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Abstract

Upon illustrating how smoothing may cause over-rejection in nonparametric tests for

Granger non-causality, we propose a new test statistic for which problems of this type can be

avoided. We develop asymptotic theory for the new test statistic, and perform a simulation

study to investigate the properties of the new test in comparison with its natural counterpart,

the Hiemstra-Jones test. Our simulation results indicate that, if the bandwidth tends to zero

at the appropriate rate as the sample size increases, the size of the new test remains close to

nominal, while the power remains large. Transforming the time series to uniform marginals

improves the behavior of both tests. In applications to Standard and Poor’s index volumes

and returns, the Hiemstra-Jones test suggests that volume Granger-causes returns. However,

the evidence for this gets weaker if we carefully apply the recommendations suggested by

our simulation study.
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1 Introduction

Granger causality has turned out to be a useful notion for characterizing dependence relations

between time series in economics and econometrics. While traditional parametric tests for

Granger causality have reached a mature status, and have become part of the standard toolbox

of economists, the recent literature attests to an increasing interest in nonparametric counterparts

of these tests. Generally speaking, the availability of ever cheaper computational power has

been accompanied by a growing literature on nonparametric statistics. In the particular case of

Granger causality, an increasing number of studies report evidence for causality between eco-

nomic variables on the basis of the Hiemstra and Jones (1994) test (hereafter often referred to

as HJ test), which has become popular among practitioners. Alternative nonparametric tests,

such as the non-causality test proposed by Bellet al. (1996) using additive models, and the

test for conditional independence recently proposed by Su and White (2003), based on weighted

Hellinger distances, may also be applied as a non-causality tests in economics and finance. Here

we limit ourselves to a discussion of the HJ test and our proposed modification of it.

Intuitively, for a bivariate process{(Xt, Yt)}, {Xt} is a Granger cause of{Yt} if past and

current values ofX contain additional information on the distribution of future values ofY that

is not contained in pastY -values alone. Applications of the HJ test on economic observables

has indicated the presence of various causal relations. For instance, Brooks (1998) reports bidi-

rectional Granger causality between volume and volatility on the New York Stock Exchange,

Abhyankar (1998) and Silvapulla and Moosa (1999) find causality in futures markets, and Ma

and Kanas (2000) report evidence for nonlinear Granger causality from French money to the

FFr/DM exchange rate. This list is not intended to be complete, and can be easily extended to

include applications in other areas, such as the interaction of the energy market and stock market

prices (Ciner, 2001), real estate and stock market prices (Okunevet al., 2000, 2002) or London

Metal Exchange cash prices and some of its possible predictors (Chen and Lin, 2004).

This paper is organized in the following way. In the next section we restate the null hypothesis

in terms of probability density functions, and show that if we try to interpret the Hiemstra-Jones

test as a nonparametric test of the null hypothesis, it suffers from a bias which can lead to over-

2



rejection. This is related to an example presented in Diks and Panchenko (2004) for which the

actual rejection rate of the HJ test under the null tends to one as the sample size increases. After a

discussion of the nature of the bias we suggest a class of alternative test statistics, with a reduced

risk of over-rejecting. Section 3 presents a simulation study in which we analyze the size and

power of the HJ test and our new test in detail, and examine the dependence of the bandwidth on

the sample size. In Section 4 we first reproduce evidence for volume Granger-causing returns,

but show that a careful application of the recommendations suggested by our simulation study

weakens the evidence for volume causing returns considerably. Section 5 summarizes our main

results and concludes.

2 Nonparametric Granger Causality Tests

For a bivariate process{(Xt, Yt)}, we say thatX is a Granger cause ofY , if the distribution of

Yt given past observations ofX andY , differs from the distribution ofYt given past observations

of Y only. If we denote the information contained in past observationsXs andYs, s < t, byFX,t

andFY,t, respectively, this can be formalized as:{Xt} is a nonlinear Granger cause of{Yt} if

Yt|(FX,t,FY,t) 6∼ Yt|FY,t,

where “∼” represents equivalence of distributions.

In testing for Granger non-causality, the aim is to detect evidence against the null hypothesis

H0 : {Xt} is not Granger causing{Yt}.

Under the null hypothesisYt is conditionally independent onXt−1, Xt−2, . . ., givenYt−1, Yt−2, . . ..

