistent

both under the null and the alternative. See Cai et al. (2000) for details.

10



We simulate 1000 samples of size 100 and the number of bootstrap replications set
to 199 for the models examined in section (3). Table 1 shows that the test has good
size properties also in the presence of heteroskedasticity that is known to introduce size
distorsion. Under the alternative examined the test has high power: for the AICC selection
criteria it is 96% against TAR(1), 85% against EXPAR with dependence in the first lag

and 91% when the dependence is in the second lag.

5 Empirical Applications

The simulations and the properties of the test for linearity suggest that AICC, T and
GCV deliver reasonable results in a wide range of dependence structures, such as linear
or nonlinear models. The sample size of 100 used in the simulations guarantees that the
results are reliable for small and moderate samples. We apply the methods described to
investigate the presence of nonlinearities in some macroeconomic and financial time series.
Given the time series tested are longer than the sample size used in the simulations we
will extend the lag search to 6 for quarterly data. Unless differently specified we analyze
the growth rate of the variables. We will show the SC(h,p) in Equation (5) only for the
AICC selection criterion and inference for the other criteria is shown in tables. To make
comparisons easier we plot the SC(h, p), normalized by the log-variance of the time series,
for both the parametric and nonparametric regression.

We considered the following series for the US economy:

GNP GNP (Gross National Product) in real terms and seasonally adjusted from the
first quarter of 1947 to the third quarter of 2001. This time series has been successfully
modelled using nonlinear models such as TAR models by Potter (1995)and Tiao and Tsay
(1994) and markov-switching models by Hamilton (1989). The middle plot in Figure 6
compares the SC(h,p) of the nonparametric regression to that of a linear AR model (the
dotted line). The normalized error of the nonparametric regression using AICC or T

criteria achieves its minimum at A = 0.86 and the goodness-of-fit test rejects at 10% the

11



null hypothesis of linearity. T and AICC give a similar answer selecting a moderate h and
pointing to dependence in the first 5 lags. GCV selects a smaller bandwidth and an higher

lag order and has a smaller p-value.

Industrial Production from first quarter of 1947 to the end of 2001. The data are
seasonally adjusted. In Figure (7) it is clear that the nonparametric regression lowers
consistently the error of the linear regression. T and AICC select lags up to 5 and A = 0.74.
GCV selects a smaller bandwidth whereas CV an higher one. The test for linearity strongly
reject the null hypothesis for all the selection criteria analyzed. For this time series we

can conclude that there is robust evidence of nonlinear structure.

Unemployment Rate from first quarter 1947 to last quarter 2001. The data are sea-
sonally adjusted. For previous nonlinear analysis of this time series see Montgomery et al.
(1998). Table (8) shows that the selection criteria give a similar answer by rejecting the
null of linearity at 1% significance level. However, AICC and T selects a slightly higher
bandwidth than GCV. It is also to notice that CV does not detect significant nonlinear

structure for this time series.

T-bills Monthly 3-months Treasury Bills interest rates from 1950 to the end of 2001.
Also for this time series Figure (9) shows that the error of the nonparametric regression
significantly improves over the error of the linear model. The optimal lag for T and AICC
indicates a dependence among the last 6 quarters instead of CV that indicates a 2 quarters
dependence. The bandwidth selected is 0.66 for AICC, 0.70 for T and 0.32 for GCV. The

linearity test is rejected for all criteria except for CV where the p-value is 0.10.

S&P 500 Index from the first quarter of 1947 to the third quarter of 2001. The SC(h, p)
shows that the error of the nonparametric regression does not improve with respect to the
parametric regression. Both curves fluctuate around 1 and suggest lack of dependence
in the time series. The test for linearity, robust to heteroskedasticity in the time series,

confirms that there is no evidence to reject the null hypothesis. The lack of dependence,

12



linear or nonlinear, in the conditional mean dynamics of financial time series is a well-
known result. Our test based on nonparametric regression methods confirms that there is

no evidence to suggest linearity of the conditional mean of the process.

DM/$ exchange rate from first quarter 1974 to the end of 2001. Also in this case T and
AICC reach a similar conclusion as for S&P500 returns, that is o = 1 and p = 3. Instead,
GCV and CV select a smaller bandwidth of 0.82 and 0.88, respectively. The test does
not reject the null of linearity except for GCV that has a p-value of 0.09. These results

confirm that also for exchange rates there is no evidence of mean dependence in the series.

Yen/$ exchange rate for the same period of DM/$. Also in this case there is no evidence
of nonlinearity both from the shape of the SC” (h, p) plot and from the linearity test. The
error curve of the parametric and nonparametric regression are above 1 with the non-
parametric one converging but never improving the linear one. The criteria unanimously

identify h and p equal to 1.

6 Conclusion

The use of nonparametric regression as a tool to detect nonlinearities in time series could be
very useful to economist: as a first step in the analysis of time series it guarantees flexibility
in the dependence structure. In addition, we have shown that they are reasonably accurate
in moderate samples. In this article we have shown that selecting bandwidth and lag
order could be reliably carried out by using AICC or T that are not affected by significant
problems of overfitting instead of AIC and FPE. In addition, a goodness-of-fit test based
on the comparison of parametric and nonparametric regression is a powerful test to detect
deviations from the linearity assumption. If the linearity test rejects the null hypothesis,
further steps could be to apply a battery of parametric linearity test to identify which
nonlinear dependence structure is more suitable to explain the time series dynamics. The

application of nonparametric autoregression to macroeconomic time series shows that there

13



is statistical evidence of nonlinearity for some of them. Growth rates of US real GNP,
Industrial Production and Unemployment Rate reject the null hypothesis of linearity when
using T and AICC as selection criteria. However, the financial time series do not show
any evidence for dependence with the exception of the returns on US T-Bills for which

there is strong evidence of nonlinearity.
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Figure 1: AR(1) model: smoothed densities of the log of w¢" /7Pt (top), smoothed densities of

the log of h°"® /h°Pt (middle) and mean ASE ratio and frequency of selection of the order (bottom).
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Figure 4: EXPARI model: smoothed densities of the log of m°"* /7°P! (top), smoothed densities of

the log of h°"® /h°Pt (middle) and mean ASE ratio and frequency of selection of the order (bottom).
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Figure 5: EXPAR2 model: smoothed densities of the log of 7" /7°Pt (top), smoothed densities
of the log of he"®/h°P! (middle) and mean ASE ratio and frequency of selection of the order

(bottom).
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T | AICC | GCV | CV

AR(1) 0.06 | 0.06 | 0.07 || 0.06

AR(1) — GARCH(1,1) || 0.07 | 0.07 | 0.08 || 0.08
TAR(1) 0.96 | 0.96 | 0.96 | 0.96
EXPAR(1) 0.84| 085 | 0.85 || 0.83
EXPAR(2) 091 | 091 | 095 || 0.95

Table 1: Frequency of rejection of the null hypothesis of linearity at 5% significance level.
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Figure 6: Plot of the time series, SC(h,p) and parameters chosen with the p-value of the linearity

test for US GNP.

22




o.08F 2 h  p pun p—value
oo ‘\\‘ ‘n“ ' | “‘\‘ ‘ T o074 5 5 o001
ooo‘wu ‘N“ i V”‘uﬂy“ﬂ N \ ******************* AICC | 074 5 5 001
oo | h' “ ~_ ||l Gov|052 5 5 0
S weber Lw 7187 Oz 03 ©a OS5 O8. 07 ©8 69 1 CV 090 4 5 0.01

Figure 7: Plot of the time series, SC(h,p) and parameters chosen with the p-value of the linearity

test for US Industrial production.
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Figure 8: Plot of the time series, SC(h,p) and parameters chosen with the p-value of the linearity
test for the unemployment rate.
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Figure 9: Plot of the time series, SC(h,p) and parameters chosen with the p-value of the linearity

test for T-bills.
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Figure 10: Plot of the time series, SC(h, p) and parameters chosen with the p-value of the linearity
test for S&P500.
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Figure 11: Plot of the time series, SC(h, p) and parameters chosen with the p-value of the linearity
test for DM/US exchange rate.
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Figure 12: Plot of the time series, SC(h, p) and parameters chosen with the p-value of the linearity

test for Yen/US exchange rate.
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