In a nonparametric setting, conditioning on the infinite past is impossible without a model re-

striction, such as an assumption that the order of the process is finite. Therefore, in practice

conditional independence is tested using finite lagslX andlY :

Yt|(Xt−1, . . . , Xt−lX ; Yt−1, . . . , Yt−lY ) ∼ Yt|(Yt−1, . . . , Yt−lY ).

For a stationary bivariate time series{(Xt, Yt)} this is a statement about the invariant distribu-

tion of thelX + lY +1-dimensional vectorWt = (X lX
t , Y lY

t , Zt), with X lX
t = (Xt−lX , . . . , Xt−1),
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Y lY
t = (Yt−LY

, . . . , Yt−1), andZt = Yt. To keep the notation compact, and to bring about the fact

that the null hypothesis is a statement about the invariant distribution ofWt, we often drop the

time index and just writeW = (X, Y, Z), where the latter is a random vector with the invariant

distribution of(X lX
t , Y lY

t , Yt). In this paper we often consider the choicelX = lY = 1, in which

case(X, Y, Z) denotes a three-variate random variable, distributed as(Xt−1, Yt−1, Yt).

The null hypothesis states that the distribution ofZ given(X, Y ) = (x, y) is the same as that

of Z givenY = y (and thus independent ofx). Therefore, if we assume thatW = (X, Y, Z) is a

continuous random variable, its probability density function must be of the form

fX,Y,Z(x, y, z) = fX,Z(x, z)fZ|X,Y (z|x, y) = fX,Z(x, z)fZ|Y (z|y)

Equivalent but for our purposes more convenient forms are

fX,Y,Z(x, y, z)

fX,Y (x, y)
=

fY,Z(y, z)

fY (y)
(1a)

and
fX,Y,Z(x, y, z)

fY (y)
=

fX,Y (x, y)

fY (y)

fY,Z(y, z)

fY (y)
. (1b)

The last equation is identical to

fX,Z|Y (x, z|y) = fX|Y (x|y)fZ|Y (z|y),

which explicitly states thatX andZ are independent conditionally onY = y, for each fixed

value ofy.

2.1 The Hiemstra-Jones test

The HJ test is a modification of the Baek and Brock (1992) test for non-causality, based on

asymptotic theory of the test statistic for weakly mixing processes. The test statistic of these

tests is the same and based on comparing two ratios of correlation integrals. For a multivariate

random vectorW the associated correlation integralCW (ε) is the probability of finding two

independent realizations of the vector at a distance smaller than or equal toε:

CW (ε) = P [‖W1 −W2‖ ≤ ε], W1, W2 indep.∼ W

=

∫ ∫
I(‖s1 − s2‖ ≤ ε)fW (s1)fW (s2) ds2 ds1

4



where the integrals are taken over the sample space ofW , and‖x‖ = supi=1,...,dW
|xi| denotes

the supremum norm, withdW the dimension of the sample space ofW . Hiemstra and Jones

(1994) argue that Equation (1a) implies for anyε > 0:

CX,Y,Z(ε)

CX,Y (ε)
=

CY,Z(ε)

CY (ε)
(2a)

or equivalently
CX,Y,Z(ε)

CY (ε)
=

CX,Y (ε)

CY (ε)

CY,Z(ε)

CY (ε)
. (2b)

The HJ test consists of calculating sample versions of the correlation integrals in (2a), and then

testing whether the left-hand- and right-hand-side ratios differ significantly or not. The estimators

for each of the correlation integrals take the form

CW,n(ε) =
2

n(n− 1)

∑ ∑
i<j

IW
ij ,

whereIW
ij = I(‖Wi − Wj‖ ≤ ε). For the asymptotic theory we refer to Hiemstra and Jones

(1994).

We argue that, although there may be some interest in testing relation (2a), it is not equivalent

to testing the null hypothesis (1b). Since it is hard, if not impossible, to derive general closed

form analytic expressions for correlation integrals, we focus on the behavior of the fractions

in (2a) for small values of the bandwidthε. For continuous distributions the following smallε

approximation is useful:

CW (ε) =

∫ ∫
I(|s1 − s2| ≤ ε)fW (s1)fW (s2) ds1 ds2

=

∫
εdW fW (s1)fW (s1) ds1 +O(εdW +1)

= (2ε)dW

∫
f 2

W (s) ds +O(εdW +1)

= (2ε)dW E [fW (W )] +O(εdW +1),

(3)

which shows that for smallε, the leading term in powers ofε is proportional toE [fW (W )].

The expectationE [fW (W )] =
∫

f 2
W (s) ds can be considered as a concentration measure of

W . To illustrate this, for a family of univariate pdfs with scale parameterθ, that is,fW (w; θ) =

θ−1g(θ−1w) for some pdfg(·), one readily finds∫
f 2

W (s; θ) ds =
1

θ

∫
g2(x) dx =

cnst.

θ
,
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which shows that, in the univariate case, the concentration measure is inversely proportional to

the scale parameterθ. For later convenience we introduce the notationHW for the concentration

measure of the random variableW ,

HW =

∫
f 2

W (w) dw, (4)

andHW (y) for the conditional concentration ofW givenY = y:

HW (y) =

∫
f 2

W |Y (w|y) dw =

∫
f 2

W,Y (w, y) dw

f 2
Y (y)

.

By comparing the leading terms of the expansion in powers ofε in equations (2b) and (3), we

find that
E[fX,Y,Z(X, Y, Z)]

E[fY (Y )]
=

E[fX,Y (X,Y )]

E[fY (Y )]

E[fY,Z(Y, Z)]

E[fY (Y )]
. (5)

That is, forε small, testing the equivalence of the ratios in (2a) amounts to testing (5) instead of

the null hypothesis. Unless some additional conditions hold, this will typically not be equivalent

to testing the null hypothesis.

The exact conditions under which (5) is consistent with the null hypothesis are important,

since in that case it might still be possible to obtain consistency of the HJ test by lettingε tend

to zero sufficiently slowly with increasing sample size. We therefore examine the necessary

conditions in detail. For the left-hand-side of (5) one can write

E [fX,Y,Z(X, Y, Z)]

E[fY (X, Y )]
=

EY

[
EX,Z|Y [fX,Z|Y (X, Z|Y )f(Y )]

]
E[fY (Y )]

=

∫
EX,Z|Y =y[fX,Z|Y (X, Z|y)]w(y) dy

=

∫
HX,Z(y)w(y) dy,

wherew(y) is a weight function given byw(y) = f 2
Y (y)/

∫
f 2

Y (s) ds. This brings about the fact

that the ratio on the left-hand-side of (5) for smallε is proportional to a weighted average of

the conditional concentrationHX,Z(y), with weight functionw(y). In a similar fashion, for the

terms on the right-hand-side one derives

E [fX,Y (X, Y )]

E[fY (Y )]
=

∫
HX(y)w(y) dy, and

E [fY,Z(Y, Z)]

E[fY (Y )]
=

∫
HZ(y)w(y) dy,

6



Under the null hypothesis,Z is conditionally independent ofX givenY , so thatHX,Z(y) is

equal toHX(y)HZ(y), for all y. It follows that the left and right hand sides of (5) coincide under

the null if and only if∫
HX(y)HZ(y)w(y) dy −

∫
HX(y)w(y) dy

∫
HZ(y)w(y) dy = 0,

or

Cov(HX(S), HZ(S)) = 0, (6)

whereS is a random variable with pdfw(y). Only under specific conditions, such as either

HX(y) or HZ(y) being independent ony, (5) holds under the null, and hence (2a) asε tends to

zero. Also ifHX(y) andHZ(y) depend ony, (5) may hold, but this is an exception rather than

the rule. Typically the covariance will not vanish, inducing a bias in the HJ test for smallε.

The fact that the conditional concentration measures ofX lX
t−1 andYt givenY lY

t−1 plays an im-

portant role is interesting. In economics and finance, stochastic processes with conditional het-

eroskedasticity are very common. If the models used to filter out the heteroskedasticity (usually

this is done with estimated ARCH or GARCH models) are misspecified, then some covariance

between the conditional concentration ofX lX
t−1 andYt may remain, and the sensitivity of the HJ

test to this covariance may lead to over-rejection, even after GARCH filtering. We examine such

cases in detail in the simulation study described later.

2.2 A modified test statistic

In comparing equations (1b) and (5) it can be noticed that although (1b) holds point-wise for any

triple (x, y, z) in the support offX,Y,Z(x, y, z), (5) contains averages of the terms (1b), which do

not respect the fact that they-values on the rhs of (1b) should be identical. Because (1b) holds

point-wise, rather than (5), the null hypothesis implies

E

[
fX,Y,Z(U, V,W )

fY (V )
− fX,Y (U, V )

fY (V )

fY,Z(V, W )

fY (V )

]
= 0

for any triple of random variables(U, V,W ) taking values in the support offX,Y,Z(x, y, z). Tak-

ing this equation as a starting point, we can base a test statistic on the functional

q = E

[(
fX,Y,Z(X, Y, Z)

fY (Y )
− fX,Y (X, Y )

fY (Y )

fY,Z(Y, Z)

fY (Y )

)
g(X, Y, Z)

]
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whereg(x, y, z) is a positive weight function. Under the null hypothesis the term within the

round brackets vanishes, so thatq = 0. Althoughq is not semi positive definite, a one-sided test,

rejecting when its estimated value is too large, in practice is often found to have larger power

than a two-sided test. In tests for serial dependence Skaug and Tjøstheim (1993) report good

performance of a closely related unconditional test statistic (their dependence measureI4 is an

unconditional version of our term in round brackets).

We have considered several possible choices of the weight functiong, being (1)g1(x, y, z) =

fY (y), (2) g2(x, y, z) = f 2
Y (y) and (3)g3(x, y, z) = fY (y)/fX,Y (x, y). Preliminary Monte Carlo

simulations (not presented here) using the stationary bootstrap (Politis and Romano, 1994) indi-

cated thatg1 andg2 behave similarly and are more stable thang3. We will focus ong2 in the sequel

of this paper. The main advantage ofg2 over g1 is that the corresponding estimator has a rep-

resentation as a U-statistic, allowing the asymptotic distribution to be derived straightforwardly

for weakly dependent data. For the choiceg(x, y, z) = f 2
Y (y), we refer to the corresponding

functional as̃q:

q̃ = E [fX,Y,Z(X, Y )fY (Y )− fX,Y (X, Y )fY,Z(Y, Z)] .

Note that̃q defined as above, for smallε is proportional to(2ε)dX+2dY +dZ . A natural estimator

of q̃ is given by

q̃n = (2ε)−dX−2dY −dZTn

where

Tn =
1

n(n− 1)(n− 2)

∑
i

[∑
k,k 6=i

∑
j,j 6=i

(
IXY Z
ik IY

ij − IXY
ik IY Z

ij

)]
,

whereIW
ij = I(‖Wi −Wj‖ < ε). Note that the terms withk = j need not be excluded explicitly

as these each contribute zero to the test statistic. The test statistic can be interpreted as an average

over local BDS test statistics, for the conditional distribution ofX andZ, givenY = yi.

If we definelocal correlation integralsof (Xi, Yi, Zi) as

CW
i =

1

n− 1

∑
j,j 6=i

IW
ij ,
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the test statistic can be simplified to

Tn =
(n− 1)

n(n− 2)

∑
i

(CXY Z
i CY

i − CXY
i CY Z

i ).

This representation shows that the test statistic consist of a sum of local contributions, each of

which has zero expectation under the null.

Using the approach followed by Hiemstra and Jones (1994) under the same stationarity and

weak mixing conditions we obtain:

Theorem 1
√

n
(Tn − (2ε)mq̃)

Sn

d−→N(0, 1).

With Sn as given in the appendix, where also the proof is given.

Although the weight functiong2(x, y, z) = f 2
Y (y) is convenient for calculating the test statis-

tic, if fY (y) varies considerably in the sample space, the weight functiong2(x, y, z) may put

too much weight on those parts of the sample space where the density ofy is large, and ignore

contributions from regions where the density ofY is low. To avoid a possible associated loss

of power, we consider transforming the original time series data to a uniform marginal distribu-

tion. In particular when the conditioning variableY contains only one lagged value, its marginal

density becomes uniform under this transform. Pompe (1993) argued for a similar transform of

the data to avoid similar problems in his serial independence test. Note that the weight func-

tionsg1(x, y, z) = fY (y) andg2(x, y, z) = f 2
Y (y) become equivalent in the case whereY has a

uniform distribution.

3 Simulations

We use numerical simulations to investigate the behavior of the proposedTn test and to compare

it with the HJ test. Relying on the outcomes of the simulations we also develop some recom-

mendations regarding practical implementations of the nonlinear test for Granger causality. The

underlying processes for the simulations were chosen from the family of bivariate conditional

heteroskedastic processes. The interest in these processes was stipulated by their relevance to
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econometrics and financial time series. We start with a first order process{Yt} with conditional

heteroskedasticity. The process{Xt} is driven by{Yt} via variance. Two cases are considered:

• the first with instantaneous dependence

Xt−1 ∼ N
(
0, a + bY 2

t−1 exp(−cY 2
t−1)

)
Yt ∼ N

(
0, a + bY 2

t−1 exp(−cY 2
t−1)

)
.

(7)

• and the second with lag one dependence

Xt ∼ N
(
0, a + bY 2

t−1 exp(−cY 2
t−1)

)
Yt ∼ N

(
0, a + bY 2

t−1 exp(−cY 2
t−1)

)
.

(8)

Both specifications (7) and (8) satisfy the null hypothesis:{Xt} is not Granger causing{Yt}.

The values for the coefficientsa, b andc are chosen in such a way that process{Xt} remains

stationary and ergodic (e.g. ifa > 0, 0 < b < 1 andc = 0, {Yt} boils down to a stable ARCH(1)

process). We introduce an exotic exponential term in the conditional variance specification.

This is done to reflect the fact that the true conditional variance may take forms that are not

adequately captured by traditional (G)ARCH models. To emphasize certain points of interest we

chose different values for the coefficientsa, b andc. The lagsLx andLy are set to one for both

tests, and we consider one-sided testing, rejecting when the test statistics are too large.

Size distortions

Diks and Panchenko (2004) demonstrated that for the process with instantaneous dependence (7)

and coefficientsa = 1, b = 0.4, andc = 0, the actual size of the HJ test was severely distorted.

The distortion occurs because of the positive covariance between the concentration measuresHX

andHZ as explained in subsection 2.1. Recent simulations (not shown) with the same underlying

process revealed that theTn test statistic exhibits less bias. Here we want to illustrate the same

point for the process (8) with the same coefficients but without instantaneous dependence. As

before, we set the bandwidth toε = 1, and determined the actual size for a nominal size of0.05.
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Figure 1: Simulated size of Tn and the HJ test (ε = 1) for the bivariate ARCH process given in (8) as a

function of the time series length n (nominal size 0.05). Number of realizations: 1 000 for n < 10 000,

and 500, 100, 30 for n = 10 000, 30 000, and 60 000 respectively.

Figure 1 shows the rejection rates found as a function of the time series lengthn. The actual

size of theTn based test is close to nominal for series of lengthn ≤ 1 000. It becomes larger

for longer series. The size of the HJ test is more heavily distorted. It is close to nominal only

for time series lengthn = 100 and is close to one whenn = 60 000. In comparison with the

process (7) considered in Diks and Panchenko (2004) the current process (8) indicates less size

distortion. This is due to the weaker covariance between the concentration measuresHX andHZ

for the current process.

GARCH filtering

One might argue that it is possible to filter out the conditional heteroskedasticity using a univari-

ate (G)ARCH specification. This would remove the bias caused by the conditional heteroskedas-

ticity in the HJ test. However such a filtering procedure has several drawbacks. First, it may
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Figure 2: Size-size plot of Tn and the HJ test (ε = 1.0) for the original bivariate process (7) and

GARCH(1, 1) filtered series (nominal size 0.05). Time series length n = 2 000 and number of realizations

1 000.

affect the dependence structure and consequently the power of the test. Second, without know-

ing the precise functional form of the process, a simple (G)ARCH filter may not fully remove the

conditional heteroskedasticity in the residuals. To illustrate the latter point we considered a pro-

cess of the form (7) with coefficientsa = 0.65, b = 0.9 andc = 0.5. A univariate GARCH(1,1)

model is misspecified for this process. First, we took a long time seriesn = 10 000 and estimated

the parameters of a (misspecified) GARCH(1, 1) model. No significant GARCH structure was

found for the process{Xt}. The parameter estimates for{Yt} were a constant term of0.8 and

an ARCH(1) term of0.18. The GARCH(1) term was not significantly different from zero. This

estimated model was used to obtain GARCH(1, 1) filtered time series. TheTn and HJ tests were

applied to the original and filtered time series of lengthn, with ε set to unity.

Figure 2 shows a size-size plot of the original and filtered series. Both tests after (G)ARCH

filtering exhibit an actual size closer to the nominal. Remarkably, the size of theTn test on the

original series is very close to the size of the HJ test on the filtered data. Since the GARCH(1,1)
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Figure 3: Size-size plot of Tn and the HJ test (ε = 1) for the original process 7 and series transformed to

uniform marginals (nominal size 0.05). Time series length n = 2 000 and number of realizations 1 000.

model was not able to capture the complete structure of the conditional variance, both tests still

over-reject after filtering. As before, the size distortion for theTn statistic is found to be less than

for the HJ test.

Uniform transformation

As suggested at the end of section 2, transforming the time series to a uniform marginal density,

hereafter called uniform transformation, may improve the performance of the test. Here we

investigate how it affects the size of the test. We take the process (7) with coefficientsa = 0.65,

b = 0.2 andc = 0.5. A series length ofn = 2 000 was used and the bandwidth set toε = 1.

Figure 3 shows the actual size as a function of the nominal size. The actual size for the

transformed series is closer to the nominal size. Therefore, we can conclude that for process (7)

with instantaneous dependence, the uniform transformation improves the performance of both

tests. Nevertheless, the HJ test still heavily over-rejects.

13



test Tn HJ Tn HJ Tn HJ Tn HJ Tn HJ

n 1 000 5 000 10 000 30 000 60 000

ε∗ 1.00 0.50 0.70 0.20 0.60 0.15 0.44 0.06 0.35 0.05

size 0.074 0.080 0.057 0.052 0.050 0.065 0.040 0.030 0.033 0.560

power 0.551 0.418 0.994 0.884 1.000 0.944 1.000 0.093 1.000 1.000

Table 1: Simulated size and power of Tn and the HJ test for bivariate ARCH process (8) as a function of

the time series length n and adapted bandwidth ε∗ (nominal size 0.05). Number of realizations: 1 000 for

n < 10 000, and 500, 100, 30 for n = 10 000, 30 000, and 60 000 respectively.

We also considered specifications from the class (8), but the uniform transform showed either

marginal or no size improvements for both tests in this case.

Bandwidth adaptation

Despite the better general performance of the test based onTn, its actual size still becomes

distorted for long series lengths (see Figure 1). To reduce the bias ofTn we considered an

adaptation of the bandwidthε to the time series lengthn. We conducted an extensive amount

of simulations for different values ofε andn of 500, 1 000, 5 000 and10 000. For eachn we

selected the bandwidthε that produced the size closest to the commonly used nominal size of

0.05. On the basis of the selectedε - n correspondences we detected an approximate rate at which

the optimal bandwidthε∗ should go to zero asn increases:

ε∗ ' kn−α. (9)

For the process (8) with the coefficientsa = 1, b = 0.4, c = 0 we find the constant term

k ' 7.0 and the rateα ' 0.27. As we will show later this rate of convergence towards zero asn

increases is sufficiently slow for the power of theTn to remain large. We tried to derive a similar

relation for the HJ test. However, the rateα ' 0.6 (with a constant termk ' 35) was still not

high enough to prevent a bias for largen.

Table 1 reports theTn and HJ test rejection rates (both size and power) for increasing series
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lengthn and bandwidths equal toε∗ given in equation (9), for a nominal size of0.05. The size

computations were based on the process (8) and the coefficientsa = 1, b = 0.4 andc = 0.

To compute the power we took the same process and reversed the roles of{Xt} and{Yt}, so

that the relation tested became:{Yt} is not Granger causing{Xt}. Coefficientb was reduced to

0.1 to make the simulation more informative (for higherb power was one in nearly all cases).

The actual size of theTn test is close to the nominal size for alln. The power of the test is not

reduced by the bandwidth adaptation. The size of the HJ test remains close to the nominal size

for n ≤ 30 000 and departs from it for highern. This suggests that an even faster rateα should

be applied. This in turn may reduce the power of the HJ test which is already smaller than the

power ofTn test under the adaptive bandwidth procedure.

To demonstrate that the bandwidth adaptation is robust for other coefficients and different

values of nominal size we consider the process (8) with a different set of the coefficientsa = 0.65,

b = 0.2 andc = 0.5 and generate size-size and power-size plots. As before, the power is the

rejection rate for the reversed null hypothesis. For series of lengthn = 2 000, according to

equation (9) we findε∗ = 0.9 for theTn test andε∗ = 0.4 for the HJ test. Figure 4 suggests that

both tests have an actual size close to nominal. In terms of powerTn shows better performance.

Regarding the processes with instantaneous dependence of the form (7) which exhibited even

more bias we find that it is necessary to use a higher rateα in the bandwidth adaptation equation

(9).

It should be noted that there is related literature on bandwidth selection for nonparametric

hypothesis tests. For example, as in Horowitz and Spokoiny (2001) one might consider a new

test statistic which is the largest value of the standardized and studentized test statistics for a

range of bandwidths, and use bootstrap methods to assess the critical values. Although it is an

interesting question whether these techniques can also be developed in the present context, we

consider this issue beyond the scope of the this paper.
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Figure 4: Size-size and power-size plots of Tn and the HJ test for process (8) (ε = ε∗ = 0.9) for Tn

test, and (ε = ε∗ = 0.4 for the HJ test, nominal size 0.05). Time series length n = 2 000 and number of

realizations 1 000.

Practical recommendations

In summary, by following the procedure of this section we developed practical recommenda-

tions regarding the application of theTn test for Granger causality. The main focus was on

processes exhibiting conditional heteroskedasticity, a common stylized fact in financial time se-

ries. We observed that GARCH(1, 1) filtering reduces the bias of the test. However, care should

be taken since the filtering procedure with an incorrect model specification may be insufficient

for preventing a size distortion. If there is an indication of instantaneous dependence between

the time series, transformation to uniform marginal densities proved to be useful in making the

Tn test more precise. For relatively long times series it is highly desirable to take into account

a dependence of the bandwidth on the length of the seriesn according to equation (9). It was

demonstrated that that procedure yields an accurate test without loss of power.
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4 Applications

We consider an application to daily volume and returns data for the Standard and Poor’s 500

index in the period between January 1950 and December 1990. We deliberately have chosen

this period to roughly correspond to the period for which Hiemstra and Jones (1994) found

strong evidence for volume Granger-causing returns (1947 – 1990) for the Dow Jones index.

To keep our results comparable with those of Hiemstra and Jones, we closely followed their

procedure. That is, we adjusted for day-of-the-week and month-of-the-year effects on returns

and percentage volume changes, using a two-step procedure in which we first adjust for effects

in the mean, and subsequently in the variance. The calendar adjusted, standardized, returns and

percentage volume change data were used to estimate a linear bivariate VAR model. Finally, the

two VAR residual series were EGARCH filtered, and the resulting bivariate EGARCH residual

series served as the input for the causality tests presented below.

We applied the HJ test and theTn test both with and without transforming the data to uniform

marginals. Applying the tests withε = 1.5 (the value used by Hiemstra and Jones (1994)). leads

to strong indications of a bi-directional causal relationship between volume changes and returns.

The evidence for returns affecting volume (not shown) are extremely strong, (p-values smaller

than0.001 at all lags) for each of the two tests, before and after uniform transforms. However,

the relation in the other direction (volume Granger causing returns) is more interesting, since

evidence of Granger causality in that direction might (but need not) indicate an inefficiency in

the market. Table 4 shows thep-values for the four tests at equal lagslX = lY ranging from1 to

5, for ε = 1.5. Clearly, the tests indicate a strong causal relation from relative volume changes to

returns.

However, the previous simulation section indicates that, in order to avoid bias problems, one

should not choose the bandwidthε too large. For a time series length of10 000 a bandwidth of

about0.15 and0.6 should be used for the HJ test andTn, respectively. Thep-values calculated

for these bandwidth values are also shown in Table 4. The results for the HJ test no longer

indicate evidence for volume Granger-causing returns. This might be related to a loss of power

of the HJ test under the adaptive bandwidth procedure, as we observed in the simulations. Using
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HJ Tn HJ HJ (UNIF) Tn Tn (UNIF)

lX = lY ε = 1.5 ε∗ = 0.15 ε∗ = 0.6

1 0.052 0.057 0.229 0.562 0.049 0.032

2 0.001 0.001 0.143 0.597 0.002 0.028

3 0.048 0.041 0.204 0.201 0.024 0.175

4 0.017 0.014 1.000 1.000 0.063 0.198

5 0.012 0.011 — — 0.344 0.143

Table 2: P-values for the test of the null hypothesis that volume does not Granger cause returns. Results

are shown for the HJ test statistic and for the modified test statistic Tn with bandwidth of ε = 1.5, which is

of the same order of magnitude as the values used in the literature, and for adaptive bandwidths suggested

by the simulation results of the previous section. The dashes indicate a lack of inter-point distances leading

to an empirical correlation integral equal to zero in the denominator.

the adaptive bandwidth, theTn statistic still indicates some evidence for Granger causality, albeit

weaker than before. Table 4 also shows the results for uniform transforms of the data, which are

very similar to those obtained without the transforms.

In summary, our findings on the basis of the Standard and Poor’s data are consistent with

our simulation based result that a larger value of the bandwidth increases power, but at the cost

of an increased bias. If the tests are performed for bandwidth values for which the simulations

suggested that the actual size remains approximately equal to nominal, the evidence for relative

volume changes Granger causing returns becomes weaker forTn and even vanishes for the HJ

test.

5 Concluding Remarks

By analyzing the HJ test in detail we find that it is biased even as the bandwidth tends to zero.

This shows that there are problems in interpreting the HJ test as a nonparametric test for Granger

causality. Based on the analysis we proposed a new test statisticTn that does not suffer from

this problem. By symmetrizing the test statistic, it can be expressed as a U-statistic for which we
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obtained the asymptotic theory for fixed bandwidth values. The simulations section presented a

large number of size ans power calculations for processes with autoregressive heteroskedasticity

of a nonstandard form. The simulations showed that the fixed bandwidthTn test, like the HJ test,

over-rejects for large sample sizes, albeit to a lesser extent. We show that an adapted bandwidth

choice which tends to zero as the sample size increases, reduces the size distortion while retaining

large power. In an application to relative volume changes and returns for historic Standard and

Poor’s index data we found that an initial naive application of the HJ test or theTn test would lead

to strong rejection of the null hypothesis that volume changes are not Granger causing returns.

However, application of our recommendations based on the simulation study strongly weakens

the evidence against the null hypothesis, which suggests that the strong rejections initially found

may be spurious.
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A Asymptotic distribution of Tn

The test statisticTn can be written in terms of a U-statistic by symmetrization with respect to the

three different indices. This gives

Tn =
1

n(n− 1)(n− 2)

∑
i6=j 6=k 6=i

K(Wi, Wj, Wk)

with Wi = (X lX
i , Y lY

i , Zi), i = 1, . . . , n and

K(Wi, Wj, Wk) =
1

6


(
IXY Z
ik IY

ij − IXY
ik IY Z

ij

)
+

(
IXY Z
ij IY

ik − IXY
ij IY Z

ik

)
+(

IXY Z
jk IY

ji − IXY
jk IY Z

ji

)
+

(
IXY Z
ji IY

jk − IXY
ji IY Z

jk

)
+(

IXY Z
ki IY

kj − IXY
ki IY Z

kj

)
+

(
IXY Z
kj IY

ki − IXY
kj IY Z

ki

)


Notice that, in contrast with the correlation integral, which is a second order U-statistic,Tn is a

third order U-statistic. According to Denker and Keller (1983),Tn is asymptoticallyN(µ, σ2

n
)

distributed, withµ = (2ε)dX+2dY +dZ q̃ and

σ2 = 9

[
Var(h(W1)) + 2

∑
k≥2

Cov(h(W1), h(W1+k))

]

with

h(w) =

∫ ∫
K(w,w1, w2)fW (w1)fW (w2) dw1 dw2.

If we estimateh(Wi) as

ĥi =
1

(n− 1)(n− 2)

∑
j,j 6=i

∑
k,k 6=i

K(Wi, Wj, Wk),

an autocorrelation consistent estimator forσ2 is given by (Newey and West, 1987):

S2
n =

K∑
k=1

Rkωk,

whereRk = 1
n−k

∑n−k
i=1 (ĥi − T )(ĥi+k − T ) is the sample autocovariance function ofh(Wi), and

ωk as in Hiemstra and Jones (1994). It follows that

√
n

(Tn − (2ε)mq̃)

Sn

d−→N(0, 1),
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which proves Theorem 1.

Although Tn is a third order U-statistic, bothTn and the asymptotic varianceS2
n can be

determined inO(n2) computational time. For eachi, the calculation of theCW
i ’s and theIW

ij ’s

isO(n). A secondO(n) calculation then provides thêhi through

ĥi =
1

3

(
CXY Z

i CY
i − CXY

i CY Z
i

)
+

1

3n

∑
j

(
CXY Z

j IY
ij + IXY Z

ij CY
j − CXY

j IY Z
ij − IXY

ij CY Z
j

)
,

a result which follows from straightforward calculation from the definition ofĥi. C-code can be

obtained from the authors upon request.
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